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Abstract. In this paper we introduce a general class of transformations of (all
or most of) the class ML(Rd), of d-dimensional Lévy measures on Rd, into itself.
We refer to transformations of this type as Υ transformations (or Upsilon trans-
formations). Closely associated to these are mappings of the set ID(Rd) of all
infinitely divisible laws on Rd into itself. In considerable generality, the mappings
are one-to-one, regularising and bi-continuous. Furthermore, in many cases the
transformations have a stochastic interpretation in terms of random integrals with
respect to Lévy processes.

1. Introduction

In this paper we associate to any Lévy measure γ on (0,∞) certain transforma-
tions, which we refer to as Upsilon-transformations corresponding to γ. There are
(at least) three natural ways of viewing the Upsilon transformations, namely, listed
in decreasing order of generality,

(a) Transformations of Lévy measures: Υγ : D →ML(Rd), where the domain
D ⊆ML(Rd) depends on γ.

(b) Transformations of infinitely divisible probability measures: Υγ : D′ →
ID(Rd), where the domain D′ ⊆ ID(Rd) depends on γ.

(c) Transformations of infinitely divisible probability measures given in terms
of random integrals:

µ 7→ L
{

∫

fγ(t) dZt

}

,
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where L{Y } denotes the law of a random variable Y , fγ is a fixed deter-
ministic function and (Zt) is a Lévy process such that L{Z1} = µ.

In the following we briefly describe the main features established in the paper of
the above three points of view.
(a) Transformations of Lévy measures. For a σ-finite Borel measure ρ on Rd, we
define a new Borel measure Υγ(ρ) on Rd by the formula:

[

Υγ(ρ)
]

(B) =

∫ ∞

0

ρ(x−1B) γ(dx), (1.1)

for any Borel set B. If
∫ ∞
0

(1 ∨ x2) γ(dx) < ∞, then formula (1.1) produces a

new Lévy measure Υγ(ρ) from any Lévy measure ρ, but if
∫ ∞
0

(1 ∨ x2) γ(dx) =∞,
this is only true for certain Lévy measures ρ, and we refer to the class of such
ρ as the Lévy domain of Υγ , denoted by domLΥγ (cf. Section 3). The mapping
Υγ : domLΥγ → ML(Rd) is termed the Upsilon transformation of Lévy measures
associated to γ. Such transformations generally have a regularising effect, as we
point out in Section 2, and they arise naturally in the study of random integrals
and series representations of infinitely divisible laws (see e.g. Rosiński, 1984 and
Rosiński, 1990). An application of Upsilon transformations to the construction of
Lévy copulas with special properties is discussed in Barndorff-Nielsen and Lindner
(2006). In the case where d = 1 and the Lévy measure ρ is concentrated on (0,∞),
the measure Υγ(ρ) equals the multiplicative convolution ρ⊛ γ of ρ and γ, and this
reveals a commutativity of the roles of ρ and γ in the construction. In addition to
domains we also study the ranges and continuity properties of the mappings Υγ . In
many aspects the derived results turn out to be closely similar to those of unbounded
operators on Banach spaces. Thus, we prove that Υγ is continuous on domLΥγ if
and only if it is Lévy bounded, that is if and only if

∫ ∞
0

(1 ∨ x2) γ(dx) < ∞,

which, as mentioned above, is equivalent to having domLΥγ = ML(Rd). In this
case we also show that Υγ is a closed mapping in the sense that it takes closed
subsets of ML(Rd) to new closed subsets of ML(Rd). This immediately implies
that Υγ is a homeomorphism whenever it is injective. The topology on ML(Rd),
to which the above results refer, is that of Lévy weak convergence, as introduced in
Section 5. The question of injectivity of Υγ is delicate. In Section 6 we give some
partial results which may be used to establish injectivity for rather general classes
of Upsilon transformations. A more detailed analysis will be given in a forthcoming
paper.
(b) Transformations of infinitely divisible laws. If

∫ ∞
0

(1 ∨ x2) γ(dx) < ∞, then we

associate to γ a mapping Υγ : ID(Rd) → ID(Rd), which may be defined in terms
of cumulant transforms by the equality

CΥγ (µ)(z) =

∫ ∞

0

Cµ(tz) γ(dt), (z ∈ Rd), (1.2)

where Cµ denotes the cumulant transform of µ (for its definition, see (7.1) below).
From equation (1.2) it it is easy to derive that Υγ preserves the affine structure of
ID(Rd), in the sense that

(i) Υγ(µ1 ∗ µ2) = Υγ(µ1) ∗Υγ(µ2), (µ1, µ2 ∈ ID(Rd)),
(ii) Υγ(TBµ) = TBΥγ(µ), (B ∈Md(R), µ ∈ ID(Rd)),
(iii) {Υγ(δc) | c ∈ Rd} ⊆ {δc | c ∈ Rd},
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where TBµ denotes the transformation of µ by the linear mapping TB associated
to the d × d-matrix B, and δc denotes the Dirac measure at c. As a consequence
of (i)–(iii), for any non-zero γ such that

∫ ∞
0

(1 ∨ x2) γ(dx) < ∞, the range of

Υγ is a subset of ID(Rd), which contains all Dirac measures and is closed under
convolution and linear transformations. We prove in addition that the range is
closed in the topology of weak convergence. These properties of the ranges are
shared by many important classes of infinitely divisible probability measures (e.g.,
for d = 1, the selfdecomposable laws and the Goldie-Steutel-Bondesson class), and,
as we shall indicate, a significant number of such classes are in fact realised as
ranges of Upsilon transformations. If γ is a σ-finite Borel measure on (0,∞) such
that

∫ ∞
0 (1 ∨ x2) γ(dx) = ∞, then the integral in the right hand side of (1.2) is

generally not well-defined for all measures µ from ID(Rd), and (1.2) only gives rise
to a mapping on a restricted class of measures µ. Nonetheless, interesting examples
of such mappings with restricted domains have already appeared in the literature.
For instance if γ is the measure with Lebesgue-density t−11(0,1)(t), then (1.2) gives
rise to a mapping Φ0, which was studied (in the case d = 1) in Barndorff-Nielsen
et al. (2004). The domain of Φ0 is the class of infinitely divisible laws, for which
the Lévy measure has finite logarithmic moment, and the range of Φ0 is the class
of selfdecomposable laws (see Examples 7.7 below).
(c) Transformations in terms of random integrals. Under certain restrictions on γ,
including the condition

∫ ∞
0 (1 ∨ x2) γ(dx) < ∞, the mapping Υγ described above

may be given a stochastic interpretation via random integrals: Υγ(µ) may be re-
alised as the distribution of the random integral

∫

fγ(t) dZt,

for a suitable deterministic function fγ (depending on γ), and where (Zt) is a Lévy
process with Z1 having law µ. Mappings of this kind were introduced by Jurek
(1990) under the name of λ-mixtures of dilations of measures on Banach spaces.
The random integral point of view is not the focus of the present paper, but it will
be discussed briefly at the end of the paper (Section 9), with reference in particular
to extensive recent works of Sato (2006b), (2006a) and (2007).

The paper is organised as follows: Section 2 gives the definition of the Upsilon
transformations of Lévy measures, discusses their regularising effect and provides
some examples. In that section we also establish the commutativity of the Upsilon
transformations and the relation of this to multiplicative convolution. Questions
relating to the domains of the transformations are discussed in Section 3, partly
based on an auxiliary function ψ, introduced in that section. Section 4 is concerned
with composition and ranges of the transformations, and Section 5 considers their
continuity properties. Injectivity is discussed in Section 6. The two penultimate
sections discuss Upsilon transformations of ID(Rd). In Sections 7 we give their
precise definition and establish their algebraic properties, and Section 8 is concerned
with their continuity properties. The final Section 9 discusses how the Upsilon
transformations, in somewhat less generality, are representable as random integrals
with respect to Lévy processes.
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2. Definition, first properties and examples

2.1. Notation and definition.

By M(Rd) we denote the set of all (positive) Borel measures on Rd, and by
Mσf(Rd) we denote the set of all Borel σ-finite measures ρ on Rd with ρ({0}) = 0.
Furthermore, ML(Rd) stands for the subset of Mσf(Rd) consisting of the Lévy
measures, i.e.

ML(Rd) =
{

ρ ∈Mσf(Rd)
∣

∣

∫

Rd(1 ∧ ‖x‖2) ρ(dx) <∞
}

,

with ‖ · ‖ the usual Euclidean norm on Rd. The classes M((0,∞)d), Mσf((0,∞)d)
and ML((0,∞)d) are defined analogously; and we use M

+
L((0,∞)) to denote the

class of Lévy measures for infinitely divisible distributions concentrated on (0,∞),
i.e.

M
+
L ((0,∞)) =

{

ρ ∈Mσf((0,∞))
∣

∣

∫ ∞
0

(1 ∧ x) ρ(dx) <∞
}

.

Elements of Mσf(Rd) will be denoted by ρ, σ, or τ , and γ and η will denote members
of Mσf((0,∞)). Finally, we introduce the class M02(Rd) of finite Borel measures
on Rd with finite second moment:

M02(Rd) =
{

ρ ∈Mσf(Rd)
∣

∣

∫

Rd(1 ∨ ‖x‖2) ρ(dx) <∞
}

.

Definition 2.1. For any γ ∈ Mσf((0,∞)), let Υγ : Mσf(Rd) → M(Rd) be the
mapping determined by

[Υγ(ρ)](B) =

∫ ∞

0

ρ(x−1B) γ(dx),

for all Borel sets B. We refer to Υγ as the Upsilon transformation with dilation
measure γ.

We shall also use ργ as a shorthand notation for Υγ(ρ), and if γ is absolutely
continuous with a density g we occasionally write Υg(ρ) and ρg. Note that a
measure γ from Mσf((0,∞)) gives rise to an Upsilon transformation for each value

of the dimension d. We shall sometimes use the notation Υ
(d)
γ for this mapping,

when it is appropriate to emphasise d. In case ρ is a measure on R\ {0} then we
shall write ρ←− for the transformation of ρ by the reciprocity mapping x 7→ x−1.

2.2. Commutativity and connection to multiplicative convolution.

The proofs of the following two propositions are straightforward, thus omitted.
The latter result indicates that in wide generality Υγ has a regularising effect.

Proposition 2.2. Let ρ and γ be measures in Mσf(R) and Mσf ((0,∞)), respec-
tively. Then for any Borel subset A of R\ {0},

ργ (A) =

∫ ∞

0

ρ (yA) γ←− (dy) =

∫

R

γ (yA) ρ←− (dy) . (2.1)
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Proposition 2.3. Suppose γ is a measure in Mσf((0,∞)) which is absolutely con-
tinuous with respect to Lebesgue measure and let g denote the density of γ. Let
further ρ be a measure in Mσf(R). Then ργ is absolutely continuous with respect
to Lebesgue measure, and the density rγ is given by

rγ(t) =







∫ ∞
0
g (ty) y ρ←− (dy) , if t > 0,

∫ 0

−∞ g (ty) |y| ρ←− (dy) , if t < 0.
(2.2)

Examples 2.4. The following examples of Upsilon transformations with dilation
density g(x) = dγ

dx have previously been discussed in the literature (see the papers
Barndorff-Nielsen and Thorbjørnsen, 2004, 2006, 2005; Barndorff-Nielsen et al.,
2004; Barndorff-Nielsen and Pérez-Abreu, 2007). We return to these examples in
the following sections.

(1) Setting

g(x) = e−x, (x ∈ (0,∞)),

produces the Upsilon mapping Υ0 which was introduced in Barndorff-
Nielsen and Thorbjørnsen (2004) and studied further in Barndorff-Nielsen
et al. (2004) and Barndorff-Nielsen and Thorbjørnsen (2006). Proposi-
tion 2.3 reveals that for any measure ρ in Mσf(R), the density of Υ0(ρ) is
the Laplace transform of the measure y ρ←−(dy).

(2) For α in (0, 1) we put

g (x) = α−1x−1−1/ασα

(

x−1/α
)

, (x ∈ (0,∞)),

where σα is the density of the positive α-stable law having Laplace trans-
form e−θα

. We write Υα for the associated Upsilon transformation. In
the limiting case α = 0 we recover the mapping Υ0 from (1) above, for
α = 1 the identity mapping, and the family {Υα | α ∈ [0, 1]} interpolates
smoothly between these two cases, see Barndorff-Nielsen and Thorbjørnsen
(2006).

For any ρ in Mσf((0,+∞)), it follows from Proposition 2.3 that Υα(ρ)
has Lebesgue-density

rα (t) = α−1t−1−1/α

∫ ∞

0

ξ−1/ασα

(

(tξ)−1/α
)

ρ←− (dξ) , (t > 0).

