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Abstract. We give refined estimates for the discrete time and continuous time
versions of some basic random walks on the symmetric and alternating groups Sn

and An. We consider the following models: random transposition, transpose top
with random, random insertion, and walks generated by the uniform measure on a
conjugacy class. In the case of random walks on Sn and An generated by the uniform
measure on a conjugacy class, we show that in continuous time the ℓ2-cutoff has a
lower bound of (n/2) logn. This result, along with the results of Müller, Schlage-
Puchta and Roichman, demonstrates that the continuous time version of these walks
may take much longer to reach stationarity than its discrete time counterpart.

1. Introduction

This work is concerned with some basic random walks on the symmetric group,
Sn, and the alternating group, An. Specifically, we are interested in the following
models: (a) Random transposition and transpose top with random; (b) walks gen-
erated by the uniform measure on a conjugacy class, e.g., 4-cycles or kn-cycles with
kn an increasing function of n; (c) random insertion. Although these walks have
been studied extensively, we obtain here results that either improved upon known
estimates or complement those estimates.

The convergence of the random transposition walk on Sn was studied by Diaconis
and Shahshahani (1981). We present a technical improvement of their fundamental
result. This is motivated by the role played by random transposition in the com-
parison technique of Diaconis and Saloff-Coste (1994): any improvement upon the
ℓ2 convergence of the random transposition walk has consequences for a wealth of

Received by the editors April 18, 2008; accepted August 13, 2008.

2000 Mathematics Subject Classification. Primary 60J99, Secondary 60J10, 60J27.

Key words and phrases. Convergence of Markov chains, random walks, cutoff phenomenon

L. Saloff-Coste is partially supported by NSF grant DMS 0603806 and J. Zúñiga is partially
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other walks. We will illustrate this by obtaining the best known result for the ran-
dom insertion walk. These results are also used in Saloff-Coste and Zúñiga (2007)
to study certain time in-homogeneous versions of the random insertion walk and
this was indeed our original motivation for developing the results presented here.
For an overview of results connected to the random transposition walk, see Diaconis
(2003).

The transpose top with random walk is an interesting example mentioned in
Flatto et al. (1985) and in Diaconis (1991) but details of its ℓ2 analysis have never
appeared in print. (This walk should not be confused with the more classical top
to random walk studied in Diaconis et al., 1992.) The estimates concerning this
walk that are proved here are used in Saloff-Coste and Zúñiga (2007) to obtain the
best known convergence bounds for a class of time in-homogeneous processes called
semi-random transpositions.

Random walks associated with conjugacy classes other than the class of trans-
positions have been studied by Müller and Schlage-Puchta (2007), Schlage-Puchta
(2008), Lulov and Pak (2002), Roichman (1996) and Roussel (1999). For most of
those walks, we show that ℓ2 convergence occurs at very different times for the
discrete time process and the continuous time process. Although this phenome-
non is simple to understand a posteriori, it is a bit surprising at first and is often
overlooked.

Let us briefly describe our notation. On a finite group G with identity element
e, the random walk started at e driven by a given probability measure q is the
process Xn = ξ1 · · · · · ξn where the ξi are independent G-valued random variables
with distribution q. The distribution of Xn is q(n), the convolution of q with itself,
n times. Any such walk admits the uniform measure u as an invariant measure. It
is reversible if and only if q(x) = q(x−1) for all x. The walks studied here all have
this property. We are mostly interested in the quantity (χ-square distance)

d2(q
(n), u) =

(
|G|
∑

G

|q(n) − u|2
)1/2

, u ≡ 1/|G|.

This is always an upper bound for 2‖q(n) − u‖TV where

‖q − p‖TV = sup
A

{q(A) − p(A)}

is the total variation distance between the probability measures p and q.
Given such a discrete time process, we also consider the associated continuous

time process whose distribution at time t ∈ [0,∞) is given by

ht(x) = hq,t(x) = e−t
∞∑

n=0

tn

n!
q(n)(x).

We now state some of the results proved in this work. Random transposition is
the walk on the symmetric group G = Sn driven by q = qRT where

qRT(τ) =






2/n2 if τ = (i, j), 1 ≤ i, j ≤ n, i 6= j,
1/n if τ = e
0 otherwise.

Theorem 1.1. Let q be the random transposition measure on the group Sn, n > 14.
For any c ≥ 0 and t ≥ n

2 (log n + c), we have d2(q
(t), u) ≤ 2e−c.
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Diaconis and Shahshahani (1981) prove this result with an unspecified constant
B instead of 2 in front of e−c and for large enough n. In this paper their approach
is refined to obtain the bound stated above. We also prove a similar result in
continuous time which turns out to be somewhat more difficult. Having good
control of d2(hqRT,t, u) is very useful in connection with the comparison techniques
of Diaconis and Saloff-Coste (1994). See Section 4.3 where this is used to study the
random insertion walk.

Transpose top with random is the process driven by q(τ) = 1/n if τ ∈ {(1, i), i =
1, . . . , n} (where (1, 1) = e) and 0 otherwise.

Theorem 1.2. Let q be the transpose top with random measure on the group Sn.
For any c ≥ 0 and t ≥ n(log n + c), we have d2(q

(t), u) ≤
√

2e−c.

To illustrate our results concerning walks driven by conjugacy classes, consider
the measure qcn which, for each n, is uniform on cn ⊂ Sn, the conjugacy class of
all cycles of odd length kn = 2mn + 1. The corresponding walk is on An.

Theorem 1.3. Fix ǫ ∈ (0, 1) and set tn = n
2 log n. Referring to the continuous

time process with distribution hcn,t = hqcn ,t associated to the cycle walk on An

described above, if mn tends to infinity with n, we have (with un ≡ 1/|An| = 2/n!)

lim
n→∞

d2(hcn,(1+ǫ)tn
, un) = 0 and lim

n→∞
d2(hcn,(1−ǫ)tn

, un) = ∞.

This result shows an ℓ2-cutoff at time (n/2) logn. When kn < cn for some
c ∈ (0, 1), Roichman (1996) shows that the associated discrete time process has a
mixing time in ℓ2 of order (n/kn) log n. Roichman’s results are improved in Müller
and Schlage-Puchta (2007) and Schlage-Puchta (2008). As km = 2mn + 1 → ∞,
the discrete mixing time (n/kn) log n is much smaller than the continuous cutoff
time (n/2) log n. The explanation is simple. Consider the eigenvalues of the walk
driven by qcn , that is, the eigenvalues of the convolution operator f → f ∗ qcn :
ℓ2(un) → ℓ2(un), call these eigenvalues αi. In continuous time, the ℓ2 cutoff time
is controlled by the very large number of very small eigenvalues. These small
eigenvalues contribute significantly in continuous time because they appear in the
form e−t(1−αi). In discrete time, these small eigenvalues do not contribute much
since they appear in the form αt

i. Although the explanation is simple, verifying
that this is indeed the case is not an easy task. We will prove similar results for
general conjugacy classes.

2. Review and notation

We refer the reader to Diaconis (1988) and Saloff-Coste (2004) for careful intro-
duction to random walks on finite groups. We briefly review some of the needed
material below.

2.1. Cutoffs. Many examples of random walks on groups that have been studied
demonstrate a unique behavior called the cutoff phenomenon. This was first stud-
ied in Aldous (1983), Aldous and Diaconis (1986) and Diaconis and Shahshahani
(1981). See also Diaconis (1996), Chen and Saloff-Coste (2008), Saloff-Coste (1997)
and Saloff-Coste (2004).

Definition 2.1. Let (Gn)∞0 be a sequence of finite groups and denote by un the
uniform measure on Gn. For each n ≥ 0 consider the random walk on Gn driven
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by the measure qn. The sequence ((Gn, qn))∞0 is said to have total variation cutoff
(resp. ℓ2) if there is a sequence (tn)∞0 with tn → ∞ such that for any ǫ ∈ (0, 1)

(1) if kn = (1 + ǫ)tn then dTV(p
(kn)
n , un) → 0 (resp. d2(p

(kn)
n , un) → 0);

(2) if kn = (1 − ǫ)tn then dTV(p
(kn)
n , un) → 1 (resp. d2(p

(kn)
n , un) → ∞).

The sequence ((Gn, qn))∞0 is said to demonstrate a total variation (resp. ℓ2) pre-
cutoff if there exist constants 0 < a < b such that

(1) lim infn→∞ dTV(p
(atn)
n , un) > 0 (resp. lim infn→∞ d2(p

(atn)
n , un) > 0);

(2) limn→∞ dTV(p
(btn)
n , un) = 0 (resp. lim infn→∞ d2(p

(btn)
n , un) = 0).

Similar definitions apply in continuous time. Diaconis and Shahshahani (1981)
prove that the random transposition walk on Sn has a cutoff (both in total variation
and ℓ2) at time (n/2) log n. For a overview of other results in this direction, see
Diaconis (1996) and Saloff-Coste (2004).

2.2. Eigenvalues and representation theory. It is well known that for reversible
finite Markov chains, the χ-square distance can be expressed in terms of eigenvalues
and eigenfunctions. (See, e.g., Saloff-Coste, 1997). For a reversible random walk on
a finite group G driven by q, the expression simplifies and the eigenvectors drop out.
If we let βi, i = 0, . . . , |G| − 1, be the eigenvalues of the operator of convolution by
q acting on ℓ2(G), in non-increasing order and repeated according to multiplicity,
we have

d2(q
(t), u)2 =

|G|−1∑

i=1

β2t
i and d2(ht, u)2 =

|G|−1∑

i=1

e−2t(1−βi). (2.1)

Representation theory provides a tool that can be helpful to compute eigenvalues.
We give a very brief review of these methods. All the material in this section can
be found in greater detail in Diaconis (1988) and Sagan (2001). A representation
of a finite group G on a vector space V is a homomorphism ρ : G → GL(V ) where
GL(V ) is the group of general linear transformations of V . We say that ρ has
dimension dρ where dρ is equal to the dimension of V . Let W ⊂ V , if ρW = W
then ρ|W is called a sub-representation of ρ. A representation ρ is called irreducible
if it admits no nontrivial sub-representation. The character of a representation ρ
at s ∈ G is χρ = Tr(ρ(s)). Characters are constant under conjugation, i.e. for any
x, y ∈ G then

χρ(x
−1yx) = χρ(y).

For f : G → R, the Fourier transform of f at ρ is

f̂(ρ) =
∑

s∈G

f(s)ρ(s).

