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Abstract. Let (Xi)i∈Z be a regular stationary process for a given filtration. The
weak invariance principle holds under the condition

∑

i∈Z
‖P0(Xi)‖2 < ∞ (see

Hannan, 1979; Dedecker and Merlevède, 2003; Dedecker et al., 2007). In this paper,
we show that this criterion is independent of other known criteria: the martingale-
coboundary decomposition of Gordin (see Gordin, 1969, 1973), the criterion of
Dedecker and Rio (see Dedecker and Rio, 2000) and the condition of Maxwell and
Woodroofe (see Maxwell and Woodroofe, 2000; Peligrad and Utev, 2005; Volný,
2006, 2007).

1. Introduction and Results

The aim of this paper is to study the relation between several criteria to get the
weak invariance principle of Donsker in dependent case. In the paper by Durieu
and Volný (2008), the independence between three of them is already shown. These
criteria are the martingale-coboundary decomposition, the projective criterion of
Dedecker and Rio and the Maxwell-Woodroofe condition. Here, we consider a
fourth one (

∑

i∈Z
‖P0(Xi)‖2 < ∞) and we show that it is independent of the three

others. Let us begin by the statements of the four criteria.

Let (Ω,A, µ) be a probability space and let T be a bijective bimeasurable trans-
formation of Ω preserving µ. We assume (Ω,A, µ, T ) is an ergodic dynamical sys-
tem. Let f : Ω −→ R be a measurable function with zero mean. We recall that the
process (f ◦ T i)i∈N satisfies the weak invariance principle if the process

1√
n

⌊tn⌋−1
∑

k=0

f ◦ T k, t ∈ [0, 1]
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converges in distribution to a Gaussian process in the space D([0, 1]) provided with
the Skorohod topology (see Billingsley, 1968). Let F be a sub-σ-algebra of A such
that T−1F ⊂ F . We denote by Fi the σ-algebra T−iF . The function f is called
regular with respect to the filtration (Fi)i∈Z if

E(f |F−∞) = 0 and E(f |F+∞) = f.

In the sequel, we assume that f is a square integrable function and we write L
p for

L
p(µ), p ≥ 1.

• The first criterion is the martingale-coboundary decomposition due to Gordin
(1969). We will restrict our attention to the martingale-coboundary decomposition
in L

1 (see Gordin, 1973; Esseen and Janson, 1985 for a complete proof). We say
that f admits such a decomposition if f = m + g − g ◦ T where (m ◦ T i)i∈Z ⊂ L

1

is a martingale difference sequence and g ∈ L
1. If m ∈ L

2, then the central limit
theorem holds. Further, if 1√

n
maxi≤n |g ◦ T i| goes to 0 in probability, the weak

invariance principle holds (see Hall and Heyde, 1980). If f is a regular function with
respect to the filtration (Fi)i∈Z then the martingale-coboundary decomposition in
L

1 is equivalent to

∞
∑

i=0

E(f ◦ T i|F0) and

∞
∑

i=0

f ◦ T−i − E(f ◦ T−i|F0) converge in L
1, (1.1)

see Volný (1993). Remark that if the process (f ◦ T i)i∈Z is adapted to (Fi)i∈Z, the
second sum is equal to zero.

• The Dedecker and Rio criterion is satisfied if
∞
∑

k=1

fE(f ◦ T k|F0) converges in L
1. (1.2)

According to Dedecker and Rio (2000), in the adapted case, this condition implies
the weak invariance principle.

• The Maxwell-Woodroofe condition (see Maxwell and Woodroofe, 2000) is sat-
isfied if

∞
∑

n=1

‖E(Sn(f)|F0)‖2

n
3

2

< +∞ (1.3)

where Sn(f) =
∑n−1

i=0 f ◦T i. In the adapted case, Peligrad and Utev (2005) proved
that this condition implies the weak invariance principle. In the general case, the
weak invariance principle holds as soon as (1.3) and

∞
∑

n=1

‖Sn(f) − E(Sn(f)|Fn)‖2

n
3

2

< +∞,

(see Volný, 2006, 2007).

