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Abstract. It is shown that the class of conditionally Gaussian processes with inde-
pendent increments is stable under marginalisation and conditioning. Moreover, in
general such processes can be represented as integrals of a time changed Brownian
motion where the time change and the integrand are jointly independent of the
Brownian motion. Examples are given.

1. Introduction

Two common ways of constructing mathematical models of random processes is
by stochastic integration, as in stochastic volatility modelling, and by time change,
as in subordination. Looking at the question from the other side, one may ask
whether a given model can be represented in either of these two ways and, if so,
how to determine the ingredients in the representations. More generally, we may
consider the same type of questions but now allowing integration and time change
simultaneously. The present paper discusses some aspects of the latter setting where
the ingredients are a Brownian motion B and some other stochastic process(es) that
are independent of B. The restriction imposed by the independence assumption
is, of course, substantial, but it still allows considerable flexibility and encompasses
many interesting and useful models.

We consider the class of conditionally Gaussian processes with independent in-
crements (CGPII), i.e. processes X = (Xt)t≥0 for which there exists some process
Σ = (Σt)t≥0, with values Σt in the cone Sd

+ of nonnegative definite matrices,
such that, given Σ, X has independent increments with X0 = 0 and Xt − Xs ∼
Nd (0, Σt − Σs) for all 0 ≤ s < t. This class is closed under linear transforma-
tion, marginalisation and conditioning, and we show how, in wide generality, such
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a process X is representable in law as a stochastic integral with respect to a time
changed Brownian motion. More precisely we show that X is a CGPII if and only
if it is representable as

X
D

=
(∫ t

0

Hs d(B ◦ A)s

)

t≥0
(1.1)

where B is a Brownian motion, A = (At)t≥0 is a time change (that is, a real-
valued nondecreasing process) and the pair (A, H) is independent of B. Moreover,
H satisfies an integrability condition ensuring that the integral on the right-hand
side exists; see Section 3 for details. Notice that the right-hand side of (1.1) with
At = t corresponds to the class of Stochastic Volatility models without drift, and
that when A is deterministic, B ◦ A is a Gaussian process.

Part of the motivation for the present paper lies in the fact that the very fruitful
idea of subordination of one-dimensional Brownian motion does not extend in gen-
eral to multivariate settings. For the case of vector Lévy processes this has been
discussed in detail in Barndorff-Nielsen et al. (2001). Another case of interest is
whether it is possible to construct a d-dimensional Sd

+-parameter Brownian motion
B = (Bσ)σ∈Sd

+
(see Subsection 1.1 for the precise definition of this) and a process

Σ, as above, such that X = B ◦ Σ is a Lévy process. This question was answered
in the negative by Pedersen and Sato (2004). One aspect of the discussion below
is that, nevertheless, the question does in a certain sense have a positive answer.

The paper is organized as follows. In the next subsection we discuss representa-
tion of general processes with conditionally independent increments; in particular
we give conditions under which such a process can be represented as a time change
of a Lévy process, and we discuss nonexistence of the Sd

+-parameter Brownian mo-
tion. Section 3 contains various fundamental properties of conditionally Gaussian
processes with independent increments; in Section 4 we specialize to the case of
integrated Gaussian processes, and finally Section 5 contains some examples.

1.1. Background on CPII’s. The class of processes with conditionally independent
increments (CPII’s) is treated in detail in Jacod and Shiryaev (2003, II.6-II.7).
In particular, they consider the semimartingale property, even in cases where one
has so-called progressive CPII’s, and they give a nice representation of progressive
CPII’s, see e.g. their Proposition II.7.12. The problem we shall address in the
present paper is related to the latter in the sense that we discuss how to represent
a CPII in a convenient way, in particular when the conditional increments are
Gaussian. It should be noted, however, that our representation is not directly
related to Jacod and Shiryaev (2003, Proposition II.7.12) since we do not treat the
’progressive’ case. In addition, we focus on defining a representation in terms of the
operations time change and integration of a process with independent increments.

The following definitions and results are based on Pedersen and Sato (2004)
which we refer to for more information and further results.

Let K 6= {0} be a cone in R
k, i.e., it is a non-empty closed convex set closed under

multiplication by nonnegative reals and containing no straight line through 0. (This
is often called a proper convex cone in the literature). In the next sections, we focus
on the cone Sd

+. However, in the following we shall briefly discuss existence and
representation of Lévy processes on general cones. In particular we shall see how the
property that CGPII processes are not representable as a time changed Brownian
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motion is closely linked to the so-called non-generativeness of the canonical Sd
+-

parameter convolution semigroup, to be defined below. In contrast, on most other
cones, CPII’s are representable in terms of a time change only.

Let (µs)s∈K denote a K-parameter convolution semigroup on R
d; that is, for all

s ∈ K, µs is a probability measure on R
d and µs1+s2 = µs1 ∗ µs2 for all s1, s2 ∈ K,

and µ0 = δ0, the Dirac measure at 0. Moreover, if sn → s in K then µsn
D→ µs.

Finally, let Σ = (Σt)t≥0 denote a K-valued càdlàg nondecreasing process, where
’nondecreasing’ means that for all 0 ≤ t1 ≤ t2 we have Σt2 − Σt1 ∈ K.

Consider an R
d-valued càdlàg process X = (Xt)t≥0 which satisfies that, given Σ,

X has independent increments with L(Xt2−Xt1 | Σ) = µΣt2
−Σt1

for all 0 ≤ t1 ≤ t2.

We say that X is a CPII associated with (µs)s∈K . Notice that since the conditional
distribution of X given Σ is specified consistently, the pair (X, Σ) does exist, at
least on an enlargement of the original probability space.

When seeking for a representation of X it turns out to be important to distinguish
between the two cases where the convolution semigroup is generative resp. non-
generative. Here we recall that (µs)s∈K is generative if there exists an R

d-valued
K-parameter Lévy process Z = (Zs)s∈K (by definition, this means that Z has
stationary independent increments along K-increasing sequences and is K-càdlàg)
such that L(Zs) = µs for all s ∈ K. We say in this case that Z is associated with
(µs)s∈K .

Most convolution semigroups are generative; indeed this is the case if one of the
following conditions are satisfied.

(i) K = R+; in this case let µ = µ1; then it is well-known that for all s ∈ K =
R+ we have µs = µs.

(ii) K = R
k
+ or, more generally, K has a strong basis. (See Pedersen and Sato,

2004 for the definition of the latter.)
(iii) d = 1.
(iv) For all s ∈ K, µs does not have a Gaussian component.