The Fourier transform converts convolution of functions into multiplication of ma-

trices (or composition of linear maps) f̂ ∗ g(ρ) = f̂(ρ)ĝ(ρ). If G is a finite group
and if f, g are any two functions taking values on G then the Plancharel formula
relates the convolution of f and g at e to the Fourier transform as follows

f ∗ g(e) =
∑

s∈G

f(s−1)g(s) =
1

|G|
∑

ρ

dρTr(f̂(ρ)ĝ(ρ))

where |G| is the order of G and the sum is over all (equivalent classes of) irre-
ducible representations of G. In what follows ρ 6= 1 means that ρ is not the trivial
representation. The Plancharel formula is used to obtain the following proposition.
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Proposition 2.2. Let G be a finite group equipped with a probability measure q
satisfying q(x) = q(x−1), x ∈ G. We have

d2(q
(t), u)2 =

∑

ρ6=1

dρTr(q̂(ρ)2t). (2.2)

In general, it is very difficult to estimate Tr(q̂(ρ)t). However, in the case were
q is a class function, i.e., q(x−1yx) = q(y), for all x, y ∈ G, a celebrated lemma of
Schur provides a nice analysis. If ρ is an irreducible representation and (Cj)

m
1 are

the conjugacy classes of the group G then q̂(ρ) is a constant multiple of the identity
matrix. This yields

q̂(ρ) = Idρ
·




m∑

j=1

q(Cj)
χρ(cj)

dρ





where cj ∈ Cj . For a proof of this fact see Diaconis (1988) and Diaconis (1991).
The next proposition now follows.

Proposition 2.3. Let G be a finite group and q a probability measure on G satis-
fying q(x−1) = q(x), x ∈ G. If q is constant on conjugacy classes then

d2(q
(t), u)2 =

∑

ρ6=1

d2
ρ




m∑

j=1

q(Cj)
χρ(ci)

dρ




2t

and

d2(hC,t, u)2 =
∑

ρ6=1

d2
ρ exp



−2t



1 −
m∑

j=1

q(Cj)
χρ(ci)

dρ







 . (2.3)

To connect more directly representation theory with the usual spectral decom-
position, let ρ : G → GL(V ) be a representation of G on a finite vector space
V equipped with an invariant Hermitian product 〈·, ·〉. Fix a probability mea-
sure q and consider the linear transformation q̂(ρ) : V → V . Suppose ei, ej are
unit vectors in V and that ei is an eigenvector of q̂(ρ) with eigenvalue γi. Set
φi,j,ρ(x) = 〈ρ(x)ei, ej〉. We claim that φi,j,ρ is an eigenfunction for f 7→ f ∗ q with

f ∗ q(x) =
∑

y

f(xy−1)q(y)

on ℓ2(G) with eigenvalue γj . Indeed,

φi,j,ρ ∗ q(x) =
∑

y

q(y)〈ρ(xy−1)ei, ej〉 =

〈
ρ(x)ei,

∑

y

q(y)ρ(y)ej

〉

= 〈ρ(x)ei, q̂(ρ)ej〉 = γj〈ρ(x)ei, ej〉 = γjφi,j,ρ(x).

Now, if q is symmetric and thus q̂(ρ) is diagonalizable in an orthonormal basis (ei)
dρ

1

then the construction above yields dρ eigenvalues and d2
ρ orthonormal eigenvectors

in ℓ2(G), each eigenvalue having multiplicity dρ. Furthermore, if ρ, ρ′, are two
inequivalent irreducible representations the corresponding eigenvectors are orthog-
onal (some of the eigenvalues may be the same). A proof of the orthogonality of
φi,j,ρ is given in Corollary 4.10 of Knapp (1996). Hence, this produces |G| orthonor-

mal eigenfunctions since
∑

ρ d2
ρ = |G| where the sum is taken over all (equivalent

classes of) irreducible representations.
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For future reference we mention the well known fact that irreducible representa-
tions on Sn are indexed by the Young diagram with n boxes (see Sagan, 2001).

Definition 2.4. Let λ = (λ1, . . . , λm) be a partition of n so that λ1 ≥ λ2 ≥ · · · ≥
λm and

∑m
i=1 λi = n. λ is called a Young diagram of n boxes and λi denotes the

number of boxes in the i-th row of the diagram.

Figure 2.1. The Young diagram for λ = (5, 4, 2, 1)

The association of an irreducible representation to a Young diagram will provide
a key tool to calculate the normalized character χρ(·)/dρ of an irreducible repre-
sentation ρ and the eigenvalues of many of the walks we study. This technique is
illustrated in the following sections.

3. Transpose top with random

Consider the following shuffling method of a deck of n cards: pick a card uni-
formly at random from the deck and transpose it with the top card. This shuffling
scheme is described by the measure q on the symmetric group G = Sn where

q(τ) =

{
1/n if τ = (1, j), 1 ≤ j ≤ n
0 otherwise.

This walk is called transpose top with random.
In order to establish an upper bound for the ℓ2 mixing time, the tools from

group representation presented in Section 2.2 are used to calculate the eigenvalues
of q. Most of the needed computations are in Flatto et al. (1985) and the procedure
is outlined in Diaconis (1991) where it is stated that transpose top with random
has a cutoff time of n log n. The following theorem gives a more precise upper
bound. This result is used in Saloff-Coste and Zúñiga (2007) to study a class of
time inhomogeneous chains called semi-random transpositions.

Theorem 3.1. Let q be the transpose top with random measure on the group Sn.
If n ≥ 1, c ≥ 0, and t ≥ n(log n + c)

d2(q
(t), u) ≤

√
2 e−c, d2(hq,t, u) ≤

√
2 e−c.

Proof . By Proposition 2.2,

d2(q
(t), u)2 =

∑

ρ6=1

dρTr(q̂(ρ)2t).
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Even though q is not constant on conjugacy classes Diaconis (1991) notes that q is
invariant under conjugation by elements of Sn−1 where

Sn−1 = {τ ∈ Sn|τ(1) = 1} .

Using this fact it is shown that q̂(ρ) is a diagonal matrix (with real entries). See
Flatto et al. (1985) and Diaconis (1991). Therefore

Tr
(
q̂(ρ)2t

)
=

dρ∑

i=1

α2t
i ≤ dρα

2t
1 (3.1)

where α1 ≥ · · · ≥ αdρ
are the eigenvalues of q̂(ρ).

To compute αi, consider M =
∑n

i=2 ρ((1, i)). Let λ = (λ1, . . . , λm) be the Young
diagram associated to the irreducible representation ρ. Let σ1 ≥ · · · ≥ σdρ

be the
eigenvalues of M . In Flatto et al. (1985) it is shown that for 1 ≤ i ≤ dρ then

σi = λi − i.

The multiplicity of each σi is also described in Flatto et al. (1985). We do not
need this for the present proof but, to give an example, if λ = (n − 1, 1) then
the eigenvalues of M are σ1 = n − 2 with multiplicity n − 2 and σ2 = −1 with
multiplicity 1.
As

q̂(ρ) =
∑

τ∈G

q(τ)ρ(τ) =

n∑

i=1

(
1

n

)
ρ((1, i)) =

M + ρ(e)

n
=

M + I

n

where I is the identity matrix of dimension dρ, we easily obtain the eigenvalues αi,
1 ≤ i ≤ dρ: αi = (σi + 1)/n. In particular, α1 = λ1/n.

Denote by ρλ the irreducible representation associated to a partition λ and by
ρλ = 1 the trivial representation with corresponds to λ = (n). Equation (3.1) yields

d2(q
(t), u)2 ≤

∑

ρλ 6=1

d2
ρλ

(
λ1

n

)2t

=

n−1∑

j=1

∑

ρλ
λ1=n−j

d2
λ

(
λ1

n

)2t

. (3.2)

In Flatto et al. (1985) and Diaconis (1988) it is shown that for l ≥ 1

∑

ρλ
λ1=l

d2
ρλ

≤
(

n

l

)2

(n − l)!. (3.3)

It follows that for c ≥ 0 and t ≥ n(log n + c)

d2(q
(t), u)2 ≤

n−1∑

j=1

(
n!

(n − j)!

)2(
1

j!

)(
1 − j

n

)2t

≤
n−1∑

j=1

n2j

(
1

j!

)
e−2j log ne−2jc = (e − 1)e−2c ≤ 2e−2c.
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For the continuous time process, we have, similarly,

d2(hq,t, u)2 ≤
∑

ρλ 6=1

d2
ρλ

e−2t(1−α1) =

n−1∑

j=1

∑

ρλ
λ1=n−j

d2
λ exp{−2t(1 − λ1/n)}

=

n−1∑

j=1

∑

ρλ
λ1=n−j

d2
λe−2tj/n ≤

n−1∑

j=1

(
n!

(n − j)!

)2(
1

j!

)
e−2tj/n

where the last inequality follows from (3.3). Again, if n ≥ 1, c ≥ 0 and t ≥
n(log n + c) then

d2(hq,t, u)2 ≤
n−1∑

j=1

n2j

(
1

j!

)
e−2j log ne−2jc ≤ 2e−2c.

�

The next proposition shows that transpose top with random has ℓ2 and total
variation cutoffs at time n log n.

Proposition 3.2. Let q be the transpose top with random measure on Sn. For any
sequence (kn)∞0 such that (kn − n logn)/n tends to −∞ as n tends to ∞ then

d2(q
(kn), u) → ∞ and dTV(q(kn), u) → 1.

Proof . For the ℓ2 bound, we observe that Flatto et al. (1985) also gives a descrip-
tion of the multiplicity of the eigenvalues. In particular, if λ = (n − 1, 1) then the
eigenvalue 1 − 1/n of q̂(ρλ) has multiplicity n − 2. Since dλ = n − 1 we get that

d2(q
(k), u)2 ≥ (n − 1)(n − 2)(1 − 1/n)2k

from which the desired ℓ2 statement easily follows.

Remark 3.3. Let ϕ(σ) be the number of fixed points of σ. One can check by direct
inspection that

f(σ) =

(
n − 1

n − 2

)1/2

×
{

ϕ(σ) − 2 if σ(1) = 1
ϕ(σ) − 1 + 1

n−1 if σ(1) 6= 1

is a normalized eigenfunction (for convolution by q) with eigenvalue 1 − 1/n. Its
value at e is f(e)2 = (n−1)(n−2). This gives a entirely elementary proof of the ℓ2

lower bound since d2(q
(k), u)2 ≥ (1 − 1/n)2kf(e)2. The previous inequality results

from the fact that one can write the χ-square distance in terms of eigenvalues and
eigenfuctions. (See,e.g., Saloff-Coste, 1997).

The proof of the lower bound for total variation follows mostly an argument used
in Aldous and Diaconis (1986) to give a lower bound for random transposition (and
for the top to random insertion shuffle). Let

Aj = {σ ∈ Sn : ϕ(σ) ≥ j} (3.4)

with ϕ as defined above. Then

dTV(q(kn), u) ≥ q(kn)(Aj) − u(Aj).
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Calculating u(Aj) is equivalent to calculating the probability of at least j matches
in the classical matching problem. Feller (1968) gives a closed form solution for
u(Aj). Using this we get the following estimate for j ≥ 2

u(Aj) =

n∑

m=j

1

m!

(
n−m∑

v=0

(−1)v

v!

)
≤ e−1

(
1

(j − 1)!

)
. (3.5)

Next we bound q(kn)(Aj) from below. Consider the experiment where successive
balls are droped independently and uniformly at random into n boxes. Let Bj,k be
the event that after dropping k balls there are at least j empty boxes. Then

q(kn)(Aj−1) ≥ P (Bj,kn).

