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Abstract. In this paper, we study the speed of extinction of continuous state branching processes
in subcritical Lévy environments. More precisely, when the associated Lévy process to the envi-
ronment drifts to −∞ and, under a suitable exponential change of measure (Esscher transform),
the environment either drifts to −∞ or oscillates. We extend recent results of Palau et al. (2016)
and Li and Xu (2018), where the branching term is associated to a spectrally positive stable Lévy
process and complement the recent article of Bansaye et al. (2021) where the critical case was stud-
ied. Our methodology combines a path analysis of the branching process together with its Lévy
environment, fluctuation theory for Lévy processes and the asymptotic behaviour of exponential
functionals of Lévy processes. As an application of the aforementioned results, we characterise the
process conditioned to survival also known as the Q-process.

1. Introduction and main results

Continuous state branching processes in random environments (or CBPREs for short) are the
continuous analogue, in time and space, of Galton-Watson processes in random environments (or
GWREs for short). Roughly speaking, a process in this class is a time-inhomogeneous Markov pro-
cess taking values in [0,∞], where 0 and ∞ are absorbing states, satisfying the quenched branching
property; that is conditionally on the environment, the process started from x+ y is distributed as
the sum of two independent copies of the same process but issued from x and y, respectively.

CBPREs provide a richer class of branching models which take into account the effect of the
environment on demographic parameters and letting new phenomena appear. In particular, the
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classification of the asymptotic behaviour of rare events, such as the survival and explosion proba-
bilities, is much more complex than the case when the environment is fixed since it may combine
environmental and demographical stochasticities. Another interesting feature of CBPREs is that
they also appear as scaling limits of GWREs, a very rich family of population models; see for
instance Kurtz (1978) where the continuous path setting is considered and Bansaye and Simatos
(2015) and Bansaye et al. (2021) where different classes of processes in random environment are
studied including CBPREs.

An interesting family of CBPREs arises when we consider discrete population models in i.i.d.
environments (see for instance Bansaye et al. (2021); Bansaye and Simatos (2015); Böinghoff and
Hutzenthaler (2012)). The scaling limit of such population models in i.i.d. environments can be
characterised by a stochastic differential equation whose linear term is driven by a Lévy process
which captures the effect of the environment. This family of processes is known as continuous state
branching processes in Lévy environment (or CBLEs for short) and their construction have been
given by He et al. (2018) and by Palau and Pardo (2018), independently, as the unique non-negative
strong solution of a stochastic differential equation which will be specified below.

The study of the long-term behaviour of CBLEs has attracted considerable attention in the
last decade due to the interesting properties exhibited by these processes, such as an extra phase
transition for the extinction probability in the subcritical regime. A list of key papers includes
Bansaye et al. (2013), Böinghoff and Hutzenthaler (2012), He et al. (2018), Palau and Pardo (2017,
2018), Palau et al. (2016) and Xu (2021). In all these manuscripts, the speed of extinction has
been computed for the case where the associated branching mechanism is either stable or Gauss-
ian, since the survival probability can be computed explicitly in terms of exponential functionals
of Lévy processes. More precisely, Böinghoff and Hutzenthaler (2012) and Palau and Pardo (2017)
have studied the case when the random environment is driven by a Brownian motion with drift
and when the branching term is given by a Feller diffusion and a stable continuous state branching
process, respectively. Both studies exploited the explicit knowledge of the density of the exponen-
tial functional of a Brownian motion with drift. Bansaye et al. (2013) determined the long-term
behaviour for stable branching mechanisms where the random environment is driven by a Lévy
process with bounded variation paths. The case when the environment is driven by a general Lévy
process satisfying some exponential moments and the branching mechanism is stable was treated,
independently, by Li and Xu (2018) and Palau et al. (2016). Moreover, the results for the critical
regime in the aforementioned two articles can be extended to the case when the Lévy environment
has not finite second moment and satisfies the so-called Spitzer’s condition (see Theorem 2.20 and
Remark 2.21 in Patie and Savov (2018)). More recently, Xu (2021) gave an exact description for
the speed of the extinction probability for CBLEs with stable branching mechanism and where the
Lévy environment is heavy-tailed.

Little is known about the long-term behaviour of CBLEs when the associated branching mech-
anism is neither stable nor Gaussian. Up to our knowledge, the only study in this direction is the
recent paper by Bansaye et al. (2021), where the speed of extinction of critical CBLEs for more
general branching mechanisms was studied. More precisely, the authors in Bansaye et al. (2021) con-
sidered the case when the associated Lévy process in the environmental term satisfies the so-called
Spitzer’s condition and relax the assumption that the branching mechanism is stable. The strategy
of their proof relies on the description of the extinction event under favorable environments, or in
other words that the running infimum of the environment is positive, and the explicit behaviour
of the exponential functional of Lévy processes under Spitzer’s condition given in Patie and Savov
(2018).

In this article, we are interested in understanding the asymptotic behaviour of the survival prob-
ability for CBLEs in the subcritical regime for a more general class of branching mechanisms rather
than the stable case. Recall that in the subcritical regime, the underlying Lévy process drifts to
−∞. Moreover, as it was observed in Li and Xu (2018) and Palau et al. (2016) and in the discrete
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case by Afanasyev (1980) and Dekking (1987), there is another phase transition in the subcritical
regime. These sub-regimes are known in the literature as: strongly, intermediate and weakly sub-
critical regimes, respectively (see e.g. Theorem 5.1 in Li and Xu (2018) or Proposition 2.2 in Palau
et al. (2016)). The main contribution of this paper is to provide the precise asymptotic behaviour
of the survival probability in the intermediate and strongly subcritical regimes, under some gen-
eral assumptions on the Lévy process associated to the environment and the branching mechanism.
Furthermore, we apply our main results to describe CBLEs conditioned on survival, also known
as Q-processes, and we identify them as CBLEs with immigration (see for instance Theorem 5.3
in He et al. (2018), Theorem 1 in Palau and Pardo (2017) or below for a proper definition of the
aforementioned class of processes).

In the strongly subcritical regime, we deduce that the survival probability decays exponentially
with the same exponential rate as the expected population size (up to a multiplicative constant
which is proportional to the initial population size). The key point in our arguments is to rewrite
the probability of survival under a suitable change of measure which is associated to an exponential
martingale of the Lévy environment. In order to do so, the existence of some exponential moments
for the Lévy environment is required. Under this exponential change of measure, the Lévy envi-
ronment remains in the subcritical regime, however the probability of survival now can be related
to the Laplace transform of a CBLRE with immigration. In order to characterise the limit of the
survival probability, we require the so-called Grey’s condition which guarantees that the process
is absorbed at 0 a.s.(see Corollary 4.4 in He et al. (2018)) and the characterisation of the Laplace
transform of the aforementioned CBLRE with immigration in terms of an extension of the origi-
nal environment to an homogeneous Lévy process indexed in the real line (see equation 5.6 in He
et al. (2018)). The latter characterisation was used in He et al. (2018) to study the stationary
distribution of CBLREs with immigration and requires a classical x log x-moment condition on the
Lévy measure associated to the branching mechanism. Thus, in order to guarantee the positivity of
the limiting coefficient in our result, the x log x-moment condition on the Lévy measure associated
to the branching mechanism is required together with a 1/x-moment condition on the stationary
distribution of the CBLRE with immigration that appears in the probability of survival.

For the intermediate subcritical regime, we obtain that the speed of the survival probability
decays exponentially with a polynomial factor of order 1/2 (up to a multiplicative constant which
is proportional to the initial population size). In order to deduce our second main result, we
combine the approach developed in Afanasyev et al. (2014); Geiger et al. (2003), for the discrete
time setting, with fluctuation theory of Lévy processes. Similarly as in the strongly subcritical
regime, we use an exponential change of measure under which the CBLE now oscillates. In other
words, the latter observation allows us to follow a similar strategy developed in Bansaye et al.
(2021) to study the extinction rate for CBLEs in the critical regime. More precisely, under this new
measure, we split the event of survival in two parts, that is when the running supremum is either
negative or positive; and then we show that only paths of the Lévy process with a very low running
supremum give substantial contribution to the speed of survival. In this regime, we impose an
x log x-moment condition on the Lévy measure associated to the branching mechanism and a lower
bound for the branching mechanism, which allows us to control the event of survival under favorable
environments. In addition, our arguments require another technical condition which involves the
branching mechanism and the Lévy process that we will specified below.

1.1. Preliminaries. Let (Ω(b),F (b), (F (b)
t )t≥0,P(b)) be a filtered probability space satisfying the usual

hypothesis on which we may construct the demographic or branching term of the model that we are
interested in. We suppose that (B

(b)
t , t ≥ 0) is a (F (b)

t )t≥0-adapted standard Brownian motion and
N (b)(ds, dz,du) is a (F (b)

t )t≥0-adapted Poisson random measure on R3
+ with intensity dsµ(dz)du
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where µ satisfies ∫
(0,∞)

(z ∧ z2)µ(dz) <∞. (1.1)

We denote by Ñ (b)(ds, dz,du) the compensated version of N (b)(ds, dz, du). Further, we also intro-
duce the so-called branching mechanism ψ, a convex function with the following Lévy-Khintchine
representation

ψ(λ) = ψ′(0+)λ+ ϱ2λ2 +

∫
(0,∞)

(
e−λx − 1 + λx

)
µ(dx), λ ≥ 0, (1.2)

where ϱ ≥ 0. Observe that the term ψ′(0+) is well defined (finite) since condition (1.1) holds.
Moreover, the function ψ describes the stochastic dynamics of the population.

On the other hand, for the environmental term, we consider another filtered probability space
(Ω(e),F (e), (F (e)

t )t≥0,P(e)) satisfying the usual hypotheses. Let us consider σ ≥ 0 and α real con-
stants; and π a measure concentrated on R \ {0} such that∫

R
(1 ∧ z2)π(dz) <∞.

Suppose that (B
(e)
t , t ≥ 0) is a (F (e)

t )t≥0 - adapted standard Brownian motion, N (e)(ds,dz)

is a (F (e)
t )t≥0 - Poisson random measure on R+ × R with intensity dsπ(dz), and Ñ (e)(ds, dz) its

compensated version. We denote by S = (St, t ≥ 0) a Lévy process, that is a process with stationary
and independent increments and càdlàg paths, with the following Lévy-Itô decomposition

St = αt+ σB
(e)
t +

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds, dz) +

∫ t

0

∫
(−1,1)c

(ez − 1)N (e)(ds, dz).

