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Abstract. Let Y be an Ornstein-Uhlenbeck diffusion governed by an ergodic finite
state Markov process X : dYt = −λ(Xt)Ytdt+σ(Xt)dBt, Y0 given. Under ergodicity
condition, we get quantitative estimates for the long time behavior of Y . We also
establish a trichotomy for the tail of the stationary distribution of Y : it can be heavy
(only some moments are finite), exponential-like (only some exponential moments
are finite) or Gaussian-like (its Laplace transform is bounded below and above by
Gaussian ones). The critical moments are characterized by the parameters of the
model.

1. Introduction and main results

The aim of this paper is to draw a complete picture of the ergodicity of Ornstein-
Uhlenbeck diffusions with Markov switching (characterization of the tails of the
invariant measure and quantitative convergence to equilibrium). In particular we
make more precise the results of Guyon et al. (2004); de Saporta and Yao (2005).
The so-called diffusion with Markov switching Y = (Yt)t>0 is defined as follows.

The switching process X = (Xt)t>0 is a Markov process on the finite state space

E = {1, . . . , d} (with d > 2), of infinitesimal generator A = (A(x, x̃))x,x̃∈E . Let us

denote by a(x) the jump rate at state x ∈ E and P = (P (x, x̃))x,x̃∈E the transition
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matrix of the embedded chain. One has, for x 6= x̃ in E,

a(x) = −A(x, x) and P (x, x̃) = −A(x, x̃)

A(x, x)
.

We assume that P is irreducible recurrent. The process X is ergodic with a unique
invariant probability measure denoted by µ. See Norris (1997) for details. Let
FX

t = σ(Xu, 0 6 u 6 t). Moreover, let Ex denote the expectation with respect to
the law Px of X knowing that X0 = x.

Let B = (Bt)t>0 be a standard Brownian motion on R and Y0 a real-valued
random variable such that B, Y0 and X are independent. Conditionally to X , the
process Y = (Yt)t>0 is the real-valued diffusion process defined by:

Yt = Y0 −
∫ t

0

λ(Xu)Yu du +

∫ t

0

σ(Xu) dBu, (1.1)

where λ and σ are two functions from E to R and (0,∞) respectively. Of course,
if λ and σ are constant, Y is just an Ornstein-Uhlenbeck process with attractive
(λ > 0), neutral (λ = 0) or repulsive coefficient (λ < 0). One has to notice that
Equation (1.1) has an “explicit” solution:

Yt = Y0 exp

(

−
∫ t

0

λ(Xu) du

)

+

∫ t

0

exp

(

−
∫ t

u

λ(Xv) dv

)

σ(Xu) dBu. (1.2)

Remark 1.1. In others words, the full process (X, Y ) is the Markov process on E×R

associated to the infinitesimal generator A defined by:

Af(x, y) =
∑

x̃∈E

A(x, x̃)(f(x̃, y) − f(x, y)) +
σ(x)2

2
∂2
22f(x, y) − λ(x)∂2f(x, y).

These diffusions with Markov switching were introduced in Basak et al. (1996)
as Brownian perturbations of linear piecewise deterministic Markov processes aris-
ing e.g. in tracking systems modeling. They can also be viewed as a continuous
time version of Markov switching ARMA that are used for example in econometric
modeling (see Guyon et al., 2004 and references therein).

Previous works investigated the ergodicity of Y and some integrability properties
for the invariant measure. For example, in Basak et al. (1996), the multidimen-
sional case is addressed together with the case of diffusion coefficients depending
on Y . Stability results and sufficient conditions for the existence of moments are
established under Lyapunov-type conditions.

In Guyon et al. (2004), it is proved that the Markov switching diffusion Y is
ergodic if and only if

∑

x∈E

λ(x)µ(x) > 0, (1.3)

that is if the process is attractive “in average”. Let us denote by ν the invariant
probability measure of Y . It is also shown in Guyon et al. (2004) that ν admits
a moment of order p if, for any x ∈ E, pλ(x) + a(x) is positive and the spectral
radius of the matrix

Mp =

(

a(x)

a(x) + pλ(x)
P (x, x̃)

)

x,x̃∈E

(1.4)

is smaller than 1. In the sequel ρ(M) stands for the spectral radius of a matrix M .
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In de Saporta and Yao (2005), the result is more precise: a dichotomy is exhibited
between heavy and light tails for ν. Let us define

λ = min
x∈E

λ(x) and λ = max
x∈E

λ(x). (1.5)

Theorem 1.2 (de Saporta and Yao, 2005). Under Assumption (1.3), the following
dichotomy holds:

(1) if λ < 0, then there exists C > 0 such that

tκν((t, +∞)) −−−−→
t→+∞

C,

where κ is the unique p ∈ (0, min {−a(x)/λ(x) : λ(x) < 0}) such that the
spectral radius of Mp is equal to 1;

(2) if λ > 0, then ν has moments of all orders.