In relation to (iv) we recall that since µs is infinitely divisible there exists a triplet
(As, νs, γs), the so-called characteristic triplet, consisting of a nonnegative definite
d × d matrix As, a Lévy measure νs on R

d and a constant γs ∈ R
d, such that the

characteristic function of µs is given by

µ̂s(z) = exp
[
− 1

2z∗Asz + i γ∗
s z +

∫

Rd

(
ei z∗x − 1 − i z∗x 1D(x)

)
νs(dx)

]
, z ∈ R

d,

where D = {x ∈ R
d | |x| ≤ 1}. Then µs has no Gaussian component if As = 0.

We emphasize that generally the law of an R
d-valued K-parameter Lévy process

Z = (Zs)s∈K associated with (µs)s∈K is not uniquely determined by the semigroup
unless we are in special cases such as in (i) above.

Assume (µs)s∈K is generative and let Z = (Zs)s∈K be a measurable K-parameter
Lévy process associated with this semigroup which is independent of Σ. Then it is
not hard to see that (X, Σ) has the representation

(X, Σ)
D

= (Z ◦ Σt, Σt)t≥0. (1.2)

(Here Z ◦ Σt := ZΣt
.) That is, X appears in law as a time change of Z. Notice

that if K = R+ and Σ is a subordinator, then X appears in law by subordination
of Z by Σ; similarly, when K is an arbitrary cone and Σ = (Σt)t≥0 is a K-valued
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Lévy process, then X appears, in law, by subordination of Z by Σ, and in this case
X is a Lévy process as well.

Although many convolution semigroups are generative, non-generative semi-
groups do exist; the most interesting example is the so-called canonical Sd

+-parameter

convolution semigroup. In this case K = Sd
+ and µs is the d-dimensional normal

distribution on R
d with mean 0 and variance s for all s ∈ Sd

+. It would be appropri-

ate to call an R
d-valued Sd

+-parameter Lévy process associated with the canonical

Sd
+-parameter convolution semigroup an Sd

+-parameter Brownian motion. However,

when d ≥ 2, the canonical Sd
+-parameter convolution semigroup is non-generative,

cf. Pedersen and Sato (2004, Theorem 4.1) and hence no such Brownian motion
exists.

Notice that if X is a CGPII associated with the canonical Sd
+-parameter convolu-

tion semigroup, then (Xt2 −Xt1 | Σ) ∼ Nd(0, Σt2 −Σt1) for all 0 ≤ t1 < t2. Clearly,
since this semigroup is non-generative when d ≥ 2, there is no Sd

+-parameter Lévy
process associated with it, and hence X is not representable as in (1.2). However, in
the present paper we show that X has a convenient representation, which involves
an integral as well as a time change. More generally we derive various fundamental
properties of X .

In the remainder of the paper the only cone to be considered is K = Sd
+.

2. Preliminaries

Throughout vectors are column vectors unless otherwise stated; superscript ∗
denotes transposition. Let d and k be positive integers. Vectors are column vectors
unless otherwise stated; if z is a vector we denote, as usual, ‖z‖ =

√
z∗z.

Let (Ω,F , P ) denote a probability space on which all random variables in the

following are defined. We use
D

= to denote identity in law of random variables and
stochastic processes. The law of a random variable X is denoted L(X).

When µ is a distribution on R
d, µ̂ denotes, as always, the characteristic function;

µ̂(z) =
∫

Rd exp(i z∗x)µ(dx) for z ∈ R
d.

A real-valued càdlàg process A = (At)t≥0 is called an increasing (or a nonde-
creasing) process if t 7→ At(ω) is nondecreasing with A0(ω) = 0 for all ω ∈ Ω.
Denote the set of increasing processes by A. Notice that A contains all deter-
ministic real-valued càdlàg functions a = (at)t≥0 for which a0 = 0 and t 7→ at is
nondecreasing.

Let A ∈ A and let Y = (Yt)t≥0 be a real-valued measurable process. We say that

Y is locally integrable with respect to A (or locally A-integrable) if
∫ t

0 |Ys| dAs < ∞
a.s. for all t > 0. (If Y and A are deterministic, Y is locally integrable with respect

to A if
∫ t

0 |Ys| dAs < ∞ for all t > 0.)
When X = (Xt)t≥0 is a d-dimensional càdlàg process and A ∈ A we use the

notation X ◦ A = (X ◦ At)t≥0 to denote the d-dimensional time changed process
X ◦ At := XAt

.
As above, let Sd

+ denote the set of symmetric nonnegative definite d×d matrices.

An Sd
+-valued function ν = (νt)t≥0 is said to be nondecreasing if νt − νs ∈ Sd

+ for
all 0 ≤ s < t.

Let Y be a random element from Ω into some space Y. Occasionally we need
a regular conditional probability of P given Y , P (A | y), defined for A ∈ F and
y ∈ Y. We shall always assume that P (· | ·) exists and satisfies the ’useful rule’
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P (Y = y | y) = 1 for all y. When U is a random variable, U | Y signifies that we
work under the probability measure P (· | Y ).

Let Y = (Yt)t≥0 be a càdlàg R
k-valued stochastic process with Y0 = 0. We say

that Y has independent increments if, for all n ≥ 1 and 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn, the
variables Yt1 , Yt2−Yt1 , . . . , Ytn

−Ytn−1
are independent; Y has stationary increments

if, for all n ≥ 1 and 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn, we have

(Y ∗
t2 − Y ∗

t1 , . . . , Y
∗
tn

− Y ∗
tn−1

)∗
D

= (Y ∗
t2−t1 , . . . , Y

∗
tn−t1 − Y ∗

tn−1−t1)
∗.

For Y = (Yt)t≥0, an R
d or Sd

+-valued càdlàg process or function, let

D(Y ) := {t > 0 | ∆Yt 6= 0} (2.1)

be the jump times of Y .
We shall consider Sd

+ as a closed subset of R
d×d equipped with the inherited

topology.

2.1. Representation of nondecreasing Sd
+-valued functions. Let ν denote a nonde-

creasing Sd
+-valued càdlàg function with ν0 = 0 ∈ Sd

+. Denote by ν
ij
t the (i, j)th

entry of νt for i, j = 1, . . . , d. It is then easily seen that for all i and j the mapping
t 7→ ν

ij
t is of bounded variation and that t 7→ νii

t is nondecreasing. Moreover, the
(signed) measure induced by νij is dominated by the measure induced by νii. Thus,
there exists a deterministic a ∈ A (take e.g. a = ν11+· · ·+νdd) and φt ∈ Sd

+ defined
for t ≥ 0 such that φ is locally integrable with respect to a (in the sense that all
entries of φ are locally a-integrable) and

νt =

∫ t

0

φs das for all t ≥ 0. (2.2)

Notice that in this equation we can choose a as the Lebesgue measure if and only
if ν11, . . . , νdd are absolutely continuous with respect to the Lebesgue measure.