(3) For any λ in (−2,∞), let

g(x) = xλ−1e−x (x ∈ (0,∞)).

The corresponding Upsilon mappings Ξλ were introduced and studied in
Sato (2005) and Barndorff-Nielsen and Pérez-Abreu (2007); see also Sato
(2006b). For an extension to Upsilon mappings of Lévy measures on the
cone of positive definite matrices, see Barndorff-Nielsen and Pérez-Abreu
(2007).

(4) For λ > −2, consider the Lévy density given by

g(x) = xλ−11(0,1)(x), (x ∈ (0,∞)).

We denote the corresponding Υ-mapping by Φλ. The mapping Φ0 was
introduced and studied in Barndorff-Nielsen et al. (2004). In this particular
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case, it follows from Proposition 2.3 and direct computation that for ρ in
Mσf(R), Φ0(ρ) has Lebesgue-density

r0(t) =

{

t−1ρ((t,∞)), if t > 0,

|t|−1ρ((−∞, t)), if t < 0.

(5) For an arbitrary α in (0, 2), consider the Lévy density of the elemental
tempered stable law, i.e.

g(x) = x−α−1e−x, (x ∈ (0,∞)).

Such a Lévy measure is obtained as the image of the Lévy measure having
density

r(ξ) =
1

Γ(α)
1(0,1)(ξ)ξ

−α−1(1− ξ)α−1

under the transformation Ξ−1.

Given two σ-finite measures γ and η on the multiplicative group (0,∞) we con-
sider their convolution γ ⊛ η given by

γ ⊛ η(B) =

∫

(0,∞)2
1B(xy) γ( dx)η( dy), (2.3)

for any Borel subset B of (0,∞). Clearly the operation ⊛ is commutative, i.e.,
γ ⊛ η = η ⊛ γ, and the multiplicative convolution ⊛ is converted into ordinary
convolution by log transformation.

It is easy to verify that

Υγ(η) = γ ⊛ η = η ⊛ γ = Υη(γ). (2.4)

Moreover, if γ(dt) = fγ(t) dt, then (η ⊛ γ)(dt) = fη⊛γ(t) dt, where

fη⊛γ(t) =

∫ ∞

0

fγ(ts−1)s−1 η(ds). (2.5)

If in addition η(dt) = fη(t) dt, then

fη⊛γ(t) =

∫ ∞

0

fγ(ts−1)s−1fη(s) ds. (2.6)

Example 2.5. Notice that multiplicative convolution of σ-finite measures need not
be σ-finite. Indeed, let fγ(t) = fη(t) = t−1−α, α ∈ R. Then

fη⊛γ(t) =∞ for every t > 0.

Hence η ⊛ γ is infinite on every set of positive Lebesgue measure.

If η and γ are probability measures on (0,∞) and X and Y are independent ran-
dom variables with distributions η and γ respectively, then η⊛γ is the distribution
of the product XY . This provides a further link to infinite divisibility, which gives
rise to a concept of “semigroups of Upsilon transformations”, see Barndorff-Nielsen
and Maejima (2007).
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3. Discussion of domains.

3.1. Lévy Domain: Definition, examples and first properties.

For any Upsilon mapping Υγ we define its Lévy domain by

domLΥγ =
{

ρ ∈Mσf(Rd)
∣

∣ ργ ∈ML(Rd)
}

,

where dom stands for domain. In other words, domLΥγ is the set of measures from
Mσf(Rd) that are mapped to Lévy measures by Υγ . We also define

dom+
LΥγ =

{

ρ ∈Mσf((0,∞)d)
∣

∣ ργ ∈M
+
L((0,∞)d)

}

,

so that dom+
LΥγ is the pre-image for Υγ of the class of Lévy measures for subordi-

nators.

Examples 3.1. We adopt the notation from Example 2.4, and assume for simplicity
that d = 1.

(1) For the mapping Υ0 we have domLΥ0 = ML(R), as was shown in Barndorff-
Nielsen and Thorbjørnsen (2004). This also follows immediately from The-
orem 3.4 below.

(2) For the mappings Υα it was shown in Barndorff-Nielsen and Thorbjørnsen
(2006) that domLΥα = ML(R) for all α in (0, 1). Again, this may be seen
as an immediate consequence of Theorem 3.4.

(3) For the Ξλ-mappings it is easily established (see Barndorff-Nielsen et al.,
2004) that

domLΞλ =











ML(R), if λ > 0

Mlog(R), if λ = 0

Mλ(R), if λ ∈ (−2, 0)

where the classes Mlog(R) and Mλ(R), λ ∈ (0, 1), are defined by:

Mlog(R) =
{

ρ ∈M(R)
∣

∣

∫ ∞
1

log y ρ(dy) <∞
}

and
Mλ(R) =

{

ρ ∈M(R)
∣

∣

∫ ∞
1 y−λ ρ(dy) <∞

}

,

respectively.
(4) For the Upsilon mappings Φλ, it is easy to check that for all λ in (−2,∞)

we have
domLΦλ = domLΞλ,

with Ξλ as in (3).

Proposition 3.2. For any nonzero measure γ in Mσf((0,∞)), we have

domLΥ(d)
γ ⊆ML

(

Rd
)

and dom+
LΥ(d)

γ ⊆M
+
L((0,∞)d). (3.1)

Proof: Let a > 0 be such that γ([a,∞)) = b > 0. Then for every ρ ∈ domLΥγ

∞ >

∫

Rd

(‖x‖2 ∧ 1) ργ(dx) =

∫

Rd

∫ ∞

0

(t2‖x‖2 ∧ 1) γ(dt)ρ(dx)

≥ b
∫

Rd

(a2‖x‖2 ∧ 1) ρ(dx) ≥ b(a2 ∧ 1)

∫

Rd

(‖x‖2 ∧ 1) ρ(dx)

which shows that ρ ∈ML(Rd). The second inclusion follows similarly by replacing
‖x‖2 ∧ 1 by ‖x‖ ∧ 1 in the argument above.
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Proposition 3.2 is valid even when Rd is replaced by a Banach space, see Propo-
sition 2 in Jurek (1990). However, since Lévy measures on a general Banach space
are not determined by an integrability condition, the above simple proof does not
apply.

Remark 3.3. (a) Suppose γ and η are σ-finite measures on (0,∞) and consider
their multiplicative convolution γ⊛ η (cf. Subsection 2.2). Then from (2.4)
we infer that

γ ⊛ η ∈ML((0,∞)) ⇐⇒ η ∈ domLΥγ ⇐⇒ γ ∈ domLΥη. (3.2)

Assuming that γ, η 6= 0, Proposition 3.2 together with (3.2) then asserts
that

γ ⊛ η ∈ML((0,∞)) =⇒ γ, η ∈ML((0,∞)). (3.3)

(b) Let ρ and γ be measures in ML(Rd) and Mσf((0,∞)), respectively, and let
‖ρ‖ denote the transformation of ρ under the mapping x 7→ ‖x‖. Using
Tonelli’s theorem we note then that

∫

Rd

(‖x‖2 ∧ 1) ργ(dx) =

∫

(0,∞)

(

∫

Rd

(t2‖x‖2 ∧ 1) ρ(dx)
)

γ(dt)

=

∫

(0,∞)

(

∫

(0,∞)

(t2s2 ∧ 1) ‖ρ‖(ds)
)

γ(dt)

=

∫

Rd

(t2 ∧ 1) γ‖ρ‖(dt),

(3.4)

so that

ρ ∈ domLΥγ ⇐⇒ γ ∈ domLΥ‖ρ‖. (3.5)

Taking then Proposition 3.2 into account, it follows that

∀γ ∈Mσf((0,∞)) : domLΥγ 6= {0} =⇒ γ ∈ML((0,∞)), (3.6)

which shows that Υγ is only interesting as a mapping on the class of Lévy
measures if γ is itself a Lévy measure.

The following theorem has also been noted, independently, by K. Sato (cf. Sato,
2005). In the following section we obtain a proof of the theorem as a result of a
comparison of domains for two Υ transformations.

Theorem 3.4. (i) Let γ be a non-zero measure from Mσf((0,∞)). Then for
any positive integer d we have

domLΥ(d)
γ = ML

(

Rd
)

(3.7)

if and only if γ ∈M02((0,∞)), i.e. if and only if

γ((0,∞)) <∞ and

∫ ∞

0

t2 γ(dt) <∞. (3.8)

(ii) Let γ be a non-zero measure from Mσf((0,∞)). Then for any positive
integer d,

dom+
LΥ(d)

γ = M
+
L((0,∞)d) (3.9)

if and only if
∫

(0,∞)

(1 ∨ t) γ(dt) <∞. (3.10)
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Remark 3.5. Combining Theorem 3.4 with (3.5) it follows that

∀γ ∈ML((0,∞)) : domLΥ(d)
γ ⊇M02(Rd) (3.11)

and also that (cf. (3.6))

∀γ ∈Mσf((0,∞)) : domLΥ(d)
γ 6= {0} =⇒ domLΥ(d)

γ ⊇M02(Rd).

3.2. An auxiliary function: Definition and applications.

For a number of the calculations to follow, it is helpful to introduce an auxiliary
function ψγ by

Definition 3.6. For a measure γ in Mσf((0,∞)) we define the function ψγ : [0,∞)→
[0,∞] by

ψγ(s) =

∫ ∞

0

(s2t2 ∧ 1) γ(dt), (s ∈ [0,∞)). (3.12)

It follows immediately from the calculation (3.4) that for γ 6= 0

domLΥγ =
{

ρ ∈ML(Rd)
∣

∣

∫

Rdψγ(‖x‖) ρ(dx) <∞
}

. (3.13)

We mention in passing that for a non-zero Lévy measure γ on (0,∞), ψγ is a non-
decreasing continuous function with ψγ(0) = 0 and ψγ(s) > 0, whenever s > 0.
Moreover, lims→∞ ψγ(s) = γ((0,∞)).

Remark 3.7. The characterisation (3.13) of domLΥγ remains valid when Rd is re-
placed by a Hilbert space but is invalid for general Banach spaces. Jurek (1990)
obtained some characterisations of domLΥγ for Banach spaces in cases where either
γ or ρ have restricted support.

Comparison of domains.

Theorem 3.8. Let γ1 and γ2 be measures from Mσf((0,∞)). Then domLΥ
(d)
γ2 ⊆

domLΥ
(d)
γ1 for all d, if and only if

∃C > 0: ψγ1(s) ≤ Cψγ2(s), (s ∈ [0,∞)). (3.14)

Proof: We note first that we may assume that both γ1 and γ2 are Lévy measures.
Indeed, if γ ∈Mσf((0,∞)), then the inequalities

(1 ∨ s2)
∫

(0,∞)

(t2 ∧ 1) γ(dt) ≥ ψγ(s) ≥ (1 ∧ s2)
∫

(0,∞)

(t2 ∧ 1) γ(dt)

verify the statement

γ /∈ML((0,∞)) ⇐⇒ ψγ(s) =∞, for all s in (0,∞).

Moreover, for any γ in Mσf((0,∞)) we have

domLΥγ = {0} ⇐⇒ γ /∈ML((0,∞)),

where “⇐” follows from (3.6) and “⇒” follows from the fact that δ1 ∈ domLΥγ

for any Lévy measure γ. From these observations the proposition follows readily if
one of the measures γ1 or γ2 is not a Lévy measure. In a similar manner we may
assume that γ1 and γ2 are both non-zero. Indeed, for γ in Mσf((0,∞)) we have

ψγ = 0 ⇐⇒ γ = 0 ⇐⇒ domLΥγ = Mσf(R),

where, in the latter bi-implication, the implication “⇐” is a consequence of Propo-
sition 3.2.
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So assume in the following that γ1, γ2 are both non-zero Lévy measures on (0,∞).
It follows immediately from (3.13) that condition (3.14) implies that domLΥγ2 ⊆
domLΥγ1 . Conversely, assume that (3.14) is not satisfied. We then construct, for
each d in N, a measure ρ in ML(Rd) such that ρ ∈ domLΥγ2 \ domLΥγ1 . Indeed,
since (3.14) is not satisfied we may, for each n in N, choose a number sn in (0,∞)
such that

ψγ1(sn) > nψγ2(sn).

Then choose a fixed unit vector u in Rd and define the measure ρ on Rd by

ρ =

∞
∑

n=1

1

nψγ1(sn)
δsnu.

Note then that
∫

Rd

ψγ2(‖x‖) ρ(dx) =
∞
∑

n=1

ψγ2(sn)

nψγ1(sn)
≤

∞
∑

n=1

1

n2
<∞.