Remark 1.3. The constant κ does not depend on the parameters (σ(x))x∈E , and

Point 1 from previous theorem implies that, for λ < 0, the pth moment of ν is finite
if and only if p < κ.
The main idea of the proofs in Guyon et al. (2004) and de Saporta and Yao (2005)
is to study the discrete time Markov chain (Xδn, Yδn)n>0 for any δ > 0 with renewal
theory and then to let δ go to 0.

The main goal of the present paper is to show that there are three (and not only
two) different behaviors for the tails of ν.

Let us gather below several useful notations.

Notations 1.4. Let us define for the diffusion coefficients

σ2 = min
x∈E

σ2(x) and σ2 = max
x∈E

σ2(x). (1.6)

We denote by Ap the matrix A−pΛ where Λ is the diagonal matrix with diagonal
(λ(1), . . . , λ(d)) and associate to Ap the quantity

ηp := − max
γ∈Spec(Ap)

Re γ. (1.7)

When λ > 0, the set E is the union of

M = {x ∈ E : λ(x) > 0} and N = {x ∈ E : λ(x) = 0}. (1.8)

Let us then define

β(x) =
σ(x)2

2a(x)
and β = max

x∈N
β(x), (1.9)

and, for any v such that v2 < β
−1

, the matrix

P (N)
v =

(

1

1 − β(x)v2
P (x, x′)

)

x,x′∈N

. (1.10)

We are now able to state our main result.

Theorem 1.5. Let us define

κ = sup {p > 0 : ηp > 0} ∈ (0, +∞].

Then ηp is continuous, positive on the set (0, κ) and negative on (κ, +∞). Under
Assumption (1.3), the following trichotomy holds:

(1) if λ < 0 then 0 < κ 6 min {−a(x)/λ(x) : λ(x) < 0}, and the pth moment
of ν is finite if and only if p < κ.
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(2) if λ = 0, then κ is infinite and the domain of the Laplace transform of ν is
(−vc, vc) where

vc = sup
{

v > 0 : ρ(P (N)
v ) < 1

}

; (1.11)

(3) if λ > 0, then κ is infinite and ν has a Gaussian-like Laplace transform: for
any v ∈ R,

exp

(

σ2v2

4λ

)

6

∫

evy ν(dy) 6 exp

(

σ2v2

4λ

)

.

Moreover, its tails look like the ones of the Gaussian law with variance α/2

where α = maxx∈E σ(x)2/λ(x) since y 7→ eδy2

is ν-integrable if and only if
δ < 1/α.

Remark 1.6. In the sequel we will respectively refer to Points 1, 2 and 3 as the
polynomial, exponential-like and Gaussian-like cases.

The first point of this theorem is a reformulation of the first point of Theorem
1.2 by de Saporta and Yao. We can in particular check that our characterization
of κ in Theorem 1.5 is equivalent to the one given by de Saporta and Yao in Point
1 of Theorem 1.2 (see Remark 4.3). We provide a direct and simple proof of this
result based on Itô’s formula and some basic results on finite Markov chains. The
proof of Point 2 relies on precise estimates on the Laplace transform of Yt that can
be derived from a discrete time model already studied in Goldie and Grübel (1996);
Hitsczenko and Weso lowski (2009); Alsmeyer et al. (2009).

The key point is to remark that the Laplace transform of Yt can be “explicitly”
computed as the expectation of a function of Y0 and (Xt)t>0.

Lemma 1.7. For any measure π0 on E×R, let us denote by Lt the Laplace transform
of Yt. One has

Lt(v) = Eπ0

[

exp

(

vY0e
−

R

t

0
λ(Xs) ds +

v2

2

∫ t

0

σ(Xs)2e−2
R

t

s
λ(Xr) dr ds

)]

. (1.12)

Proof : This lemma relies on the properties of the Brownian exponential martingale.
We recall from Revuz and Yor (1994, p. 141) that, if f is a measurable function on

[0,∞) such that
∫ t

0
f(s)2 ds is finite for each t > 0, then, for any w ∈ R,

Zt = exp

(

w

∫ t

0

f(s) dBs −
w2

2

∫ t

0

f(s)2 ds

)

is a strictly positive martingale, hence

E

(

ew
R

t

0
f(s) dBs

)

= e
w2

2

R

t

0
f(s)2 ds. (1.13)

Thanks to (1.2) we have

Yt = Gt

(

Y0 +

∫ t

0

Hs dBs

)

.

where the processes (Gs)s>0 and (Hs)s>0 are defined by

Gs = exp

(

−
∫ s

0

λ(Xv) dv

)

and Hs = exp

(
∫ s

0

λ(Xv) dv

)

σ(Xs)
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are (FX
s )s>0-adapted and independent of (FB

s )s>0. As a consequence,

E
(

evYt
)

= E

(

E

(

evYt
∣

∣Y0, (Xs)06s6t

))

= E

(

evGtY0E

(

evGt

R

t

0
Hs dBs

∣

∣(Xs)06s6t

))

.