2.2. Time changed Brownian motion. Let B = (Bt)t≥0 be a d-dimensional standard
Brownian motion; that is, B is given as B = (B1, . . . , Bd) where the coordinate
processes B1, . . . , Bd are independent and Bi, for i = 1, . . . , d, is a one-dimensional
Brownian motion , i.e. a continuous process with stationary independent increments
such that Bi(t) ∼ N(0, t) for all t ≥ 0. Moreover, let a ∈ A be deterministic.

The process B ◦ a is a deterministic time change of B, so in particular it is a
k-dimensional càdlàg Gaussian process with independent increments and thus a
k-dimensional square integrable martingale in its own filtration.

Let c : R+ → R
d be measurable and assume ‖c‖2 is locally a-integrable. Then

the integral
∫ t

0

c∗s d(B ◦ a)s, t ≥ 0,

exists and is càdlàg as a function of t; moreover, the independent increments are
inherited from B ◦ a to the integral since c is deterministic, and

∫ t

0

c∗s d(B ◦ a)s ∼ N(0,

∫ t

0

‖cs‖2 das) for all t ≥ 0. (2.3)
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Generalizing this, let C : R+ → R
d×k be measurable and let C∗C be locally a-

integrable. The k-dimensional integral
∫ t

0 C∗
s d(B ◦a)s, which is defined coordinate-

by-coordinate, then exists, and is càdlàg with independent increments such that

∫ t

0

C∗
s d(B ◦ a)s ∼ Nk(0,

∫ t

0

C∗
s Cs das) for all t ≥ 0. (2.4)

2.3. Representation of càdlàg Gaussian processes with independent increments. A
d-dimensional process G = (Gt)t≥0 is called a Gaussian process with independent
increments (in short: a GPIId) if G0 = 0, G is càdlàg and has independent incre-
ments, and Gt−Gs follows a d-dimensional zero-mean Gaussian distribution for all
0 ≤ s ≤ t. GPII’s are treated in detail in, e.g., Jacod and Shiryaev (2003, II.4d).

Let G denote a GPIId and define νt := Var(Gt), the d×d variance matrix of Gt.
We say that G is GPIId-ν in order to emphasize the variance matrix. Notice that
the law of a GPIId-ν is uniquely determined by ν, and ν0 = 0 (where the right-hand
side denotes the d × d null matrix). It is readily verified that t 7→ νt is càdlàg and
νt − νs is nonnegative definite for all 0 ≤ s < t since νt − νs = Var(Gt − Gs); that
is, ν is nondecreasing in Sd

+.

The following result shows that the class of Gaussian process with independent
increments corresponds to integrals of a time changed Brownian motion, where the
integrand as well as the time change are deterministic. More precisely, we can
summarize the findings of the preceding subsections as follows.

As always, [X ] denotes the quadratic variation of a semimartingale X and 〈Y 〉
is the sharp bracket of a locally square integrable martingale Y , cf. Jacod and
Shiryaev (2003, I.4).

Proposition 2.1. Let B denote a d-dimensional standard Brownian motion.

(i) Let C : R+ → R
d×k be measurable and a ∈ A be deterministic. Assume

that C∗C is locally a-integrable. Then the k-dimensional process

∫ t

0

C∗
s d(B ◦ a)s, t ≥ 0,

is a GPIIk-ν process with ν given by νt =
∫ t

0
C∗

s Cs das for t ≥ 0.

(ii) Let ν = (νt)t≥0 be an Sd
+-valued nondecreasing càdlàg function with ν0 = 0.

Decompose ν as in (2.2), that is dνt = φtdat, where φ is locally a-integrable,

and let φ
1/2
t ∈ Sd

+ denote the d × d nonnegative definite square root of φt.
The d-dimensional process

∫ t

0

φ1/2
s d(B ◦ a)s, t ≥ 0,

is then a GPIId-ν.
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(iii) Let ν = (νt)t≥0 be an Sd
+-valued nondecreasing càdlàg function with ν0 = 0.

Let G = (Gt)t≥0 be a GPIId-ν. Then G is a square integrable ((FG
t ), P )-

martingale, and

D(G) = D(ν) P − a.s.

〈G〉t = νt

[G]t = νc
t +

∑

0<s≤t

(∆Gs)(∆Gs)
∗,

where νc
t := νt −

∑
0<s≤t ∆νs is the continuous part of ν, and D(G) and

D(ν) are defined in (2.1).

Proof : (i) Follows immediately from Subsection 2.2, and (ii) follows from (i) and

(2.2) since φ
1/2
t φ

1/2
t = φt. The final part follows Jacod and Shiryaev (2003, II.4.36)

(alternatively, use the representation of G in (ii)). �

Let G denote a GPIId-ν and represent G as in (ii) above; that is,

Gt =

∫ t

0

φ1/2
s d(B ◦ a)s for all t ≥ 0, (2.5)

where B is a d-dimensional standard Brownian motion and (a, φ) are defined from
ν by (2.2). When C : R+ → R

d×k is measurable and C∗φC is locally a-integrable,
the integral ∫ t

0

C∗
s dGs =

∫ t

0

C∗
s φ1/2

s d(B ◦ a)s (2.6)

exists, is càdlàg with independent increments, and
∫ t

0

C∗
s dGs ∼ N(0,

∫ t

0

C∗
s φsCs das) for all t ≥ 0.

That is, (2.6) is a GPIIk.

3. Conditionally Gaussian processes with independent increments

Let Σ = (Σt)t≥0. be an Sd
+-valued càdlàg nondecreasing process with Σ0 = 0.

A d-dimensional càdlàg process X = (Xt)t≥0 with X0 = 0 is called a conditionally
Gaussian process with independent increments and conditional variance Σ (short:
A CGPIId-Σ) if X | Σ is a GPIId-Σ.

The next result gives a few fundamental properties but first we need some nota-
tion. For Γ ∈ Sd

+ let µΓ denote the d-dimensional Gaussian distribution with mean

0 and variance Γ on R
d; that is, µΓ is the probability measure on R

d with

µ̂Γ(z) = exp
(
− 1

2z∗Γz
)
, for z ∈ R

d.

The set {µΓ | Γ ∈ Sd
+} is the canonical Sd

+-parameter convolution semigroup, cf.
Pedersen and Sato (2004) and Subsection 1.1, and a d-dimensional càdlàg process
X with X0 = 0 is a CGPIId-Σ if and only if X | Σ has independent increments
with L(Xt − Xs | Σ) = µΣt−Σs

for all 0 ≤ s < t.
Let Mb(R

d) resp. Mb(S
d
+) denote the set of bounded and measurable functions

from R
d resp. Sd

+ to R. For f ∈ Mb(R
d) define f̄ : Sd

+ → R by

f̄(Γ) :=

∫

Rd

f(z)µΓ(dz), for Γ ∈ Sd
+.
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For f continuous, f̄ is continuous as well since Γn → Γ implies µΓn

D→ µΓ. By the
Monotone Class Lemma (see e.g. Rogers and Williams, 2000, II.3) it follows that
f̄ ∈ Mb(S

d
+) for all f ∈ Mb(R

d).