Note that S is a Lévy process with no jumps smaller than -1.
In our setting, the population size has no impact on the evolution of the environment or in other

words we are considering independent processes for the demographic and environmental terms.
More precisely, we work now on the space (Ω,F , (Ft)t≥0,P) the direct product of the two probability
spaces defined above, that is to say, Ω := Ω(e) × Ω(b),F := F (e) ⊗F (b),Ft := F (e)

t ⊗F (b)
t for t ≥ 0,

and P := P(e) ⊗ P(b). Therefore (Zt, t ≥ 0), the continuous state branching process in the Lévy
environment (St, t ≥ 0) is defined on (Ω,F , (Ft)t≥0,P) as the unique non-negative strong solution
of the following stochastic differential equation

Zt =Z0 − ψ′(0+)

∫ t

0
Zsds+

∫ t

0

√
2ϱ2ZsdB

(b)
s

+

∫ t

0

∫
(0,∞)

∫ Zs−

0
zÑ (b)(ds, dz,du) +

∫ t

0
Zs−dSs.

(1.3)

According to Theorem 3.1 in He et al. (2018) or Theorem 1 in Palau and Pardo (2018), the equation
has pathwise uniqueness and strong solution when |ψ′(0+)| <∞. Furthermore, when conditioned on
the environment, the process Z inherits the branching property of the underlying CSBP previously
defined. Let us denote by Pz, for its law starting from z ≥ 0.

The analysis of the process Z is deeply related to the behaviour and fluctuations of the Lévy
process ξ = (ξt, t ≥ 0), defined as follows

ξt = αt+ σB
(e)
t +

∫ t

0

∫
(−1,1)

zÑ (e)(ds, dz) +

∫ t

0

∫
(−1,1)c

zN (e)(ds, dz), (1.4)

where

α := α− ψ′(0+)− σ2

2
−
∫
(−1,1)

(ez − 1− z)π(dz).
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Note that, both processes S and ξ generate the same filtration. Actually, the process ξ is obtained
from S, changing only the drift and jump sizes. We denote by P(e)

x , for the law of the process ξ
starting from x ∈ R and when x = 0, we use the notation P(e) for P(e)

0 .
Further, under condition (1.1), the process

(
Zte

−ξt , t ≥ 0
)

is a quenched martingale implying that
for any t ≥ 0 and z ≥ 0,

Ez[Zt | S] = zeξt , Pz -a.s, (1.5)
see Bansaye et al. (2021). In other words, the process ξ plays an analogous role as the random
walk associated to the logarithm of the offspring means in the discrete time framework and leads to
the usual classification for the long-term behaviour of branching processes. More precisely, we say
that the process Z is subcritical, critical or supercritical accordingly as ξ drifts to −∞, oscillates or
drifts to +∞. In this manuscript, we focus on the subcritical regime.

In addition, under condition (1.1), there is another quenched martingale associated to (Zte
−ξt , t ≥

0) which allows us to compute its Laplace transform, see for instance Proposition 2 in Palau and
Pardo (2018) or Theorem 3.4 in He et al. (2018). In order to compute the Laplace transform of
Zte

−ξt , we first introduce the unique positive solution (vt(s, λ, ξ), s ∈ [0, t]) of the following backward
differential equation

∂

∂s
vt(s, λ, ξ) = eξsψ0(vt(s, λ, ξ)e

−ξs), vt(t, λ, ξ) = λ, (1.6)

where

ψ0(λ) = ψ(λ)− λψ′(0+) = ϱ2λ2 +

∫
(0,∞)

(
e−λx − 1 + λx

)
µ(dx). (1.7)

Then the process
(
exp{−vt(s, λ, ξ)Zse−ξs}, 0 ≤ s ≤ t

)
is a quenched martingale implying that for

any λ ≥ 0 and t ≥ s ≥ 0,

Ez
[
exp{−λZte−ξt}

∣∣∣S,F (b)
s

]
= exp{−Zse−ξsvt(s, λ, ξ)}. (1.8)

Moreover, we also consider the random semigroup hs,t(λ) = e−ξsvt(s, λe
ξt , ξ) which is well defined

for all λ ≥ 0 and s ∈ [0, t]; and satisfies

Ez
[
e−λZt

∣∣∣S,F (b)
s

]
= exp {−Zshs,t(λ)} , (1.9)

see Theorem 3.4 in He et al. (2018). According to Section 2 in He et al. (2018), the mapping
s 7→ hs,t(λ) is the unique positive pathwise solution to the integral differential equation

hs,t(λ) = eξt−ξsλ−
∫ t

s
eξr−ξsψ0

(
hr,t(λ)

)
dr, 0 ≤ s ≤ t. (1.10)

We close this subsection by introducing CBLEs with immigration which will play a fundamental
role in our arguments. Let b ≥ 0 be a positive constant and ν a Lévy measure concentrated on
(0,∞) such that ∫

(0,∞)
(1 ∧ z)ν(dz) <∞.

We say that X = (Xt, t ≥ 0) is a continuous state branching process with immigration in the Lévy
environment S if it is the unique non-negative strong solution of the following stochastic differential
equation

Xt = X0 − (ψ′(0+)− b)

∫ t

0
Xsds+

∫ t

0

√
2ϱ2XsdB

(b)
s +

∫ t

0

∫
(0,∞)

zN (i)(ds, dz)

+

∫ t

0

∫
(0,∞)

∫ Zs−

0
zÑ (b)(ds, dz, du) +

∫ t

0
Xs−dSs,

(1.11)
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where N (i)(ds, dz) is a Poisson random measure with intensity dsν(dz) (see Theorem 1 in Palau
and Pardo (2017) or Theorem 5.1 in He et al. (2018)). The process X is characterised by the
branching mechanism ψ and the immigration mechanism η which is given by the Laplace exponent
of a subordinator, i.e.

η(λ) = bλ+

∫ ∞

0
(1− e−λx)ν(dx).

Let us denote its law starting from z ≥ 0, by Qz.
According to Theorem 5.3 in He et al. (2018), the law of X is characterised as follows: for any

λ ≥ 0 and t ≥ 0,

Qz

[
e−λXt

]
= E(e)

[
exp

{
−zh0,t(λ)−

∫ t

0
η(hs,t(λ))ds

}]
. (1.12)

For our purposes, we are interested in the limiting distribution of Qz(Xt ∈ dy), as t goes to ∞.
The limiting distribution was derived by He et al. (2018) under general assumptions and can be
characterised as we explain below. First, we require an extension of the functional (vt(s, λ, ξ), s ∈
[0, t]) to negative times. In order to do so, let us consider an independent copy (ξ′t, t ≥ 0) of the
Lévy process ξ and construct the time homogeneous Lévy process Ξ = (Ξt,−∞ < t <∞), indexed
by R, as follows

Ξt :=

 − lims↓−t ξ
′
s for t < 0,

0 for t = 0,
ξt for t > 0.

(1.13)

Note that the latter definition ensures that the Lévy process Ξ has càdlàg paths on (−∞,∞) and,
in particular, if ξt drifts to −∞, as t → ∞, a.s., then Ξt drifts to ∞, as t → −∞, a.s. We denote
by P

(e)
x for the law of the process Ξ such that Ξ0 = x ∈ R and, when x = 0, we use the notation

P(e) for P
(e)
0 .

With the definition of Ξ in hand, we introduce the map s ∈ (−∞, 0] 7→ v0(s, λ,Ξ) as the unique
positive pathwise solution of

v0(s, λ,Ξ) = λ−
∫ 0

s
eΞrψ0

(
e−Ξrv0(r, λ,Ξ)

)
dr, s ≤ 0. (1.14)

Implicitly, it also follows that for s ≤ 0 the map s 7→ hΞs,0(λ) = e−Ξsv0(s, λe
Ξ0 ,Ξ) is the unique

positive pathwise solution to the equation

hΞs,0(λ) = e−Ξsλ−
∫ 0

s
eΞr−Ξsψ0

(
hΞr,0(λ)

)
dr, s ≤ 0. (1.15)

Hence by time homogeneity of the process Ξ, we have, for any λ ≥ 0 and t ≥ 0, that

Qz

[
e−λXt

]
= E(e)

[
exp

{
−zhΞ−t,0(λ)−

∫ 0

−t
η(hΞs,0(λ))ds

}]
, (1.16)

see Section 5 in He et al. (2018) for further details. Finally, since ξ drifts to −∞ and under the
following log x-moment condition for the Lévy measure ν,∫ ∞

1
log u ν(du) <∞, (1.17)

according to Theorem 5.6 in He et al. (2018), we have that there exists a probability measure Π on
[0,∞) such that Qz(Xt ∈ ·) converges weakly towards Π, as t goes to ∞, for every z ≥ 0. Moreover,∫

[0,∞)
e−λyΠ(dy) = E(e)

[
exp

{
−
∫ 0

−∞
η(hΞs,0(λ))ds

}]
. (1.18)
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It is important to note that ψ′ is the Laplace exponent of a subordinator. Indeed

ψ′
0(λ) = 2ϱ2λ+

∫
(0,∞)

(1− e−λx)xµ(dx),

so when we take η ≡ ψ′
0 in the previous discussion, condition (1.17) is reduced to the following

assumption that will be used below.

Assumption 1.1. The Lévy measure µ satisfies∫ ∞

1
u log uµ(du) <∞.

For our purposes, we require the following exponential moment condition on the Lévy environment
ξ.

Assumption 1.2. there exists ϑ > 0 such that∫
{|x|>1}

eθxπ(dx) <∞, for all θ ∈ [0, ϑ].