This implies (1.12) by a direct application of (1.13) to f : s 7→ Hs and w = vGt,
conditionally on (Xs)06s6t. �

The estimate of the Laplace transform in the Gaussian-like case (Point 3 in
Theorem 1.5) is hence easily deduced from Lemma 1.7. Assuming that Y0 = 0, we
get from (1.12) that

Lt(v) 6 E

[

exp

(

v2

2

∫ t

0

σ2e−2
R

t

s
λ dr ds

)]

6 exp

(

(

1 − e−2λt
) σ2v2

4λ

)

,

which gives the upper bound as t goes to infinity. The lower bound follows from a
symmetric argument.

The proofs of Point 2 and of the second part of Point 3 are more delicate (and
interesting). For the exponential case, we first get the critical exponential moment
for the process Y observed at the hitting times of the subset M defined in (1.8).
Then we show that the full process has the same critical exponent.

At the end of the paper we focus on the convergence of the law of Yt to the
invariant measure ν. We get an explicit exponential bound for the Wasserstein
distance of order p for any p < κ. Classically, let p > 1 and Pp be the set of
the probability measures on R with a finite pth moment. Define the Wasserstein
distance Wp on Pp as follows: for any ρ and ρ̃ in Pp,

Wp(ρ, ρ̃) =

(

inf
π

{
∫

|y − ỹ|p π(dy, dỹ)

})1/p

,

where the infimum is taken among all the probability measures π on R
2 with

marginals ρ and ρ̃. It is well-known that (Pp, Wp) is a complete metric space
(see Villani, 2003).

The strategy is to couple two processes (X, Y ) and (X̃, Ỹ ) in such a way that

the Wasserstein distance between L(Yt) and L(Ỹt) goes to zero as t goes to infinity.
This requires us to couple the initial conditions and the dynamics (of both the

Markov chains and the diffusion part). When X0 and X̃0 have the same law, the

coupling is trivial: we choose X = X̃ and the same driving Brownian motion.

Theorem 1.8. Let p < κ. Assume that X0 and X̃0 have the same law. Let (Yt)t>0

and (Ỹt)t>0 be solutions of (1.1) associated to (Xt)t>0 and (X̃t)t>0 and assume

that Y0 and Ỹ0 have finite moment of order p. Then there exists C(p) such that

Wp

(

L(Yt),L(Ỹt)
)p

6 C(p)e−ηptWp

(

L(Y0),L(Ỹ0)
)p

,

where ηp is given by (1.7).

If X0 and X̃0 do not have the same law, one first has to make the Markov chains
X and X̃ stick together and then to use Theorem 1.8. This provides a rather
intricate bound which is given for convenience in Section 5.

The paper is organized as follows. In Section 2 we complete the proof for the
Gaussian-like case of Theorem 1.5. The exponential-like case is studied in Section



156 Jean-Baptiste Bardet, Hélène Guérin and Florent Malrieu

3. Since the critical exponential moment is not explicit in the general case, we give
also the explicit computation of the Laplace transform of ν when E is reduced to
{1, 2}. In Section 4 we establish a uniform bound for the pth moment of (Yt)t>0 for
any p < κ and the first point of Theorem 1.5 as a corollary. We finally provide the
proof of Theorem 1.8 and its extension to general initial conditions in Section 5.

2. Gaussian moments for the switched diffusion

This section is dedicated to the proof of the second part of Point 3 of Theorem
1.5.

Proof of Point 3 of Theorem 1.5: Let us denote by

α(x) =
σ(x)2

λ(x)
for x ∈ E and α = max

x∈E
α(x) < +∞.

For any δ ∈ (0, 1/α), Itô’s formula ensures that

deδY 2
t =

(

−2λ(Xt)δY
2
t + (2δ2Y 2

t + δ)σ(Xt)
2
)

eδY 2
t dt + dMt

where (Mt)t>0 is a martingale. For any x ∈ E and y ∈ R,

2(−λ(x) + δσ(x)2)y2 + σ(x)2 6 −2λ(x)(1 − δα)y2 + αλ(x)

6 −2λ(1 − δα)y2 + αλ,

since δα < 1. Moreover, for any a > 0, there exists b > 0 such that, for any y ∈ R,

−2λδ(1 − αδ)y2 + λαδ 6 −a + be−δy2

,

thus
d

dt
E

(

eδY 2
t

)

6 −aE

(

eδY 2
t

)

+ b.