The independence between these three criteria is proved in Durieu and Volný
(2008). Here we add a new criterion. Let us denote by Hk = L

2(Fk) the space of Fk-
measurable functions which are square integrable and denote by Pk the orthogonal
projection operator onto the space Hk ⊖ Hk−1. For f ∈ L

2,

Pk(f) = E(f |Fk) − E(f |Fk−1).
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• Let f be a regular function for the filtration (Fi)i∈Z. As a consequence of a
result given by Heyde (1974) (see Volný, 1993, Theorem 6) the central limit theorem
holds as soon as

∑

i∈Z

‖P0(f ◦ T i)‖2 < ∞. (1.4)

In the adapted case, this result and the weak invariance principle were proved by
Hannan (1973, 1979) under the assumption that T is weakly mixing. Hannan’s
weak invariance principle was proved without the extra assumption by Dedecker
and Merlevède (2003, Corollary 3). Finally, in the general case, the weak invariance
principle under (1.4) is due to Dedecker, Merlevède and Volný (2007, Corollary 2).

Our main result is the following theorem.

Theorem 1.1. Conditions (1.1), (1.2), (1.3) and (1.4) are pairwise independent:

in all ergodic dynamical system with positive entropy, for each couple of conditions

among the four, there exists an L
2-function satisfying the first condition but not

the second one.

With the results of Durieu and Volný (2008), it remains to prove the indepen-
dence of (1.1), (1.2), (1.3) with (1.4).

2. Proof of Theorem 1.1

Let (Ω,A, µ, T ) be an ergodic dynamical system with entropy grea ter or equal
than 1. Let B and C be two independent sub-σ-algebra of A. Let (ei)i∈Z be
a sequence of independent B-measurable random variables in {−1, 1} such that
µ(ei = −1) = µ(ei = 1) = 1

2 and ei = e0 ◦T i, i ∈ Z. We denote by F0 the σ-algebra

generated by C and ei for i ≤ 0 and we set Fi = T−iF0. Note that the case of
entropy in (0, 1) can be studied by using another Bernoulli shift.

We introduce three sequences with the following properties:
(θk)k∈N ⊂ (0, +∞);
(ρk)k∈N ⊂ (0, 1) such that

∑

k≥0 ρk < 1;

(Nk)k∈N ⊂ N such that Nk+1 > Nk.
We can always find a sequence (εk)k∈N ⊂ (0, 1) such that

∑

k≥0 θkNk
√

εk < ∞.
So, we fix such a sequence and denote by f the function defined by

f =

∞
∑

k=1

θke−Nk
1lAk

where the sequence of sets (Ak)k∈N verifies:

• ∀k ∈ N, Ak ∈ C,
• the sets Ak are disjoint,
• ∃a ∈ (0, 1), ∀k ∈ N, aρk ≤ µ(Ak) ≤ ρk,
• ∀k ∈ N, ∀i ∈ {0, . . . , Nk}, µ(T−iAk∆Ak) ≤ εk.

The construction of these sets is done in detail in Durieu and Volný (2008).

First, remark that the process (f ◦ T i)i∈Z is adapted to the filtration (Fi)i∈Z

(then f is regular) and

f ∈ L
2 if and only if

∑

k≥1

θ2
kρk < ∞.

The next proposition is proved in Durieu and Volný (2008).
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Proposition 2.1. For the function f previously defined,

i. (1.1) ⇔ ∑

k≥1 θkρk

√
Nk < ∞;

ii. (1.2) ⇔ ∑

k≥1 θ2
kρk

√
Nk < ∞;

iii. (1.3) ⇔ ∑

n≥1 n− 3

2

(

∑

k≥1 θ2
k min(n, Nk)ρk

)
1

2

< ∞.

We can state an analogous result for condition (1.4).

Proposition 2.2. For the function f previously defined,
∑

i∈Z

‖P0(f ◦ T i)‖2 < ∞ if and only if
∑

k≥1

θk

√
ρk < ∞.

This proposition is proved in Section 3.

Counterexamples. Now we give two counterexamples proving Theorem 1.1.

(1) We consider the function f defined by the sequences θk = 2k

k
, ρk = 1

4k ,

Nk = k. Then f ∈ L
2 and using Proposition 2.1, we get:

a)
∑

k≥1 θkρk

√
Nk =

∑

k≥1
1

2k
√

k
< ∞ and then (1.1) is verified.

b)
∑

k≥1 θ2
kρk

√
Nk =

∑

k≥1 k− 3

2 < ∞ and then (1.2) is verified.

c)
∑

k≥1 θ2
k min(n, Nk)ρk =

∑

k≥1
min(n,k)

k2 .