This condition is equivalent to the existence of the Laplace transform of ξ, that is E(e)[eθξ1 ] is
well defined for θ ∈ [0, ϑ] (see for instance Lemma 26.4 in Sato (2013)). The latter implies that we
can introduce the Laplace exponent of ξ as follows Φξ(θ) := logE(e)[eθξ1 ], for θ ∈ [0, ϑ]. Again from
Lemma 26.4 in Sato (2013), we also have Φξ(θ) ∈ C∞ and Φ′′

ξ (θ) > 0, for θ ∈ (0, ϑ).
Another object which will be relevant for our analysis is the so-called exponential martingale

associated to ξ, i.e.
M

(θ)
t = exp

{
ξt − tΦξ(θ)

}
, t ≥ 0,

which is well-defined for θ ∈ [0, ϑ] under assumption (1.2). It is well-known that (M
(θ)
t , t ≥ 0)

is a (F (e)
t )t≥0-martingale and that it induces a change of measure which is known as the Esscher

transform, that is to say

P(e,θ)(Λ) := E(e)
[
M

(θ)
t 1Λ

]
, for Λ ∈ F (e)

t . (1.19)

Similarly to the critical case, which was studied by Bansaye et al. (2021), the asymptotic analysis
of the intermediate subcritical regime requires the notion of the renewal functions U (θ) and Û (θ)

under P(e,θ), which are associated to the supremum and infimum of ξ, respectively. More precisely,
recall that the running infimum and supremum of ξ are defined by

ξ
t
= inf

0≤s≤t
ξs and ξt = sup

0≤s≤t
ξs, for t ≥ 0. (1.20)

We also recall that the reflected processes ξ − ξ and ξ − ξ are Markov processes with respect to the
filtration (F (e)

t )t≥0 and whose semigroups satisfy the Feller property (see for instance Proposition
VI.1 in the monograph of Bertoin (1996)). The latter allows us to introduce the notion of local
times for the reflected processes at 0. Let us denote by L = (Lt, t ≥ 0) and L̂ = (L̂t, t ≥ 0) the local
times of ξ − ξ and ξ − ξ at 0, respectively, in the sense of Chapter IV in Bertoin (1996). Thus the
renewal functions U (θ) and Û (θ) are defined as follows

U (θ)(x) := E(e,θ)

[∫
[0,∞)

1{ξt≤x}dLt

]
and Û (θ)(x) := E(e,θ)

[∫
[0,∞)

1{ξ
t
≥−x}dL̂t

]
. (1.21)

The renewal functions are identically 0 on (−∞, 0], strictly positive on (0,∞) and satisfy

U (θ)(x) ≤ C1x and Û (θ)(x) ≤ C2x for any x ≥ 0, (1.22)
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where C1, C2 are finite constants (see for instance Lemma 6.4 and Section 8.2 in the monograph of
Doney (2007)). For simplicity on exposition, when θ = 0 we use the following notation U (0) = U

and Û (0) = Û . We refer to Section 2.1 for a proper definition or Section VI.4 in Bertoin (1996).

1.2. Main results. We are now ready to state our main results. In order to introduce our main
results we require some technical assumptions on the branching mechanism and on the environment
which will control the event of survival. Let us start with the strongly subcritical regime where
some assumptions on the branching mechanism and on the environment are required. For the
environment, we assume Assumption 1.2 with ϑ = 1, which guarantees the existence of exponential
positive moments on [0, 1], together with Φ′

ξ(0) < 0 and Φ′
ξ(1) < 0. The latter guarantees the use

of the Esscher transform at θ = 1 in (1.19), and that the Lévy environment is strongly subcritical.
For the branching mechanism, we require two conditions: Assumption 1.1 for the Lévy measure

µ and the so-called Grey’s condition, i.e.

Assumption 1.3. the function ψ0 satisfies∫ ∞

1

1

ψ0(λ)
dλ <∞.

The latter assumption guarantees that the process Z is absorbed at 0, Pz-a.s., for z > 0, see
Corollary 4.4 in He et al. (2018). It is important to note that Grey’s condition is a necessary and
sufficient condition for absorption, with positive probability, both for CSBPs (see Grey (1974)) and
for CBLEs (see Theorem 4.1 in He et al. (2018)). On the other hand, the x log x-moment condition
for the Lévy measure µ is a necessary and sufficient condition for the ergodicity of the CBLE with
immigration which is implicit under the Esscher transform of Z. The x log x-moment condition also
appears in the discrete setting to study the long-term behaviour of branching processes in a strongly
subcritical random environment (see e.g. Theorem 1.1 in Afanasyev et al. (2005)).

It turns out that, in this regime, the survival probability decays with the same rate as the
expected generation size, i.e. as Ez[Zt] for t large enough, up to a multiplicative constant. A
similar behaviour appears for subcritical Galton-Watson processes as well as for discrete branching
processes in random environments in the strongly subcritical regime (see for instance Theorem 1.1
in Afanasyev et al. (2005)). Moreover from (1.5), we have

Ez[Zt] = zE[eξt ] = zeΦξ(1)t.

In other words, the survival probability decays exponentially up to a multiplicative constant which
is proportional to the initial state of the population as is stated below.

Theorem 1.4 (Strongly subcritical regime). Suppose that Assumptions 1.1, 1.2, with ϑ = 1,
Φ′
ξ(0) < 0 and Φ′

ξ(1) < 0 and 1.3 are fulfilled. We also assume that∫ ∞

0
E(e,1)

[
exp

{
−
∫ 0

−1
ψ′
0

(
hΞs,0(λ)

)
ds

}]
dλ <∞. (1.23)

Then for every z > 0, we have

lim
t→∞

e−Φξ(1)tPz(Zt > 0) = zB1,

where

B1 =

∫ ∞

0
E(e,1)

[
exp

{
−
∫ 0

−∞
ψ′
0(h

Ξ
s,0(λ))ds

}]
dλ ∈ (0,∞).

It is important to note that condition (1.23) can be interpreted in terms of a CBLE with immi-
gration. In other words, let X = (Xt, t ≥ 0) be a CBLE with immigration starting from 0 with
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branching and immigration mechanisms (ψ0, ψ
′
0); and with auxiliary Lévy process (to the environ-

ment) given by (ξ,P(e,1)). Let us denote by Q0 for its law. Hence, condition (1.23) is equivalent
to

Q0

[
1

X1

]
<∞

and
B1 =

∫
[0,∞)

1

y
Πψ0(dy),

where Πψ0(dy) denotes the limiting probability distribution of Q0(Xt ∈ dy).
In general, it seems difficult to compute explicitly the constant B1 except for the stable case,

that is when ψ0(λ) = Cλ1+β with β ∈ (0, 1] and C > 0 (observe that C = 2ϱ2 when β = 1), where
B1 can be computed explicitly and coincides with the constant that appears in Theorem 5.1 in Li
and Xu (2018). Note that in this case ψ0 satisfies Assumptions 1.1 and 1.3 and also we observe that
the integral in condition (1.23) can be rewritten as follows∫ ∞

0
E(e,1)

[
exp

{
−
∫ 0

−1
ψ′
0

(
hΞs,0(λ)

)
ds

}]
dλ = E(e,1)

[(∫ 1

0
eβξudu

)−1/β
]
.

Now, using the exponential moment Assumption 1.2 with ϑ = 1 and Lemma 2.2 in Li and Xu
(2018), we deduce that the expectation in the right-hand side is finite. Therefore, for any CBLE
with stable branching mechanism and associated Lévy environment satisfying Assumption 1.2 with
ϑ = 1, Φ′

ξ(0) < 0 and Φ′
ξ(1) < 0, we get from Theorem 1.4 that

lim
t→∞

e−Φξ(1)tPz(Zt > 0) = z(βC)−1/βE(e,1)

[(∫ ∞

0
eβξudu

)−1/β
]
.

We refer to Subsection 2.2.1 for further details about the computation of this constant.
Our next main result deals with the intermediate subcritical regime. This regime is governed by

the exponential moment condition on the environment (1.2) with ϑ > 1, together with Φ′
ξ(0) < 0

and Φ′
ξ(1) = 0. In other words, the Lévy process ξ drifts to −∞ under P(e) and oscillates under the

probability measure P(e,1), induced by the Esscher transform (1.19). In order to state our result, we
require to introduce the notion of Lévy processes conditioned to stay positive. According to Lemma
1 in Chaumont and Doney (2005), the process (Û(ξt)1{ξ

t
>0}, t ≥ 0) is a martingale with respect to

(F (e)
t )t≥0. With the help of this martingale, we define a new measure which corresponds to the law

of ξ conditioned to stay positive, as follows: for Λ ∈ F (e)
t and x > 0,

P↑
x(Λ) :=

1

Û(x)
E(e)
x

[
Û(ξt)1{ξ

t
>0}1Λ

]
. (1.24)

Similarly, we can define the process conditioned to stay positive under P(e,1) but with the martingale
associated with the renewal measure Û (1) instead of Û . For a complete overview on this theory,
the reader is referred to the monographs of Bertoin (1996) and Doney (2007), see also Chaumont
(1996) and Chaumont and Doney (2005) and references therein.

Similarly as in the critical regime studied by Bansaye et al. (2021), we require the following
assumption on the branching mechanism

Assumption 1.5. there exist β ∈ (0, 1] and C > 0 such that

ψ0(λ) ≥ Cλ1+β for λ ≥ 0.

This condition will help us to control the probability of survival under environments with large
extrema, that is when the supremum of the environment is very large. We also note that it implies
Grey’s condition (1.3) and thus we ensure that Z gets extinct in finite time with positive probability.
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Furthermore, we also assume that the Lévy measure µ, which is associated to the branching
mechanism, satisfies the x log x moment condition (1.1).

Similarly as in the strongly subcritical case, the survival probability decays exponentially but
now with a polynomial factor of order 1/2, up to a multiplicative constant which is proportional to
the initial state of the population. In other words, we have the following result.

Theorem 1.6 (Intermediate subcritical regime). Suppose that Assumptions 1.1, 1.2, with ϑ > 1,
Φ′
ξ(0) < 0, Φ′

ξ(1) = 0, and 1.5 hold. We also suppose that, for x < 0 ,∫ ∞

0
E

(e,1),↑
−x

[
exp

{
−
∫ 0

−1
ψ′
0(h

Ξ
s,0(λ))ds

}]
dλ <∞. (1.25)

Then, for every z > 0, we have

lim
t→∞

t1/2e−Φξ(1)tPz(Zt > 0) = zE(e,1)
[
H1

]√ 2

πΦ′′
ξ (1)

B2,

where

B2 = lim
x→−∞

U (1)(−x)E(e,1),↑
−x

[∫ ∞

0
exp

{
−
∫ 0

−∞
ψ′
0

(
hΞs,0(λ)

)
ds

}
dλ

]
.