As a consequence, supt>0 E

(

eδY 2
t

)

is finite as soon as E

(

eδY 2
0

)

is finite and δα < 1.

On the other hand, assume (without loss of generality) that α(1) = α. Choose
(X0, Y0) with law ν (the invariant measure of (X, Y )). For any t > 0, we have

E

(

eδY 2
0

)

= E

(

eδY 2
t

)

> E

[

1{X0=1}E1,Y0

(

1{T1>t}e
δY 2

t

)]

,

where T1 is the first jump time of X . On the set {T1 > t},

Yt
L
= Y0e

−λ(1)t + Nt

where Nt is a centered Gaussian random variable with variance α(1)(1−e−2λ(1)t)/2
which is independent of Y0 and T1. Thus, recalling that T1 ∼ Exp(a(1)) (T1 is
exponentially distributed with parameter a(1)), we get

E1,Y0

(

1{T1>t}e
δY 2

t

)

= e−a(1)t
E

(

eδ(Y0e−λ(1)t+Nt)
2
)

.

Since a 7→ E

(

eδ(a+Nt)
2
)

is even and convex, it reaches its minimum at a = 0 and

E

(

eδ(Y0e−λ(1)t+Nt)
2
)

> E

(

eδN2
t

)

.

Moreover,

E

(

eδN2
t

)

=







1
√

1 − δα(1)(1 − e−2λ(1)t)
if δα(1)(1 − e−2λ(1)t) < 1,

+∞ otherwise.
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As a consequence, if δ > 1/α(1), E

(

eδY 2
t

)

is bounded below by a function of t

which is infinite for t large enough. Thus, E

(

eδY 2
t

)

is infinite too. �

3. Exponential moments for the switched diffusion

This section is dedicated to the proof of Point 2 in Theorem 1.5. We assume in
the sequel that λ = 0. If (Xt)t>0 is a two-states Markov process then one can use

(1.12) to compute explicitly the Laplace transform of the invariant measure ν. This
is a warm-up for the general case, and gives a more explicit formula for the critical
exponential moment, whereas it will come from an abstract spectral criterion in the
general case.

3.1. The explicit expression for the two-states case. In this subsection we assume
that E = {1, 2} and that λ = 0. Let us start with a straightforward computation
which suggests that the Laplace transform of the invariant measure of Y is infinite
outside a bounded interval.

Remark 3.1. If T is an exponential random variable with parameter a and B is a
standard Brownian motion on R (with T and B independent) then,

E
(

evσBT
)

=

∫ ∞

0

E
(

evσBt
)

ae−at dt =

∫ ∞

0

eσ2v2t/2ae−at dt =
2a

2a − σ2v2
.

In other words, the law of σBT is a (symmetric) Laplace law. When X spends an
exponential time in x ∈ E with λ(x) = 0, Y behaves like σ(x)B.

Theorem 3.2 (The two-states degenerate case). Assume that E = {1, 2}, λ(1) is
equal to λ > 0 and λ(2) is equal to 0. Denote by L the Laplace transform of ν.
Then, for any v such that v2 < 1/β(2) (see (1.9) for the definition of β),

L(v) =

(

1 − µ(1)β(2)v2

1 − β(2)v2

)(

1

1 − β(2)v2

)1+a(1)/λ

exp

(

σ(1)2v2

4λ

)

. (3.1)

Moreover, if v2 > 1/β(2), L(v) is infinite.

Proof : Since E = {1, 2}, X is symmetric with respect to µ which is given by
µ(1) = a(2)/(a(1) + a(2)). Let us denote by Lt the Laplace transform of Yt when
Y0 = 0 and X is stationary i.e. L(X0) = µ. From Equation (1.12), one has for any
v ∈ R,

Lt(v) = Eµ

[

exp

(

v2

2

∫ t

0

σ(Xs)2e−2
R

t

s
λ(Xr) dr ds

)]

= Eµ

[

exp

(

v2

2

∫ t

0

σ(Xs)2e−2
R

s

0
λ(Xr) dr ds

)]

since µ is reversible. By monotone convergence, we get that, for any v ∈ R,

L(v) = Eµ

[

exp

(

v2

2

∫ ∞

0

σ(Xs)2e−2
R

s

0
λ(Xr) dr ds

)]

∈ [1, +∞],

where L is the Laplace transform of ν.
Let us introduce two auxiliary functions: for x = 1, 2,

Lx(v) = Ex

[

exp

(

v2

2

∫ ∞

0

σ(Xs)2e−2
R

s

0
λ(Xr) dr ds

)]

.
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It is clear that

L(v) = µ(1)L1(v) + µ(2)L2(v).