Proposition 3.1. Let Σ = (Σt)t≥0 denote a nondecreasing càdlàg Sd
+-valued pro-

cess with Σ0 = 0. Let X = (Xt)t≥0 denote an R
d-valued càdlàg process with

X0 = 0.

(i) X is a CGPIId-Σ if and only if





for all n ≥ 1, 0 = t0 < t1 < . . . < tn,

fj ∈ Mb(R
d) and gj ∈ Mb(S

d
+), j = 1, . . . , n, we have

E
[∏n

j=1 fj(Xtj
− Xtj−1

)gj(Σtj
− Σtj−1

)
]

= E
[∏n

j=1 f̄j(Σtj
− Σtj−1

)gj(Σtj
− Σtj−1

)
]
.

(3.1)

(ii) Let X be a CGPIId-Σ. If Σ has stationary increments then so has (X, Σ).
(iii) Let X be a CGPIId-Σ. If Σ has independent increments then so has (X, Σ).

Proof : (i) Assume X is a CGPIId-Σ. Notice that since X | Σ is a GPIId-Σ we
have, for n, tj , fj and gj as in (3.1),

E
[ n∏

j=1

fj(Xtj
− Xtj−1

)gj(Σtj
− Σtj−1

) | Σ
]

=
n∏

j=1

gj(Σtj
− Σtj−1

)E
[ n∏

j=1

fj(Xtj
− Xtj−1

) | Σ
]

=

n∏

j=1

gj(Σtj
− Σtj−1

)f̄j(Σtj
− Σtj−1

).

Therefore,

E
[ n∏

j=1

fj(Xtj
− Xtj−1

)gj(Σtj
− Σtj−1

)
]

=E
[
E
[ n∏

j=1

fj(Xtj
− Xtj−1

)gj(Σtj
− Σtj−1

) | Σ
]]

=E
[ n∏

j=1

f̄j(Σtj
− Σtj−1

)gj(Σtj
− Σtj−1

)
]
,

which is the only if conclusion in (3.1).

Assume conversely that (3.1) is satisfied. The finite dimensional marginals of
(X, Σ) = (Xt, Σt)t≥0 are uniquely determined by this equation and hence so is
the law of (X, Σ) = (Xt, Σt)t≥0. The first part of the proof shows that (X, Σ)

has the same law as (X̃, Σ), where X̃ is a CGPIId-Σ. Since the joint distribution
determines the conditional distribution uniquely almost surely, it follows that L(X |
Σ) = L(X̃ | Σ), that is, X | Σ is a GPIId-Σ; by definition, X is therefore a CGPIId-
Σ.
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(ii) Let n ≥ 1 and 0 = t0 < t1 < . . . < tn. For fj ∈ Mb(R
d) and gj ∈ Mb(S

d
+),

j = 1, . . . , n, we then have, by (i),

E
[ n∏

j=1

fj(Xtj
− Xtj−1

)gj(Σtj
− Σtj−1

)
]

=E
[ n∏

j=1

f̄j(Σtj
− Σtj−1

)gj(Σtj
− Σtj−1

)
]

=E
[ n∏

j=1

f̄j(Σtj−t1 − Σtj−1−t1)gj(Σtj−t1 − Σtj−1−t1)
]

=E
[ n∏

j=1

fj(Xtj−t1 − Xtj−1−t1)gj(Σtj−t1 − Σtj−1−t1)
]
,

where the second equality is due to the stationary increments of Σ.
(iii) Let n ≥ 1 and 0 = t0 < t1 < . . . < tn. For fj ∈ Mb(R

d) and gj ∈ Mb(S
d
+),

j = 1, . . . , n, we then have, by (i) and the independent increments in Σ, that

E
[ n∏

j=1

fj(Xtj
− Xtj−1

)gj(Σtj
− Σtj−1

)
]

=

n∏

i=1

E
[
f̄j(Σtj

− Σtj−1
)gj(Σtj

− Σtj−1
)
]

=
n∏

i=1

E
[
fj(Xtj

− Xtj−1
)gj(Σtj

− Σtj−1
)
]

and hence the result.
�

The (semi)martingale property of CGPII’s is treated in section II.6 of Jacod and
Shiryaev (2003). Basically, the idea is that the martingale property of X under
P is implied by the martingale property under P (· | Σ) (at least if X is suitably
bounded or integrable); in particular, based on their Lemma II.6.14 we can prove
the following.

Theorem 3.2. Let Σ be as above and X denote a CGPIId-Σ. Let Ht := σ(Σ)∨FX
t

for t ≥ 0, where σ(Σ) is the σ-algebra generated by the process Σ.

(i) The process X is a d-dimensional locally square integrable ((Ht), P )-mar-
tingale.

(ii) We have

D(X) = D(Σ) P − a.s.

〈X〉t = Σt

[X ]t = Σc
t +

∑

0<s≤t

(∆Xs)(∆Xs)
∗

where D(X) and D(ν) are defined in (2.1), Σc
t := Σt −

∑
0<s≤t ∆Σs is the

continuous component of Σ, and 〈X〉 is calculated with respect to (Ht)t≥0.
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(iii) If Σ is an integrable process (by which we mean that E[Σ11
t + · · · + Σdd

t ] <

∞ for all t > 0) then X is a d-dimensional square integrable ((FX
t ), P )-

martingale.
(iv) If Σ is a continuous process then X is a continuous d-dimensional local

((FX
t ), P )-martingale.

Remark 3.3. Notice that the integrability condition E[Σ11
t +· · ·+Σdd

t ] < ∞ imposed
in (iii) is equivalent to E[‖Σt‖Sd

+
] < ∞ for any reasonable norm ‖ · ‖Sd

+
on Sd

+.

Proof : (i) and (ii): First we prove (i) and that 〈X〉 = Σ.
Notice that since Σ is H0-measurable and càdlàg it follows that this process is

(Ht)-predictable. Let (τn)n≥1 denote a localizing sequence with respect to (Ht)t≥0

which is chosen such that

E[Σ11
t∧τn

+ · · · + Σdd
t∧τn

] < ∞ for all t ≥ 0 and n ≥ 1. (3.2)

(Notice that such a sequence exists since Σ is H0-measurable.) Define the d × d

matrix process U = (Ut)t≥0 by

U := (XX∗) − Σ.