Let Vl be the number of balls dropped when exactly l boxes are filled. We have

P (Bj,kn) = P (Vn−j ≥ kn) ≥ 1 − P (Vn−j ≤ kn).

We would like to show that for any fixed j, P (Vn−j ≤ kn) → 0 as n → ∞. We have

Vn−j = (Vn−j − Vn−j−1) + (Vn−j−1 − Vn−j−2) + · · · + (V2 − V1) + V1.

The Vi+1 − Vi are independent random variables with geometric distribution

P {Vi+1 − Vi = l} =

(
n − i

n

)(
1 − n − i

n

)l−1

, l ≥ 1.

Hence

E(Vi+1 − Vi) =
n

n − i
and Var(Vi+1 − Vi) =

(
n

n − i

)2(
1 − n − i

n

)
.

It follows that

E(Vn−j) =

n−j−1∑

i=1

n

n − i
≥
∫ n−j−1

0

n

n − x
dx ≥ n log

(
n

j + 1

)

and

Var(Vn−j) =

n−j−1∑

i=1

n2

(n − i)2
− n2

n(n − i)
≤

n−j−1∑

i=1

n2

(n − i)2

≤
∫ n−j

1

(
n

n − x

)2

dx ≤ n2

j
.

By assumption kn = n log n − ncn and cn → ∞ as n → ∞. If we assume, as we
may, that cn > log(j + 1) then Chebyshev’s inequality gives

P (Vn−j ≤ kn) = P (Vn−j ≤ n logn − ncn)

≤ P (n(cn − log(j + 1)) ≤ |(Vn−j) − E(Vn−j)|)

≤ Var(Vn−j)

n2(cn − log(j + 1))2
≤ 1

j(cn − log(j + 1))2
.

This yields

lim
n→∞

dTV(q(kn), u) ≥ lim
n→∞

(P (Bj+1,kn) − u(Aj)) ≥ 1 − e−1

(
1

(j − 1)!

)
.

Since j is arbitrary the desired result follows. �
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Corollary 3.4. Let ht be the distribution for the continuous time process associated
to the transpose top with random measure q. For any sequence (kn)∞0 such that
(kn − n log n)/n tends to −∞ as n tends to ∞ we have

d2(hkn , u) → ∞ and dTV(hkn , u) → 1.

Proof . The ℓ2 bound follows from the same argument used above. In the case of
the total variation bound, one can show that for Aj defined in (3.4) then hkn(Aj) →
1. A sight modification of the proof of Proposition 3.2 gives that for α ∈ (1/2, 1)

lim
n→∞

qkn+kα
n (Aj) = 1.

Combining the limit above with the fact that

lim
n→∞

kn+kα
n∑

t=0

e−kn
kt

n

t!
= lim

n→∞
P

(
Xn − kn√

kn

≤ kα−1/2
n

)
= 1

where Xn is a Poisson random variable with parameter kn gives us the desired
result. �

4. Random transpositions

4.1. Discrete time. Consider the following measure q = qRT on the group G = Sn,

q(τ) =






2/n2 if τ = (i, j), 1 ≤ i, j ≤ n, i 6= j,
1/n if τ = id,
0 otherwise.

(4.1)

The measure q models the shuffle of a deck of n cards where one picks two cards
independently and uniformly at random and transposes them. The random trans-
position shuffle has been shown to demonstrate cutoff at (n/2) log n, see Diaconis
(1988), Diaconis (1991) and Diaconis and Shahshahani (1981).

Theorem 4.1. (Diaconis and Shahshahani, 1981) Let q be the random trans-
position measure on the group Sn then there exists a positive universal constant B
such that for any c ≥ 0 and t ≥ n

2 (log n + c) then

2dTV(q(t), u) ≤ d2(q
(t), u) ≤ Be−c.

One of the aims of this section is to get a more precise estimate on the constant B
in the theorem above.

Proposition 4.2. Let q be the random transposition measure on Sn. For n ≥ 14,
c ≥ 0, and t ≥ n

2 (log n + c) then Theorem 4.1 holds with

B2 ≤ 2 + ϕ(n) ≤ 4

where ϕ(n) → 0 as n → ∞.

Let tn be the smallest integer larger or equal to (n/2) log n. Then the result
above and an easy lower bound discussed below imply that

1 ≤ lim
n→∞

d2(q
(tn), u) ≤ 2.

It is quite rare to be able to capture the mixing time of a chain with such precision.
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Proof . Let C ⊂ Sn be the conjugacy class of transpositions, τ ∈ C be a transposi-
tion, and

r(ρλ) =
χρλ

(τ)

dρλ

.

Proposition 2.3 gives

d2(q
(t), u)2 =

∑

ρλ 6=1

d2
ρλ

(
1

n
+

n − 1

n
r(ρλ)

)2t

. (4.2)

In Diaconis and Shahshahani (1981) it is shown that

r(ρλ) ≤
{

1 − 2(n−λ1)(λ1+1)
n(n−1) if λ1 ≥ n/2

λ1−1
n−1 always.

(4.3)

It follows from equations (3.3), (4.2), and (4.3) that

d2(q
(t), u)2 =

n−1∑

j=1

∑

ρλ
λ1=n−j

d2
ρλ

(
1

n
+

n − 1

n
r(ρλ)

)2t

≤
n
2∑

j=1

(
n!

(n − j)!

)2
1

j!

(
1 − 2j

n

(
1 − j − 1

n

))2t

+

n−1∑

j= n
2

(
n!

(n − j)!

)2
1

j!

(
1 − j

n

)2t

.

Note that for 1 ≤ j ≤ n
2 we have that 1 − 2j

n

(
1 − j−1

n

)
≤ 1 − 2

n ≤ e−2/n. So for
t ≥ (n/2)(log n + c)

d2(q
(t), u)2 ≤ e−2c




n/2∑

j=1

Aj +
n−1∑

j=n/2

Bj



 ,

where

Aj =

(
n!

(n − j)!

)2
1

j!

(
1 − 2j

n

(
1 − j − 1

n

))n log n

(4.4)

Bj =

(
n!

(n − j)!

)2
1

j!

(
1 − j

n

)n log n

. (4.5)

Consider the following two technical propositions.

Proposition 4.3. Set ϕ0(n) =
∑⌊n/4⌋

j=1 Aj and ϕ1(n) =
∑⌊n/2⌋

j=⌈n/4⌉ Aj . For n ≥ 14

ϕ0(n) ≤ 2 and ϕ1(n) ≤ exp

{
2 − 1

6
n log n

}
.

Proposition 4.4. Set ϕ2(n) =
∑n

j=⌈n/2⌉ Bj. For n ≥ 9

ϕ2(n) ≤ exp

{
1 − 3

1000
n log n

}
.



370 L. Saloff-Coste and J. Zúñiga

Propositions 4.3 and 4.4 give that for n ≥ 14

d2(q
t, u)2 = e−2c(ϕ0 + ϕ1 + ϕ2) ≤ e−2c(2 + ϕ1(14) + ϕ2(14)) ≤ 4e−2c.

It also follows that ϕ1 → 0 and ϕ2 → 0 as n → ∞. �

Next we will show the proofs of the propositions above.

Proof of Proposition 4.3. Let Aj be as in equation (4.4), the ratio between two
consecutive terms is

Aj+1

Aj
= exp {fn(j) + gn(j)}

where

fn(j) = 2 log(n − j) − log(j + 1)

gn(j) = n log n log

(
n2 − 2(j + 1)n + 2j(j + 1)

n2 − 2jn + 2j(j − 1)

)
.

Taking derivatives gives

f ′
n(j) = − 2

n− j
− 1

j + 1

g′n(j) =
4(n log n)(2jn − 2j2 − n)

(n2 − 2jn + 2j2 − 2j)(n2 − 2jn − 2n + 2j2 + 2j)
.

Note that for 1 ≤ j ≤ n/4 and n ≥ 4 we have that f ′′
n (j) = 1

(j+1)2 − 2
(n−j)2 ≥ 0.

Furthermore, g′′n(j) ≥ 0 for 1 ≤ j ≤ n/2. The last inequality holds since for
1 ≤ j ≤ n/2 the numerator of g′n is a positive increasing function of j and the
denominator is a positive decreasing function of j.

Set hn = fn+gn. For 1 ≤ j ≤ n/4 the function hn is continuous and has positive
second derivative. It follows that hn is convex for said values of j, which implies
that

hn(j) ≤ max {hn(1), hn (n/4)} .

Consider the following estimates.

hn(1) = 2 log(n − 1) − log 2 + n (log n) log

(
1 − 2n − 4

n(n − 2)

)

≤ 2 log(n − 1) − log 2 − n (log n)

(
2n − 4

n(n − 2)

)

≤ 2 log(n − 1) − log 2 − 2 log n

hn(n/4) = 2 log

(
3n

4

)
− log

(
n + 4

4

)
+ n (log n) log

(
1 − 8

5n − 4

)

≤ 2 log

(
3n

4

)
− log

(
n + 4

4

)
− n (log n)

(
8

5n − 4

)

≤ 2 log

(
3n

4

)
− log

(
n + 4

4

)
− 8 log n

5

≤ 2 log 3 − log 4 +
2

5
log n − log(n + 4)
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For n ≥ 2 hn(1) and hn(n/4) are decreasing functions of n less than − log 2. Since

A1 = n2 (1 − 2/n)
n log n ≤ 1, it follows that for 1 ≤ j ≤ n/4

Aj ≤ (1/2)j−1A1 ≤ (1/2)j−1.

We can now state the first part of Proposition 4.3

ϕ0(n) =

n
4∑

j=0

Aj ≤
∞∑

j=1

(
1

2

)j

= 2.

Next we bound Aj for n/4 ≤ j ≤ n/2. It is not hard to show that f ′′′
n (j) ≤ 0, so

for the values of j above

f ′
n(j) ≥ min{f ′

n(n/4), f ′
n(n/2)}.

Note that

f ′
n(n/4) = − 4(5n + 8)

3n(n + 4)
and f ′

n(n/2) = −2(3n + 4)

n(n + 2)
.

For n ≥ 14, f ′
n(n/2) ≥ f ′

n(n/4). Recall that for 1 ≤ j ≤ n/2 we had that g′′n ≥ 0.
It follows that for n/4 ≤ j ≤ n/2,

h′
n(j) = f ′

n(j) + g′n(j) ≥ f ′
n(n/4) + g′n(n/4) ≥ 0.

Above we showed that hn(n/4) ≤ 0. For n ≥ 3 we have that hn(n/2) =
2 log

(
n
2

)
− log

(
n
2 + 1

)
≥ 0, so there must be a unique point x ∈ [n/4, n/2] such

that hn(x) = 0. If n/4 ≤ j ≤ x then (Aj+1/Aj) ≤ 1. If x ≤ j ≤ n/2 then
(Aj+1/Aj) ≥ 1. So for n/4 ≤ j ≤ n/2

Aj ≤ max
{
An

4
, An

2

}
.