Moreover, if T is the first jump time of X , then

Lx(v) = Ex

[

Ex

{

exp

(

v2

2

∫ ∞

0

σ(Xs)2e−2
R

s

0
λ(Xr) dr ds

)

∣

∣

∣
FX

T

}]

= Ex

[

exp

(

v2

2

∫ T

0

σ(Xs)2e−2
R

s

0
λ(Xr) dr ds

)

Ex,T

]

,

where

Ex,T = Ex

{

exp

(

v2

2

∫ ∞

T

σ(Xs)2e−2
R

s

0
λ(Xr) dr ds

)

∣

∣

∣
FX

T

}

.

For any s ∈ [0, T ), Xs = x and then
∫ T

0

σ(Xs)2e−2
R

s

0
λ(Xr) dr ds = σ(x)2

1 − e−2λ(x)T

2λ(x)
,

with the convention (1 − e−0×T )/0 = T . Similarly,
∫ ∞

T

σ(Xs)2e−2
R

s

0
λ(Xr) dr ds = e−2λ(x)T

∫ ∞

T

σ(Xs)2e−2
R

s

T
λ(Xr) dr ds

The Markov property implies

Ex

[

exp

(

v2

2

∫ ∞

T

σ(Xs)2e−2
R

s

0
λ(Xr) dr ds

)

∣

∣

∣
FT

]

= LXT

(

ve−λ(x)T
)

.

Thus,

Lx(v) = E

[

exp

(

v2σ(x)2(1 − e−2λ(x)T )

4λ(x)

)

L3−x

(

ve−λ(x)T
) ∣

∣

∣
X0 = x

]

.

More precisely,

L1(v) = E1

[

exp

(

v2σ(1)2(1 − e−2λT )

4λ

)

L2

(

ve−λT
)

]

,

and

L2(v) = E2

[

ev2σ(2)2T/2L1(v)
]

=







2a(2)

2a(2) − σ(2)2v2
L1(v) if σ(2)2v2 < 2a(2),

+∞ otherwise.

Using β(2) = σ(2)2/2a(2), one easily gets that L1 satisfies the following equation:
for any v2 < 1/β(2),

L1(v) =
1

1 − β(2)v2

∫ ∞

0

exp

(

σ(1)2v2(1 − e−2λt)

4λ

)

L1(ve−λt)a(1)e−a(1)t dt

=
1

1 − β(2)v2

∫ 1

0

exp

(

σ(1)2v2(1 − u2)

4λ

)

L1(vu)
a(1)

λ
ua(1)/λ−1 du.

With x = uv,

L1(v) =
1

1 − β(2)v2

(

1

v

)a(1)/λ

eσ(1)2v2/(4λ)

∫ v

0

e−σ(1)2x2/(4λ) a(1)

λ
xa(1)/λ−1L1(x) dx.
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Differentiating this relation provides

L′
1(v) =

(

β(2)v

1 − β(2)v2
− a(1)

λv
+

σ(1)2v

2λ
+

1

1 − β(2)v2

a(1)

λv

)

L1(v).

Then L1 is solution of

L′
1(v) =

(

σ(1)2v

2λ
+

β(2)(1 + a(1)/λ)v

1 − β(2)v2

)

L1(v)

which leads to

L1(v) = eσ(1)2v2/(4λ)

(

1

1 − β(2)v2

)1+a(1)/λ

,

since L1(0) = 1. Since L2 is a function of L1 we get

L(v) = eσ(1)2v2/(4λ)

(

1 − µ(1)β(2)v2

1 − β(2)v2

)(

1

1 − β(2)v2

)1+a(1)/λ

.

�

3.2. The exponential-like case. In this subsection we provide the proof of Point 2
(λ = 0) of Theorem 1.5. We first recall that, in this case, we split the state space E
of the switching process X into two subsets M and N defined in (1.8). We denote
also by F the points of M that can be reached in one step from N :

F =

{

x ∈ M :
∑

x̃∈N

P (x̃, x) > 0

}

.

Assume for simplicity that X0 ∈ M and define by induction the sequence of times
(Tn)n>0 by T0 = 0 and, for n > 0,

T2n+1 = inf {t > T2n : Xt ∈ N}, and T2n+2 = inf {t > T2n+1 : Xt ∈ M}.
When X is in M , Y looks like a Ornstein-Uhlenbeck process (with variable but
attractive drift) while it looks like a Brownian motion (with variable but bounded
below and above variance) when X is in N . Thus, heuristically the process |Y |
might be larger after a sojourn of X in N than in M .