Thus, by (3.13), ρ ∈ domLΥγ2 , so in particular ρ ∈ML(Rd) according to Proposi-
tion 3.2. Note next that

∫

Rd

ψγ1(‖x‖) ρ(dx) =
∞
∑

n=1

ψγ1(sn)

nψγ1(sn)
=

∞
∑

n=1

1

n
=∞,

so that ρ /∈ domLΥγ1 .
Based on Theorem 3.8 we present next the proclaimed proof of Theorem 3.4.

Proof of Theorem 3.4. (i) Suppose first that domLΥγ = ML(R) = domLΥδ1 .
Then it follows from Theorem 3.8 that

∫ ∞

0

(1 ∧ s2t2) γ(dt) = ψγ(s) ≤ Cψδ1(s) = C(1 ∧ s2), (s ∈ (0,∞)) (3.15)

for some positive constant C. For s in (0, 1), (3.15) says that
∫ ∞

0

(s−2 ∧ t2) γ(dt) ≤ C,

and letting then sց 0, we obtain by monotone convergence that
∫ ∞
0 t2 γ(dt) ≤ C.

For s in [1,∞), (3.15) says that
∫ ∞

0

(1 ∧ s2t2) γ(dt) ≤ C,

and letting sր∞, we obtain by monotone convergence that

γ((0,∞)) =

∫ ∞

0

1 γ(dt) ≤ C.

Altogether γ ∈M02((0,∞)). Conversely assume that γ ∈M02((0,∞)). Then

ψγ(s) =

∫ ∞

0

(1 ∧ s2t2) γ(dt) ≤ (1 ∧ s2)
∫ ∞

0

(1 ∨ t2) γ(dt) = Cψδ1(s),

where C =
∫ ∞
0

(1 ∨ t2) γ(dt) <∞. Hence it follows from Theorem 3.8 that for any
d in N,

ML(Rd) ⊇ domL(Υ(d)
γ ) ⊇ domL(Υ

(d)
δ1

) = ML(Rd),

as desired.
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(ii) Let ρ be a measure in ML((0,∞)d) and let γ be a measure in Mσf((0,∞)).
Then we denote by ‖ρ‖2 and

√
γ the transformations of ρ and γ by the mappings

x 7→ ‖x‖2 and t 7→
√
t, respectively. Note then that

∫

Rd

(1 ∧ ‖x‖2) ρ√γ(dx) =

∫

(0,∞)

(

∫

Rd

(1 ∧ t2‖x‖2) ρ(dx)
)√

γ(dt)

=

∫

(0,∞)

(

∫

(0,∞)

(1 ∧ ts) ‖ρ‖2(ds)
)

γ(dt)

=

∫

(0,∞)

(1 ∧ s) ‖ρ‖2γ(ds),

which shows that

ρ ∈ domLΥ
(d)√

γ ⇐⇒ ‖ρ‖2 ∈ dom+
LΥ(1)

γ . (3.16)

In the case γ = δ1, note that domLΥ
(d)√

δ1
= ML(Rd) and that dom+

LΥ
(1)
δ1

=

M
+
L((0,∞)), and therefore (3.16) implies that

{‖ρ‖2 | ρ ∈ML(Rd)} = M
+
L ((0,∞)). (3.17)

Indeed, the inclusion “⊆” follows immediately from (3.16). Conversely, let σ be a
measure from M

+
L((0,∞)), and let ρ be the transformation of σ under the mapping

t 7→
√
tu : (0,∞)→ Rd for some unit vector u in Rd. Now, ‖ρ‖2 = σ and, by (3.16)

(with γ = δ1), ρ ∈ML(Rd).
Using then (3.16), (3.17), Proposition 3.2 and part (i) it follows that

dom+
LΥ(1)

γ = M
+
L ((0,∞)) ⇐⇒ domLΥ

(d)√
γ = ML(Rd)

⇐⇒
∫

(0,∞)

(1 ∨ t2)√γ(dt) <∞

⇐⇒
∫

(0,∞)

(1 ∨ s) γ(ds) <∞,

(3.18)

as desired. �

How small can the domain get?

If ρ ∈ ML(Rd) \M02(Rd), or, equivalently, ‖ρ‖ ∈ ML((0,∞)) \M02((0,∞)),
then it follows from Theorem 3.4 that there is a measure η in ML((0,∞)) such that
η /∈ domLΥ‖ρ‖. This implies by (3.5) that ρ /∈ domLΥ(d)

η , and hence, taking also
(3.11) into account, we may conclude that

⋂

η∈ML((0,∞))

domLΥ(d)
η = M02(Rd).

One may then ask whether there is a single measure η from ML((0,∞)) such that
domLΥ(d)

η = M02(Rd). This will be answered in the negative in Proposition 3.9
below.

Proposition 3.9. For any Lévy measure γ on (0,∞) and for any positive integer
d we have that

domLΥ(d)
γ % M02(Rd).
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Proof: Clearly we may assume that γ 6= 0. Since ψγ is continuous and ψγ(0) = 0,
we can choose a sequence (sn) in (0, 1) such that

∀n ∈ N : ψγ(sn) ≤ 1
n .

Consider the measure ρ on Rd given by

ρ =

∞
∑

n=1

1

n
δsnu,

where u is a fixed unit vector in Rd. Now,

∫

Rd

(1 ∨ ‖x‖2) ρ(dx) =

∞
∑

n=1

1

n
=∞,

so that ρ is not in M02(Rd). At the same time

∫

Rd

ψγ(‖x‖) ρ(dx) =
∞
∑

n=1

1

n
ψγ(sn) ≤

∞
∑

n=1

1

n2
<∞,

so that ρ ∈ domLΥ
(d)
γ (in particular ρ must be a Lévy measure; cf. Proposition 3.2).

The case of regularly varying tails.

In order to characterise domLΥγ we need to know the behaviour of ψγ(s) (defined
by formula (3.12)) at zero and infinity, cf. formula (3.13). This is possible when the
tail of γ is regularly varying in the sense that we can specify the tail behaviours of
ψγ in terms of the behaviour of the tail measure of γ at 0 and infinity.

Recall that a function L : (0,∞) → [0,∞) is slowly varying at infinity (resp. at
0) if

L(tx)

L(t)
−→ 1, as t→∞ (resp. as t→ 0),

for any positive number x. A function U : (0,∞)→ [0,∞) is regularly varying with
index α at infinity (resp. at 0), if it has the form

U(x) = xαL(x),

with L slowly varying at infinity (resp. at 0). Recall also that for γ in ML((0,∞))
we have

ψγ(s), γ([s−1,∞)) −→ 0, as s→ 0

and

ψγ(s), γ((s−1,∞)) −→ γ((0,∞)), as s→∞.

Proposition 3.10. Let γ be a non-zero Lévy measure on (0,∞), and suppose that
the function γ+(t) = γ([t,∞)) is regularly varying with index −α at zero (infinity,
resp.), where α < 2. Then

ψγ(s)

γ([s−1,∞))
→ 2

2− α as s→∞ (0, resp.). (3.19)
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Proof: We have

ψγ(s) = s2
∫

(0,s−1)

x2 γ(dx) + γ([s−1,∞))

= s2
∫

(0,s−1)

∫ x

0

2t dt γ(dx) + γ([s−1,∞))

= s2
∫ ∞

0

2tγ([t, s−1 ∨ t)) dt+ γ([s−1,∞))

= s2
∫ s−1

0

2tγ([t,∞)) dt. (3.20)

We first consider the case of γ([t,∞)) regularly varying at zero. From (3.20) we get

ψγ(s) = 2s2
∫ ∞

s

x−3γ([x−1,∞)) dx.

By our assumption we can write γ([x−1,∞)) = xαℓ(x), where ℓ(x) is slowly varying
at infinity. By Proposition 1.5.10 in Bingham et al. (1987) we have

ψγ(s)

γ([s−1,∞))
=

2
∫ ∞

s xα−3ℓ(x) dx

sα−2ℓ(s)
→ 2

2− α (3.21)

as s→∞.
Now we consider the case of γ([t,∞)) regularly varying at infinity. We can write

γ([t,∞)) = t−αℓ(t), where ℓ(t) is slowly varying at infinity. Using Proposition 1.5.8
Bingham et al. (1987) and (3.20) we get

ψγ(x−1)

γ([x,∞))
=

2
∫ x

0 t
1−αℓ(t) dt

x2−αℓ(x)
→ 2

2− α
as x→∞. This concludes the proof.

Remark 3.11. Suppose γ is a non-zero Lévy measure on (0,∞) and that the func-
tion γ+(t) = γ([t,∞)) is regularly varying at both 0 and infinity with indexes
respectively −α and −β from (−2, 0). Then it follows from Proposition 3.10 that
there are positive constants c and C such that

cγ+(s−1) ≤ ψγ(s) ≤ Cγ+(s−1), (s > 0). (3.22)

Indeed, it is a consequence of Proposition 3.10 that there exist positive numbers
ǫ,K,C′ such that

γ+(s−1) ≤ C′ψγ(s), for all s in [ǫ,K]c.

Putting then C′′ = γ+(K−1)/ψγ(ǫ), we have for s in [ǫ,K] that

γ+(s−1) ≤ γ+(K−1) = C′′ψγ(ǫ) ≤ C′′ψγ(s).

Thus, the constant c = 1/(C′ ∨ C′′) satisfies the first inequality in (3.22), and a
similar argument produces a constant C satisfying the second inequality.

Corollary 3.12. Suppose γ and η are non-zero measures from ML((0,∞)) such
that the functions γ+(s) = γ([s,∞)) and η+(s) = η([s,∞)) are regularly varying at
both 0 and infinity with indexes in (−2, 0). Then the following two assertions are
equivalent:

(i) domLΥγ ⊆ domLΥη.
(ii) ∃C > 0 ∀s > 0: η+(s) ≤ Cγ+(s).
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Proof: Suppose domLΥγ ⊆ domLΥη. Then by Theorem 3.4 there is a positive
constant C′ such that ψη ≤ C′ψγ and combined with Remark 3.11 this provides a
constant C such that η+ ≤ Cγ+. The converse implication follows similarly.

4. Composition and ranges

For two measures γ and η from Mσf((0,∞)) we may consider the composition

Υ
(d)
γ ◦Υ

(d)
η with Lévy domain defined naturally by

domL

(

Υ(d)
γ ◦Υ(d)

η

)

=
{

ρ ∈ domLΥ(d)
η

∣

∣ Υ(d)
η (ρ) ∈ domLΥ(d)

γ

}

.

Proposition 4.1. Let η and γ be non-zero measures from Mσf((0,∞)). Then for
any d in N,

domL

(

Υ(d)
γ ◦Υ(d)

η

)

= domLΥ
(d)
γ⊛η = domL

(

Υ(d)
η ◦Υ(d)

γ

)

(4.1)

and
Υ(d)

γ ◦Υ(d)
η = Υ

(d)
γ⊛η = Υ(d)

η ◦Υ(d)
γ . (4.2)

Proof: For a measure ρ from ML((0,∞)) we note first that by (3.2)

ρ ∈ domLΥ
(d)
γ⊛η ⇐⇒ ‖ρ‖ ∈ domLΥ

(1)
γ⊛η ⇐⇒ (γ ⊛ η) ⊛ ‖ρ‖ ∈ML((0,∞))

⇐⇒ γ ⊛ (η ⊛ ‖ρ‖) ∈ML((0,∞)) ⇐⇒ η ⊛ ‖ρ‖ ∈ domLΥ(1)
γ .

(4.3)

In particular, by virtue of (3.3),

ρ ∈ domLΥ
(d)
γ⊛η =⇒ η ⊛ ‖ρ‖ ∈ML((0,∞)) ⇐⇒ ρ ∈ domLΥ(d)

η . (4.4)

Moreover, assuming that ρ ∈ domLΥ
(d)
η , note that

∫ ∞

0

∫

Rd

(1 ∧ (t2‖x‖2))Υ(d)
η (ρ)(dx) γ(dt)

=

∫ ∞

0

∫ ∞

0

∫

Rd

(1 ∧ (s2t2‖x‖2)) ρ(dx) η(ds) γ(dt)

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

(1 ∧ (s2t2u2)) ‖ρ‖(du) η(ds) γ(dt)

=

∫ ∞

0

∫ ∞

0

(1 ∧ (t2u2)) (‖ρ‖⊛ η)(du) γ(dt),

which verifies that

∀ρ ∈ domLΥ(d)
η : Υ(d)

η (ρ) ∈ domLΥ(d)
γ ⇐⇒ ‖ρ‖⊛ η ∈ domLΥ(1)

γ . (4.5)

Combining now (4.3), (4.4) and (4.5) establishes the first equality in (4.1), and the
second one follows by symmetry.