But
∑n

k=1
1
k
≤ 1 + ln(n) and

∑∞
k=n+1

n
k2 ≤ 1. Then

∑

n≥1 n− 3

2

(

∑

k≥1 θ2
k min(n, Nk)ρk

)
1

2 ≤∑

n≥1 n− 3

2

√

ln(n) + 2 <∞ and

(1.3) is verified.
d)

∑

k≥1 θk
√

ρk =
∑

k≥1
1
k

diverges and then by Proposition 2.2, (1.4) is
not satisfied.
This counterexample shows that none of the conditions (1.1), (1.2) and

(1.3) implies (1.4).

(2) Now, if we consider the function f defined by the sequences: θk = 2k

k
3

2

,

ρk = 1
4k , Nk = 24k, then f ∈ L

2 and:

a)
∑

k≥1 θkρk

√
Nk =

∑

k≥1
2k

k
3

2

diverges and then (1.1) does not hold.

b)
∑

k≥1 θ2
kρk

√
Nk =

∑

k≥1
22k

k3 diverges and then (1.2) does not hold.

c)
∑

k≥1 θ2
k min(n, Nk)ρk =

∑

k≥1
min(n,24k)

k3 ≥ ∑

k≥⌊ ln n

4 ln 2
⌋

n
k3 ≥ 8 ln2 2 n

ln2 n
.

Then
∑

n≥1 n− 3

2

(

∑

k≥1 θ2
k min(n, Nk)ρk

)
1

2 ≥8 ln2 2
∑

n≥1
1

n lnn
diverges

and (1.3) does not hold.
d) On the other hand,

∑

k≥1 θk
√

ρk =
∑

k≥1
1

k
3

2

< ∞ and then (1.4) holds.

This shows that (1.4) does not imply any conditions (1.1), (1.2) or (1.3).

Remarks.

i. In fact, we showed a little more than Theorem 1.1. We got that the three
conditions (1.1), (1.2) and (1.3) together are independent of (1.4).

ii. To show that (1.4) does not imply (1.1), it is enough to consider a linear process
f =

∑

i∈Z
aiξi where (ξi)i∈Z is an iid sequence with µ(ξ0 = 1) = µ(ξ0 = −1) =

1
2 and ai = 1

i
3

2

.
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3. Proof of Proposition 2.2

First of all, (f ◦ T i)i∈Z is adapted to the filtration and then for all i < 0,

P0(f ◦ T i) = 0.

For i ≥ 0, we have

P0(f ◦ T i) = E(f ◦ T i|F0) − E(f ◦ T i|F−1)

=
∑

k≥1

θk [E(e−Nk+i|F0) − E(e−Nk+i|F−1)] 1lAk
◦ T i.

Since ej is F0-measurable for j ≤ 0 and independent of F0 for j > 0,

E(e−Nk+i|F0) − E(e−Nk+i|F−1) =

{

e0 if i = Nk

0 otherwise

= e01l{i=Nk}.

Thus

P0(f ◦ T i) =
∑

k≥1

θke01l{i=Nk}1lAk
+

∑

k≥1

θke01l{i=Nk}(1lT−iAk
− 1lAk

)

= I1(i) + I2(i) .

For I2, we use the fact that µ(Ak∆T−iAk) ≤ εk for 0 ≤ i ≤ Nk to get

‖I2(i)‖2 ≤
∑

k≥1

θk1l{i=Nk}‖e01lAk∆T−iAk
‖2

≤
∑

k≥1

θk1l{i=Nk}
√

εk.

Remark for each i ≥ 0, there is at most one integer k such that Nk = i and for each
k ≥ 1, there exists an integer i such that i = Nk. We deduce

∑

i≥0

‖I2(i)‖2 ≤
∑

i≥0

∑

k≥1

θk1l{i=Nk}
√

εk

=
∑

k≥1

θk

√
εk

which is finite by the assumptions.

Thus,
∑

i≥0 ‖Pi(f)‖2 is converging if and only if
∑

i≥0 ‖I1(i)‖2 is converging.
Now for a fixed i, since the sets Ak are disjoint and since there is at most one k

such that Nk = i, we have

‖I1(i)‖2 =

√

∑

k≥1

θ2
k1l{i=Nk}µ(Ak)

=
∑

k≥1

θk1l{i=Nk}
√

µ(Ak).

Finally,
∑

i≥0

‖I1(i)‖2 =
∑

i≥0

∑

k≥1

θk1l{i=Nk}
√

µ(Ak)

=
∑

k≥1

θk

√

µ(Ak).
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We can conclude the proof using aρk ≤ µ(Ak) ≤ ρk.

�
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Dalibor Volný. A nonadapted version of the invariance principle of Peligrad and
Utev. C. R. Math. Acad. Sci. Paris 345 (3), 167–169 (2007).