In Feller (1968) a proof of Stirling’s formula shows that

√
2πn

(n

e

)n

≤ n! ≤ e
1

12n

√
2πn

(n

e

)n

. (4.6)

To determine the largest value among An
4

and An
2

we consider the ratio

An
4

An
2

=

( (
n
2

)
!(

3n
4

)
!

)2((
n
2

)
!(

n
4

)
!

)(
5n − 4

4n − 8

)n log n

≤
(

2
√

2e
1
4n

3

)(
e

n
2 4n

n
n
2 3

3n
2

)(
n

n
4

e
n
4

)(
5n − 4

4n − 8

)n log n

=

(
2
√

2e
1
4n

3

)(
4

3
3
2

)n
(

e
1
4

n
1
4

)n

nn log( 5n−4
4n−8 ) =

(
2
√

2e
1
4n

3

)
exp {l(n)}

where l(n) = n
(
log
(

4
33/2

)
+ 1

4

)
+ n log n

(
log
(

5n−4
4n−8

)
− 1

4

)
. For n ≥ 47 we have

that
(
log
(

5n−4
4n−8

)
− 1

4

)
≤ 0 which implies that l(n) ≤ 0. If 5 ≤ n ≤ 47 one can

check that l(n) ≤ 1. So for n ≥ 5 we have that (An
4
/An

2
) ≤ e which in turn implies
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that
∑n/2

j=n/4 Aj ≤ (e/4)nAn
2
. By using Stirling’s formula to estimate An

2
we get

(en

4

)
An

2
=

(en

4

)( n!(
n
2

)
!

)2(
1(
n
2

)
!

)(
n − 2

2n

)n log n

=
(en

4

)(e
1

12n

√
2n

n
2 2

n
2

e
n
2

)2(
2

n
2 e

n
2

n
n
2
√

πn

)(
n − 2

2n

)n log n

=

(
e1+ 1

6n
√

n

2
√

π

)(
n

n
2 2

3n
2

e
n
2

)(
n − 2

2n

)n log n

=

(
e1+ 6

n

2
√

π

)
exp {nf(n) log n}

where f(n) =
(

3 log 2−1
2

)
(log n)−1 + 1

2n + 1
2 + log

(
n−2
2n

)
. Computing the derivative

gives us that

f ′(n) =
−(3n log 2 − 1)n2 + 2(3 log 2 − 1)n + 3n(log n)2 + 2(log n)2

2n2(log n)2(n − 2)
.

Note that f ′ ≥ 0 for n > 2, so f(n) ≤ limn→∞ f(n) = 1
2 − log 2. We can now

concluded that for n ≥ 5

ϕ1(n) ≤
(en

4

)
An

2
≤
(

e1+ 6
n

2
√

π

)
exp

{
(n log n)

(
1

2
− log 2

)}

≤ e3

2
√

π
exp

{
−1

6
n log n

}
≤ exp

{
2 − 1

6
n log n

}
.

�

Proof of Proposition 4.4. Let Bj be as in equation (4.5). If n > 2 and n/2 ≤ j ≤ n
we can estimate the ratio of Bj and Bj+1 by

Bj+1

Bj
=

(n − j)2

(j + 1)

(
1 − 1

n − j

)n log n

≤ 2n

(
1 − 2

n

)n log n

≤ 2

n
.

We get that Bj ≤ (2/n)j−n/2Bn
2
. It follows that

ϕ2(n) =

n∑

j= n
2

Bj ≤ Bn
2

n∑

j= n
2

(2/n)j−n
2 ≤ Bn

2

∞∑

j=0

(2/n)j =
Bn

2

1 − (2/n)
.

Using Stirling’s formula we can bound Bn
2

to get

(
1

1 − 2/n

)
Bn

2
=

(
1

1 − 2/n

)(
n!(
n
2

)
!

)2(
1(
n
2

)
!

)(
1

2

)n log n

≤
(

1

1 − 2/n

)(
2e

1
6n

√
πn

)(
n

n
2 2

3n
2

e
n
2

)(
1

2

)n log n

=

(
1

1 − 2/n

)(
2e

1
6n

√
π

)
exp {n(log n)b(n)}
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where b(n) = − 1
2n +

(
3 log 2−1

2

)
(log n)−1 + 1

2 + log
(

1
2

)
. Taking derivatives gives

that

b′(n) =
(log n)2 − n(3 log 2 − 1)

2n2(log n)2
so b′(n) ≤ 0 for n ≥ 1.

For n ≥ 9 we have that b(n) ≤ b(9) < − 3
1000 . Furthermore, for n ≥ 9 the function

g(n) =

(
1

1 − 2/n

)(
2e

1
6n

√
π

)
exp

{
− 3

1000
n log n

}

is decreasing. So for n ≥ 9

ϕ2(n) ≤ g(n) ≤ exp

{
1 − 3

1000
n log n

}
.

�

A lower bound for the χ-square distance is obtain by writing d2(q
(k), u)2 ≥

(n−1)2(1−2/n)2k which uses the term associated to the Young diagram (n−1, 1).
Alternatively, let ϕ(σ) be the function with denotes the number of fixed points of
σ. One can check by inspection that ϕ− 1 is a normalized eigenfunction associated
with the eigenvalue (1 − 2/n). This gives the same ℓ2 lower bound.

Concerning total variation lower bounds, Diaconis (1988) shows that for any
c > 0 and t ≥ (n/2)(logn − c)

lim
n→∞

dTV(q(t), u) ≥ 1/e − e−e−2c

A slight modification of the argument used in Diaconis (1988) (as presented above
in the proof of Proposition 3.2) yields the following proposition.

Proposition 4.5. Let q be the random transposition measure on the group Sn. For
any sequence kn such that (2kn −n logn)/n tends to −∞ as n tends to ∞, we have

lim
n→∞

d2(q
(kn), u) = ∞ and lim

n→∞
dTV(q(kn), u) = 1.

4.2. Random transposition in continuous time. This section is devoted to the con-
tinuous time version of random transposition. There is no proof in the litera-
ture that the continuous time random transposition shuffle has a ℓ2 cutoff at time
(n/2) logn. One reason is that the fact that it does not automatically follow from
the discrete time result is often overlooked. In fact, getting an upper bound in the
continuous time case turns out to be somewhat more difficult than in the discrete
case. The difficulty comes from handling the contribution of the small eigenvalues
of q. Compare with what is proved below for conjugacy classes with less fixed
points, e.g., 4-cycles. One very good reason to want to have a good ℓ2 upper-bound
in continuous time for random transposition is that it yields better results when
used with the comparison technique of Diaconis and Saloff-Coste (1994) to study
other chains. See Section 4.3 below.

Proposition 4.6. Let ht be the law of the continuous time process associated to
the random transposition measure q. If n ≥ 10, c ≥ 2 then for t ≥ (n/2)(logn + c)

2dTV(ht, u) ≤ d2(ht, u) ≤ e−(c−2).
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Moreover, if tn is any sequence of time such that (2tn − n logn)/n tends to −∞ as
n tends to ∞, we have

lim
n→∞

dTV(htn , u) = 1, lim
n→∞

d2(htn , u) = ∞.

Let us observe that we are not able to show that d2(h(n/2) log n, u) is bounded
above independently of n (compare with the discrete time case).

Proof . The lower bound in ℓ2 follows from the same argument used in the discrete
time case. The lower bound in total variation is known. See, e.g., in Saloff-Coste
(1994). We focus on the upper bound in ℓ2.

Let C ⊂ Sn be the conjugacy class of transpositions. Proposition 2.3 implies
that

d2(ht, u)2 =
∑

ρλ 6=1

d2
ρλ

exp

{
−2t

(
1 − 1

n
− n − 1

n
r(ρλ)

)}
(4.7)

where r(ρλ) = χρλ
(τ)/dρλ

and τ is a transposition. Using equations (3.3), (4.7),
and (4.3) we get that for t ≥ (n/2)(logn + c)

d2(ht, u)2 =

n−1∑

j=1

∑

ρλ 6=1

λ1=n−j

d2
ρλ

exp

{
−2t

(
1 − 1

n
− n − 1

n
r(ρλ)

)}

≤
n/2∑

j=1

(
n!

(n − j)!

)2
1

j!
exp

{
−2t

(
2j

n

)(
1 − j − 1

n

)}

+

n−1∑

j=n/2

(
n!

(n − j)!

)2
1

j!
exp

{
−2t

(
j

n

)}

≤
n/2∑

j=1

(
n!

(n − j)!

)2
1

j!
exp

{
−2j(logn + c)

(
1 − j − 1

n

)}

+
n−1∑

j=n/2

(
n!

(n − j)!

)2
1

j!
exp {−j(log n + c)}

Note that for c ≥ 2 and j ≤ n/2 we have −2cj
(
1 − j−1

n

)
≤ −2c− 2j + 4. It follows

that for t ≥ (n/2)(log n + c)

d2(ht, u)2 ≤ e−2(c−2)




n/2∑

j=1

Aj +

n∑

j=n/2

Bj





where

Aj =

(
n!

(n − j)!

)2
1

j!
exp

{
−2j log n

(
1 − j

n

)
− 2j

}
(4.8)

Bj =

(
n!

(n − j)!

)
1

j!
exp{−j log n − 2j}. (4.9)

Consider the following technical lemmas.

Lemma 4.7. For n ≥ 10 then
∑n/4

j=1 Aj ≤ 2/3 and
∑n/2

j=n/4 Aj ≤ 1/4.
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Lemma 4.8. Set γ(n) =
∑n

j=n/2 Bj. For n ≥ 2

γ(n) ≤ 2

(
2

e

) 3n
2

.

It follows from the lemmas above that for n ≥ 10

d2(ht, u)2 ≤ e−2(c−2)




n/4∑

j=1

Aj +

n/2∑

j=n/4

Aj + γ(10)





≤ e−2(c−2)
(
2/3 + 1/4 + 2(2/e)15

)

≤ e−2(c−2).

�

Proof of Lemma 4.7. Let Aj be as in equation (4.8). For 1 ≤ j < n/2 the ratio of
two consecutive terms is given by

Aj+1

Aj
=

(n − j)2

(j + 1)
exp

{
−
(

2 log n

n

)
(n − 2j − 1) − 2

}
= exp{fn(j)}

where

fn(j) = 2 log(n − j) − log(j + 1) −
(

2 log n

n

)
(n − 2j − 1) − 2. (4.10)

Taking derivatives gives

f ′
n(j) = − 2

n − j
− 1

j + 1
+

4 logn

n

f ′′
n (j) = − 2

(n − j)2
+

1

(j + 1)2
.

Let n ≥ 4 and 1 ≤ x ≤ n/4. For these values of n and x we get that fn is convex
since f ′′

n is a decreasing function and f ′′
n (x) ≥ f ′′

n (n/4) ≥ 0.

Ax+1

Ax
= exp

(
max

{
fn(1), fn

(n

4

)})
.

If n ≥ 2 we have the estimates

fn(1) = 2 log(n − 1) − log 2 −
(

2 log n

n

)
(n − 3) − 2 ≤ − log 2

fn(n/4) = 2 log

(
3n

4

)
− log

(n

4
+ 1
)
−
(

2 logn

n

)(n

2
− 1
)
− 2 ≤ 2 log

(
3

4

)
.