Turning now to (4.2), assume that ρ ∈ domLΥ
(d)
γ⊛η, and note then for any Borel

subset B of Rd that

Υη⊛γ(ρ)(B) =

∫ ∞

0

ρ(t−1B) η ⊛ γ(dt) =

∫ ∞

0

∫ ∞

0

ρ((st)−1B) η(dt) γ(ds)

=

∫ ∞

0

ρη(s−1B) γ(ds) = [Υγ ◦Υη(ρ)](B),
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as desired.

Example 4.2. Adopting the notation from Example 2.4, a direct calculation shows
that

Φ0 ◦Υ0 = Υ0 ◦ Φ0 = Ξ0.

The first of these equalities was noted in Barndorff-Nielsen et al. (2004). It is a
special case of formula (4.2).

For a measure γ in Mσf((0,∞)) we define the Lévy range ranLΥ
(d)
γ of Υ

(d)
γ by

ranLΥ(d)
γ =

{

Υ(d)
γ (ρ)

∣

∣ ρ ∈ domLΥ(d)
γ

}

.

Corollary 4.3. Let γ1 and γ2 be non-zero measures from ML((0,∞)). Then the
following assertions are equivalent:

(i) ranLΥ
(d)
γ2 ⊆ ranLΥ

(d)
γ1 for all d in N.

(ii) ranLΥ
(1)
γ2 ⊆ ranLΥ

(1)
γ1 .

(iii) γ2 = γ1 ⊛ γ = Υγ1(γ) for some measure γ from ML((0,∞)).

Proof: Assume first that γ2 = γ1 ⊛ γ for some measure γ from ML((0,∞)). Then
by Proposition 4.1 it follows that

ranLΥ(d)
γ2

= ranL

(

Υ(d)
γ1
◦Υ(d)

γ

)

⊆ ranLΥ(d)
γ1
,

for all d in N. Assume conversely that ranLΥ
(1)
γ2 ⊆ ranLΥ

(1)
γ1 . Since γ2 ∈ML((0,∞)),

the Dirac measure δ1 ∈ domLΥ
(1)
γ2 , so that

γ2 = Υ(1)
γ2

(δ1) = Υ(1)
γ1

(ρ)

for some measure ρ in domLΥγ1 . Since γ1 6= 0, ρ ∈ ML(R) according to Proposi-
tion 3.2. Moreover, since

0 = γ2((−∞, 0)) =

∫ ∞

0

ρ((−∞, 0)) γ1(dt) = ρ((−∞, 0)) · γ1((0,∞)),

and since γ1 6= 0, it follows that ρ((−∞, 0)) = 0, so that actually ρ ∈ML((0,∞)).
Therefore

γ2 = Υγ1(ρ) = γ1 ⊛ ρ,

as desired.

Remark 4.4.
(i) Suppose γ1, γ2 are non-zero measures from ML((0,∞)) and that ranLΥγ2 ⊆

ranLΥγ1 . Then Corollary 4.3 and Proposition 4.1 assert that Υ
(d)
γ2 = Υ(d)

γ ◦
Υ(d)

γ1
for some measure γ from ML((0,∞)). By the definition of domL

(

Υ(d)
γ ◦

Υ(d)
γ1

)

, this in particular implies that

domLΥ(d)
γ2
⊆ domLΥ(d)

γ1
,

for all d.
(ii) Let γ be a non-zero measure from ML((0,∞)). Then by Proposition 4.1

we have for any positive integer d

domLΥ(d)
γ ⊇ ranLΥ(d)

γ ⇐⇒ ∀ρ ∈ domLΥ(d)
γ : Υ(d)

γ (ρ) ∈ domLΥ(d)
γ

⇐⇒ domL

(

Υ(d)
γ ◦Υ(d)

γ

)

= domLΥ(d)
γ

⇐⇒ domLΥγ⊛γ = domLΥγ .
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In other words, the mapping Υγ may be iterated without precaution on all
of its domain, if and only if domLΥγ⊛γ = domLΥγ .

(iii) Let γ and η be non-zero measures from ML((0,∞)). Then using e.g. (2.3)
it is straightforward to check that

γ ⊛ η ∈M02((0,∞)) ⇐⇒ γ, η ∈M02((0,∞)).

This may in fact also be extracted from Proposition 4.1, which, in the
affirmative case, asserts that

Υγ⊛η = Υγ ◦Υη = Υη ◦Υγ ,

on all of ML(Rd).

5. Continuity Properties of Υγ

For measures ρ, ρ1, ρ2, ρ3, . . . from ML(Rd), we define Lévy-weak convergence of

ρn to ρ, denoted ρn
lw−→ ρ, as follows:

ρn
lw−−−−→

n→∞
ρ ⇐⇒ (1 ∧ ‖x‖2) ρn(dx)

w−−−−→
n→∞

(1 ∧ ‖x‖2) ρ(dx).

The corresponding topology τL on ML(Rd) is the weakest topology on ML(Rd)
making the mapping

ρ 7→ (1 ∧ ‖x‖2) ρ(dx) : ML(Rd)→Mf(Rd)

continuous, when the class Mf(Rd) of finite Borel measures on Rd is equipped
with the topology for usual weak convergence. It is straightforward to check that
M02(Rd) is dense in ML(Rd) with respect to τL, and hence Remark 3.5 asserts
that Υγ is densely defined on ML(Rd) for any Lévy measure γ on (0,∞). By
Theorem 3.4, Υγ can be defined on all of ML(Rd) if and only if γ ∈M02((0,∞)).

Theorem 5.1. Let γ be a Lévy measure on (0,∞) and let d be a positive integer.
Then the following statements are equivalent:

(i) γ ∈M02((0,∞)).

(ii) Υ
(d)
γ : domLΥ

(d)
γ → ML(Rd) is continuous in the topology for Lévy weak

convergence.

(iii) Υ
(d)
γ is continuous at 0 ∈ ML(Rd) in the topology for Lévy weak conver-

gence.

Proof: Assume first that γ belongs to M02((0,∞)), and let ρ, ρ1, ρ2, ρ3, . . . be mea-
sures from ML(Rd) such that ρn → ρ Lévy-weakly as n → ∞. In order to show
that Υγ(ρn)→ Υγ(ρ) Lévy-weakly, we must establish that

∫

Rd

f(x)(1 ∧ ‖x‖2)Υγ(ρn)(dx) −−−−→
n→∞

∫

Rd

f(x)(1 ∧ ‖x‖2)Υγ(ρ)(dx), (5.1)

for any continuous bounded function f : Rd → R. Note here that
∫

R

f(x)(1 ∧ ‖x‖2)Υγ(ρn)(dx) =

∫ ∞

0

∫

Rd

f(sx)(1 ∧ s2‖x‖2) ρn(dx) γ(ds), (5.2)
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and that for a fixed s
∫

Rd

f(sx)(1 ∧ s2‖x‖2) ρn(dx) =

∫

Rd

fs(x)(1 ∧ ‖x‖2) ρn(dx)

−−−−→
n→∞

∫

Rd

fs(x)(1 ∧ ‖x‖2) ρ(dx)

=

∫

Rd

f(sx)(1 ∧ s2‖x‖2) ρ(dx),

(5.3)

since the function

fs(x) =

{

f(sx)1∧s2‖x‖2

1∧‖x‖2 , if x ∈ Rd \ {0},
s2f(0), if x = 0,

(5.4)

is continuous and bounded. Note also that for any n
∣

∣

∣

∫

Rd

f(sx)(1 ∧ s2‖x‖2) ρn(dx)
∣

∣

∣
≤ ‖f‖u(1 ∨ s2)

∫

Rd

(1 ∧ ‖x‖2) ρn(dx),

≤ C‖f‖u(1 ∨ s2),
(5.5)

where ‖f‖u = supx∈Rd |f(x)| < ∞ and C = supn∈N

∫

Rd(1 ∧ ‖x‖2) ρn(dx) < ∞.

Since γ ∈ M02((0,∞)) we have
∫ ∞
0

(1 ∨ s2) γ(ds) < ∞, and hence by dominated
convergence in combination with (5.2)-(5.5) we obtain (5.1).

It remains to show that continuity of Υ(d)
γ at 0 implies that γ belongs to M02((0,∞)).

Consider first the sequence (ρn) of measures from ML(Rd) given by

ρn = ǫnn
2δn−1u, (n ∈ N),

where u is a fixed unit vector in Rd and (ǫn) is an arbitrary sequence of positive
numbers such that ǫn ց 0 as n→∞. Note then that

∫

Rd

(1 ∧ ‖x‖2) ρn(dx) = ǫnn
2(1 ∧ n−2) = ǫn,

so that ρn
lw→ 0 as n→∞. At the same time we have
∫

Rd

(1 ∧ ‖x‖2)Υ(d)
γ (ρn)(dx) =

∫ ∞

0

ǫnn
2(1 ∧ t2n−2) γ(dt)

= ǫn

∫ n

0

t2 γ(dt) + ǫnn
2γ([n,∞)).

From the calculation above it follows that Υ(d)
γ (ρn)

lw−→ 0 for all choices of (ǫn) as

prescribed above if and only if
∫ ∞
0
t2 γ(dt) <∞, which is thus a necessary condition

for continuity at 0 of Υ
(d)
γ . Consider next the sequence (ρn) defined by

ρn = ǫnδnu, (n ∈ N),

with u and (ǫn) as above. Then
∫

Rd

(1 ∧ ‖x‖2) ρn(dx) = ǫn(1 ∧ n2) = ǫn,
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so that ρn
lw−→ 0 as n→∞. Furthermore

∫

Rd

(1 ∧ ‖x‖2)Υ(d)
γ (ρn)(dx) =

∫ ∞

0

ǫn(1 ∧ t2n2) γ(dt)

= ǫnn
2

∫ 1/n

0

t2 γ(dt) + ǫnγ([1/n,∞)),

and it follows that Υγ(ρn)
lw−→ 0 for all choices of (ǫn) if and only if γ((0,∞)) <∞.

Thus, γ must also be finite in order for Υγ to be continuous at 0. This completes
the proof.

Remark 5.2. When dealing with an upsilon transform Υ
(d)
γ : domLΥ

(d)
γ →ML(Rd),

it is natural to have in mind the setting of (unbounded) linear operators defined on
subspaces of a Banach space. From this point of view, Theorem 5.1 corresponds to
the fact that a linear, densely defined operator on a Banach space is bounded on
its domain if and only if it has a bounded extension to the full Banach space. In
addition, this condition is equivalent to continuity of the operator at 0 and also to
continuity on all of the domain.

The next theorem is essential for studying the topological properties of ranLΥγ

and of the inverse mapping of Υγ in case Υγ is one-to-one.

Theorem 5.3. Let γ be a non-zero measure from ML((0,∞)), and let (ρn)n∈N be

a sequence of measures from domLΥ(d)
γ such that Υ(d)

γ (ρn)
lw−→ σ for some measure

σ from ML(Rd). Then there is a subsequence (ρnp)p∈N and a Lévy measure ρ in

domLΥ(d)
γ such that ρnp

lw−→ ρ. Moreover, σ ≥ Υ(d)
γ (ρ) and these measures are equal

when
∫

Rd

(1 ∧ ‖x‖2)σ(dx) =

∫

Rd

(1 ∧ ‖x‖2)Υ(d)
γ (ρ)(dx). (5.6)

Before the proof, note that if (ρn)n∈N is a sequence of Lévy measures on Rd, then
it is certainly possible that (1∧‖x‖2) ρn(dx) converge weakly, as n→∞, to a finite
measure ν on Rd with positive mass at 0. For instance, setting ρn = n2δ1/n, we

have that (1 ∧ x2) ρn(dx) → δ0(dx) weakly, as n → ∞. According to the theorem
above, the sequence (Υγ(ρn))n∈N does not have any cluster point with respect to
the Lévy weak topology.