We conclude this section with our last main result which is devoted to the study of the CBLE
process conditioned to survival or Q-process. As we will see below and in an analogous sense to what
has been proved for the classical Galton-Watson process (see for instance Section 12.3 in Kyprianou
(2014)) and CSBP (see Theorem 4.1 in Lambert (2007)), the conditioned process has the same law
as a CBLE with immigration but with a different random environment to the original. In particular,
we extend recent results in Lambert (2007), for the case of CSBPs; and in Palau and Pardo (2018),
for the continuous state branching processes in a Brownian environment with a stable branching
mechanism. Let

T0 = {t ≥ 0 : Zt = 0},
be the extinction time of the process Z.

Theorem 1.7 (Q-process). Let (Zt, t ≥ 0) be a CBLE in a strongly subcritical regime, i.e. satisfying
the conditions in Theorem 1.4, or in an intermediate subcritical regime, i.e. satisfying the conditions
in Theorem 1.6. Then for all z, t > 0,

(i) The conditional laws Pz( · | T0 > t) converge, as t→ ∞, towards a limit law P♮, in the sense
that for any t ≥ 0 and Λ ∈ Ft,

lim
s→∞

Pz(Λ | T0 > s) = P♮z(Λ).

(ii) The probability measure P♮z can be expressed as Doob h-transform of Pz based on the mar-
tingale

Dt = Zte
−Φξ(1)t,

that is, for Λ ∈ Ft,

P♮z(Λ) := Ez
[
Zt
z
e−Φξ(1)t1Λ

]
.

(iii) The process Z, under P♮z, is a CBLE with immigration initiated at z, with immigration
mechanism given by ψ′

0(λ) and the auxiliary Lévy process (to the environment) is given by
(ξ,P(e,1)). Moreover, for any λ ≥ 0 and t > 0, we have

E♮z
[
e−λZt

]
= E(e,1)

[
exp

{
−zh0,t(λ)−

∫ t

0
ψ′
0(hs,t(λ))ds

}]
.

The remainder of this paper is devoted to the proofs of the main results.
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1.3. Comments about our results. Conditions (1.23) and (1.25) seem to be optimal. For instance in
the strongly subcritical regime, it turns out that the probability of survival e−Φξ(1)tPz(Zt > 0) is
exactly Qz[1/Xt], where (X,Qz) is a CBLE with immigration starting from z with branching and
immigration mechanisms (ψ0, ψ

′
0); and with auxiliary Lévy process (to the environment) given by

(ξ,P(e,1)). In order to obtain the limit, some control is required in the Laplace transform of Xt and
it is here where condition (1.23) appears by eliminating the term which depends on the starting
population z, since it goes to 0 as t increases. Moreover, we also remark that condition (1.23) is
not required in the discrete setting due to some monotonicity properties associated to the random
walk and the sequence of probability generating functions (see Lemma 2.1 and 2.3 in Geiger et al.
(2003)), properties that are lost in the continuous setting.

Regarding Assumption 1.5, it seems quite difficult to get rid of it since some explicit knowledge
or properties of the functional h0,t(∞) are needed to control the behaviour of

e−ξtPz
(
Zt > 0

∣∣ ξ), for z > 0,

under favourable environments, as t increases. In other words, we can rewrite the probability of
survival in a favourable environment as follows

e−tΦξ(1)P(z,x)

(
Zt > 0, sup

0≤s≤t
ξs ≥ y

)
= E(e,1)

x

[
e−ξt

(
1− exp

{
− zh0,t(∞)

})
1{ξt≥y}

]
,

where we recall that ξt denotes the running supremum up to time t, see (1.20).
In other words to control the right-hand side of the previous identity is somehow quite involved,

contrary to the discrete setting where the quenched probability of survival can be upper bounded us-
ing a first moment estimate since the event of survival is equal to the event of the current population
being bigger or equal to one, an strategy which cannot be used in our setting.

Finally, we believe that it is possible to obtain Theorem 1.6 with Assumption 1.2 but with the
less restrictive condition that ϑ = 1 with Φ′

ξ(0) < 0 and Φ′
ξ(1) = 0. It is important to note that

even in the case when the branching mechanism is stable, a deeper analysis is required to deduce
such result. More precisely, when ψ0(λ) = Cλ1+β with β ∈ (0, 1) and C > 0, from Section 2.1.2 in
Palau et al. (2016), we have

e−ξtPz
(
Zt > 0

∣∣ ξ) = e−ξt

(
1− exp

{
−z
(
βC

∫ t

0
eβξudu

)−1/β
})

a.s.

Even though the exponential functional of a Lévy process is a well studied object, it seems difficult
to control the previous random variable, under P(e,1), with the restriction that ϑ = 1 due to the
nature of the exponential functional together with e−ξt .

We conjecture that, under the so-called Spitzer’s condition

1

t

∫ t

0
P(e,1)(ξs ≥ 0)ds→ ρ ∈ (0, 1), as t→ ∞,

together with Assumptions 1.1, 1.3 and (1.25), the survival probability must behave as follows: for
z > 0,

e−Φξ(1)tPz(Zt > 0) ∼ zB3t
−ρℓ(t), as t→ ∞,

where B3 is a positive constant and ℓ is a slowly varying function at ∞.

2. Proofs

2.1. Preliminaries on Lévy processes. In this section, we briefly recall some important facts of Lévy
processes and its fluctuation theory that we will require in what follows. Recall that P(e)

x denotes
the law of the Lévy process ξ starting from x ∈ R and when x = 0, we use the notation P(e) for
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P(e)
0 . The dual process ξ̂ = −ξ is also a Lévy process satisfying that for any fixed time t > 0, the

processes
(ξ(t−s)− − ξt, 0 ≤ s ≤ t) and (ξ̂s, 0 ≤ s ≤ t), (2.1)

have the same law, with the convention that ξ0− = ξ0 (see for instance Lemma 3.4 in Kyprianou
(2014)). For every x ∈ R, let P̂(e)

x be the law of x+ ξ under P̂(e), that is the law of ξ̂ under P(e)
−x. In

the sequel, we assume that ξ is not a compound Poisson process to avoid the possibility that in this
case the process visits the same maxima or minima at distinct times which can make our analysis
more involved.

Let us recall the definitions of the running infimum ξ and supremum ξ of ξ in (1.20) and that
L = (Lt, t ≥ 0) and L̂ = (L̂t, t ≥ 0) are the local times of ξ − ξ and ξ − ξ at 0, respectively. If 0 is
regular for (−∞, 0) or regular downwards, i.e.

P(e)(τ−0 = 0) = 1,

where τ−0 = inf{s > 0 : ξs ≤ 0}, then 0 is regular for the reflected process ξ − ξ and then, up to
a multiplicative constant, L̂ is the unique additive functional of the reflected process whose set of
increasing points is {t : ξt = ξ

t
}. If 0 is not regular downwards then the set {t : ξt = ξ

t
} is discrete

and we define the local time L̂ as the counting process of this set. The same properties holds for L
by duality, i.e. if 0 is regular upwards then, up to a multiplicative constant, L is the unique additive
functional whose set of increasing points is {t : ξt = ξt}, otherwise L is the counting process of this
set.

Let us denote by L−1 and L̂−1 the right continuous inverse of the local times L and L̂, respectively.
The range of the inverse local times L−1 and L̂−1, correspond to the sets of real times at which new
maxima and new minima occur, respectively. Next, we introduce the so called increasing ladder
height process by

Ht = ξL−1
t
, t ≥ 0. (2.2)

The pair (L−1, H) is a bivariate subordinator, as is the case of the pair (L̂−1, Ĥ) with

Ĥt = −ξ
L̂−1
t
, t ≥ 0.

Furthermore, it is important to note that by a simple change of variables, we can rewrite the renewal
functions U (θ) and Û (θ) in terms of the ascending and descending ladder height processes. Indeed,
the measures induced by U (θ) and Û (θ) can be rewritten as follows,

U (θ)(x) = E(e,θ)

[∫ ∞

0
1{Ht≤x}dt

]
and Û (θ)(x) = E(e,θ)

[∫ ∞

0
1{Ĥt≤x}dt

]
.

Roughly speaking, the renewal function U (θ)(x) (resp. Û (θ)(x)) “measures” the amount of time
that the ascending (resp. descending) ladder height process spends on the interval [0, x] and in
particular induces a measure on [0,∞) which is known as the renewal measure. Finally, we mention
that U (θ)(0) = 0 if 0 is regular upwards and U (θ)(0) = 1 otherwise, similarly Û (θ)(0) = 0 if 0 is
regular upwards and Û (θ)(0) = 1 otherwise.

2.2. Strongly subcritical regime.

Proof of Theorem 1.4: Let z > 0 and x ∈ R; and denote by P(z,x) for the law of the couple (Z, ξ)
starting from z and x, respectively. We begin by noting that, conditioning on the environment and
then using the exponential change of measure given in (1.19) with θ = 1, allow us to deduce

e−Φξ(1)tPz(Zt > 0) = e−Φξ(1)tE(e)
[
e−ξteξtP(z,0)

(
Zt > 0

∣∣ ξ)]
= E(e,1)

[
e−ξtP(z,0)

(
Zt > 0

∣∣ ξ)].
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Recall from (1.9), that for λ ≥ 0 and t ≥ 0, the random cumulant h0,t(λ) = e−ξ0vt(0, λe
ξt , ξ) satisfies

E(z,0)

[
e−λZt

∣∣ ξ] = exp{−zh0,t(λ)}.

Now, we denote

Gt(λ) := e−ξt
(
1− exp{−zh0,t(λ)}

)
, for λ, t ≥ 0,

and observe that the quenched survival probability of Z is given by

P(z,0)

(
Zt > 0

∣∣ ξ) = 1− exp{−zh0,t(∞)}.

In other words,
Gt(0) = 0 and Gt(∞) = e−ξtP(z,0)

(
Zt > 0

∣∣ ξ).
Since the map λ 7→ h0,t(λ) is differentiable, then so does Gt(·). In view of the above arguments, we
deduce

e−Φξ(1)tPz(Zt > 0) = E(e,1)
[
Gt(∞)

]
= E(e,1)

[∫ ∞

0
G′
t(λ)dλ

]
. (2.3)

Hence in order to deduce our result, we would like to take the limit, as t→ ∞, in the above equality
and then make use of the Dominated Convergence Theorem in order to interchange the limit with
the integral on the right-hand side. With this purpose in mind, we need to find a function g(λ)

such that E(e,1)
[
|G′

t(λ)|
]
≤ g(λ), for all t ≥ 1, and∫ ∞

0
g(λ)dλ <∞. (2.4)

First, we analyse E(e,1)
[
|G′

t(λ)|
]
. Note from the definition of Gt(λ) that

G′
t(λ) = ze−ξt exp

{
− zh0,t(λ)

}
h′0,t(λ) = z exp

{
− zh0,t(λ)

} d

du
vt(0, u, ξ)

∣∣∣
u=λeξt

, (2.5)

where in the last equality we recall that h0,t(λ) = e−ξ0vt(0, λe
ξt , ξ). Moreover, by differentiating

with respect to λ on both sides of the backward differential equation (1.6), we obtain

d

dλ
vt(0, λ, ξ) = 1−

∫ t

0
ψ′
0

(
e−ξsvt(s, λ, ξ)

) d

dλ
vt(s, λ, ξ)ds.