Since − log 2 ≤ 2 log(3/4), we get that Ax ≤ (9/16)x−1. It now follows that
n
4∑

j=1

Aj ≤ A1

∞∑

j=0

(
9

16

)j

=

(
16

7

)
A1.

For n ≥ 4 we get A1 = n2 exp
{
− 2(n−1)

n log n − 2
}
≤ 2e−2. This gives that

n
4∑

j=1

Aj ≤ (32/7)e−2 ≤ 2/3.
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For the next part of the proof let n ≥ 10. Recall that f
′′

n is a decreasing function,
which implies that for n/4 ≤ j ≤ n/2

f ′
n(j) ≥ min {f ′

n(n/4), f ′
n(n/2)} ≥ 0

where the last inequality holds since n ≥ 10. Since fn is an increasing function with
fn(n/4) ≤ 0 and fn(n/2) ≥ 0 then there exists a unique point z ∈ [n/4, n/2] such
that fn(z) = 0. It follows that if n/4 ≤ j ≤ z then Aj ≤ An/4 and if z ≤ j ≤ n/2
then Aj ≤ An/2. Combining these two inequalities gives us that for n/4 ≤ j ≤ n/2

Aj ≤ max{An/4, An/2}.
To compare An/4 and An/2 we use Stirling’s formula (4.6). For n ≥ 2

An/4 =

(
n!(
3n
4

)
!

)2(
1(
n
4

)
!

)
exp

{
−
(

3n

8

)
log n − n

2

}

≤
(

e
1
6n 4

√
2

3
√

πn

)
n−n

8

(
4

3

) 3n
2

4
n
4 e−

3n
4 ≤ n−n

8

(
4

3

) 3n
2

4
n
4 e−

3n
4

An/2 =

(
n!(
n
2

)
!

)2(
1(
n
2

)
!

)
exp

{
−
(n

2

)
log n − n

}

≤
(

2e
1
6n

√
πn

)
2

3n
2 e−

3n
2 ≤ 2

3n
2 e−

3n
2 .

It follows that

nAn/4 ≤ exp{φ1(n)} and nAn/2 = exp {φ2(n)} ,

where

φ1(n) = log n −
(n

8

)
log n −

(
3n

4

)
+

(
3n

2

)
log

(
4

3

)
+
(n

4

)
log 4

φ2(n) = log n −
(

3n

2

)
+

(
3n

2

)
log 2.

For n ≥ 10 we have φ1(n) ≤ 0 and φ2(n) ≤ 0 which implies that

n/2∑

j=n/4

Aj ≤
(

1

4

)
max

{
nAn

4
, nAn

2

}
≤ 1

4
.

�

Proof of Lemma 4.8. Let n/2 ≤ j ≤ n and Bj be as in equation (4.9). As usual,
consider we consider the ratio between two consecutive terms

Bj+1

Bj
=

(n − j)2

(j + 1)
exp {− logn − 2} ≤

(n

2

)
exp{− logn − 2} ≤ 1

2
.

Note that Bj ≤
(

1
2

)n/2−j
Bn/2, which implies that

γ(n) =
n∑

j=n/2

Bj ≤ Bn/2

∞∑

j=0

(
1

2

)j

= 2Bn/2.

Since Bn
2

= An
2
≤ (2/e)

3n
2 then for n ≥ 2 we have that γ(n) ≤ 2(2/e)

3n
2 . �
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4.3. Random Insertions. In the random insertion shuffle for a deck of n cards, one
picks out a random card and inserts it back into the deck at a random position.
This shuffle is modeled by the measure q on the Sn given by

q(τ) =






1/n if τ = e
2/n2 if τ = ci,j s.t. 1 ≤ i, j ≤ n and |i − j| = 1
1/n2 if τ = ci,j s.t. 1 ≤ i, j ≤ n and |i − j| > 1
0 otherwise.

(4.11)

where ci,j denotes the cycle created by taking the card in position i and inserting
it into position j. A formal definition is given by

ci,j =






e if i = j
(j, j − 1, . . . , i + 1, i) if 1 ≤ i < j ≤ n
(j, j + 1, . . . , i − 1, i) if 1 ≤ j < i ≤ n.

Random insertion is the first of the shuffles discussed in this paper for which it
is not known whether there is a total variation cutoff or not although it is strongly
believed that there is one. The results of Chen (2006) and Chen and Saloff-Coste
(2008) show that there is a cutoff in ℓ2 but the exact cutoff time is not known.
What is known and follows from Diaconis and Saloff-Coste (1994) is that there is
a pre-cutoff (in both total variation and ℓ2) at time n log n. Finding the precise ℓ2

cutoff time and proving a cutoff in total variation are challenging open problems
that have been investigated (but not solved) by Uyemura-Reyes (2002).

Theorem 4.9. (Diaconis and Saloff-Coste, 1994; Uyemura-Reyes, 2002)
Let q be the random insertion measure on Sn defined above. For c > 0 and t ≥
4n(logn + c) there exists a constant B such that

d2(q
(t), u) ≤ Be−c.

For any sequence (kn) such that (2kn − n log n)/n tends to −∞ as n tends to ∞
then

dTV(q(kn), u) → 1 and d2(q
(kn), u) → ∞.

In Diaconis and Saloff-Coste (1994) the mixing time in Theorem 4.9 is shown to
be O(n log n) while in Uyemura-Reyes (2002) the more precise upper bound given
in Theorem 4.9 is shown. The proof of the upper bound in Theorem 4.9 relies on
the comparison techniques developed in Diaconis and Saloff-Coste (1993).

Definition 4.10. Let V be a state space equipped with a Markov kernel K with
reversible measure ν. The Dirichlet form associated to (K, ν) is

EK,ν(f, g) = 〈(I − K)f, g〉ν =
∑

x∈V

[(I − K)f(x)]g(x)ν(x)

=
1

2

∑

x,y∈V

(f(x) − f(y))(g(x) − g(y))ν(x)K(x, y)

where f, g ∈ ℓ2(ν, V ). In the case where V is a finite group and p(x−1y) = K(x, y)
we set Ep,ν = EK,ν .
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Diaconis and Saloff-Coste show the following theorem.

Theorem 4.11. (Diaconis and Saloff-Coste, 1993) Let q and q̃ be the probabil-

ity measures on a finite group G. Set E = Eq,u, Ẽ = Eq̃,u and βi, β̃i, 0 ≤ i ≤ |G| − 1

to be the associated Dirichlet forms and eigenvalues of q and q̃ respectively. Let h̃t

to be the law at time t of the continuous time process associated with q̃. If there
exists a constant A such that Ẽ ≤ AE then

d2(q
(t), u)2 ≤ β2t1

− (1 + d2(h̃t2/A, u)2) + d2(h̃t/A, u)2

where t = t1 + t2 + 1 and β− = max{0,−β|G|−1}.

Let q and q̃ be the measures for the random insertion shuffle and the random
transposition shuffle respectively. In his thesis, Uyemura-Reyes shows that A = 4
is the smallest constant such that Ẽ ≤ AE . By noting that β− = 0 we get

d2(q
(t), u)2 ≤ d2(h̃t/4, u)2. (4.12)

Equation (4.12) gives the following corollary to Proposition 4.6.

Corollary 4.12. Let q be the random insertion measure on Sn defined above. If
n ≥ 10, c ≥ 2 and t ≥ 2n(log n + c) then

d2(q
(t), u)2 ≤ e−(c−2).

For any sequence (kn) such that (2kn − n log n)/n tends to −∞ as n tends to ∞
then

lim
n→∞

dTV(q(kn), u) = 1.

Proof . The upper bound results as a corollary to Proposition 4.6 after applying
equation (4.12). The improvement by a factor of 2 compared to Theorem 4.9 is due
to the use of the continuous time random transposition process in the comparison
inequality (4.12).

Uyemura-Reyes also proves the total variation lower bound in his thesis but his
proof uses a rather sophisticated argument involving results concerning the longest
increasing subsequence of a permutation. We give an alternative proof of this result
based on a technique due to Wilson (2004).

First note the following result of Uyemura-Reyes. Set ρ to be the permutation
representation. Let q to be the random insertion measure and Q its associated
Markov kernel such that Q(x, y) = q(x−1y). In Uyemura-Reyes (2002) it is shown
that the Fourier transform q̂(ρ) has an eigenvector v = (v0, . . . , vn−1) where

q̂(ρ)v =

(
1 − 1

n

)
v and vi = 1 − 2i

n − 1
.

As noticed at the end of Section 2.2, it follows that fρ(σ) = 〈ρ(σ)v, v〉, σ ∈ Sn,
is an eigenvector of Q with associated eigenvalue (1 − 1/n).
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Computing fρ(σ), one gets

fρ(σ) =

〈
n−1∑

i=0

(
1 − 2i

n − 1

)
eσ(i),

n−1∑

j=0

(
1 − 2j

n − 1

)
ej

〉

=

n−1∑

j=0

(
1 − 2σ(j)

n − 1

)(
1 − 2j

n − 1

)

=

n−1∑

j=0

1 − 2j

n − 1
− 2σ(j)

n − 1
+

4σ(j)j

(n − 1)2

= −n +
4

(n − 1)2

n−1∑

j=0

σ(j)j. (4.13)

Therefore

f2(σ) = n2 − 8n

(n − 1)2

n−1∑

j=0

σ(j)j +
16

(n − 1)4

n−1∑

i,j=0

σ(i)σ(j)ij

and

∑

σ∈Sn

f2(σ) = n!n2 − 8n

(n − 1)2

n−1∑

j=0

j
∑

σ∈Sn

σ(j) +
16

(n − 1)4

n−1∑

i,j=0

ij
∑

σ∈Sn

σ(i)σ(j)

= n!n2 − 8n[(n − 1)!]

(n − 1)2

(
n(n − 1)

2

)2

+
16[(n− 2)!]

(n − 1)4

(
n(n − 1)

2

)4

= n!n2 − 8n3(n − 1)!

4
+ n4(n − 2)! = n!

(
n2

n − 1

)

Next we estimate the supremum norm of the discrete square gradient of fρ defined
in (4.13). The discrete square gradient of the function g with respect to the kernel
K is given by the equation

|∇g(x)|2 =
1

2

∑

y

|g(x) − g(y)|2 K(x, y).

Calculating the discrete square gradient for fρ gives us

|∇fρ(σ)|2 ≤ 16

n2(n − 1)4

n−1∑

i,j=0

∣∣∣∣∣

n−1∑

k=0

σ−1(k) (k − cij(k))

∣∣∣∣∣

2

≤ 16

n2(n − 1)2

n−1∑

i,j=0

n−1∑

k=0

|k − ci,j(k)|2

where cij is defined in (4.12). To calculate k − cij(k) we consider the following two
cases.
Case 1 If i < j

k − cij(k) =






i − j if k = i
1 if i < k ≤ j
0 otherwise.
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Case 2 If j < i

k − cij(k) =






i − j if k = i
−1 if j ≤ k < i
0 otherwise.