Proof of Theorem 5.3. We show first that the sequence

νn(dx) = (1 ∧ ‖x‖2) ρn(dx), (n ∈ N),

is precompact. By Ash and Doléans-Dade (2000, Theorem 7.8.7) it suffices to show
that (νn)n∈N is tight and that (νn(Rd))n∈N is bounded. Regarding the latter aspect,
note that

∫

Rd

(1 ∧ ‖x‖2)Υ(d)
γ (ρn)(dx)

≥
∫

Rd

(1 ∧ ‖x‖2) ρn(dx)

∫ ∞

0

(1 ∧ s2) γ(dt) = νn(Rd)

∫ ∞

0

(1 ∧ s2) γ(dt). (5.7)
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Since (1∧‖x‖2)Υ(d)
γ (ρn)→ (1∧‖x‖2)σ weakly, the left hand side of (5.7) is bounded

in n, and since γ 6= 0, (5.7) thus implies boundedness of (νn(Rd))n∈N. Regarding
tightness of (νn), we find similarly for l in (0,∞) and ǫ in (0, 1) that

∫

{‖x‖>l}
(1 ∧ ‖x‖2)Υ(d)

γ (ρn)(dx) =

∫ ∞

0

∫

Rd

1(l/s,∞)(‖x‖)(1 ∧ s2‖x‖2) ρn(dx) γ(ds)

≥
∫ ∞

ǫ

∫

Rd

1(l/ǫ,∞)(‖x‖)ǫ2(1 ∧ ‖x‖2) ρn(dx) γ(ds)

= ǫ2γ([ǫ,∞))νn

(

{‖x‖ > l/ǫ}
)

.

Choosing then ǫ so small that γ([ǫ,∞)) > 0 and using the substitution l = rǫ, we
find that

νn

(

{‖x‖ > r}
)

≤ ǫ−2γ([ǫ,∞))−1

∫

{‖x‖>rǫ}
(1 ∧ ‖x‖2)Υ(d)

γ (ρn)(dx),

and since the sequence (1 ∧ ‖x‖2)Υ
(d)
γ (ρn)(dx) is tight by assumption, this implies

tightness of (νn).
Having established precompactness of (νn)n∈N, we may infer the existence of a

subsequence (νnp)p∈N and a finite measure ν on Rd such that

(1 ∧ ‖x‖2) ρnp(dx) = νnp(dx)
w−−→ ν(dx), as p→∞.

Let f be a function from Cb(Rd) and note that

∫

Rd

f(x)(1 ∧ ‖x‖2)Υ(d)
γ (ρnp)(dx) =

∫ ∞

0

∫

Rd

f(sx)(1 ∧ s2‖x‖2) ρnp(dx) γ(ds).

For fixed s in (0,∞) consider the continuous bounded function fs : Rd → R intro-
duced in (5.4). Then by assumption

∫

Rd

f(sx)(1∧s2‖x‖2) ρnp(dx) =

∫

Rd

fs(x)(1∧‖x‖2) ρnp(dx) −−−→
p→∞

∫

Rd

fs(x) ν(dx).

Assuming now that f ≥ 0, it results from Fatou’s lemma that

∫ ∞

0

∫

Rd

fs(x) ν(dx) γ(ds) ≤ lim inf
p→∞

∫ ∞

0

∫

Rd

f(sx)(1 ∧ s2‖x‖2) ρnp(dx) γ(ds)

= lim inf
p→∞

∫

Rd

f(x)(1 ∧ ‖x‖2)Υγ(ρnp)(dx)

=

∫

Rd

f(x)(1 ∧ ‖x‖2)σ(dx).

(5.8)

Note next that ν may be decomposed as

ν(dx) = (1 ∧ ‖x‖2) ρ(dx) + ν({0})δ0(dx),
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with ρ a (uniquely determined) Lévy measure on Rd. Hence
∫ ∞

0

∫

Rd

fs(x) ν(dx) γ(ds)

=

∫ ∞

0

∫

Rd

fs(x)(1 ∧ ‖x‖2) ρ(dx) γ(ds) +

∫ ∞

0

ν({0})fs(0) γ(ds)

=

∫ ∞

0

∫

Rd

f(sx)(1 ∧ s2‖x‖2) ρ(dx) γ(ds) + ν({0})f(0)

∫ ∞

0

s2 γ(ds).

(5.9)

According to (5.8), the left hand side of (5.9) is finite, and hence, by considering
the first term in the resulting expression of (5.9) in the case f ≡ 1, it follows that
ρ ∈ domLΥ(d)

γ . Combining this observation with (5.8) and (5.9) we obtain the
estimate
∫

Rd

f(x)(1∧‖x‖2)σ(dx) ≥
∫

Rd

f(x)(1∧‖x‖2)Υ(d)
γ (ρ)(dx)+ν({0})f(0)

∫ ∞

0

s2 γ(ds),

(5.10)
which holds for all non-negative f from Cb(Rd). Now choose a sequence (gi)i∈N

from Cb(Rd) such that 0 ≤ gi ≤ 1 and gi(0) = 1 for all i and such that gi → 1{0}
point-wise as i→∞. Then by dominated convergence

∫

Rd

gi(x)(1 ∧ ‖x‖2)σ(dx) −−−→
i→∞

∫

Rd

0 σ(dx) = 0,

and hence (5.10) implies that

0 ≥ ν({0})
∫ ∞

0

s2γ(ds),

and since γ 6= 0, we must then have ν({0}) = 0. Consequently, ν(dx) = (1 ∧
‖x‖2) ρ(dx), which yields ρnp

lw−→ ρ.
Now we will prove the last statement of the theorem. Formula (5.10) with

ν({0}) = 0 gives
∫

Rd

f(x)(1 ∧ ‖x‖2)σ(dx) ≥
∫

Rd

f(x)(1 ∧ ‖x‖2)Υ(d)
γ (ρ)(dx) (5.11)

for any non-negative function f from Cb(Rd), which implies σ ≥ Υ
(d)
γ (ρ). Let

Mf = supx f(x), where f is as above. Using (5.11) for Mf − f in place of f and
(5.6) we get the reverse inequality in (5.11). Hence σ = Υ(d)

γ (ρ) and the proof is
completed. �

Corollary 5.4. Let γ be a measure from M02((0,∞)), and let d be a positive
integer.

(i) The mapping Υ(d)
γ is closed in the following sense: For any subset F of

ML(Rd), which is closed in the topology for Lévy weak convergence, the
same holds for the range Υ(d)

γ (F ) = {Υ(d)
γ (ρ) | ρ ∈ F}. In particular the

full range ranLΥ(d)
γ is a closed subset of ML(Rd).

(ii) If Υ(d)
γ is injective, then it is automatically a homeomorphism with respect

to Lévy weak convergence, i.e. the inverse mapping (Υ(d)
γ )−1 : ranLΥγ →

ML(Rd) is continuous in the corresponding topology.
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Proof: (i) Let F be a subset of ML(Rd), which is closed in the topology for Lévy
weak convergence, and let σ be a measure from the closure of Υγ(F ). Then we may

choose a sequence (ρn) of measures from F , such that Υ(d)
γ (ρn)

lw−→ σ as n → ∞.
According to Theorem 5.3, there is a subsequence (ρnp)p∈N converging Lévy weakly
to a measure ρ necessarily in F . Since Υ(d)

γ is continuous, and since the topology
for Lévy weak convergence is Hausdorff, we may then conclude that

σ = lim
p→∞

Υ(d)
γ (ρnp) = Υ(d)

γ (ρ) ∈ Υ(d)(F ),

as desired.
(ii) Suppose that Υγ is injective. Then (i) informs us that the pre-image of

any closed subset of ML(Rd) by the inverse mapping (Υ(d)
γ )−1 is again a closed

subset of ML(Rd) and hence of ranLΥ(d)
γ . This means that (Υ(d)

γ )−1 is continuous
on ranLΥ(d)

γ .

Pursuing further the analogy to operators on a Banach space mentioned in Re-
mark 5.2, we introduce next the graph graphLΥ(d)

γ of Υ(d)
γ defined by

graphLΥ(d)
γ =

{

(ρ,Υγ(ρ))
∣

∣ ρ ∈ domLΥ(d)
γ

}

.

We shall view graphLΥ
(d)
γ as a subset of ML(Rd) ×ML(Rd) equipped with the

product topology.

Proposition 5.5. For any measure γ from ML((0,∞)), we have the implications:

Υ(d)
γ is continuous =⇒ graphLΥ(d)

γ is closed =⇒ ranLΥ(d)
γ is closed.

Proof: Since domLΥ(d)
γ = ML(Rd), when Υ(d)

γ is continuous, the first implication is
straightforward. To prove the second one, assume (without loss of generality) that
γ 6= 0 and that graphLΥ(d)

γ is a closed subset of ML(Rd)×ML(Rd). Then let σ be

an element of the closure of ranLΥ(d)
γ in ML(Rd), and choose a sequence (ρn)n∈N

from domLΥ(d)
γ , such that Υ(d)

γ (ρn) → σ Lévy weakly as n → ∞. According to
Theorem 5.3, there is a subsequence (ρnp)p∈N and a measure ρ from domLΥ(d)

γ such
that ρnp → ρ Lévy weakly as p→∞. Now (ρnp ,Υ

(d)
γ (ρnp))→ (ρ, σ) in the product

topology on ML(Rd)×ML(Rd), and hence (ρ, σ) ∈ graphLΥ(d)
γ , by our assumption.

This means that σ = Υ(d)
γ (ρ) ∈ ranLΥ(d)

γ , as desired.

Example 5.6. In this example we exhibit a measure γ from ML((0,∞)) such that
ranLΥγ is not closed. By Proposition 5.5 graphLΥ(d)

γ can not be closed either.
Specifically, let γ be the Lévy measure on (0,∞) given by

γ(dt) = t−21[1,∞)(t) dt,

and consider the sequence (ρn)n∈N from M02(R) given by

ρn = nδ1/n, (n ∈ N).

Then it is straightforward to check that ρn → 0 Lévy weakly as n→∞, and that

Υγ(ρn)(dt) = t−21[1/n,∞)(t) dt.

From the latter expression it is also straightforward to check that Υγ(ρn)(dt) →
t−21(0,∞)(t) dt Lévy weakly as n → ∞. Since Υγ(0) = 0, these observations show
that graphLΥγ is not closed in ML(R)×ML(R). To see that ranLΥγ is not closed
(in ML(R)) either, we show that

σ(dt) := t−21(0,∞)(t) dt /∈ ranLΥγ .
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We obtain this by proving that for any measure ρ from domLΥγ supported on
(0,∞), we have that

αΥγ(ρ)((α,∞))→ 0, as αց 0. (5.12)

Since Υγ(ρ) is supported on (0,∞) if and only if ρ is, and since σ((α,∞)) = α−1

for all α, the statement asserted above verifies that Υγ(ρ) 6= σ for all ρ in domLΥγ .
To establish (5.12), we note first that by direct calculation

ψγ(s) =

∫ ∞

0

(1 ∧ s2t2) γ(dt) = (2s− s2)1(0,1)(s) + 1[1,∞)(s),

and hence (cf. (3.13))

domLΥγ =
{

ρ ∈ML(R)
∣

∣

∫

(−1,1)
|s| ρ(ds) <∞

}

. (5.13)

Now, let ρ be a measure from domLΥγ which is supported on (0,∞). Then for any
α in (0, 1),

αΥγ(ρ)((α,∞)) = αΥρ(γ)((α,∞)) = α

∫ ∞

0

γ((s−1α,∞)) ρ(ds)

= α

∫ ∞

0

∫ ∞

s−1α∨1

t−2 dt ρ(ds) = α

∫ ∞

0

(sα−1 ∧ 1) ρ(ds)

=

∫ α

0

s ρ(ds) + αρ([α,∞)) =

∫ α

0

s ρ(ds) + αρ([α, 1)) + αρ([1,∞)).

Here, obviously αρ([1,∞)) → 0 as α → 0, and
∫ α

0 s ρ(ds) → 0 as α → 0 by
dominated convergence (cf. (5.13)). Finally

αρ([α, 1)) =

∫ 1

0

α1[α,1)(t) ρ(dt) −→ 0, as α→ 0,

again by dominated convergence, since α1[α,1)(t) ≤ t for all t in [0, 1]. This com-
pletes the proof of (5.12).

6. Injectivity

We now consider the question of when Υ(d)
γ is injective for fixed γ ∈ML((0,∞))

and d ≥ 1. It is possible that the answer may depend on the domain on which
Υ(d)

γ is considered. We are naturally interested in the Lévy domain domLΥ(d), and
henceforth the term injectivity refers to a property of Υ(d)

γ on that domain. It was
established in Barndorff-Nielsen and Thorbjørnsen (2004) and Barndorff-Nielsen
and Thorbjørnsen (2006) that the injectivity is held by the Upsilon mappings in-
troduced in Example 2.4(1) and (2). As the following example shows, Υγ cannot
in general be expected to have this property.

Example 6.1. Consider the Lévy measure γ on (0,∞) given by

γ(dt) = t−21(0,∞)(t) dt,

and for any positive number c, consider the measure

ρc = cδ1/c ∈M02(R).
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For any Borel subset B of R note then that

[

Υγ(ρc)
]

(B) = c

∫ ∞

0

δ1/c(t
−1B) γ(dt) =

∫ ∞

0

1B(t/c) ·
(

t/c
)−2 · c−1 dt

=

∫ ∞

0

1B(u)u−2 du = γ(B),

so that Υγ(ρc) = γ for all c. In particular, Υγ is far from being injective.