It then suffices to show that the stopped processes Xτn and U τn are, respectively,
a d-dimensional and a d × d-dimensional ((Ht), P )-martingale for all n.

Let P (· | ·) denote a regular conditional probability of P given the process Σ.
Since X is a GPIId-Γ under P (· | Γ) for all nondecreasing Sd

+-valued càdlàg func-
tions Γ = (Γt)t≥0 with Γ0 = 0, Proposition 2.1 (iii) implies that X is a d-dimensional
square integrable ((FX

t ), P (· | Γ))-martingale and XX∗ − Γ is a d × d-dimensional
((FX

t ), P (· | Γ))-martingale. Since Σ = Γ P (· | Γ)-almost surely it follows that
X is a d-dimensional square integrable ((Ht), P (· | Γ))-martingale and U is a
d × d-dimensional ((Ht), P (· | Γ))-martingale. In particular, the stopped processes
Xτn and U τn are respectively a d-dimensional square integrable ((Ht), P (· | Γ))-
martingale and a d × d-dimensional ((Ht), P (· | Γ))-martingale. Thus,

E[‖Xτn

t ‖2 | Σ] = Σ11
t∧τn

+ · · · + Σdd
t∧τn

for all t ≥ 0 and n ≥ 1,

which, by (3.2), implies

E[‖Xτn

t ‖2] < ∞ for all t ≥ 0 and n ≥ 1.

As the stopped processes Xτn and U τn are martingales under P (· | Γ) and integrable
under P , a slight extension of Lemma II.6.14 in Jacod and Shiryaev (2003) shows
that Xτn is a d-dimensional ((Ht), P )-martingale and U τn a d × d-dimensional
((Ht), P )- martingale.

As X | Σ is a GPIId-Σ, the first and the third statement in (ii) follow from
Proposition 2.1 (iii).

(iii) In this case we can take τn = ∞ in (3.2). Since X is a square inte-
grable ((Ht), P )-martingale adapted to (FX

t ), X is a square integrable ((FX
t ), P )-

martingale. To see this, notice that for 0 ≤ s < t we have by the ((Ht), P )-
martingale property that Xs = E[Xt | Hs]; therefore, since Xs is FX

s -measurable
and FX

s ⊆ Hs it follows that

Xs = E[Xs | FX
s ] = E

[
E[Xt | Hs] | FX

s

]
= E[Xt | FX

s ], (3.3)

which is the ((FX
t ), P )-martingale property.

(iv) If Σ is a continuous process, then so is X by (ii). In this case it is well-
known that since X is a local ((Ht), P )-martingale, it is also a local martingale in
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the smaller filtration (FX
t ). Indeed, consider the sequence of (FX

t )-stopping times
(and hence also (Ht)-stopping times) (σn)n≥1 defined by

σn = inf{t : ‖Xt‖ > n}
Notice that each coordinate of Xσn is bounded by n by continuity of the paths;
hence, since Xσn is a d-dimensional bounded local ((Ht), P )-martingale, it is a
d-dimensional bounded true ((Ht), P )-martingale as well, that is, (σn)n≥1 is a lo-
calizing sequence for X in the (Ht)-filtration. As σn is an (FX

t )-stopping time,
Xσn is (FX

t )-adapted; thus, by arguments as in (3.3) it follows that Xσn is a true
((FX

t ), P )-martingale; that is, X is a local ((FX
t ), P )-martingale. �

Remark 3.4. Let X denote a CGPIId-Σ. Notice that since X is a d-dimensional
locally square integrable ((Ht), P )-martingale by (i) above it is in particular a d-
dimensional ((Ht), P )-semimartingale. As it is, in addition, adapted to (FX

t ) it
follows from Theorem 9.19 in Jacod (1979) that X is an ((FX

t ), P )-semimartingale;
interestingly, however, it seems that generally X is not a d-dimensional local
((FX

t ), P )-martingale.

Before stating the next result we consider integrals with respect to a time changed
Brownian motion in the case when the time change is stochastic. Thus, let B

denote a d-dimensional Brownian motion and A ∈ A. Let H = (Ht)t≥0 be an
R

d×k-valued measurable process; that is, H is jointly measurable in (t, ω) or, more
precisely, the mapping R+ × Ω ∋ (t, ω) 7→ Ht(ω) is measurable with respect to
(B([0,∞[) × F ,B(Rd×k)) . Assume H∗H locally integrable with respect to A (in
the sense that all entries are locally A-integrable); define

Σt :=

∫ t

0

H∗
s Hs dAs, t ≥ 0, (3.4)

and let (A, H) be independent of B. The integral
∫ t

0

H∗
s d(B ◦ A)s, t ≥ 0, (3.5)

then exists.

Remark 3.5. Let us briefly explain how the integral in (3.5) is defined.
Let Ht = σ(A, H)∨FB◦A

t for t ≥ 0. Notice that B ◦A | (A, H) is a deterministic
time change of a Brownian motion and hence a d-dimensional square integrable
martingale in its own filtration; moreover, in this filtration we have

〈B ◦ A〉 = AId, (3.6)

where Id denotes the d × d identity matrix. Proceeding as in the proof of The-
orem 3.2 it then follows that B ◦ A is a d-dimensional locally square integrable
((Ht), P )-martingale for which the sharp bracket process in the filtration (Ht) is
still given by (3.6). Since H is a measurable process (recall this means that it is
jointly measurable in (t, ω)) which is H0-measurable, it is also (Ht)-predictable,
and hence the condition that H∗H is locally integrable with respect to A ensures
that (3.5) exists as stochastic integral of a predictable process with respect to a lo-
cally square integrable martingale in the sense of, e.g., Jacod and Shiryaev (2003),
Section I.4.

Notice that by Proposition 2.1, (
∫ t

0
Hs d(B ◦ A)s)t≥0 | (A, H) is a GPIIk-Σ.
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Let Σ = (Σt)t≥0 be an arbitrary Sd
+-valued nondecreasing càdlàg process with

Σ0 = 0 (not necessarily given by (3.4)). We need to decompose Σ as in (2.2)
which motivates the following. A pair (A, Φ) consisting of an increasing process
A ∈ A and a measurable Sd

+-valued process Φ = (Φt)t≥0 is a decomposition of Σ if
σ(A, Φ) = σ(Σ), and Φ is locally A-integrable with

Σt =

∫ t

0

Φs dAs for all t ≥ 0 almost surely. (3.7)

Notice that (a non-unique) decomposition of Σ always exists.
The following result characterizes the class CGPII as the class of integrals with

respect to a time changed Brownian motion where the integrand and time change
are simultaneously independent of the Brownian motion.