It follows that

|∇f(σ)|2 ≤ 16

n2(n − 1)2

∑

i<j

n−1∑

k=0

|k − cij(k)|2 +
∑

j<i

n−1∑

k=0

|k − cij(k)|2

=
16

n2(n − 1)2

∑

i<j

(
(i − j)2 + (j − i)

)
+
∑

j<i

(
(i − j)2 + (i − j)

)

=
16

n2(n − 1)2

n−1∑

i,j=0

(i − j)2 + |i − j|

≤ 32

n2(n − 1)2

n−1∑

i,j=0

(i − j)2 ≤ 32.

Lemma 4 of Wilson (2004) along with the estimate above imply the stated lower
bound in total variation.

�

5. Random walks driven by conjugacy classes.

5.1. Review of some discrete time results. In Section 4 we considered the random
walk on Sn driven by the conjugacy class of transpositions. More generally, one can
study random walks driven by a fixed conjugacy class. Recall that C is a conjugacy
class of a group G if for some x ∈ G we have that C = {gxg−1 : ∀g ∈ G}.

Throughout this section, C will refer to a conjugacy class in Sn and supp(C) will
denote the support size of C, that is, the number of points that are not fixed under
the action of an element in C. Conjugacy classes of the symmetric group Sn are
described by the cycle structure of their elements which is often given by a tuple
of non-increasing integers greater than or equal to 2 and with sum at most n. For
instance, in Sn with n ≥ 8, the tuple (4, 2, 2) describes the conjugacy class C of
those permutations that are the product of two transpositions and one 4-cycle, all
with disjoint supports. In this example, supp(C) = 8.

If C consists of odd permutations, that is, permutations which can be written
as a product of an odd number of transpositions, then C generates Sn. If C is
even, that is, any element in C can be written as the product of an even number of
transpositions and C 6= {e} then it generates the alternating group An. Set qC to
be the measure

qC(σ) =

{ 1
#C if σ ∈ C
0 otherwise

(5.1)

where #C denotes the number of elements in C. When C is an odd conjugacy class
the random walk driven by qC is be periodic and qt

C is supported on An when t is
even, and on Sn\An otherwise. In this case, it is convenient to study the random
walk on An driven by q2

C to avoid periodicity.
The mixing time of these random walks was studied in Lulov and Pak (2002),

Müller and Schlage-Puchta (2007), Roichman (1996) and Schlage-Puchta (2008),
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among other works. See the discussion in Saloff-Coste (2004). For simplicity, we
describe some of the known results in the case of even conjugacy classes. The same
results hold in the odd case, modulo periodicity. In Schlage-Puchta (2008) it is
shown that any sequence (An, qCn) has a total variation cutoff at time

t1(n) = inf{k : qk
Cn

(ϕ) ≤ log n}
where ϕ(σ) is the number of fixed points of σ ∈ Sn and qk

C(ϕ) is the expected value
of ϕ taken according to the measure qk

C . It is well known , see Diaconis (1988) and
Sagan (2001), that

ϕ(·) − 1 = χ(n−1,1)(·) = n − 1 − supp(·).

This implies that ϕ−1 is an eigenfunction of qC with eigenvalue
(

χ(n−1,1)(C)

n−1

)
. Thus

we can rewrite t1(n) as

t1(n) = inf

{
k : (n − 1)

(
1 − supp(Cn)

n − 1

)k

+ 1 ≤ log n

}
.

When supp(Cn) is not too large (e.g., supp(Cn)/n = o(1)) then

t1(n) ∼ (n/supp(Cn)) log n

and when supp(Cn) is very large then t1(n) is O(1).
Assuming that supp(Cn) ≤ n − 1, Müller and Schlage-Puchta (2007) show that

the random walk driven by qCn has an ℓ2 pre-cutoff at time t2(n) where
∣∣∣∣t2(n) − 2 logn

log(n/(n − supp(Cn) + 1))

∣∣∣∣ ≤ 3.

As in the total variation case, when supp(Cn) is not too large then

t2(n) ∼ (n/supp(Cn)) log n

and when supp(Cn) is large we get the at t2(n) is O(1). Here, we will focus on the
continuous time process associated to qCn .

Corollary 4.1 in Chen (2006) implies that the continuous time process driven by
qCn has a total variation mixing time bounded above by that of the discrete time
process. Arguments similar to those in Chapter 4 of Roussel (1999) give a lower
bound for the continuous time process that is comparable to the upper bound just
mentioned. In particular, for supp(Cn) ≤ (n− 1)/(log(n− 1)+ 1), these arguments
show that the continuous time chain associated to qCn has a total variation cutoff
at time t1(n).

Perhaps surprisingly, we show below that, in ℓ2, the mixing time of the contin-
uous time process has a lower bound of (n/2) logn for any conjugacy class with
supp(Cn) ≥ 2. A matching upper bound is shown when supp(Cn) → ∞ as n → ∞
as well as for the conjugacy class of 4-cycles.

5.2. ℓ2 lower bounds in continuous time. Through out this section Cn is a conjugacy
class in Sn (or An) and cn ∈ Cn is an arbitrary fixed element in Cn. Recall that
supp(Cn) is n − ϕ(cn) where ϕ(·) is the number of fixed points.

Theorem 5.1. For each n, set

tn =
n

2
log n.
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For any odd conjugacy class Cn ⊂ Sn with supp(Cn) ≥ 2, and any ǫ ∈ (0, 1)

lim
n→∞

d2(hCn,(1−ǫ)tn
, un) = ∞.

In order to understand the mixing time of these continuous time processes we will
again rely on (2.3) and we will need to estimate the dimensions and characters of
some of the irreducible representations of Sn. The following well known definitions
and results will help us understand these quantities.

Definition 5.2. Let λ be a Young diagram with n boxes, as usual, we denote this
by λ ⊢ n. The hook at the cell (i, j) is defined as the set of boxes Hi,j where

Hi,j = {(i, l) : (i, l) ∈ λ, l ≥ j} ∪ {(k, j) : (k, j) ∈ λ, k ≥ i}.
Hi,j has hook length hi,j = |Hi,j |.
Theorem 5.3. (The Hook formula) Let λ be a Young diagram with n boxes.
Set dλ to be the dimension of the irreducible representation associated to λ. Then

dλ =
n!∏

(i,j)∈λ hi,j
(5.2)

With the hook formula we can now get an estimate on the dimension of some
representations of Sn.

Lemma 5.4. Let n ∈ N and λ ⊢ n be a Young diagram. If λ fits into a rectangle
of s × t boxes, then

dλ ≥
(

n

e(s + t − 1)

)n

.

Proof . Note that any hook in λ will be of hook length at most s + t − 1. The
inequality then follows from Stirling’s formula in (4.6) and hook formula (5.2). �

We will use the following rather non-trivial bound on character ratios.

Theorem 5.5. (Rattan and Śniady, 2008) Let a > 0 be a fixed constant, and
let λ ⊢ n be a Young diagram with at most a

√
n rows and columns. Then there

exists a constant D = D(a) such that
∣∣∣∣
χλ(σ)

dρ

∣∣∣∣ ≤
(

D max{1, |σ|2/n}√
n

)|σ|

for any σ ∈ Sn and where |σ| is the minimal number of transpositions needed to
write σ as a product of transpositions.

Recall that, for any σ ∈ Sn which is not the identity then |σ| ≤ supp(σ).

Proof of Theorem 5.1. The idea behind this proof is to write the desired ℓ2 distance
as in equation (2.3) and find an irreducible representation which has large dimension
and small character. The representations that are useful in this respect turn out to
be those that have an approximately square shape.

Let λn ⊢ n be a Young diagram that fits into a box of side ⌈√n⌉, so that λn

looks almost like a square. By Lemma 5.4 and the fact that ⌈√n⌉ ≤ 2
√

n we get
that

dλn ≥
(

n

2e⌈√n⌉

)n

≥
(√

n

4e

)n

. (5.3)
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If Cn is a conjugacy class with supp(Cn) ≥ √
n and cn ∈ Cn, Roichman (1996,

Theorem 1) yields a positive constant q < 1 such that
∣∣∣∣
χλn(cn)

dλn

∣∣∣∣ ≤ qsupp(Cn) ≤ q
√

n.

If 2 ≤ supp(Cn) ≤ √
n, Theorem 5.5 implies that

∣∣∣∣
χλn(cn)

dλn

∣∣∣∣ ≤
D√
n

.

In either case, we have that ∣∣∣∣
χλn(cn)

dλn

∣∣∣∣ = o(1).

Using (5.3), we obtain that, for any ǫ > 0,

d2
λn

{
− (1 − ǫ)n log n

(
1 − χλn(cn)

dλn

)}
≥

( n

16e2

)n

exp {− (1 − ǫ)n log n (1 + o(1))} .

It now follows from (2.3)

lim
n→∞

d2(hCn,(1−ǫ)tn
, un) ≥ lim

n→∞
dλn exp

{
−(1 − ǫ)tn

(
1 − χλn(cn)

dλn

)}
= ∞

as desired. �

Using the same ideas as in the proof of Theorem 5.1 we get the following result.

Theorem 5.6. Let Cn be a conjugacy class in An with supp(Cn) ≥ 2, and set un

to be the uniform measure on An. For any ǫ ∈ (0, 1) and tn = n
2 log n

lim
n→∞

d2(hCn,(1−ǫ)tn
, un) = ∞.

Remark 5.7. For ǫ > 0, it is interesting to consider the discrete time chain driven
by

q̃Cn,ǫ(σ) =






ǫ if σ = e
1−ǫ
#Cn

if σ ∈ Cn

0 otherwise.

(5.4)

When ǫ = 1/2, this is often called the lazy chain associated to qCn . The arguments
used in the proof of Theorem 5.1 show that the random walk driven by q̃Cn,ǫ will
have a ℓ2 mixing time lower bound of (n/2) log1/ǫ(n).

In Saloff-Coste (2004) it is conjectured (Conjecture 9.3) that both the total
variation mixing time and the ℓ2 mixing time of the random walk driven by q̃Cn

will have an upper bound of (2n/supp(Cn)) log n. While this is true for in the case
of total variation, the results above show that the bound does not hold for ℓ2.

The proof of Theorem 5.1 relies on the character estimates of Rattan and Śniady
(2008) and Roichman (1996). While these estimates are very useful, one can con-
struct simple Young diagrams and use the Murnaghan-Nakayama Rule below to
get estimates on the values of characters at k-cycles, for infinitely many k. This
gives a much more accessible proof of a weaker version of Theorems 5.1 and 5.6.
For further details on the following definitions see Section 4.10 in Sagan (2001).
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Definition 5.8. A skew hook ξ in a Young diagram is a collection of boxes that
result from the projection of a regular hook along the right boundary of a Young
diagram.

The leg length of a skew hook ξ is denote by ll(ξ) with

ll(ξ) = the number of rows of ξ − 1.