Thus solving the above equation, we get

d

dλ
vt(0, λ, ξ) = exp

{
−
∫ t

0
ψ′
0

(
e−ξsvt(s, λ, ξ)

)
ds

}
. (2.6)

Then, it follows

E(e,1)
[
|G′

t(λ)|
]
= E(e,1)

[
G′
t(λ)

]
= zE(e,1)

[
exp

{
−zh0,t(λ)−

∫ t

0
ψ′
0

(
hs,t(λ)

)
ds

}]
.

In other words, according to identity (1.12), G′
t(λ) is the Laplace transform of a CBLE with immi-

gration and whose immigration mechanism is given by ψ′
0.

In order to find the integrable function g(λ) which dominates E(e,1)[|G′
t(λ)|], for t ≥ 1, we use

another useful characterisation of E(e,1)[G′
t(λ)]. Recall that the homogeneous Lévy process Ξ defined

in (1.13), allows to extend the definition of the map s 7→ hΞs,0(λ) for s ≤ 0. The latter is the unique
positive pathwise solution to (1.15). We write, for λ > 0 and t ≥ 0,

E(e,1)
[
G′
t(λ)

]
= zE(e,1)

[
exp

{
−zhΞ−t,0(λ)−

∫ 0

−t
ψ′
0

(
hΞs,0(λ)

)
ds

}]
,
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where P(e,1) denotes the law of the homogeneous Lévy process Ξ constructed in (1.13) but with
(ξ,P(e,1)). Now, we introduce the function

g(λ) := E(e,1)

[
exp

{
−
∫ 0

−1
ψ′
0

(
hΞs,0(λ)

)
ds

}]
.

Using the latter characterisation of E(e,1)[G′
t(λ)] together with the non-negative property of ψ′

0 and
hΞ−t,0(λ), we deduce the following inequality, for t ≥ 1,

E(e,1)
[
|G′

t(λ)|
]
≤ zE(e,1)

[
exp

{
−
∫ 0

−t
ψ′
0

(
hΞs,0(λ)

)
ds

}]
≤ zg(λ).

Furthermore, observe from assumption (1.23), that the function g(·) is integrable. This allows us
to apply Fubini’s Theorem in (2.3), i.e.

e−Φξ(1)tPz(Zt > 0) = E(e,1)

[∫ ∞

0
G′
t(λ)dλ

]
=

∫ ∞

0
E(e,1)

[
G′
t(λ)

]
dλ.

Thus, we appeal to the Dominated Convergence Theorem in (2.3) and get

lim
t→∞

e−Φξ(1)tPz(Zt > 0) = lim
t→∞

∫ ∞

0
E(e,1)

[
G′
t(λ)

]
dλ

=

∫ ∞

0
lim
t→∞

E(e,1)
[
G′
t(λ)

]
dλ =

∫ ∞

0
E(e,1)

[
lim
t→∞

G′
t(λ)

]
dλ,

where we have used again the Dominated Convergence Theorem in the last equality since the
inequality |G′

t(λ)| ≤ z holds for all t ≥ 1.
On the other hand, we also note that assumption Φ′

ξ(1) < 0 implies ξt → −∞ as t → ∞, P(e,1)-
a.s. The latter implies that Ξt → ∞ as t → −∞, P(e,1)-a.s. Next, thanks to the monotonicity
property (see Proposition 2.3 in He et al. (2018)) of the map −t 7→ v0(−t, λ,Ξ), we have

hΞ−t,0(λ) = e−Ξ−tv0(−t, λ,Ξ) ≤ e−Ξ−tv0(0, λ,Ξ) = e−Ξ−tλ.

It then follows that limt→∞ hΞ−t,0(λ) = 0, P(e,1)-a.s., and thus

E(e,1)
[
lim
t→∞

G′
t(λ)

]
= zE(e,1)

[
lim
t→∞

exp

{
−zhΞ−t,0(λ)−

∫ 0

−t
ψ′
0

(
hΞs,0(λ)

)
ds

}]
= zE(e,1)

[
exp

{
−
∫ 0

−∞
ψ′
0

(
hΞs,0(λ)

)
ds

}]
.

The proof is complete once we have shown that

0 < B1 :=

∫ ∞

0
E(e,1)

[
exp

{
−
∫ 0

−∞
ψ′
0

(
hΞs,0(λ)

)
ds

}]
dλ <∞.

From (1.18) (see also Corollary 5.7 in He et al. (2018) or the proof of Theorem 5.6 in the same
reference), we see that under Assumption 1.1, we have

E(e,1)

[
exp

{
−
∫ 0

−∞
ψ′
0

(
hΞs,0(λ)

)
ds

}]
> 0.

Therefore ∫ ∞

0
E(e,1)

[
lim
t→∞

G′
t(λ)

]
dλ = z

∫ ∞

0
E(e,1)

[
exp

{
−
∫ 0

−∞
ψ′
0

(
hΞs,0(λ)

)
ds

}]
dλ

= zB1 > 0.
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Finally, since ψ′
0 is non-negative and the condition in (1.23), we obtain the finiteness of B1, that is

B1 ≤
∫ ∞

0
E(e,1)

[
exp

{
−
∫ 0

−1
ψ′
0

(
hΞs,0(λ)

)
ds

}]
dλ =

∫ ∞

0
g(λ)dλ <∞.

This completes the proof.
□

2.2.1. The stable case. Now, let us compute the constant B1 in the stable case and check that it
coincides with the constant that appears in Theorem 5.1 in Li and Xu (2018). To this end, we recall
the following identity of the previous proof

zE(e,1)

[
exp

{
−
∫ 0

−∞
ψ′
0(h

Ξ
s,0(λ))ds

}]
= lim

t→∞
E(e,1)

[
G′
t(λ)

]
,

where G′
t(λ) is given in (2.5). We also recall that in this case ψ0(λ) = Cλ1+β with β ∈ (0, 1) and

C > 0, from which we observe that the x log x-moment condition 1.1 and Grey’s condition 1.3 are
clearly satisfied. Moreover the backward differential equation in (1.6) can be solved explicitly (see
e.g. Section 5 in Li and Xu (2018)), that is

vt(s, λ, ξ) =
(
λ−β + βCIs,t(βξ)

)−1/β
,

where Is,t(βξ) denotes the exponential functional of the Lévy process βξ, i.e.

Is,t(βξ) :=
∫ t

s
e−βξudu, 0 ≤ s ≤ t. (2.7)

In other words, we obtain

E(e,1)

[
exp

{
−
∫ 0

−∞
ψ′
0(h

Ξ
s,0(λ))ds

}]
= lim

t→∞
E(e,1)

[
exp{−zvt(0, λeξt , ξ)}

(
1 + (λeξt)ββCI0,t(βξ)

)− 1
β
−1
]
.

Now appealing to duality, see (2.1), we get

eβξtI0,t(βξ) =
∫ t

0
e−β(ξu−ξt)du

(d)
=

∫ t

0
eβξudu = I0,t(−βξ), (2.8)

and

vt(0, λe
ξt , ξ) = eξt

(
λ−β + βCeβξtI0,t(βξ)

)−1/β (d)
= eξt

(
λ−β + βCI0,t(−βξ)

)−1/β
.

Hence

E(e,1)

[
exp

{
−
∫ 0

−∞
ψ′
0(h

Ξ
s,0(λ))ds

}]
= lim

t→∞
E(e,1)

[
exp

{
−zeξt

(
λ−β + βCI0,t(−βξ)

)−1/β
}(

1 + λββCI0,t(−βξ)
)− 1

β
−1
]
.

(2.9)

Furthermore since ξt → −∞, as t → ∞, P(e,1)-a.s., then I0,∞(−βξ) is finite P(e,1)-a.s. Thus, it
follows that

lim
t→∞

exp

{
−zeξt

(
λ−β + βCI0,t(−βξ)

)−1/β
}

= 1, P(e,1) − a.s.,

which yields,

E(e,1)

[
exp

{
−
∫ 0

−∞
ψ′
0(h

Ξ
s,0(λ))ds

}]
= E(e,1)

[(
1 + βCλβI0,∞(−βξ)

)− 1
β
−1
]
. (2.10)



756 Natalia Cardona-Tobón and Juan Carlos Pardo

Next, we claim that condition (1.23) is satisfied under Assumption 1.2 with ϑ = 1. We prove this
claim below. Hence, using Fubini’s Theorem we deduce

B1 =

∫ ∞

0
E(e,1)

[(
1 + βCλβI0,∞(−βξ)

)− 1
β
−1
]
dλ

= (βC)−1/βE(e,1)

[(∫ ∞

0
eβξudu

)−1/β
]
,

where in the last equality we have solved the integral with respect to λ.
Finally, we prove the claim that condition (1.23) is satisfied under Assumption 1.2 with ϑ = 1.