Proposition 3.6. We have the following.

(i) Let B denote a d-dimensional standard Brownian motion and A ∈ A; also
let H = (Ht)t≥0 be an R

d×k-valued measurable process for which H∗H

is locally A-integrable; assume (A, H) is independent of B. Then, the k-
dimensional integral

∫ t

0

H∗
s d(B ◦ A)s, t ≥ 0,

is a CGPIIk-Σ with Σt =
∫ t

0 H∗
s Hs dAs.

(ii) Let Σ = (Σt)t≥0 be an Sd
+-valued nondecreasing càdlàg process with Σ0 = 0.

Let (A, Φ) be a decomposition of Σ and B denote a d-dimensional Brownian
motion which is independent of Σ. Let Φ1/2 ∈ Sd

+ denote the nonnegative
definite square root of Φ. Then the d-dimensional integral

∫ t

0

Φ1/2
s d(B ◦ A)s, t ≥ 0,

is a CGPIId-Σ.

Proof : (i) As noted in Remark 3.5 (
∫ t

0
Hs d(B ◦ A)s)t≥0 | (A, H) is a GPIIk-Σ.

Since the conditional distribution of (
∫ t

0
Hs d(B ◦A)s)t≥0 given (A, H) depends on

Σ only it follows that (
∫ t

0
Hs d(B ◦ A)s)t≥0 | Σ is a GPIIk-Σ as well. Thus, by

definition, (
∫ t

0
Hs d(B ◦ A)s)t≥0 is a CGPIIk-Σ.

(ii) Since Σ is independent of B and (A, Φ) is σ(Σ)-measurable, (A, Φ) is in-
dependent of B; thus the result follows from (i) since Φ1/2 is symmetric with
Φ = Φ1/2Φ1/2.

�

Remark 3.7. Let Σ = (Σt)t≥0 be an Sd
+-valued nondecreasing càdlàg process with

Σ0 = 0. Let us consider some cases where a CGPIId-Σ X = (Xt)t≥0 can be
represented solely in terms of either an integrated or a time changed Brownian
motion. Let B = (B1, . . . , Bd) be a d-dimensional Brownian motion independent
of Σ.

(i) If there exists a representation (A, Φ) of Σ with At = t (that is, all entries
in Σ are absolutely continuous with respect to the Lebesgue measure), we
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have B ◦ A = B, and in this case

Xt :=

∫ t

0

Φ1/2
s dBs, t ≥ 0,

is a CGPIId-Σ. Thus, no time change of the Brownian motion is needed to
represent X .

(ii) When d = 1, Σ is in fact just a real-valued nondecreasing process; that is,
Σ ∈ A and B is a one-dimensional Brownian motion. In this case we can
take Φt = 1 and At = Σt as a decomposition of Σ, and then X := B ◦ Σ is
a CGPII1-Σ. That is, no integration is needed.

(iii) In certain special cases one can represent X in terms of time changes alone,
even when d > 1. For example, assume that Σ is a diagonal matrix,

Σt = diag(Σ11
t , . . . , Σdd

t ), t ≥ 0. (3.8)

Then the process X := (B1 ◦ Σ11, . . . , Bd ◦ Σdd)∗ is a CGPIId-Σ.
(iv) Motivated by (iii) it would be tempting to try and represent an arbitrary

CGPIId-Σ process as BΣt
where B = {Bs | s ∈ S+

d } should be an Sd
+-

parameter Brownian motion. However, as shown by Pedersen and Sato
(2004), see also subsection 1.1, such a process does not exist.

Proposition 3.8. (Marginalisation and conditioning). Let Σ = (Σt)t≥0 be an Sd
+-

valued nondecreasing càdlàg process with Σ0 = 0 and suppose X is a CGPIId-Σ.
Let (A, Φ) be a decomposition of Σ.

(i) Let C : Sd
+ → R

d×k be measurable and assume that the process C(Σ)∗ΦC(Σ)
:= (C(Σt)

∗ΦtC(Σt))t≥0 is locally A-integrable. Define the k-dimensional

process X̃ by

X̃t :=

∫ t

0

C(Σs)
∗ dXs for t ≥ 0

and let Σ̃ be given by

Σ̃t :=

∫ t

0

C(Σs)
∗ΦsC(Σs) dAs for t ≥ 0.

Then X̃ is a CGPIIk-Σ̃.
(ii) If C ∈ R

d×k is a fixed d × k matrix, then C∗X is a CGPIIk-Σ̃ with Σ̃ =
C∗ΣC.

(iii) Decompose X as X∗ = ((X1)∗, (X2)∗), where X i = (X i
t )t≥0 is di-dimen-

sional for i = 1, 2, with d1 + d2 = d. Similarly, decompose Σt as

Σt =

(
Σ11

t Σ12
t

Σ21
t Σ22

t

)
, (3.9)

where, e.g., Σ11 is d1 × d1. Then, X1 is a CGPIId1
-Σ11.

(iv) Decompose X as in (iii) and Φ as

Φt =

(
Φ11

t Φ12
t

Φ21
t Φ22

t

)
, (3.10)

where, e.g., Φ11 is d1 × d1. Assume Φ22 is invertible. Define the d1-
dimensional process X1·2 by

X1·2
t := X1

t −
∫ t

0

Φ12
s (Φ22

s )−1 dX2
s for t ≥ 0,
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and let Σ11·2 be given by

Σ11·2
t :=

∫ t

0

Φ11
s − Φ12

s (Φ22
s )−1Φ21

s dAs for t ≥ 0. (3.11)

Under P (· | Σ), the processes X1·2 and X2 are independent, and X1·2 | Σ is
a GPIId1

-Σ11·2. In particular X1·2 is a CGPIId1
-Σ11·2 and so is X1·2 | X2.

Proof : (i): As we know from Proposition 3.1 that the joint law of a CGPIId-Σ and
Σ is uniquely determined by Σ we may, by Proposition 3.6 (ii), assume that X is
given by

Xt =

∫ t

0

Φ1/2
s d(B ◦ A)s for t ≥ 0,

where B is a d-dimensional standard Brownian motion independent of Σ. We then
have

X̃t =

∫ t

0

(Φ1/2
s C(Σs))

∗ d(B ◦ A)s for t ≥ 0.

Since Σ is independent of B, and (A, Φ) is σ(Σ)-measurable by definition of a
decomposition, it follows that (A, Φ1/2C(Σ)) is independent of B so the result
follows from Proposition 3.6 (i).

(ii) and (iii): (ii) is immediate from (i), and (iii) follows from (ii) with C being
the matrix that picks out X1 of X .