The next proposition reduces the problem of uniqueness to d = 1 and measures
on (0,∞).

Proposition 6.2. Let γ ∈ML((0,∞)). Then Υ(d)
γ is one-to-one on domLΥ(d)

γ for
all d in N, if and only Υ(1)

γ is one-to-one on domLΥ(1)
γ ∩Mσf((0,∞)).

Proof: Obviously, we only need to prove the proposition in one direction. Suppose
that Υ(1)

γ is one-to-one on domLΥγ ∩Mσf((0,∞)).
First we will show that Υ(1)

γ is one-to-one on domLΥ(1)
γ . Let ρi ∈ domLΥ(1)

γ ,
i = 1, 2. Define for a Borel subset A of (0,∞)

ρ+
i (A) = ρi(A ∩ (0,∞)), ρ−i (A) = ρi(−A ∩ (−∞, 0)).

Then ρ+
i , ρ

−
i ∈ domLΥ(1)

γ ∩Mσf ((0,∞)). If Υ(1)
γ (ρ1) = Υ(1)

γ (ρ2), then Υ(1)
γ (ρ+

1 ) =

Υ(1)
γ (ρ+

2 ) and Υ
(1)
γ (ρ−1 ) = Υ(1)

γ (ρ−2 ). By the assumption ρ+
1 = ρ+

2 and ρ−1 = ρ−2 .
Thus ρ1 = ρ2.

Now let d > 1 and ρi ∈ domLΥ(d)
γ , i = 1, 2. For y ∈ Rd define ρy

i ∈ domLΥ(1)
γ by

ρy
i (A) = ρi({x ∈ Rd | 〈y, x〉 ∈ A \ {0}}).

If Υ(d)
γ (ρ1) = Υ(d)

γ (ρ2), then for every u ∈ R
∫ ∞

0

∫

Rd

(eiu〈y,tx〉 − 1− iu〈y, tx〉
1 + u2〈y, tx〉2 ) ρ1(dx)γ(dt)

=

∫ ∞

0

∫

Rd

(eiu〈y,tx〉 − 1− iu〈y, tx〉
1 + u2〈y, tx〉2 ) ρ2(dx)γ(dt)

or
∫ ∞

0

∫

R

(eiust − 1− iust

1 + u2(st)2
) ρy

1(ds)γ(dt)

=

∫ ∞

0

∫

R

(eiust − 1− iust

1 + u2(st)2
) ρy

2(ds)γ(dt)

Hence Υ(1)
γ (ρy

1) = Υ(1)
γ (ρy

2). From the already established case d = 1, we get ρy
1 = ρy

2

for every y ∈ Rd. We conclude that ρ1 = ρ2.

According to this proposition, the injectivity property of Υ(d)
γ is shared by all

dimensions d. If it holds, we will simply say that Υγ is injective. The injectivity of
Υγ is equivalent to the cancellation property of the multiplicative convolution: for
every ρ1, ρ2 ∈ domLΥγ ∩M((0,∞))

γ ⊛ ρ1 = γ ⊛ ρ2 =⇒ ρ1 = ρ2. (6.1)

If γ has density fγ then the map

t 7→ fγ⊛ρ(t) =

∫ ∞

0

fγ(ts−1) s−1ρ(ds) (6.2)
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can be viewed as a transform of measures ρ ∈ domLΥγ . If this transform is one-
to-one on domLΥγ , then (6.1) holds and Υγ is injective. We will give a couple of
examples where this method works.

In case ρ is a measure on R\ {0} recall that we use the notation ρ←− for the
transformation of ρ by the mapping x 7→ x−1.

Examples 6.3. (1) γ(ds) = sλ−11[0,1](s) ds, λ > −2. Adapting the notation
from Example 2.4(4), recall that

domLΦλ =











ML(R), if λ > 0

Mlog(R), if λ = 0

Mλ(R), if λ ∈ (−2, 0)

(see Example 3.1). If ρ ∈ domLΦλ then

fγ⊛ρ(t) = tλ−1

∫

[t,∞)

s−λ ρ(ds).

Obviously, this type of function determines ρ uniquely from domLΦλ, so
that Φλ is injective. The cases of λ = 0 and λ = 1 are of special in-
terest. Indeed, ranLΦ(d)

λ equals the class of selfdecomposable Lévy mea-
sures when λ = 0 (see Barndorff-Nielsen et al., 2004), and the class of
s-selfdecomposable Lévy measures when λ = 1 (see Jurek, 1985).

(2) γ(ds) = sλ−1e−s1(0,∞)(s) ds, λ > −2. Recall from Example 3.1 that
domLΞλ = domLΦλ for all λ. We get with α = −λ

fγ⊛ρ(t) = t−1−α

∫ ∞

0

sαe−t/s ρ(ds) = t−1−α

∫ ∞

0

e−ts s−α ρ←−(ds).

Again, fγ⊛ρ determines ρ uniquely from domLΞλ, so that Ξ(d)
λ is injective.

The cases of λ = 1, λ = 0 and −2 < λ < 0 are of special importance.
When λ = 1, we get the mapping Υ0 introduced in Example 2.4(1). In

the cases λ = 0 and −2 < λ < 0, ranLΞ
(d)
λ equals the classes of Lévy

measures corresponding to Thorin and to tempered α-stable distributions
on Rd, respectively (see Barndorff-Nielsen et al., 2004 and Rosiński, 2007).

Remark 6.4. For λ in (−2,∞) the mapping Υ(d)
γ is not injective when γ is given

by γ(dx) = xλ−11(0,∞)(x) dx, which is the Lévy measure of a stable distribution.
Indeed, since

fγ⊛ρ(t) = tλ−1

∫ ∞

0

s−λ ρ(ds),

γ⊛ρ is the same measure for all ρ having equal −λ’th moment. It is also easy to see
that Υ(d)

γ is non-injective when γ is the Lévy measure of a semistable distribution.

Besides (6.2) we may use other integral transforms to identify Lévy measures.
They are determined by a kernel K : (0,∞) 7→ R(or C) as follows. For a measure
γ ∈Mσf((0,∞)) define

Lγ(θ) =

∫ ∞

0

K(θx) γ(dx), (6.3)

where θ ∈ domLγ := {θ |
∫ ∞
0
|K(θx)| γ(dx) <∞}. Then

Lγ⊛ρ(θ) =

∫ ∞

0

Lγ(θx) ρ(dx) θ ∈ domLγ⊛ρ. (6.4)
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Below we give three examples of K and of the resulting integral transforms. These
transforms each identify measures from ML((0,∞)), but the choice of which one
to apply may depend on the type of measure γ (cf. Example 6.5 below).

(1) K(x) = 1− cosx, x > 0. Then Lγ(θ) =
∫ ∞
0 (1− cos(θx)) γ(dx) is the Lévy

exponent of an infinitely divisible distribution generated by symmetrisation
of γ. We will call it the Lévy transform of γ.

(2) K(x) = x2 exp(−x), x > 0. Then

Lγ(θ) = θ2
∫ ∞

0

x2e−θx γ(dx), θ > 0.

(3) K(x) = exp(−x−q), x > 0, q > 0 (fixed). Then

Lγ(θ) =

∫ ∞

0

e−θ−qx−q

γ(dx) =

∫ ∞

0

e−θ−qx γ←−(dx1/q), θ > 0.

In this case Lγ is expressible as the Laplace transform of another measure.

Example 6.5. Let γ be as in Example 2.4(2). That is,

fγ (s) = α−1s−1−1/ασα

(

s−1/α
)

, s > 0,

where σα is the density of the positive α-stable law having Laplace transform e−θα

,
0 < α < 1. Take transformation (3) with q = 1/α. Using (2.5) and (6.4) we get

Lγ⊛ρ(θ) =

∫ ∞

0

e−θ−1/αt−1/α

∫ ∞

0

α−1(ts−1)−1−1/ασα((ts−1)−1/α) s−1ρ(ds) dt

=

∫ ∞

0

∫ ∞

0

e−θ−1/αs−1/αxσα(x) dxρ(ds)

=

∫ ∞

0

e−θ−1s−1

ρ(ds) =

∫ ∞

0

e−θ−1s ρ←−(ds).

Thus Lγ⊛ρ identifies ρ. We conclude that Υγ is injective. This was established in
Barndorff-Nielsen and Thorbjørnsen (2006) by a closely similar argument.

A more detailed and deeper study of the injectivity problem will appear in a
separate paper.

7. Upsilon Mappings of ID(Rd)

The Upsilon transformations discussed in the foregoing give rise to regularising
mappings from the class ID(Rd) of infinitely divisible laws on Rd into itself. These
mappings are one-to-one when the corresponding Upsilon transformation of Lévy
measures are. The material discussed in this Section extends results obtained pre-
viously in the special case d = 1 and γ(dx) = e−x dx; cf. Barndorff-Nielsen and
Thorbjørnsen (2004) and Barndorff-Nielsen and Thorbjørnsen (2006).

Before proceeding with the formal definition of the mentioned mappings of
ID(Rd), we recall for convenience the version of the Lévy-Khintchine representation
for measures in ID(Rd) that we shall make use of: A probability measure µ on Rd

belongs to ID(Rd) if and only if its characteristic function fµ can be represented in
the form fµ(z) = exp(Cµ(z)), where the cumulant Cµ of µ is given by

Cµ(z) = i〈z, η〉 − 1
2 〈Az, z〉+

∫

Rd

(

ei〈z,x〉 − 1− i〈z, x〉1[0,1](‖x‖)
)

ρ(dx), (z ∈ Rd),

(7.1)
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where η is a vector in Rd, A is a symmetric, non-negative definite d × d matrix
(with real entries) and ρ is a Lévy measure on Rd. The triplet (A, ρ, η) is uniquely
determined by µ and is called the characteristic triplet for µ.

Definition 7.1. Let γ be a measure from M02((0,∞)), and consider the mapping
Υγ : ML(Rd) → ML(Rd). We then define the mapping Υγ : ID(Rd) → ID(Rd) in
the following way:

If µ ∈ ID(Rd) with characteristic triplet (A, ρ, η), then Υγ(µ) is the measure in
ID(Rd) with characteristic triplet (M2(γ)A,Υγ(ρ),M1(γ)η̃), where Mi(γ) denotes
the i’th moment of γ (i = 1, 2), and where

η̃ = M1(γ)η +

∫ ∞

0

∫

Rd

tx
(

1[0,1](t‖x‖)− 1[0,1](‖x‖)
)

ρ(dx) γ(dt). (7.2)

The well-definedness of the vector-valued double integral in (7.2) is ensured by
part (i) of the following:

Lemma 7.2. Let ρ be a Borel measure on Rd.

(i) For any t in (0,∞) we have
∫

Rd

t‖x‖
∣

∣1[0,1](t‖x‖)− 1[0,1](‖x‖)
∣

∣ ρ(dx) ≤ (1 ∨ t2)
∫

Rd

(1 ∧ ‖x‖2) ρ(dx).

(ii) For any vector z in Rd we have
∫

Rd

∣

∣ei〈z,x〉 − 1− i〈z, x〉1[0,1](‖x‖)
∣

∣ ρ(dx) ≤
(

2 + 1
2‖z‖

2
)

∫

Rd

(1 ∧ ‖x‖2) ρ(dx).

Proof: In the case d = 1, (i) may be extracted easily from the proof of Lemma 3.13
Barndorff-Nielsen and Thorbjørnsen (2005). For d ≥ 2 we note then for t in (0,∞)
that

∫

Rd

t‖x‖
∣

∣1[0,1](t‖x‖)− 1[0,1](‖x‖)
∣

∣ ρ(dx) =

∫ ∞

0

ts
∣

∣1[0,1](ts)− 1[0,1](s)
∣

∣ ‖ρ‖(ds),

and hence (ii) follows by applying the case d = 1 to the measure ‖ρ‖.
To prove (ii), we note first that for any x, z in Rd we have the well-known estimate

∣

∣ei〈z,x〉 − 1− i〈z, x〉
∣

∣ ≤ 1
2 |〈z, x〉|

2 ≤ 1
2‖z‖

2‖x‖2,
so that

∫

{‖x‖≤1}

∣

∣ei〈z,x〉 − 1− i〈z, x〉
∣

∣ ρ(dx) ≤ ‖z‖
2

2

∫

Rd

(1 ∧ ‖x‖2) ρ(dx).

Moreover,
∫

{‖x‖>1}

∣

∣ei〈z,x〉 − 1
∣

∣ ρ(dx) ≤ 2ρ
(

{‖x‖ > 1}
)

≤ 2

∫

Rd

(1 ∧ ‖x‖2) ρ(dx).