Recalling that the homogeneous Lévy process Ξ defined in (1.13), allows to extend the definition of
the map s 7→ hΞs,0(λ) for s ≤ 0, and using identity (2.6) (with λeξ1 instead of λ), we get

E(e,1)

[
exp

{
−
∫ 0

−1
ψ′
0(h

Ξ
s,0(λ))ds

}]
= E(e,1)

[
exp

{
−
∫ 1

0
ψ′
0

(
hs,1(λ)

)
ds

}]
= E(e,1)

[(
λeξ1

)−β−1
((
λeξ1

)−β
+ βCI0,1(βξ)

)− 1
β
−1
]

= E(e,1)

[(
1 + λββCeβξ1I0,1(βξ)

)− 1
β
−1
]

= E(e,1)

[(
1 + λββCI0,1(−βξ)

)− 1
β
−1
]
,

where the last identity follows from (2.8). Then the integral in condition (1.23) satisfies∫ ∞

0
E(e,1)

[
exp

{
−
∫ 0

−1
ψ′
0

(
hΞs,0(λ)

)
ds

}]
dλ =

∫ ∞

0
E(e,1)

[(
1 + λββCI0,1(−βξ)

)− 1
β
−1
]
dλ,

= (βC)−1/βE(e,1)

[(∫ 1

0
eβξudu

)−1/β
]
,

where in the last equality we have used again Fubini’s Theorem and solve the integral with respect
to λ. In particular, appealing once again to duality (2.1), we get

E(e,1)

[(∫ 1

0
eβξudu

)−1/β
]
= e−Φξ(1)E(e)

[(∫ 1

0
e−βξudu

)−1/β
]
= e−Φξ(1)E(e)

[
I0,1(βξ)

−1/β
]
.

Moreover, under the exponential moment Assumption 1.2 with ϑ = 1, from Lemma 2.2 in Li and
Xu (2018), we deduce that

E(e)
[
I0,1(βξ)

−1/β
]
≤ e2Φ

′
ξ(0)E(e)

[
eξ1
]
,

where the right-hand side is finite from our assumption. This prove our claim.

2.3. Intermediate subcritical regime. The aim of this section is to show Theorem 1.6. Throughout
this section, we assume that the underlying Lévy process ξ fulfils conditions Φ′

ξ(0) < 0 and Φ′
ξ(1) =

0. In other words, ξ drifts to −∞ under P(e) and oscillates under the probability measure P(e,1)

defined by the Esscher transform (1.21).
Before moving to the proof of Theorem 1.6, we recall that, under the assumption that the Lévy

process ξ possesses exponential moments of order ϑ > 1, the probability that the supremum of ξ
stays below 0 under P(e,1)

x , for x < 0, satisfies

P(e,1)
x

(
ξt < 0

)
∼
√

2

πΦ′′
ξ (1)

E(e,1)
[
H1

]
U (1)(−x)t−1/2, as t→ ∞, (2.11)
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where we recall that U (1) denotes the renewal function, under P(e,1), and (Ht, t ≥ 0) the ascending
ladder process, (see Lemma 11 in Hirano (2001)).

The proof of Theorem 1.6 uses the same notation as in the proof of Theorem 1.4 and is based
on the following two lemmas. The first of which tells us, under our general assumptions (1.5) and
the exponential moments condition (1.2) with ϑ > 1, that only paths of Lévy processes with a low
supremum contribute to the probability of survival.

Lemma 2.1. Suppose that condition (1.2) holds with ϑ > 1. We also assume that condition (1.5)
is satisfied. Then for any z > 0, x < 0 and 0 < δ < 1, we have

lim
y→∞

lim sup
t→∞

t1/2e−Φξ(1)tP(z,x)

(
Zt > 0, ξt−δ ≥ y

)
= 0.

Proof : Let z > 0, x < 0 and 0 < δ < 1. We begin by noting that conditioning on ξ and then using
the Esscher transform allow us to deduce that

e−tΦξ(1)P(z,x)

(
Zt > 0, ξt−δ ≥ y

)
= E(e,1)

x

[
e−ξtP(z,x)

(
Zt > 0

∣∣ ξ)1{ξt−δ≥y}

]
.

Further note from (1.8), that the survival probability conditioned on the environment is bounded
from above by the functional vt(0,∞, ξ − ξ0), i.e.,

P(z,x)

(
Zt > 0

∣∣ ξ) = 1− exp
{
− zvt(0,∞, ξ − ξ0)

}
≤ zvt(0,∞, ξ − ξ0).

On the other hand, condition (1.5) allows us to find a lower bound for vt(0,∞, ξ− ξ0) in terms of
the exponential functional of ξ. Indeed, we observe from the backward differential equation given
in (1.6) that

∂

∂s
vt(s, λe

−ξ0 , ξ − ξ0) ≥ Cv1+βt (s, λe−ξ0 , ξ − ξ0)e
−β(ξs−ξ0), vt(t, λe

−ξ0 , ξ − ξ0) = λe−ξ0 .

Integrating between 0 and t, we get
1

vβt (0, λe
−ξ0 , ξ − ξ0)

− 1

(λe−ξ0)β
≥ Cβ

∫ t

0
e−β(ξs−ξ0)ds with Cβ > 0.

Now, letting λ ↑ ∞ and taking into account that β ∈ (0, 1) and C > 0, we deduce the following
inequality for all t ≥ 0,

vt(0,∞, ξ − ξ0) ≤
(
CβI0,t(β(ξ − ξ0))

)−1/β
, (2.12)

where I0,t(β(ξ − ξ0)) is the exponential functional of the Lévy process β(ξ − ξ0), see (2.7). The
latter implies that

e−tΦξ(1)P(z,x)

(
Zt > 0, ξt−δ ≥ y

)
≤ z(βC)−1/βE(e,1)

x

[
e−ξtI0,t(β(ξ − ξ0))

−1/β1{ξt−δ≥y}

]
= z(βC)−1/βE(e,1)

[
I0,t(−βξ)−1/β1{ξ

t−δ
≤−y−x}

]
,

where in the last equality we have appealed to the Duality Lemma given in (2.1) to see that

e−ξtI0,t(βξ)−1/β (d)
=

(∫ t

0
eβξsds

)−1/β

= I0,t(−βξ)−1/β.

Finally, according to Li and Xu (2018, Lemma 3.5), we have

lim
y→∞

lim sup
t→∞

t1/2E(e,1)
[
I0,t(−βξ)−1/β1{ξ

t−δ
≤−y−x}

]
= 0.

Therefore,

lim
y→∞

lim sup
t→∞

t1/2e−Φξ(1)tP(z,x)

(
Zt > 0, ξt−δ ≥ y

)
≤ z(βC)−1/β lim

y→∞
lim sup
t→∞

t1/2E(e,1)
[
I0,t(−βξ)−1/β1{ξ

t−δ
≤−y−x}

]
= 0,
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which concludes the proof. □

The following lemma studies the survival probability under environments with low extrema. More
precisely, it confirms the statement that only paths of the Lévy process with a very low running
supremum give a substantial contribution to the speed of the survival probability.

Lemma 2.2. Suppose that condition (1.1) holds together with the exponential moment condition
(1.2) with ϑ > 1. We also assume that the integral condition in (1.25) holds. Then for every z > 0
and x < 0, we have

lim
t→∞

t1/2e−Φξ(1)tP(z,x)

(
Zt > 0, ξt < 0

)
= z

√
2

πΦ′′
ξ (1)

E(e,1)
[
H1

]
b2(x),

where

b2(x) = U (1)(−x)E(e,1),↑
−x

[∫ ∞

0
exp

{
−
∫ 0

−∞
ψ′
0

(
hΞs,0(λ)

)
ds

}
dλ

]
∈ (0,∞). (2.13)

Proof : Let z > 0 and assume that ξ0 = x < 0. We begin by recalling that, under P(e,1), the Lévy
process ξ oscillates. In addition from the Esscher transform, we have the following identity

e−Φξ(1)tP(z,x)

(
Zt > 0, ξt < 0

)
= e−Φξ(1)tP(z,0)

(
Zt > 0, ξt < −x

)
= E(e,1)

[
e−ξtP(z,0)

(
Zt > 0

∣∣ ξ)1{ξt<−x}

]
Recall from (1.9), that for any λ ≥ 0 and s ≤ t, the random cumulant hs,t(λ) satisfies

E(z,x)

[
e−λZt

∣∣ ξ,F (b)
s

]
= E(z,0)

[
e−λZteξte−ξt

∣∣ ξ,F (b)
s

]
= exp{−Zshs,t(λ)}.

From the previous identity, we observe that the initial condition of the Lévy process ξ is irrelevant
for the functional hs,t(λ). Further, recall that the quenched survival probability of the process
(Zt, t ≥ 0) is given by P(z,0)

(
Zt > 0

∣∣ ξ) = 1− exp{−zh0,t(∞)}. Thus,

e−Φξ(1)tP(z,x)

(
Zt > 0, ξt < 0

)
= E(e,1)

[
e−ξtP(z,0)

(
Zt > 0

∣∣ ξ)1{ξt<−x}

]
= E(e,1)

[
e−ξt

(
1− exp

{
− zh0,t(∞)

})
1{ξt<−x}

]
.

Now, we use the same notation as in the proof of Theorem 1.4. Namely, we denote for each fixed
t ≥ 0, the function

Gt(λ) = e−ξt
(
1− exp

{
− zh0,t(λ)

})
, for λ ≥ 0.

Then,
Gt(0) = 0 and Gt(∞) = e−ξtP(z,0)

(
Zt > 0 | ξ

)
.

Since the map λ 7→ h0,t(λ) is differentiable, then so does Gt(·). In view of the above arguments, we
deduce

e−Φξ(1)tP(z,x)

(
Zt > 0, ξt < 0

)
= E(e,1)

[
1{ξt<−x}

∫ ∞

0
G′
t(λ)dλ

]
=

∫ ∞

0
E(e,1)

[
G′
t(λ)1{ξt<−x}

]
dλ,

where in the last equality, the expectation and the integral may be exchanged using Fubini’s The-
orem. Recall the definition of the homogeneous Lévy process Ξ given in (1.13). Now, using the
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same strategy as in the proof of Theorem 1.4, that is extending the map s 7→ hΞs,0(λ), for s ≤ 0, and
taking the derivate of Gt(·) computed in (2.5), we have

E(e,1)
[
G′
t(λ)1{ξt<−x}

]
= zE(e,1)

[
exp

{
−zh0,t(λ)−

∫ t

0
ψ′
0

(
hs,t(λ)

)
ds

}
1{ξt<−x}

]
= zE(e,1)

[
exp

{
−zhΞ−t,0(λ)−

∫ 0

−t
ψ′
0

(
hΞs,0(λ)

)
ds

}
1{Ξ−t>x}

]
,

where we recall that (Ξ,P(e,1)) is the homogeneous Lévy process indexed in R associated to (ξ,P(e,1)).
Next, we simplify the notation by introducing, for t ≥ 0,

Ft(λ) := exp

{
−zhΞ−t,0(λ)−

∫ 0

−t
ψ′
0

(
hΞs,0(λ)

)
ds

}
.