(iv): Represent X as in the proof of (i). Notice that
(

X1·2
t

X2
t

)
=

∫ t

0

Ds dXs

=

∫ t

0

D∗
sΦ1/2

s d(B ◦ A)s

=

∫ t

0

(Φ1/2
s Ds)

∗ d(B ◦ A)s,

where

D∗
s =

(
Id1

−Φ12
s (Φ22

s )−1

0 Id2

)
,

0 denotes the null matrix of an appropriate dimension, and Ik is the k × k identity
matrix. Leaving out details for the convenience of the reader it follows that

D∗
sΦsDs =

(
Φ11

s − Φ12
s (Φ22

s )−1Φ21
s 0

0 Φ22
s

)
.

Due to Proposition 2.1 (i) we see that, under P (· | Σ), X1·2 and X2 are independent
and are, respectively, a GPIId1

-Σ11·2 and a GPIId2
-Σ22. Thus, X1·2 | (X2, Σ)

is a GPIId1
-Σ11·2 as well. Since this distribution depends on Σ11·2 only, X1·2 |

(X2, Σ11·2) is a GPIId1
-Σ11·2, that is, X1·2 | X2 is a CGPIId1

-Σ11·2. Similarly,
X1·2 | Σ11·2 is a GPIId1

-Σ11·2 and hence X1·2 is a CGPIId1
-Σ11·2. �

Example 3.9. Let Bi = (Bi
t)t≥0, i = 1, . . . , 3, denote three independent one-di-

mensional standard Brownian motions. Let b ∈ A be deterministic and have no
continuous component; that is, bt =

∑
0<s≤t ∆bs for all t ≥ 0. Finally, let Ψi :

[0,∞[→ R be a continuous and bounded function for i = 1, 2; assume Ψ2 6= 0.
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Define the two-dimensional process X = (X1
t , X2

t )t≥0 as

X1
t = B1

t +

∫ t

0

Ψ1
s d(B3 ◦ b)s,

X2
t = B2

t +

∫ t

0

Ψ2
s d(B3 ◦ b)s.

Then X is a GPII2-Σ with Σ given by

Σt =

(
t +

∫ t

0 (Ψ1
s)

2 dbs

∫ t

0 Ψ1
sΨ

2
s dbs∫ t

0 Ψ1
sΨ

2
s dbs t +

∫ t

0 (Ψ2
s)

2 dbs

)
, t ≥ 0.

In this case Σ has the decomposition (a, Φ) with at = t + bt and, with D(b) defined
in (2.1),

Φt =





(
1 0

0 1

)
for t 6∈ D(b),

(
(Ψ1

t )
2 Ψ1

t Ψ
2
t

Ψ1
t Ψ

2
t (Ψ2

t )
2

)
for t ∈ D(b).

Thus,

Σ11·2
t =

∫ t

0

Φ11
s − Φ12

s (Φ22
s )−1Φ21

s das

=

∫

]0,t]∩D(b)

Φ11
s − Φ12

s (Φ22
s )−1Φ21

s das +

∫

]0,t]∩D(b)c

Φ11
s − Φ12

s (Φ22
s )−1Φ21

s das

=

∫

]0,t]∩D(b)

0 dbs +

∫

]0,t]∩D(b)c

1 ds

= t for t ≥ 0.

Similar calculations show that X1·2
t = B1

t . From this follows that X1·2 | X2 is a
one-dimensional standard Brownian motion. Notice that even though Σ and X are
discontinuous processes, X1·2 is a continuous process.

Remark 3.10. Let Σ = (Σt)t≥0 be an Sd
+-valued nondecreasing càdlàg process with

Σ0 = 0 and D = (Dt)t≥0 denote a d-dimensional càdlàg process. Extending the
definition of CGPIId’s to allow a ’drift’ as well we consider the following. An R

d-
valued càdlàg process X = (Xt)t≥0 with X0 = 0 is called a CGPIId-(D, Σ) if, given

(D, Σ), the process X̃ := X − D is a GPIId-Σ. That is, given (D, Σ), X is a GPII
plus a ’drift’ D.

(i) The conclusion in Proposition 3.8 (iv) can be rephrased as follows with the
notation and assumptions stated on page 191: The process X1 | X2 is a
CGPIId1

-(D, Σ11·2) with D defined by

Dt =

∫ t

0

Φ12
s (Φ22

s )−1 dX2
s , t ≥ 0.

(ii) More generally, many of the results in the present section have a counterpart
in the ’drift’ case as well.
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4. Integrated GPII’s

In this section, we study the important subclass of CGPII’s consisting of pro-
cesses that appear as an integral of a process H with respect to a GPII G, where
in addition H and G are independent. This class contains in particular stochastic
volatility models. It is perhaps also worth mentioning that we do not consider
integrated CGPII’s since a CGPII is an integral with respect to a time changed
Brownian motion so an integrated CGPII would just lead to another CGPII.

Let ν = (νt)t≥0 be an Sd
+-valued nondecreasing càdlàg function with ν0 = 0

and G denote a GPIId-ν. Let (a, φ) be a deterministic decomposition of ν. Let
H = (Ht)t≥0 be an R

d×k-valued measurable process independent of G satisfying
that H∗φH is locally a-integrable.

The k-dimensional process

Xt :=

∫ t

0

H∗
s dGs, t ≥ 0, (4.1)

appears as an integral with respect to a Gaussian process with independent incre-
ments and is hence referred to as an integrated GPII, or an IGPII for short.

Remark 4.1. Let us, similar to Remark 3.5, discuss how the integral (4.1) is defined.
Since G is a GPII, it is a d-dimensional square integrable martingale in it own
filtration; thus, by independence of G and H it follows that G is a square integrable
((Ht), P )-martingale, where Ht = σ(H)∨FG

t . The sharp bracket process is 〈G〉 = ν.
Since H∗H is locally integrable with respect to the sharp bracket process ν,

and H is H0-measurable and hence (Ht)-predictable, it follows that (3.5) exists as
stochastic integral in the sense of, e.g., Jacod and Shiryaev (2003), Section I.4.

By Proposition 2.1 we have

G
D

=
(∫ t

0

φ1/2
s d(B ◦ as)

)

t≥0
, (4.2)

where B is a d-dimensional standard Brownian motion independent of H ; thus

X
D

=
(∫ t

0

(φ1/2
s Hs)

∗ d(B ◦ a)s

)

t≥0
,

which shows that an IGPII corresponds to an integral of a time changed standard
Brownian motion, where the time change is deterministic. In particular, Proposi-
tion 3.6 shows that X is a CGPIIk-Σ, with

Σt =

∫ t

0

H∗
s φsHs das. (4.3)

Notice that Σ has the decomposition (a, H∗φH) where a is deterministic.
The latter property, that a is deterministic, characterizes in fact the class of

IGPII; to see this, let Σ = (Σt)t≥0 be an arbitrary Sk
+-valued nondecreasing càdlàg

process with Σ0 = 0 and assume that Σ has a decomposition (a, Φ) with a deter-
ministic. Let B denote a k-dimensional standard Brownian independent of Φ. By
Proposition 3.6 it follows that the IGPII given by

∫ t

0

Φ1/2
s d(B ◦ a)s, t ≥ 0, (4.4)

is a CGPIIk-Σ.
Let us summarize these findings.
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Proposition 4.2. We have the following.