Combining the two estimates above, (ii) follows readily.

The following proposition motivates the choice of the constant η̃ in the definition
of Υγ .

Proposition 7.3. Let γ be a measure from M02((0,∞)), and consider the mapping
Υγ : ID(Rd) → ID(Rd) defined above. Then for any µ in ID(Rd) we have the
following relation between the cumulant transforms of µ and Υγ(µ):

CΥγ(µ)(z) =

∫ ∞

0

Cµ(tz) γ(dt), (z ∈ Rd). (7.3)
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Proof: Let µ be a measure in ID(Rd) with characteristic triplet (A, ρ, η). For any
vector y in Rd we get from (ii) in Lemma 7.2 that

|Cµ(y)| ≤ |〈y, η〉|+ 1
2 〈Ay, y〉+

∫

Rd

∣

∣ei〈y,x〉 − 1− i〈y, x〉1[0,1](‖x‖)
∣

∣ ρ(dx)

≤ ‖η‖‖y‖+ 1
2‖A‖‖y‖2 +

(

2 + 1
2‖y‖2

)

∫

R

(1 ∧ ‖x‖2) ρ(dx).

Since
∫ ∞
0

(1 ∨ t2) γ(dt) <∞, it thus follows for any vector z in Rd that
∫ ∞

0

|Cµ(tz)| γ(dt) ≤ ‖η‖‖z‖M1(γ) + 1
2‖A‖‖z‖

2M2(γ)

+

∫

Rd

(1 ∧ ‖x‖2) ρ(dx)
∫ ∞

0

(

2 + 1
2‖z‖

2t2
)

γ(dt) <∞,

which justifies the following calculations:
∫ ∞

0

Cµ(tz) γ(dt)

= i〈z, η〉M1(γ)− 1
2 〈Az, z〉M2(γ)

+

∫ ∞

0

(

∫

Rd

(

eit〈z,x〉 − 1− it〈z, x〉1[0,1](‖x‖)
)

ρ(dx)
)

γ(dt)

= i〈z, η〉M1(γ)− 1
2 〈Az, z〉M2(γ)

+

∫ ∞

0

(

∫

Rd

(

ei〈z,x〉 − 1− i〈z, x〉1[0,1](‖x‖)
)

ρ(t−1dx)
)

γ(dt)

+

∫ ∞

0

(

∫

R

it〈z, x〉
(

1[0,1](t‖x‖)− 1[0,1](‖x‖)
)

ρ(dx)
)

γ(dt)

= i〈z, η̃〉 − 1
2 〈Az, z〉M2(γ) +

∫

R

(

ei〈z,x〉 − 1− i〈z, x〉1[0,1](‖x‖)
)

Υγ(ρ)(dx)

= CΥγ(µ)(z),

(7.4)

as desired.

Recall that for a d× d matrix B, we denote by TB : Rd → Rd the corresponding
linear transformation. For a Borel measure µ on Rd, we let furthermore TBµ denote
the transformation of µ by the mapping TB.

Corollary 7.4. Let γ be a measure from M02((0,∞)), and consider the mapping
Υγ : ID(Rd)→ ID(Rd) defined above. Then Υγ has the following properties:

(i) Υγ(µ1 ∗ µ2) = Υγ(µ1) ∗Υγ(µ2), (µ1, µ2 ∈ ID(Rd)).
(ii) Υγ(TBµ) = TBΥγ(µ), (B ∈Md(R), µ ∈ ID(Rd)).
(iii) Υγ(δc) = δM1(γ)c, (c ∈ Rd).

Proof: (i) Assume that µ1, µ2 ∈ ID(Rd) and then note that

CΥγ (µ1∗µ2)(z) =

∫ ∞

0

Cµ1∗µ2(tz) γ(dt) =

∫ ∞

0

Cµ1(tz) γ(dt) +

∫ ∞

0

Cµ2(tz) γ(dt)

= CΥγ(µ1)(z) + CΥγ(µ2)(z) = CΥγ(µ1)∗Υγ(µ2)(z),
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for any vector z in Rd. Clearly this implies (i).
(ii) Let B be a d × d matrix and let B∗ denote the transposed of B. Then for

any vector z in Rd we find that

CΥγ(TBµ)(z) =

∫ ∞

0

CTBµ(tz) γ(dt) =

∫ ∞

0

Cµ(tB∗z) γ(dt)

= CΥγ (µ)(B
∗z) = CTBΥγ(µ)(z),

which implies (ii).
(iii) Let c be a fixed vector in Rd. Then for any z in Rd we find that

CΥγ (δc)(z) =

∫ ∞

0

i〈tz, c〉γ(dt) = i〈z, c〉
∫ ∞

0

t γ(dt) = i〈z,M1(γ)c〉 = CδM1(γ)c
(z),

which proves (iii).

Corollary 7.5. Let γ be a measure from M02((0,∞)), and consider the mapping
Υγ : ID(Rd)→ ID(Rd) defined above. We then have

Υγ(S(Rd)) ⊆ S(Rd) and Υγ(L(Rd)) ⊆ L(Rd),

where S(Rd) and L(Rd) denote, respectively, the class of d-dimensional stable and
selfdecomposable laws.

Proof: Recall first that S(Rd) is the class of probability measures µ on Rd satisfying
that (cf. Samorodnitsky and Taqqu, 1994, Definition 2.1.1)

∀α, α′ > 0 ∃α′′ > 0 ∃β ∈ Rd : Dαµ ∗Dα′µ = Dα′′µ ∗ δβ ,
where Dcµ denotes the scaling of µ by the scalar c, i.e. Dcµ = Tc111nµ. Now, for any
µ in S(Rd) and α, α′ from (0,∞) it follows by application of (i)-(iii) of Corollary 7.4
that

DαΥγ(µ)∗Dα′Υγ(µ) = Υγ
(

(Dαµ)∗(Dα′µ)
)

= Υγ
(

Dα′′µ∗δβ
)

= Dα′′Υγ(µ)∗δM1(γ)β,

for suitable α′′ from (0,∞) and β from Rd. This shows that Υγ(µ) ∈ S(Rd) too.
The inclusion Υγ(L(Rd)) ⊆ L(Rd) follows similarly from (i) and (ii) of Corollary 7.4
by recalling that L(Rd) may be characterised as the class of probability measures
in ID(Rd) satisfying that

∀c ∈ (0, 1) ∃µc ∈ ID(Rd) : µ = Dcµ ∗ µc,

(cf. Sato, 1999, Proposition 15.5).

Remark 7.6. If γ ∈ ML((0,∞)) \M02((0,∞)), then Definition 7.1 does not make
sense, even if we restrict attention to the class ID0(R) of infinitely divisible laws µ
with no drift and no Gaussian part, i.e. laws with characteristic triplets of the form
(0, ρ, 0). For one thing we need to require that ρ is in the Lévy domain domLΥγ ,
but this generally does not ensure that the integral in (7.2) is well-defined. To
remedy this situation we introduce the subclass (cf. Proposition 7.3)

domIDΥγ =
{

µ ∈ ID0(R)
∣

∣ ∀z ∈ R :
∫ ∞
0 |Cµ(zt)| γ(dt) <∞

}

.

For a given γ, Definition 7.1 then makes sense for all µ in domIDΥγ and gives
rise to a mapping Υγ : domID(Υγ)→ ID(Rd) with (algebraic) properties similar to
those derived below in the case γ ∈M02((0,∞)). In the present paper we restrict
attention to the mappings Υγ , where γ is assumed in M02((0,∞)), and we merely
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indicate by an example (cf. Example 7.7(4) below) that the more general setting
outlined above gives rise to important and interesting mappings as well.

Examples 7.7. We adopt the notation from Examples 2.4.

(1) Consider the mapping Υ0 introduced in Example 2.4(1). The corresponding
mapping Υ0 : ID(R)→ ID(R) is one-to-one and is related to free probabil-
ity via the formula

CΥ0(µ)(z) = CΛ(µ)(iz), (z ∈ R),

where Λ is the so-called Bercovici-Pata bijection from ID(R) onto the class
of infinitely divisible probability measures with respect to (additive) convo-
lution in free probability theory. In addition, C is the analog of the cumulant
transform in free probability (see Barndorff-Nielsen and Thorbjørnsen, 2004
for details). The range of Υ0 was identified as the so-called Goldie-Steutel-
Bondesson class in Barndorff-Nielsen et al. (2004). Furthermore, Υ0 maps
the class of stable laws onto itself and the class of selfdecomposable laws
onto the so-called Thorin class (see Barndorff-Nielsen and Thorbjørnsen,
2006).

(2) For α in [0, 1] consider the mapping Υα introduced in Example 2.4(2). The
associated mapping Υα : ID(R) → ID(R) was introduced and studied in
Barndorff-Nielsen and Thorbjørnsen (2006). For all α, Υα is one-to-one.
For α = 0, Υα agrees with the mapping Υ0 described in (1) and Υ1 is
the identity mapping on ID(R). The family (Υα)α∈[0,1] thus, in a certain
sense, interpolates smoothly between infinite divisibility in classical and
free probability (see Barndorff-Nielsen and Thorbjørnsen, 2004).

(3) Consider for λ in (−2,∞) the mapping Ξλ introduced in Example 2.4(3),
i.e. the Upsilon transformations corresponding to the measures γλ(dt) =
tλ−1e−t dt. When λ > 0, γλ ∈ M02((0,∞)) and we obtain a mapping
Ξλ : ID(R)→ ID(R) via Definition 7.1. When λ ∈ (−2, 0], γλ /∈M02((0,∞))
and Definition 7.1 does not apply. However, the construction outlined in
Remark 7.6 gives rise to mappings Ξλ : domIDΞλ → ID(R), where

domIDΞλ =
{

µ ∈ ID0(R)
∣

∣ ∀z ∈ R :
∫ ∞
0 |Cµ(zt)|tλ−1e−t dt <∞

}

.

Questions related to the random integral representations of these mappings
Ξλ have been studied by Sato in Sato (2006b).

(4) Consider for λ in (−2,∞) the mapping Φλ introduced in Example 2.4(4),
i.e. the Upsilon transformations corresponding to the measures γλ(dt) =
tλ−11(0,1)(t) dt. As in (3) we obtain mappings Φλ : ID(R) → ID(R) via
Definition 7.1 when λ > 0, and for λ in (−2, 0] the construction outlined in
Remark 7.6 gives rise to mappings Φλ : domIDΦλ → ID(R). The particular
case λ = 0 was studied in Barndorff-Nielsen et al. (2004), where it was
established that

domIDΦ0 = {µ ∈ ID0(R) | ρ(µ) ∈Mlog(R)},
where ρ(µ) denotes the Lévy measure of µ. Thus, the condition that the
integral

∫ ∞
0
|Cµ(zt)| γ(dt) is finite for all z, is, in this case, equivalent to

the requirement that ρ(µ) ∈ Mlog(R) = domLΦ0, but, as indicated in
Remark 7.6, this is not a general feature. The range of Φ0 is the class of
all selfdecomposable laws; cf. for instance Barndorff-Nielsen et al. (2004).
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We close this section by giving a Lévy-Khintchine type representation of Υγ(µ).

Proposition 7.8. Let γ be a measure in M02((0,∞)), and consider the mapping
Υγ : ID(Rd) → ID(Rd) defined above. Let further µ be a measure in ID(Rd) with
characteristic triplet (A, ρ, η). Then for any z in Rd

CΥγ(µ)(z) = iM1(γ)〈z, η〉 − 1
2M2(γ)〈Az, z〉

+

∫

Rd

(

φγ(〈z, x〉)−M0(γ)− iM1(γ)〈z, x〉1[0,1](‖x‖)
)

ρ(dx),

where φγ(u) =
∫ ∞
0

eiut γ(dt) for u in R, and Mj(γ) =
∫ ∞
0
tj γ(dt) (j = 0, 1, 2).

Proof: Using the calculation (7.4) from the proof of Proposition 7.3 we find that

CΥγ(µ)(z) = i〈z, η〉M1(γ)− 1
2 〈Az, z〉M2(γ)

+

∫ ∞

0

(

∫

Rd

(

eit〈z,x〉 − 1− it〈z, x〉1[0,1](‖x‖)
)

ρ(dx)
)

γ(dt).
(7.5)

By Lemma 7.2(ii) we may change the order of integration in the double integral,
so that

∫ ∞

0

(

∫

Rd

(

eit〈z,x〉 − 1− it〈z, x〉1[0,1](‖x‖)
)

ρ(dx)
)

γ(dt)

=

∫

Rd

(

φγ(〈z, x〉)−M0(γ)− iM1(γ)〈z, x〉1[0,1](‖x‖)
)

ρ(dx),

which inserted in (7.5) yields the desired formula.