Hence, making use of the above observations, we deduce

e−Φξ(1)tP(z,x)

(
Zt > 0, ξt < 0

)
= zP(e,1)

(
Ξ−t > x

) ∫ ∞

0
E(e,1)

[
Ft(λ)

∣∣ Ξ−t > x
]
dλ.

Now, taking into account (2.11), we obtain that

lim
t→∞

t1/2P(e,1)
(
Ξ−t > x

)
= lim

t→∞
t1/2P(e,1)

(
ξt < −x

)
=

√
2

πΦ′′
ξ (1)

E(e,1)
[
H1

]
U (1)(−x), (2.14)

and thus the proof of this lemma will be completed once we have shown

lim
t→∞

∫ ∞

0
E(e,1)

[
Ft(λ)

∣∣ Ξ−t > x
]
dλ = lim

t→∞

∫ ∞

0
E

(e,1)
−x

[
Ft(λ)

∣∣ Ξ−t > 0
]
dλ

= E
(e,1),↑
−x

[∫ ∞

0
exp

{
−
∫ 0

−∞
ψ′
0

(
hΞs,0(λ)

)
ds

}
dλ

]
=: b(x).

The arguments used to deduce the preceding limit are quite involved, for that reason we split its
proof in three steps.

Step 1. Let us first introduce the following functions, for r, λ ≥ 0 and t ≥ 0,

fr(t, λ) := E
(e,1)
−x

[
Ft(λ)

∣∣ Ξ−(t+r) > 0
]
,

and

gr(t, λ) := E
(e,1)
−x

[
exp

{
−
∫ 0

−t
ψ′
0(h

Ξ
s,0(λ))ds

} ∣∣∣ Ξ−(t+r) > 0

]
.

Since Ft(λ) and exp{−
∫ 0
−t ψ

′
0(h

Ξ
s,0(λ))dλ} are bounded random variables, we may deduce

fr(t, λ) → E
(e,1),↑
−x [Ft(λ)] and gr(t, λ) → E

(e,1),↑
−x

[
exp

{
−
∫ 0

−t
ψ′
0(h

Ξ
s,0(λ))ds

}]
, (2.15)

as r → ∞. We first prove the convergence for Ft(λ), since the same arguments will lead to the other
convergence. Appealing to the Markov property, we have,

E
(e,1)
−x

[
Ft(λ) | Ξ−(t+r) > 0

]
= E

(e,1)
−x

Ft(λ) P
(e,1)
−Ξ−t

(
Ξ−r > 0

)
P

(e,1)
−x

(
Ξ−(t+r) > 0

)1{Ξ−t>0}

 . (2.16)
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Now since (2.14) holds, we have for ϵ > 0 that there exists a constant N1 > 0 (which depends on ϵ)
such that the following inequality is satisfied for all r ≥ N1,

P
(e,1)
−Ξ−t

(
Ξ−r > 0

)
P

(e,1)
−x

(
Ξ−(t+r) > 0

) ≤ (1 + ϵ)

(1− ϵ)

(
r

t+ r

)−1/2 U (1)(Ξ−t)

U (1)(−x)
,

Therefore, we deduce that for r ≥ N1,

P
(e,1)
−Ξ−t

(
Ξ−r > 0

)
P

(e,1)
−x

(
Ξ−(t+r) > 0

) ≤ (1 + ϵ)

(1− ϵ)

(
1 +

t

N1

)1/2 U (1)(Ξ−t)

U (1)(−x)
. (2.17)

By definition of the process Ξ given in (1.13), we have that Ξ−t and −ξt are equal in distribution
and thus

E
(e,1)
−x

[
U (1)(Ξ−t)1{Ξ−t>0}

]
= E(e,1)

x

[
U (1)(−ξt)1{ξt<0}

]
= U (1)(−x),

where in the second equality we have used that (U (1)(−ξt)1{ξt<0}, t ≥ 0) is a martingale with

respect to (F (e)
t )t≥0. Since Ft(λ) is a bounded random variable, then we can apply the Dominated

Convergence Theorem in (2.16) to obtain the first convergence in (2.15), i.e.

lim
r→∞

fr(t, λ) = E
(e,1)
−x

Ft(λ) lim
r→∞

P
(e,1)
−Ξ−t

(
Ξ−r > 0

)
P

(e,1)
−x

(
Ξ−(t+r) > 0

)1{Ξ−t>0}


=

1

U (1)(−x)
E

(e,1)
−x

[
Ft(λ)U

(1)(Ξ−t)1{Ξ−t>0}

]
=: E

(e,1),↑
−x [Ft(λ)] .

Similarly, inequality (2.17) implies that the following upper bound also holds

gr(t, λ) ≤ C1(t)E
(e,1),↑
−x

[
exp

{
−
∫ 0

−t
ψ′
0(h

Ξ
s,0(λ))ds

}]
,

where C1(t) is a positive constant which depends on t. We may now appeal to the Dominated
Convergence Theorem together with our hypothesis (1.25), to deduce that for t ≥ 1∫ ∞

0
gr(t, λ)dλ→

∫ ∞

0
E

(e,1),↑
−x

[
exp

{
−
∫ 0

−t
ψ′
0(h

Ξ
s,0(λ))ds

}]
dλ, as r → ∞.

Furthermore, since fr(t, λ) ≤ gr(t, λ), an application of the generalised Dominated Convergence
Theorem (see for instance Folland (1984, Exercise 2.20)) gives us

lim
r→∞

∫ ∞

0
E

(e,1)
−x

[
Ft(λ)

∣∣ Ξ−(t+r) > 0
]
dλ =

∫ ∞

0
E

(e,1),↑
−x [Ft(λ)] dλ. (2.18)

Step 2. Let 1 ≤ s ≤ t, λ ≥ 0 and γ ∈ (1, 2]. From the proof of Lemma 3.2 in Bansaye et al.
(2021), we can deduce∣∣∣E(e,1)

−x

[
Ft(λ)− Fs(λ)

∣∣ Ξ−γt > 0
]∣∣∣ ≤ C2E

(e,1),↑
−x

[
|Ft(λ)− Fs(λ)|

]
,

where C2 is a positive constant. Hence∣∣∣∣∫ ∞

0
E

(e,1)
−x

[
Ft(λ)− Fs(λ)

∣∣ Ξ−γt > 0
]
dλ

∣∣∣∣ ≤ C2

∫ ∞

0
E

(e,1),↑
−x

[
|Ft(λ)− Fs(λ)|

]
dλ.
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In addition, we observe that by definition of Ft(s) and taking into account that s ≤ t,

|Ft(λ)− Fs(λ)| = exp

{
−
∫ 0

−s
ψ′
0(h

Ξ
u,0(λ))du

}
∣∣∣∣Ft(λ) exp{∫ 0

−s
ψ′
0(h

Ξ
u,0(λ))du

}
− exp{−zhΞ−s,0(λ)}

∣∣∣∣
= exp

{
−
∫ 0

−s
ψ′
0(h

Ξ
u,0(λ))du

}
∣∣∣∣exp{−zhΞ−t,0(λ)− ∫ −s

−t
ψ′
0

(
hΞu,0(λ)

)
du

}
− exp{−zhΞ−s,0(λ)}

∣∣∣∣ .
Now, since hΞ−s,0(λ), ψ′

0 are positive functions and z > 0, we have∣∣∣∣exp{−(zhΞ−t,0(λ) + ∫ −s

−t
ψ′
0

(
hΞu,0(λ)

)
du

)}
− exp{−zhΞ−s,0(λ)}

∣∣∣∣ ≤ 2,

which yields for s ≥ 1

|Ft(λ)− Fs(λ)| ≤ 2 exp

{
−
∫ 0

−1
ψ′
0(h

Ξ
u,0(λ))du

}
.

It then follows, from the previous calculations and our assumption (1.25) together with the Domi-
nated Convergence Theorem, that

lim
s→∞

lim
t→∞

∣∣∣∣∫ ∞

0
E

(e,1)
−x

[
Ft(λ)− Fs(λ)

∣∣ Ξ−γt > 0
]
dλ

∣∣∣∣ = 0,

which in particular yields

lim
s→∞

lim
t→∞

∫ ∞

0
E

(e,1)
−x

[
Ft(λ)− Fs(λ)

∣∣ Ξ−γt > 0
]
dλ = 0.

Thus, appealing to (2.18) in Step 1, we get

lim
t→∞

∫ ∞

0
E

(e,1)
−x

[
Ft(λ)

∣∣ Ξ−γt > 0
]
dλ = lim

s→∞
lim
t→∞

∫ ∞

0
E

(e,1)
−x

[
Fs(λ)

∣∣ Ξ−γt > 0
]
dλ

= lim
s→∞

∫ ∞

0
E

(e,1),↑
−x [Fs(λ)] dλ.

In order to deal with the above limit in the right-hand side, first note that hΞ−s,0(λ) ≤ λe−Ξ−s → 0,
as s→ ∞, P(e,1)

−x -a.s. Moreover, we have

E
(e,1),↑
−x [Fs(λ)] → E

(e,1),↑
−x

[
exp

{
−
∫ 0

−∞
ψ′
0(h

Ξ
u,0(λ))du

}]
, as s→ ∞,

and for s ≥ 1,

E
(e,1),↑
−x [Fs(λ)] ≤ E

(e,1),↑
−x

[
exp

{
−
∫ 0

−1
ψ′
0(h

Ξ
u,0(λ))du

}]
.

Hence, we may now apply once again the Dominated Convergence Theorem to deduce that∫ ∞

0
lim
s→∞

E
(e,1),↑
−x [Fs(λ)] dλ = b(x) <∞.

In other words, we have

lim
t→∞

∫ ∞

0
E

(e,1)
−x

[
Ft(λ)

∣∣ Ξ−γt > 0
]
dλ = b(x).
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Next, from (2.14) we obtain

lim
t→∞

1

P
(e,1)
−x (Ξ−t > 0)

∫ ∞

0
E

(e,1)
−x

[
Ft(λ)1{Ξ−γt>0}

]
dλ

= lim
t→∞

P
(e,1)
−x

(
Ξ−γt > 0

)
P

(e,1)
−x

(
Ξ−t > 0

) ∫ ∞

0
E

(e,1)
−x

[
Ft(λ)

∣∣ Ξ−γt > 0
]
dλ

= γ−1/2b(x).