Let us notice that for x ∈ N ,

YT = Y0 + Ix where Ix =

∫ T

0

σ(Xx
s ) dBs

and Xx is the process X starting at x and T is the first hitting time of M . Our
strategy is to determine the domain of the Laplace transform of Ix and then to
establish that it is also the one of the process Y at the entrance times of X into the
set M i.e at the times (T2n)n>0. We will then extend the result to the full process

(X, Y ).

Proposition 3.3. Under previous assumptions, for any v2 < β
−1

, the two following
conditions are equivalent:

(1) for any x ∈ N , E(evIx) < +∞;

(2) ρ(P
(N)
v ) < 1, where P

(N)
v is defined in Equation (1.10).
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Proof : Let x0, x1, . . . , xn−1 be in N . We denote by (Zn)n the embedded chain of
X . On the set H = {Z0 = x0, . . . , Zn−1 = xn−1, Zn ∈ M},

Ix0 =

∫ T

0

σ(Xx0
s ) dBs =

n−1
∑

j=0

σ(xj)
√

τxj
Gj ,

where the random variables (Gj)j , (τxj
)
j

are independent with distributions Gj ∼
N (0, 1) and τxj

∼ Exp(a(xj)). As a consequence,

E
(

evIx0 |H
)

=
n−1
∏

j=0

E

[

exp

(

v2σ(xj)2

2
τxj

)]

=
n−1
∏

j=0

1

1 − β(xj)v2
.

One just computes

E(evIx0 ) =
∑

n>1
x1,...,xn−1∈N

E(evIx0 |Z1 = x1, . . . , Zn−1 = xn−1, Zn ∈ M)×

× Px0(Z1 = x1, . . . , Zn−1 = xn−1, Zn ∈ M))

=
∑

n>1
x1,...,xn−1∈N

P (x0, x1)

1 − β(x0)v2
· · · P (xn−2, xn−1)

1 − β(xn−2)v2

P (xn−1, M)

1 − β(xn−1)v2

=
∑

n≥1

δx0(P (N)
v )

n−1
ϕ ,

for ϕ(x) = 1
1−β(x)v2 P (x, M). Notice that ϕ is well-defined since v2 < 1/β. Moreover

it is positive because X is irreducible recurrent, so, for any x0 ∈ N there exists a
path that leads to M .

If ρ(P
(N)
v ) < 1, then

lim sup
n→+∞

∣

∣δx0(P (N)
v )

n−1
ϕ
∣

∣

1/n

6 lim sup
n→+∞

∥

∥(P (N)
v )

n∥
∥

1/n
< 1 ,

hence the series is convergent.

If ρv := ρ(P
(N)
v ) > 1, by Perron-Frobenius theorem, there exists a probability

measure ν0 with some positive coefficients such that ν0P
(N)
v = ρvν0, which implies

that

Eν0(evI·) = ν0(ϕ)
∑

n>0

ρn−1
v = +∞,

since ϕ is positive. �

Remark 3.4. When X is irreducible in restriction to N (i.e. the matrices P
(N)
v are

irreducible for any v), then E(evIx) = +∞ for all x ∈ N as soon as ρ(P
(N)
v ) > 1. If

this is not the case, the previous proposition just ensures that when ρ(P
(N)
v ) > 1,

then E(evIx ) = +∞ for some x ∈ N . Moreover, for any x, x′ ∈ N such that P (x, x′)
is positive then E(evIx′ ) = +∞ implies E(evIx) = +∞.

We now introduce the sub-process made of the positions of (X, Y ) at the suc-
cessive hitting times of M .
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Proposition 3.5. For any n > 0, let us define

Un = XT2n
and Vn = YT2n

.

The process (U, V ) is a Markov chain on F × R. More precisely,

Vn+1 = Mn(Un)Vn + Qn(Un),

where the sequence of random vectors
(

(Mn(x), Qn(x))x∈F

)

is i.i.d., and indepen-
dent of (Un), with law given by

Mn(x)
L
= exp

(

−
∫ T1

0

λ(Xx
r ) dr

)

Qn(x)
L
=

∫ T1

0

σ(Xx
s ) exp

(

−
∫ T1

s

λ(Xx
r ) dr

)

dBs +

∫ T2

T1

σ(Xx
s ) dBs.

For any v < vc where vc = sup
{

v, ρ(P
(N)
v ) < 1

}

, we have

sup
n>0

E

(

ev|Vn|
)

< +∞.