Figure 5.2. A hook and its corresponding skew hook of leg length 2.
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Theorem 5.9. (Murnaghan-Nakayama Rule) If λ is a partition of n and
α ∈ Sn such that α has cycle type (α1, α2, . . . , αi), then we have

χλ(α) =
∑

ξ

(−1)ll(ξ)χλ\ξ(α\α1) (5.5)

where the sum runs over all skew hooks ξ of λ having α1 cells and χλ\ξ(α\α1)
denotes that character of the representation λ\ξ evaluated at an element of cycle
type α\α1.

It is important to remark that when using the Murnaghan-Nakayama rule, if
it is impossible to remove a skew hook of the right size then the part of the sum
corresponding to that skew hook is zero. A good source for more information on
the Murnaghan-Nakayama rule and skew hooks is Sagan (2001).

Lemma 5.10. For m ∈ N set n = m(m + 1)/2. Let λ = (λ1, λ2, . . . , λm) ⊢ n be a
triangular Young diagram such that λi = m − i + 1. Let ck be a cycle of length k.
If k = 4i + 1 for i = 1, 2, . . . then χλ(ck) > 0. If k is even then χλ(ck) = 0.

Proof . The Murnaghan-Nakayama rule implies that

χλ(ck) =
∑

|ξ|=k

(−1)ll(ξ)dλ\ξ.

Any hook in λ composed of must have even leg length by construction so it
follows that χλ(ck) > 0. The second part of the proof follows directly from the
Murnaghan-Nakayama rule and the fact that every hook in λ will have odd hook
length, making it impossible to remove a skew-hook of even length. �

Using the dimension and character estimates from (5.3) and Lemma 5.10, one
can replicate the ideas in the proof of Theorem 5.1. If ck denotes here the conjugacy
class of cycles of length k, for any ǫ > 0 and tn = n

2 log n, we have
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(1) if kn is even then

lim
n→∞

d2(hckn ,(1−ǫ)tn
, un) = ∞

(2) if kn is odd and kn = 4in + 1 for in = 1, 2, 3, . . . then

lim
n→∞

d2(hckn ,(1−ǫ)tn
, un) = ∞.

5.3. Total variation upper bounds in continuous time. As we mentioned at the be-
ginning of this section, the mixing time of the continuous time process hCn,tn will
depend on whether one considers the total variation or the ℓ2 distance. In this
section we derive a total variation upper bound of type (n/supp(Cn)) log n for the
continuous time process associated to qCn . In the next section, we shall show that
the ℓ2 mixing time has an upper bound of (n/2) log n for the continuous time process
when supp(Cn) → ∞.

Proposition 5.11. Let Cn be an even conjugacy class and un to be the uniform
measure on An. Let Tn be the total variation cutoff time of qCn (in discrete time)
and assume that Tn → ∞. Then, for any ǫ > 0,

lim
n→∞

dTV(hCn,(1+ǫ)Tn
, un) = 0

Proof . Let

T d
n,ǫ = inf{t ≥ 0 : dTV(q

(t)
Cn

, un) ≤ ǫ}
T c

n,ǫ = inf{t ≥ 0 : dTV(hCn,t, un) ≤ ǫ}.
Corollary 4.1 in Chen (2006) shows that for any δ ∈ (0, 1), ǫ > 0 and η ∈ (0, ǫ)
there exists an integer N = N(δ, η) such that

(1 − δ)T c
n,ǫ ≤ T d

n,η for all n ≥ N .

In particular, for any ǫ > 0 we can find a δ ∈ (0, 1) and an N1 = N1(δ, η) such that
for all n ≥ N

T c
n,η ≤

√
1 + ǫ T d

n,η/2.

From Schlage-Puchta (2008) we know that the random walk driven by qCn has
cutoff, hence for any ǫ > 0 and η ≥ 0 there exists an N2 = N2(ǫ, η) such that for
all n ≥ N2

T d
n,η/2 ≤

√
1 + ǫ Tn.

Combining the inequalities above gives that for any ǫ > 0 and η > 0 there exists
an N = max{N1, N2} such that for all n ≥ N

T c
n,η ≤ (1 + ǫ)Tn.

The desired result follows.
�

Remark 5.12. In the case of the lazy random walk q̃Cn,1/2 defined in (5.4), one can
show that the total variation mixing time is bounded by approximately twice that
of the discrete time process qCn . (This is a more general phenomenon.) We only
treat the case when Cn is an even conjugacy class. Note that

dTV(q̃
(tn)
Cn

, un) =

t∑

k=0

2−tn

(
tn
k

)
dTV(q

(k)
Cn

, un).
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For any constant D > 0 set In = [0, tn/2 − D
√

tn] ∪ [tn/2 + D
√

tn, tn]. Then we
have that ∑

k∈An

2−tn

(
tn
k

)
dTV(q

(k)
Cn

, un) ≤
∑

k∈An

2−tn

(
tn
k

)
.

By the central limit theorem the right hand side tends to 0 as D tends to ∞.
Outside of the set In we get that
∑

k/∈An

2−tn

(
tn
k

)
dTV(q

(k)
Cn

, un) ≤ dTV(q
(tn/2−D

√
tn)

Cn
, un)

∑

k/∈An

2−tn

(
tn
k

)

≤ dTV(q
(tn/2−D

√
tn)

Cn
, un).

The arguments above shows that the cutoff time of the lazy walk is asymptoti-
cally 2Tn. A similar argument would show that for any ǫ > 0 the walk driven by
q̃Cn,ǫ has a cutoff time asymptotically equal to (1/(1 − ǫ))Tn.

5.4. Continuous time ℓ2 upper bounds: supp(Cn) → ∞. Section 5.2 shows that the
ℓ2 mixing time of hCn,t must be at least (n/2) logn for all non trivial conjugacy
classes. We show that when supp(C) goes to ∞ as n → ∞ and for the conjugacy
class of 4-cycles the continuous time random walk has an ℓ2 cutoff at (n/2) log n.

Theorem 5.13. Let Cn be a conjugacy class such that supp(Cn) → ∞ as n → ∞.
For any ǫ > 0, and tn = (n/2) logn

(1) limn→∞ d2

(
hCn,(1+ǫ)tn

, un

)
= 0 if Cn is odd.

(2) limn→∞ d2

(
hCn,(1+ǫ)tn

, un

)
= 0 if Cn is even.

Proof . Let Cn be an odd conjugacy class. Set (βi)
n!−1
0 to be the eigenvalues

associated to the measure qCn and λi = 1 − βi. From (2.1) we know that

d2(hCn,(1+ǫ)tn
, un)2 =

n!−1∑

i=1

e−2(1+ǫ)tnλi

=
∑

λi≤1−1/w

e−2tn(1+ǫ)λi +
∑

λi≥1−1/w

e−2tn(1+ǫ)λi .

We will use the following Calculus inequality.

Claim 5.14. For w ≥ 4 and 0 ≤ x ≤ 1 − 1/w we have that 2 log(1 − x) ≥ −wx.

For 1/3 ≥ ǫ > 0, w = (1 + ǫ)/ǫ ≥ 4, so by the claim above and (2.1) we obtain

d2(hCn,(1+ǫ)tn
, un)2 ≤

∑

1/w≤βi

βǫ4tn

i + n!e−2tn(1−1/w)(1+ǫ)

=
∑

1/w≤βi

βǫ4tn

i + n!e−n log n

We know that the eigenvalues of qCn are just the normalized characters χρ(cn)/dρ,
cn ∈ Cn, that occur with multiplicity d2

ρ. Let ρ1 and ρ2 be the trivial and sign rep-
resentations respectively. When Cn is odd χρ2(cn)/dρ2 = −1, so the character
associated to the sign representation does not contribute to the sum of eigenvalues
above. Furthermore, (see, e.g., Müller and Schlage-Puchta, 2007, Lemma 2)

d2(q
(2t)
Cn

, un)2 =
1

2

∑

ρ6=ρ1,ρ2

d2
ρ

(
χρ(cn)

dρ

)4t

. (5.6)
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It now follows that

d2(hCn,(1+ǫ)tn
, un)2 ≤

∑

ρ6=ρ1,ρ2

d2
ρ

(
χρ(cn)

dρ

)ǫ4tn

+ n!e−n log n

≤ 2d2(q
(ǫ2tn)
Cn

, un)2 + n!e−n log n.

In Müller and Schlage-Puchta (2007) it is shown that there exists a fixed constant

D > 0 such that for tn even and tn ≥ (Dn/supp(Cn)) log n then d2(q
(tn)
Cn

, un) → 0

as n → ∞. Since supp(Cn) → ∞ as n → ∞ then for large enough n we have that
ǫn logn ≥ (Dn/supp(Cn)) log n and the desired result follows. The case when Cn is
an even conjugacy class can be treated in a similar way. �

Remark 5.15. Let q̃Cn be the lazy chain defined in (5.4). In the remark after
Theorem 5.6 it is noted that the random walk driven by q̃Cn will have a ℓ2 lower
bound on the mixing time of (n/2) log2(n). A matching upper bound for conjugacy
classes Cn such that supp(Cn) → ∞ as n → ∞ follows from an argument similar to
the proof of Theorem 5.13.

5.5. ℓ2 continuous time upper bound: 4-cycles. The next theorem gives a sharp ℓ2

upper bound for the 4-cycle walk. In the case when supp(Cn) → ∞ we relied on
the (rather deep) results of Roichman (1996), Müller and Schlage-Puchta (2007)
and Schlage-Puchta (2008) concerning the discrete time case to obtain a continuous
time result matching our lower bound. This technique does not work for conjugacy
classes with fixed support size. We conjecture that, with out any restriction on
supp(Cn), (n/2) logn is a ℓ2 cutoff time for the family (hCn,t). Note however that
there is no reasons to hope for a proof simpler than that for random transposition.
In discrete time, the only cases with fixed support size for which the ℓ2 cutoff time
has been determined are the cases of support size at most 6 (and the 7-cycles)
treated in Roussel (1999) and Roussel (2000). Using the techniques of Roussel
(1999) and Roussel (2000) one can probably treat the corresponding continuous
time processes, but this will be hard work. Here we focus on the 4-cycle walk. The
reason is that we are able to reduce most technical computations to those already
done above for transposition. We note that is is unlikely such reduction would work
easily for 3-cycles and other even conjugacy classes (see Roussel, 1999 and Roussel,
2000).

Recall that the conjugacy class of 4-cycles is denoted by c4. We let c4 be a given
4-cycle.

Theorem 5.16. For n ≥ 11, c ≥ 2 and t ≥ (n/2)(log n + c)

d2 (hc4,t, un) ≤ e−(c−2)

We will use (2.3) again and bound χρ(c4)/dρ, c4 ∈ c4, with the same upper
bounds that we used for χρ(τ)/dρ, τ ∈ c2, in the case of transpositions in Proposi-
tion 4.6. In order to do this we will need the following definitions and lemmas.