8. Continuity properties of Υγ

In this section we establish continuity results for upsilon transforms Υγ under the
assumption that γ ∈M02((0,∞)). The derived results may be seen as counterparts
to the results accomplished in Section 5.1 for Υγ , also in the M02((0,∞))-case. We
shall need the following well-known lemma (see e.g. the proof of Barndorff-Nielsen
et al., 2004, Proposition 2.4(v)).

Lemma 8.1. Let (µn) be a sequence of measures from ID(Rd), and for each n let
(An, ρn, ηn) be the characteristic triplet for µn. Then (µn) is precompact if and
only if the following four conditions are satisfied:

(a) supn∈N ‖An‖ <∞.
(b) supn∈N

∫

Rd(1 ∧ ‖x‖2)ρn(dx) <∞.

(c) ∀ǫ > 0 ∃K > 0: supn∈N ρn

(

{‖x‖ > K}
)

< ǫ.
(d) supn∈N ‖ηn‖ <∞.

Proposition 8.2. For any γ in M02((0,∞)) the mapping Υγ : ID(Rd)→ ID(Rd) is
continuous with respect to weak convergence, i.e. for any sequence (µn) of measures
in ID(Rd) and any measure µ in ID(Rd) we have

µn
w−−−−→

n→∞
µ =⇒ Υγ(µn)

w−−−−→
n→∞

Υγ(µ).

Proof: Let (µn) be a sequence of measures from ID(Rd) such that µn
w−→ µ as n→

∞ for some measure µ (necessarily) in ID(Rd). Then by Sato (1999, Lemma 7.7)

Cµn(y) −−−−→
n→∞

Cµ(y), for all y in Rd,
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and it suffices to establish that

CΥγ(µn)(y) −−−−→
n→∞

CΥγ(µ)(y), for all y in Rd.

By Proposition 7.3 and Lebesgue’s theorem on dominated convergence it suffices to
verify, for each fixed z in R, the existence of a Borel function gz : (0,∞) → [0,∞)
such that

∀n ∈ N :
∣

∣Cµn(zt)
∣

∣ ≤ gz(t), (t ∈ (0,∞)), (8.1)

and
∫ ∞

0

gz(t) γ(dt) <∞. (8.2)

For each positive integer n, let (An, ρn, ηn) be the generating triplet for µn. Com-
bining then (7.1) with (ii) in Lemma 7.2, we find that

|Cµn(y)| ≤ ‖ηn‖‖y‖+ 1
2‖An‖‖y‖2 +

(

2 + 1
2‖y‖

2
)

∫

Rd

(1 ∧ ‖x‖2) ρn(dx),

for any vector y in Rd. Since µn
w→ µ as n→∞, it follows that (cf. Lemma 8.1)

H := sup
n∈N

‖ηn‖ <∞, A := sup
n∈N

‖An‖ <∞ and R := sup
n∈N

∫

Rd

(1 ∧ ‖x‖2) ρ(dx) <∞.

Thus, if we put

gz(t) = H‖z‖t+ 1
2A‖z‖

2t2 +R
(

2 + 1
2‖z‖

2t2
)

,

it follows that gz satisfies both (8.1) and (8.2), since γ ∈M02((0,∞)).

Lemma 8.3. Let γ be a non-zero measure from M02((0,∞)), and let (µn) be a

sequence of measures from ID(Rd) such that Υγ(µn)
w−→ ν as n → ∞ for some

measure ν in ID(Rd). Then the sequence (µn)n∈N is precompact.

Proof: We proceed as in the proof of Barndorff-Nielsen et al. (2004, Proposi-
tion 2.4(v)):

Denoting by (Ãn, ρ̃n, η̃n) the characteristic triplet for Υγ(µn), let (ã)–(d̃) be the

conditions obtained by replacing (An, ρn, ηn) by (Ãn, ρ̃n, η̃n) in (a)–(d) of Lemma 8.1.

Then our assumption implies that (ã)–(d̃) are satisfied. By definition of Υγ we have

that Ãn = M2(γ)An, ρ̃n = Υγ(ρn) and

η̃ = M1(γ)η +

∫ ∞

0

∫

Rd

tx
(

1[0,1](t‖x‖)− 1[0,1](‖x‖)
)

ρ(dx) γ(dt).

Hence, since γ 6= 0, (a) is an immediate consequence of (ã), and (b) follows from

(b̃) and the estimate
∫

Rd

(1 ∧ ‖x‖2) ρ̃n(dx) =

∫ ∞

0

∫

Rd

(1 ∧ t2‖x‖2) ρn(dx) γ(dt)

≥
∫ ∞

0

∫

Rd

(1 ∧ t2)(1 ∧ ‖x‖2) ρn(dx) γ(dt)

=

∫ ∞

0

(1 ∧ t2) γ(dt)
∫

Rd

(1 ∧ ‖x‖2) ρn(dx),
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recalling again that γ 6= 0. To verify (c), note that for any positive numbers L and
δ we have

ρ̃n

(

{‖x‖ > L}) =

∫ ∞

0

ρn

(

{‖x‖ > L/t}
)

γ(dt) ≥ γ([δ,∞))ρn

(

{‖x‖ > L/δ}
)

.

Choosing now δ such that γ([δ,∞)) > 0 and using the substitution L = Kδ, we
find that

ρn

(

{‖x‖ > K}
)

≤ γ([δ,∞))−1ρ̃n

(

{‖x‖ > Kδ}
)

,

for any positive number K and any n in N. Therefore (c) is a consequence of (c̃).
Finally, to establish (d), note that

sup
n∈N

∫ ∞

0

∫

Rd

t‖x‖
∣

∣

∣
1[0,1](t‖x‖)− 1[0,1](‖x‖)

∣

∣

∣
ρ(dx) γ(dt) <∞,

as a result of Lemma 7.2 in conjunction with (b). Therefore (d) follows from (d̃).

Proposition 8.4. Let γ be a measure in M02((0,∞)).

(i) The mapping Υγ : ID(Rd) → ID(Rd) is closed in the following sense: For
any subset F of ID(Rd), which is closed in the topology for weak conver-
gence, the same holds for Υγ(F ) = {Υγ(µ) | µ ∈ F}.

(ii) Assume that the mapping Υγ : ID(Rd) → ID(Rd) is injective. Then it is
automatically a homeomorphism onto its range ranIDΥγ.

Proof: (i) We may clearly assume that γ 6= 0. Let F be a closed subset of ID(Rd)
and let ν be a measure from the closure of Υγ(F ). Then we may choose a sequence
(µn) from F such that Υγ(µn)→ ν as n→∞, and by Lemma 8.3 (µn) is necessarily
precompact. In particular there exists a subsequence (µnp)p∈N converging weakly
to some µ, which must belong to F , since F is closed. Now by Proposition 8.2,

Υγ(µnp)
w−→ Υγ(µ) as n→∞, and since also Υγ(µnp)

w−→ ν as n→∞, we conclude
that ν = Υγ(µ) ∈ Υγ(F ), as desired.

(ii) This follows from (i) as in the proof of (ii) in Corollary 5.4.

Corollary 8.5. Let γ be a non-zero measure from M02((0,∞)) and consider the
full range

ranIDΥγ :=
{

Υγ(µ)
∣

∣ µ ∈ ID(Rd)
}

.

This subclass of ID(Rd) has the following properties:

(i) ν1 ∗ ν2 ∈ ranIDΥγ, whenever ν1, ν2 ∈ ranIDΥγ.
(ii) TBν ∈ ranIDΥγ, whenever ν ∈ ranIDΥγ and B ∈Md(R).
(iii) δc ∈ ranIDΥγ for all c in Rd.
(iv) ranIDΥγ is a closed subset of ID(Rd) in the topology for weak convergence.

Proof: These properties follow readily from Corollary 7.4 and Proposition 8.4.

Examples 8.6. (1) The Upsilon mapping Υ0 : ID(R) → ID(R) considered in
Example 7.7(1) is one-to-one and corresponds to the measure γ(dt) = e−t dt
from M02((0,∞)). Thus, by Corollary 8.4(ii), it is a homeomorphism onto
its range (which is the Goldie-Steutel-Bondesson class). This was estab-
lished directly in Barndorff-Nielsen et al. (2004).

(2) The Upsilon mappings Υα : ID(R)→ ID(R) considered in Example 7.7(2)
are also injective and correspond to measures γα from M02((0,∞)). Hence
these mappings are also homeomorphisms onto their ranges.
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(3) For λ > 0 the mappings Ξλ considered in Example 7.7(3) correspond to
measures γλ from M02((0,∞)), and they are injective according to Exam-
ple 6.3(ii). Thus, these mappings are homeomorphisms as well.

(4) By virtue of Example 6.3(i), it follows as in (3) that for positive λ the
mappings Φλ : ID(R) → ID(R) introduced in Example 7.7(4) are homeo-
morphisms onto their ranges.

9. Random Integral Representation

In many cases the Upsilon transformations introduced in Section 7 can be rep-
resented as random integrals, in the following sense. (Here we consider only one-
dimensional integrators; for some results on the multivariate case cf. Barndorff-
Nielsen et al., 2004.)

Suppose that γ has finite upper tail measure and let

εγ (ξ) = γ ([ξ,∞)).

Then γ (dξ) = −dεγ (ξ). The inverse function of εγ , denoted ε∗γ , is defined by

ε∗γ (t) = inf
{

ξ > 0
∣

∣ εγ (ξ) ≤ t
}

. (9.1)

Both functions ξ → εγ (ξ) and t→ ε∗γ (t) are decreasing and càglàd.
Now, given a Lévy measure ρ and an η ∈ R, let Z = {Zt} be the Lévy process

for which the cumulant function of Z1 is given by

Cρ (z) = iηz +

∫

R

(

eizt − 1− izt1[−1,1] (t)
)

ρ (dt) , (9.2)

and consider the random integral

Y =

∫ εγ(0)

0

ε∗γ (s) dZs. (9.3)

Definition 9.1. We say that (9.3) is a random integral representation (RIR) of
Υγ at ρ ∈ domLΥγ provided the integral (9.3) exists as the limit in probability of
the Riemann sums and the random variable Y (which is then necessarily infinitely
divisible) has Lévy measure ργ = Υγ (ρ) and cumulant function

Cργ (z) = iη̃z +

∫

R

(

eizt − 1− izt1[−1,1] (t)
)

ργ (dt) (9.4)

where

η̃ =

∫ ∞

0

x
(

η +

∫

R

y
(

1[−1,1] (xy)− 1[−1,1] (y)
)

ρ (dy)
)

γ (dx) .

For Υγ to have RIR at ρ(∈ domLΥγ) it suffices that γ ∈M02 ((0,∞)) and ε∗γ is
continuous. In that case it moreover holds that

∫ ∞

0

|Cρ (tz)| γ (dt) <∞ (9.5)

and that we have the important relation

Cργ (z) =

∫ ∞

0

Cρ (tz) γ (dt) , (9.6)

which in fact is the same as (7.3).
This result was established for the case γ (dx) = e−x dx in Barndorff-Nielsen

and Thorbjørnsen (2004), and for the measures introduced in Example 2.4(2) in
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Barndorff-Nielsen and Thorbjørnsen (2006). The proofs given in those cases extend
directly to the present setting.

Remark 9.2. The measures γ in Example 3.1(1)–(3) all have second moment and
continuous ε∗γ , and thus the RIR.

Remark 9.3. If we take Z to be the Lévy process with characteristic triplet (a, ρ, η)
then, again provided that γ ∈M02 ((0,∞)) and ε∗γ is continuous, we have that (9.5)
and (9.6) hold (cf. Proposition 7.3) and, furthermore, that Y has triplet (ã, ργ , η̃)
with ã = aM2 (γ) (where M2 (γ) denotes the second moment of γ). Otherwise put,
(9.3) is then a random integral representation of the transformation Υγ discussed
in Sections 7 and 8.

Extensions and ramifications of the original results (in Barndorff-Nielsen and
Thorbjørnsen, 2004 and Barndorff-Nielsen and Thorbjørnsen, 2006) are also dis-
cussed in Barndorff-Nielsen et al. (2004), Sato (2006b), Sato (2006a) and Sato
(2007). The latter three papers develop the theory of integration of deterministic
functions with respect to Lévy processes and related RIR results in great generality
and detail.
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dent Increment Processes II. Quantum Lévy processes, classical probabililty and
applications to physics., pages 33–160. Springer, Heidelberg (2005).

O.E. Barndorff-Nielsen and S. Thorbjørnsen. Regularising mappings of Lévy mea-
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