(i) Let X denote the IGPII (4.1) with G an GPIId-ν, where ν has decompo-
sition (a, φ), and H is measurable and R

d×k-valued and independent of G.
Then X is a CGPIIk-Σ with Σ given by (4.3).

(ii) Let Σ = (Σt)t≥0 be an arbitrary Sk
+-valued nondecreasing càdlàg process

with Σ0 = 0, and assume that Σ has a decomposition (a, Φ) with a deter-
ministic. Then the IGPII (4.4), with B a k-dimensional standard Brownian
motion independent of Φ, is a CGPIIk-Σ.

When Σ has a decomposition (a, Φ) with a deterministic, we shall refer to a
CGPIIk-Σ X as an IGPIIk-Σ, since in this case X can be represented as an integral
of a GPII by the above result. Notice that in (4.1) the dimension, k, of the IGPII
is not necessarily equal to d, the dimension of the background GPII. However, by
(ii) we see that it is possible to find a representation with k = d.

Remark 4.3. Let us summarize how to find the marginal and conditional distribu-
tions in IGPII’s.

(i) Let X be an IGPIIk-Σ. Decompose Σ as

Σt =

(
Σ11

t Σ12
t

Σ21
t Σ22

t

)
,

where, e.g., Σ11 is k1 × k1. Then X1 is an IGPIIk1
-Σ11.

(ii) Let X be an IGPII-Σ and (a, Φ) be a decomposition of Σ with a deter-
ministic. Decompose Φ as

Φt =

(
Φ11

t Φ12
t

Φ21
t Φ22

t

)
,

where, e.g., Φ11 is k1 × k1. Assume Φ22 is invertible. Define the k1-
dimensional process X1·2 by

X1·2
t := X1

t −
∫ t

0

Φ12
s (Φ22

s )−1 dX2
s for t ≥ 0,

and let Σ11·2 be given by

Σ11·2
t :=

∫ t

0

Φ11
s − Φ12

s (Φ22
s )−1Φ21

s das for t ≥ 0.

According to Proposition 3.8 (iv), X1·2 | X2 is an IGPIIk1
-Σ11·2.

5. Examples

Example 5.1. Let Σt =
∫ t

0 Φs ds, where Φ is an Sd
+-valued measurable process.

Then we say that an IGPIId-Σ is a Stochastic Volatility Model with (squared)
volatility Φ. Of particular interest is the case where Φ is a matrix OU process,
as introduced in Barndorff-Nielsen and Stelzer (2007) and applied to multivariate
stochastic volatility modelling by Pigorsch and Stelzer (2009b,a).

Notice that if X is a volatility model with squared volatility Φ then it can be
represented as

X
D

=
(∫ t

0

H∗
s dBs

)

t≥0
(5.1)
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whenever H = (Ht)t≥0 is a measurable R
k×d-valued process with H∗H = Φ inde-

pendent of B, which is a k-dimensional standard Brownian motion. In particular
we have

X
D

=
(∫ t

0

Φ1/2
s dB̃s

)

t≥0
(5.2)

where Φ1/2 is the d × d nonnegative definite square root of Φ independent of B̃

which is a d-dimensional standard Brownian motion.
The marginal distributions in SV models are given in Remark 4.3 (i) and the

conditional distributions in Remark 4.3 (ii) with at = t.

Example 5.2. Suppose Σ is a matrix subordinator, that is Σ is càdlàg and Sd
+-valued

with Σ0 = 0, and has stationary and independent increments; cf. Barndorff-Nielsen
and Pérez-Abreu (2007). The characteristic function of Σt is given by

exp [i tr(ΣtZ)] = exp
[
t
(
i tr(Γ0Z) +

∫

Sd
+

(ei tr(UZ) − 1) ρ(dU)
)]

, Z ∈ Sd
+,

where tr denotes the trace of a matrix, Γ0 ∈ Sd
+ is a constant and ρ is the Lévy

measure on Sd
+, which satisfies

∫

Sd
+

min(1, tr(U)) ρ(dU) < ∞.

Let (A, Φ) denote a representation of Σ. (Notice that if we choose

A = Σ11 + · · · + Σdd, (5.3)

then A is a one-dimensional subordinator).
Let X be a CGPIId-Σ. By Proposition 3.1, X is then a Lévy process on R

d, and
by Proposition 3.6 we have the representation

X
D

=
(∫ t

0

Φ1/2
s d(B ◦ A)s

)

t≥0
, (5.4)

where B is a d-dimensional standard Brownian motion independent of Σ. By Propo-
sition 4.2, X is not an IGPII unless Σ is deterministic.

We emphasize that the representation (5.4) involves both a time change and an
integral in contrast to the CPII’s in Subsection 1.1 where, in the case of a generative
convolution semigroup, we have the representation (1.2) defined solely in terms of
a time change.

Example 5.3. A one-dimensional random variable Y is said to be of type G if it

is of the form Y
D

= ΨU where Ψ > 0 and U ∼ N(0, 1) are independent and Ψ2 is
infinitely divisible. The interest in this concept comes in particular from the fact

that such a Y determines a Lévy process X = (Xt)t≥0 for which X1
D

= Y and

Xt = B ◦Σt where Σ denotes a one-dimensional subordinator having Σ1
D

= Ψ2 and
B is a one-dimensional Brownian motion independent of Σ. The definition of type
G extends to d-dimensional random vectors Y with U being standard normal and
Ψ ∈ Sd

+ and such that Ψ2 is an infinitely divisible d× d matrix. This extension was
discussed under the name multG in Barndorff-Nielsen and Pérez-Abreu (2002) (cf.
also Barndorff-Nielsen et al., 2006). Example 5.2 shows that also in this multivariate
setting the Lévy process X determined by Y , which is given by (5.4) for a matrix

subordinator Σ satisfying Σ1
D

= Ψ2, has a convenient representation which, however,
now involves integration in addition to a time change.



Representation and properties of CGPII’s 197

References

O. E. Barndorff-Nielsen, J. Pedersen and K. Sato. Multivariate subordination, self-
decomposability and stability. Adv. in Appl. Probab. 33 (1), 160–187 (2001).
ISSN 0001-8678. MR1825321.
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