Moreover, if v > vc, this supremum is infinite.

Proof : The fact that (U, V ) is a recurrent Markov chain is a straightforward appli-
cation of the Markov property for X .

Let us introduce Mn = maxx∈F Mn(x) and Qn = maxx∈F |Qn(x)|. The random
variables ((Mn, Qn))n>0 are i.i.d. Define the sequence (V n)n>0 by

V 0 = |V0| and V n+1 = MnV n + Qn for n > 1.

The domain of the Laplace transforms of (V n)n>0 is known thanks to the exhaustive

study Alsmeyer et al. (2009). Since P(Qn = 0) < 1, P(0 < Mn < 1) = 1 and for
any c ∈ R, P(Qn + Mnc = c) < 1, Alsmeyer et al. (2009, Theorem 1.6) ensures
in particular that (E exp

(

vV n

)

)
n

is uniformly bounded as soon as the Laplace

transform LQ of Q is finite. At last, for any v > 0,

sup
x∈F

E

(

ev|Q(x)|
)

6 E

(

evQ
)

= E

(

sup
x∈F

ev|Q(x)|

)

6
∑

x∈F

E

(

ev|Q(x)|
)

.

Thus LQ(v) is finite if and only if E
(

ev|Q(x)|
)

is finite for any x ∈ F . Since |Vn| 6 V n

for all n > 0, then

sup
n>0

E

(

ev|Vn|
)

< +∞

as soon as LQ(v) is finite.

On the other hand, choose v such that there exists x0 ∈ F such that E
(

ev|Q(x0)|
)

is infinite. Then, for any n > 0,

E

(

ev|Vn+1|
)

> E

(

ev|Vn+1|1{Un=x0}

)

> E

(

e−v|Vn|ev|Qn(x0)|1{Un=x0}

)

> E

(

1{Un=x0}e
−v|Vn|

)

E

(

ev|Qn(x0)|
)

.

The recurrence of U ensures that
{

n > 0, E
(

ev|Vn|
)

= +∞
}

is infinite.



162 Jean-Baptiste Bardet, Hélène Guérin and Florent Malrieu

The last point is to show that LQ(v) is finite if and only if v < vc where vc is

defined by (1.11). For any x ∈ F , the random variable Qn(x) is symmetric and its
Laplace transform is finite as soon as, for any x̃ ∈ N , the Laplace transform of

Ix̃ =

∫ T

0

σ(X x̃
s ) dBs

is finite, which is true for |v| < vc. Indeed, we have for any v

E

(

evQn(x)|FT1

)

=

exp

(

v

∫ T1

0

σ(Xx
s ) exp

(

−
∫ T1

s

λ(Xx
r ) dr

)

dBs

)

E
(

evIx̃
)

|x̃=XT1

. (3.2)

Proposition 3.3 ensures that, if |v| < vc then

E

(

evQn(x)
)

6 C(v)E

(

exp

(

v2

2

∫ T1

0

σ(Xx
s )2 exp

(

−2

∫ T1

s

λ(Xx
r ) dr

)

ds

))

.

Denoting σM = maxx∈M σ(x) and λM = minx∈M λ(x), one has

E

(

evQn(x)
)

6 C(v) exp

(

σ2
M

4λM

v2

)

.

It follows that LQ is finite on (−∞, vc).
We assume now that v > vc. From Proposition 3.3, we know that, in this case,

the set G = {x ∈ N : E(evIx) = +∞} is non-empty. Using the irreducibility of
X and Remark 3.4, one notices that there exists x0 ∈ F such that P(Xx0

T1
∈ G) >

0. From this remark and (3.2), one has E(evQn(x0)) = +∞ which conclude the
proof. �

Let us now extend this result to the whole process Y .

Theorem 3.6. For any v < vc where vc = sup
{

v ∈ R : ρ(P
(N)
v ) < 1

}

, we have

sup
t>0

E

(

ev|Yt|
)

< +∞.

Moreover, if v > vc, then this supremum is infinite.

Proof : Choose t > 0. We have

E

(

ev|Yt|
)

=

∞
∑

n=0

E

(

ev|Yt|1{T2n6t<T2n+2}

)

.

We write, for 0 6 v < vc,

E

(

ev|Yt|1{T2n6t<T2n+2}

)

= E

(

E

(

ev|Yt|1{T2n6t<T2n+2}|FT2n
∨ FX

t

))

As in the proof of Proposition 3.5,

E

(

ev|Yt|1{T2n6t<T2n+2}|FT2n
∨ FX

t

)

is bounded above by

C(v) exp

(

σ2
M

4λM

v2 + v|YT2n
|
)

P
(

T2n 6 t < T2n+2|FT2n
∨ FX

t

)

.
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By the Markov property applied to X ,

E

(

ev|Yt|1{T2n6t<T2n+2}

)

6 C(v) exp

(

σ2
M

4λM

v2

)

E

(

ev|YT2n |
)

P (T2n 6 t < T2n+2) .