Since γ may be chosen arbitrarily close to 1, we have∫ ∞

0
E

(e,1)
−x

[
Ft(λ)1{Ξ−γt>0}

]
dλ− b(x)P

(e,1)
−x

(
Ξ−t > 0

)
= o(1)P

(e,1)
−x

(
Ξ−t > 0

)
.

Step 3. Let λ ≥ 0, t ≥ 1 and γ ∈ (1, 2] and denote

Jt(λ) :=
1

P
(e,1)
−x (Ξ−t > 0)

E
(e,1)
−x

[
Ft(λ)

(
1{Ξ−t>0} − 1{Ξ−γt>0}

) ]
.

Observe from (2.14) and the fact that Ft(λ) ≤ 1, that the following holds

0 ≤ Jt(λ) ≤ 1−
P

(e,1)
−x

(
Ξ−γt > 0

)
P

(e,1)
−x

(
Ξ−t > 0

) → 1− γ−1/2, as t→ ∞.

Since γ may be taken arbitrary close to 1, we deduce that Jt(λ) → 0 as t→ ∞. In addition,

Jt(λ) ≤ E
(e,1)
−x

[
exp

{
−
∫ 0

−t
ψ′
0(h

Ξ
s,0(λ))ds

} ∣∣∣ Ξ−t > 0

]
≤ E

(e,1)
−x

[
exp

{
−
∫ 0

−1
ψ′
0(h

Ξ
s,0(λ))ds

} ∣∣∣ Ξ−t > 0

]
≤ C3E

(e,1),↑
−x

[
exp

{
−
∫ 0

−1
ψ′
0(h

Ξ
s,0(λ))ds

}]
,

where C3 is a positive constant and the right-hand side is an integrable function in λ thanks to the
assumption (1.25). Hence, appealing again to the Dominate Convergence Theorem, we see∫ ∞

0
E

(e,1)
−x

[
Ft(λ)

(
1{Ξ−t>0} − 1{Ξ−γt>0}

) ]
dλ = o(1)P

(e,1)
−x

(
Ξ−t > 0

)
.

We combine the previous limit with the conclusion of Steps 2 to deduce, as promised earlier, that∫ ∞

0
E

(e,1)
−x

[
Ft(λ)1{Ξ−t>0}

]
dλ− b(x)P

(e,1)
−x

(
Ξ−t > 0

)
=

∫ ∞

0
E

(e,1)
−x

[
Ft(λ)1{Ξ−t>0}

]
dλ−

∫ ∞

0
E

(e,1)
−x

[
Ft(λ)1{Ξ−γt>0}

]
dλ

+

∫ ∞

0
E

(e,1)
−x

[
Ft(λ)1{Ξ−γt>0}

]
dλ− b(x)P

(e,1)
−x

(
Ξ−t > 0

)
= o(1)P

(e,1)
−x

(
Ξ−t > 0

)
.

Finally, similarly as in the proof of Theorem 1.4, we see that the Assumption 1.1 guarantees that
b(x) > 0. This concludes the proof. □

With Lemmas 2.1 and 2.2 in hand, we may now proceed to the proof of Theorem 1.6 following
similar ideas as those used in Theorem 1.2 in Bansaye et al. (2021).
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Proof of Theorem 1.6: Let z, ϵ > 0 and x < 0. From Lemma 2.1, we have for every δ ∈ (0, 1),

lim
y→∞

lim sup
t→∞

t1/2e−tΦξ(γ)P(z,x)

(
Zt > 0, ξt−δ ≥ y

)
= 0.

Then it follows that, we may choose y > 0 such that for t sufficiently large

P(z,x)

(
Zt > 0, ξt−δ ≥ y

)
≤ ϵP(z,x)

(
Zt > 0, ξt−δ < y

)
.

Further, since {Zt > 0} ⊂ {Zt−δ > 0} for t large, we deduce that

Pz(Zt > 0) = P(z,x)

(
Zt > 0, ξt−δ ≥ y

)
+ P(z,x)

(
Zt > 0, ξt−δ < y

)
≤ (1 + ϵ)P(z,x−y)

(
Zt−δ > 0, ξt−δ < 0

)
.

In other words, for every ϵ > 0 there exists y′ < 0 such that

(1− ϵ)t1/2e−Φξ(1)tP(z,y′)

(
Zt > 0, ξt < 0

)
≤ t1/2e−Φξ(1)tPz(Zt > 0)

≤ (1 + ϵ)(t− δ)1/2e−Φξ(1)(t−δ)P(z,y′)

(
Zt−δ > 0, ξt−δ < 0

) t1/2e−Φξ(1)t

(t− δ)1/2e−Φξ(1)(t−δ)
.

Now, appealing to Lemma 2.2, we have

lim
t→∞

t1/2e−Φξ(1)tP(z,y′)

(
Zt > 0, ξt < 0

)
= z

√
2

πΦ′′
ξ (1)

E(e,1)
[
H1

]
b2(y

′),

where

b2(y
′) = U (1)(−y′)E(1),↑

−y′

[∫ ∞

0
exp

{
−
∫ 0

−∞
ψ′
0

(
hΞs,0(λ)

)
ds

}
dλ

]
. (2.19)

Hence, we obtain

(1− ϵ)z

√
2

πΦ′′
ξ (1)

E(e,1)
[
H1

]
b2(y

′) ≤ lim
t→∞

t1/2e−tΦξ(1)Pz(Zt > 0)

≤ (1 + ϵ)z

√
2

πΦ′′
ξ (1)

E(e,1)
[
H1

]
b2(y

′)e−Φξ(1)δ.

On the other hand, we observe that y′ is a sequence which may depend on ϵ. Further, this sequence
y′ goes to minus infinity as ϵ goes to 0. Then, for any sequence y′ = yϵ, we deduce that

0 < (1− ϵ)z

√
2

πΦ′′
ξ (1)

E(e,1)
[
H1

]
b2(yϵ) ≤ lim

t→∞
t1/2e−Φξ(1)tPz(Zt > 0)

≤ (1 + ϵ)z

√
2

πΦ′′
ξ (1)

E(e,1)
[
H1

]
b2(yϵ) <∞.

Therefore, by letting ϵ→ 0, we get

0 < lim inf
ϵ→0

(1− ϵ)z

√
2

πΦ′′
ξ (1)

E(e,1)
[
H1

]
b2(yϵ) ≤ lim

t→∞
t1/2e−Φξ(1)tPz(Zt > 0)

≤ lim sup
ϵ→0

(1 + ϵ)z

√
2

πΦ′′
ξ (1)

E(e,1)
[
H1

]
b2(yϵ)e

−Φξ(1)δ <∞.
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Since δ can be taken arbitrary close to 0, we deduce

lim
t→∞

t1/2e−Φξ(1)tPz(Zt > 0) = z

√
2

πΦ′′
ξ (1)

E(e,1)
[
H1

]
B2,

where

B2 := lim
ϵ→0

b2(yϵ) = lim
ϵ→0

U (1)(−yϵ)E(1),↑
−yϵ

[∫ ∞

0
exp

{
−
∫ 0

−∞
ψ′
0

(
hΞs,0(λ)

)
ds

}
dλ

]
.

The proof is now complete.
□

2.4. The Q process.

Proof of Theorem 1.7: We first prove part (i). We only deduce it for the strongly subcritical regime,
for the intermediate subcritical regime the arguments are basically the same. Let z, t > 0 and Λ ∈ Ft,
from the Markov property, we obtain

Pz
(
Λ | T0 > t+ s

)
= Ez

[
1{Λ,T0>t}

PZt(T0 > s)

Pz(T0 > t+ s)

]
.

From Theorem 1.4, for any ϵ > 0 and t large enough, we deduce that

PZt(T0 > s)

Pz(T0 > t+ s)
=
e−Φξ(1)sPZt(Zs > 0)e−Φξ(1)t

e−Φξ(1)(t+s)Pz(Zt+s > 0)
≤ e−Φξ(1)t

(
ϵ+ ZtB1

−ϵ+ zB1

)
.

Further, from (1.5), we have
e−Φξ(1)tEz[Zt | S] = zeξt−Φξ(1)t,

where the random variable in the right-hand side above is integrable thanks to our exponential
moment condition (1.2) with ϑ = 1. Hence, the Dominated Convergence Theorem implies that

lim
s→∞

Pz
(
Λ | T0 > t+ s

)
= Ez

[
1{Λ,T0>t} lim

s→∞

PZt(T0 > s)

Pz(T0 > t+ s)

]
= Ez

[
1{Λ,T0>t}

Zt
z
e−Φξ(1)t

]
= Ez

[
Zt
z
e−Φξ(1)t1Λ

]
.

We now prove part (ii). The fact that the process (e−Φξ(1)tZt, t ≥ 0) is a martingale follows directly
from (1.5) by applying the Markov property as follows: for 0 ≤ s ≤ t,

Ez
[
e−Φξ(1)(t+s)Zt+s | Fs

]
= e−Φξ(1)(t+s)EZs [Zt] = e−Φξ(1)(t+s)ZsE[eξt ] = e−Φξ(1)sZs,

which establishes the martingale property.
To deduce part (iii), we compute the Laplace transform of Z, under P♮z. Fix z, t > 0 and λ ≥ 0,

using (1.9) and part (ii), we get

E♮z
[
e−λZt

]
= Ez

[
Zt
z
e−Φξ(1)te−λZt

]
= −e

−Φξ(1)t

z

d

dλ
Ez
[
e−λZt

]
= −e

−Φξ(1)t

z

d

dλ
E(e)

[
exp{−zh0,t(λ)}

]
.

Now, note that

d

dλ
E(e)

[
exp{−zh0,t(λ)}

]
= −zE(e)

[
exp{−zh0,t(λ)}eξt

d

du
vt(0, u, ξ)

∣∣∣
u=λeξt

]
. (2.20)
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Thus, from (2.6), we deduce

E♮z
[
e−λZt

]
= e−Φξ(1)tE(e)

[
exp{−zh0,t(λ)}eξt

d

du
vt(0, u, ξ)

∣∣∣
u=λeξt

]
= e−Φξ(1)tE(e)

[
eξt exp

{
−zh0,t(λ)−

∫ t

0
ψ′
0(hs,t(λ))ds

}]
= E(e,1)

[
exp

{
−zh0,t(λ)−

∫ t

0
ψ′
0(hs,t(λ))ds

}]
,

where in the last equality we have used the definition of the Esscher transform given in (1.19). This
completes the proof. □
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