Definition 5.17. If λ′ = (λ′
1, . . . , λ

′
j) and λ = (λ1, . . . , λk) are two Young diagrams

such that
∑j

i=1 λ′
i =

∑k
i=1 λi = n and it is possible to get from λ to λ′ by moving

boxes up to the right then we say that λ′ ≥ λ.
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Definition 5.18. Let λ = (λ1, λ2, . . . , λm) denote a Young diagram such that∑m
i=1 λi = n. For any integer l ≥ 0

Mλ,2l =

m∑

j=1

{
(λj − j)l(λj − j + 1)l − jl(j − 1)l

}
.

Lemma 5.19. Let λ′ and λ be two Young diagrams associated to irreducible rep-
resentations of Sn. If λ′ ≥ λ then Mλ′,2l ≥ Mλ,2l for all l ≥ 0.

Proof . It suffices to show that Mλ′,2l ≥ Mλ,2l for that case when a < b and
λ′

a = λa + 1, λ′
b = λb − 1 and λ′

c = λc for c 6= a, b. In this case,

Mλ′,2l − Mλ,2l = (λa − a + 1)l
{

((λa − a + 1) + 1)
l − ((λa − a + 1) − 1)

l
}

+(λb − b)l
{
(λb − b − 1)l − (λb − b + 1)l

}
.

Set x = λa−a+1 and y = λb−b then n ≥ x ≥ y ≥ 1−n and Mλ′,2l−Mλ,2l = fx,y(l)
where

fx,y(l) = xl
{
(x + 1)l − (x − 1)l

}
+ yl

{
(y − 1)l − (y + 1)l

}
.

Diaconis (1988) shows that fx,y(1) ≥ 0 for n ≥ x ≥ y ≥ 1 − n which implies that
Mλ′,2 ≥ Mλ,2. We will show the general case by induction. Assume that fx,y(l) ≥ 0
then

fx,y(l + 1) = xl+1
{
(x + 1)l+1 − (x − 1)l+1

}
+ yl+1

{
(y − 1)l+1 − (y + 1)l+1

}

= x2
(
xl
{
(x + 1)l − (x − 1)l

})
+ y2

(
yl
{
(y − 1)l − (y + 1)l

})

+xl+1
{
(x + 1)l + (x − 1)l

}
− yl+1

{
(y + 1)l + (y − 1)l

}

≥ xl+1
{
(x + 1)l + (x − 1)l

}
− yl+1

{
(y + 1)l + (y − 1)l

}
.

The last inequality follows since fx,y(l) ≥ 0. To conclude that fx,y(l + 1) ≥ 0 we
must check the following three cases.

Case 1: x ≥ y ≥ 0 . This case follows directly from the assumption x ≥ y.

Case 2: x ≥ 0 and y ≤ 0. Note that in this case

xl+1
{
(x + 1)l + (x − 1)l

}
≥ 0

yl+1
{
(y + 1)l + (y − 1)l

}
≤ 0.

The last inequality follows from the fact that l and l+1 are odd and even numbers.

Case 3: y ≤ x ≤ 0. In this case let x̃ = −x and ỹ = −y then ỹ ≥ x̃ ≥ 0 and

xl+1
{
(x + 1)l + (x − 1)l

}
− yl+1

{
(y + 1)l + (y − 1)l

}
=

ỹl+1
{
(ỹ + 1)l + (ỹ − 1)l

}
− x̃l+1

{
(x̃ + 1)l + (x̃ − 1)l

}
.

Case 3 now follows directly from Case 1. �

Lemma 5.20. Let λ = (λ1, λ2, . . . , λj) denote a Young diagram such that
∑

λi =
n. Then

M2l,λ ≤ n(λ1 − 1)lλl−1
1 .
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Proof .

M2l,λ =

j∑

i=1

(λj − j)l(λj − j + 1)l − jl(j − 1)l

≤
∑

λj≥j−1

(λj − j)l(λj − j + 1)l

+
∑

λj<j−1

(λj − j)l(λj − j + 1)l − jl(j − 1)l

For 0 ≤ λj ≤ j − 1 it is true that |λj − j| ≤ j and |λj − j + 1| ≤ j − 1 which implies
that the second sum in the inequality above is negative. Therefore

M2l,λ ≤
∑

λj≥j−1

(λj − j)l(λj − j + 1)l ≤ n(λ1 − 1)lλl−1
1 .

�

Lemma 5.21. Let ρ be an irreducible representation of Sn and λ the associated
Young diagram. For n ≥ 11 the normalized character r4(λ) = χρ(c4)/dρ can be
bounded as follows.

r4(λ) ≤
{

1 − 2λ1(n−λ1)
n(n−1) if λ1 ≥ n/2

λ1−1
n−1 if λ1 ≤ n/2.

Proof . Set λ = (λ1, λ2, . . . , λj). Ingram (1950) shows that

n!

(n − 4)!
r4(λ) = M4,λ − 2(2n − 3)M2,λ. (5.7)

Lemma 5.19 implies that M2,λ ≥ M2,λ′ where λ′ = (λ1, 1, 1, . . . , 1). We get

M2,λ′ = (λ1 − 1)λ1 +

n−λ1∑

j=2

(1 − j)(2 − j) − j(j − 1)

= (λ1 − 1)λ1 − 2

n−λ1−1∑

j=1

j

= (λ1 − 1)λ1 − (n − λ1 − 1)(n − λ1).

If λ1 ≥ n/2 then M4,λ ≤ M4,(λ1,n−λ1). Note that

M4,(λ1,n−λ1) = (λ1 − 1)2λ2
1 + (n − λ1 − 1)2(n − λ1)

2 − 4

≤ (λ1 − 1)2λ2
1 + (n − λ1 − 1)2(n − λ1)

2

= [(λ1 − 1)λ1 − (n − λ1 − 1)(n − λ1)]
2 + 2(λ1 − 1)λ1(n − λ1 − 1)(n − λ1).

Hence if λ1 ≥ n/2, we have

M4,λ − 2(2n− 3)M2,λ = [(λ1 − 1)λ1 − (n − λ1)(n − λ1 − 1)]

×[(λ1 − 1)λ1 − (n − λ1)(n − λ1 − 1) − 2(2n − 3)]

+2(λ1 − 1)λ1(n − λ1)(n − λ1 − 1).

Note that

(λ1 − 1)λ1 − (n − λ1)(n − λ1 − 1) − 2(2n − 3) ≤ (n − 2)(n − 3).
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It follows that

M4,λ − 2(2n− 3)M2,λ ≤ (n − 2)(n − 3)[(λ1 − 1)λ1 − (n − λ1)(n − λ1 − 1)]

+2λ1(λ1 − 1)(n − λ1)(n − λ1 − 1). (5.8)

If λ1 ≥ n − 1 then 2λ1(λ1 − 1)(n − λ1)(n − λ1 − 1) = 0. If λ1 ≤ n − 2 then
λ1(λ1 − 1) ≤ (n − 2)(n − 3). In either case, (5.8) gives that

r4(λ) ≤ (λ1 − 1)λ1 − (n − λ1)(n − λ1 − 1)

n(n − 1)
+

2(n − λ1)(n − λ1 − 1)

n(n − 1)

= 1 − 2λ1(n − λ1)

n(n − 1)
.

Next, we show the second part of the inequality. By Lemma 5.20 and (5.7) we have
that for λ1 ≤ n/2

|r4(λ)| ≤ (n − 4)!

n!

[
n(λ1 − 1)2λ1 + 2(2n − 3)n(λ1 − 1)

]

=

(
λ1 − 1

n − 1

)[
(λ1 − 1)λ1 + 2(2n − 3)

(n − 2)(n − 3)

]

≤
(

λ1 − 1

n − 1

)[
n2/4 + 4n− 6

(n − 2)(n − 3)

]
≤ λ1 − 1

n − 1
.

The last inequality holds for n ≥ 11. �

Proof of Theorem 5.16. Recall that

d2(hc4,t, un)2 =
∑

λ6=1

d2
λ exp {−2t (1 − r4(λ))} .

In order to obtain the desired e−2(c−2) constant we will bound the term correspond-
ing to λ = (n − 1, 1) separately. For λ = (n − 1, 1) we get that

M2,(n−1,1) = (n − 2)(n − 1) − 2 and M4,(n−1,1) = (n − 2)2(n − 1)2 − 4

which implies r4((n − 1, 1)) = 1 − 4/(n− 1). So for t ≥ (n/2)(log n + c),

d2
(n−1,1) exp{−2t(1 − r(n−1,1)(4))} ≤ (n − 1)2 exp{−4(logn + c)} ≤ e−4c/n2.

Lemma 5.21 and equation (3.3) imply that for t ≥ (n/2)(log n + c) we have
d2(ht,4, un)2 ≤ e−4c/n2 + S1 + S2 where

S1 =

n/2∑

j=2

(
n!

(n − j)!

)2(
1

j!

)
exp

{
−(log n + c)

(
2j(n − j)

n − 1

)}

S2 =

n−1∑

j=n/2

(
n!

(n − j)!

)2(
1

j!

)
exp {−j(log n + c)} .

For a more detailed description on how to obtain the sums S1 and S2 see the proof
of Proposition 4.2. For c ≥ 2 we have that

(1) −c(2j)(n − j)/(n − 1) ≤ −2(c − 2) − 2j when 2 ≤ j ≤ n/2 and
(2) −jc ≤ −2(c − 2) − 2j when j ≥ 2.
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It follows that

d2(ht,4, un)2 ≤ e−2(c−2)



 1

n2
+

n/2∑

j=1

Aj +

n∑

j=n/2

Bj





where Aj and Bj are defined in equations (4.8) and (4.9). Lemmas 4.7 and 4.8 now
imply that for n ≥ 11

d2(ht,4, un)2 ≤ e−2(c−2)

(
1

n2
+

2

3
+

1

4
+ 2

(
2

e

)3n/2
)

≤ e−2(c−2).

�
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syémetrique. Colloquium Mathematicum 86 (1), 111–135 (2000).

B.E. Sagan. The Symmetric Group, Representations, Combinatorial Algorithms,
and Symmetric Functions. Springer-Verlag, New York (2001).

L. Saloff-Coste. Precise estimates on the rate at which certain diffusions tend to
equilibrium. Mathematische Zeitschrift 217 (4), 641–677 (1994).

L. Saloff-Coste. Lectures on finite Markov chains, volume 1665 of Lecture Notes in
Math., pages 301–413. Springer, Berlin (1997). Lectures on probability theory
and statistics (Saint-Flour, 1996).

L. Saloff-Coste. Random walks on finite groups, volume 110 of Encyclopedia Math.
Sci, pages 261–346. Springer, Berlin (2004). Probability on discrete structures
(H. Kesten, Ed.).

L. Saloff-Coste and J. Zúñiga. Convergence of some time inhomogeneous Markov
chains via spectral techniques. Stocastic Processes and their Applications 117,
961–979 (2007).

J. Schlage-Puchta. Mixing Properties of Finite Permutation Groups (2008). In
progress.

J. Uyemura-Reyes. Random Walk, Semi-direct Products, and Card Shuffling. Ph.D.
thesis, Stanford University (2002).

D. Wilson. Mixing times of lozenge tiling and card shuffling Markov chains. Ann.
Appl. Prob. 14 (1), 274–325 (2004).