Then, for 0 6 v < vc,

E

(

ev|Yt|
)

6 C(v) exp

(

σ2
M

4λM

v2

)

sup
n>0

E

(

ev|YT2n |
)

.

The generalization of the case v > vc to the whole process is immediate. �

4. Polynomial moments for the switched diffusion

We denote by Ap the matrix A−pΛ where Λ is the diagonal matrix with diagonal
(λ(1), . . . , λ(d)) and associate to Ap the quantity

ηp := − max
γ∈Spec(Ap)

Re γ.

The main goal of this section is to establish the equivalence between the positivity
of ηp and the existence of a pth moment for the invariant measure ν of Y . We will
also give the proof of Point 1 of Theorem 1.5.

Using classical ideas from spectral theory, we first relate ηp with exponential
functionals of λ along the trajectories of X :

Proposition 4.1. For any p > 0, there exist 0 < C1(p) < C2(p) < +∞ such that,
for any initial probability measure π on E, any t > 0,

C1(p)e−ηpt 6 Eπ

(

exp

(

−
∫ t

0

pλ(Xu) du

))

6 C2(p)e−ηpt. (4.1)

Proof : Let us define, for any p > 0 and t > 0, the matrix A(p,t) by

A(p,t)(x, x̃) = Ex

(

exp

(

−
∫ t

0

pλ(Xu) du

)

1{Xt=x̃}

)

.

On the one hand, one remarks that

Eπ

(

exp

(

−
∫ t

0

pλ(Xu) du

))

= πA(p,t)1 (4.2)

where the coordinates of 1 are all equal to 1 and π is a probability measure on E
seen as a row vector.

On the other hand, a simple application of the Feynman-Kac formula shows
that A(p,t) = etAp . This fact relates the spectra of Ap and A(p,t). In particular,

ρ(A(p,t)) = e−ηpt and, since all coefficients of A(p,t) are positive, we can apply the
Perron-Frobenius Theorem to ensure that −ηp is a simple eigenvalue of Ap, all other
eigenvalues having a strictly smaller real part. Let ξp < −ηp be an upper bound
for the real parts of these other eigenvalues.

We then define πp (resp. ϕp) the left (resp. right) eigenvector associated to
−ηp, with positive coefficients, normalized such that πp(1) = 1 (resp. πp(ϕp) = 1).
Applying Dunford and Schwartz (1988, Thm VII.1.8), we get that for any t > 0

etAp = e−ηptϕpπp + Rp(t),

with ‖Rp(t)‖∞ 6 Pp(t)eξpt, Pp(t) being a polynomial of degree less than d. This
gives

πetAp1 = e−tηp(π(ϕp) + etηpπRp(t)1)
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hence

e−tηp(π(ϕp) − Pp(t)et(ηp+ξp)) 6 πetAp1 6 e−tηp(π(ϕp) + Pp(t)et(ηp+ξp)).

This estimate gives (4.1) thanks to (4.2) and to the fact that Pp(t)et(ηp+ξp) tends
to 0 as t tends to infinity. �

Let us now study the function p 7→ ηp.

Proposition 4.2.

(1) The function p 7→ ηp is smooth and concave on R+. Its derivative at p = 0
is equal to

∑

x∈E

λ(x)µ(x) > 0,

and ηp/p tends to λ as p goes to infinity.
(2) We have the following dichotomy:

• if λ > 0, then ηp > 0 for all p > 0,
• if λ < 0, there is κ ∈ (0, min{−a(x)/λ(x) : λ(x) < 0}) such that

ηp > 0 for p < κ and ηp < 0 for p > κ.

Proof : The smoothness of the functions ηp, πp and ϕp are classical results of per-
turbation theory (see for example Kato, 1995, chapter 2). Since πpAp = −ηpπp,
πp1 = 1 and A1 = 0, one has

ηp = −πpAp1 = pπpΛ1 = p
∑

x∈E

πp(x)λ(x). (4.3)

Differentiating this relation gives η′
p = πpΛ1 + pπ′

pΛ1. In particular, η′
0 = µΛ1 =

∑

x∈E µ(x)λ(x), since π0 = µ.

We turn to the proof of the concavity of ηp. We only have to remark that, for
any t > 0 and any x ∈ E,

p 7→ M
(x)
t (p) =

1

t
log Ex

(

exp

(

−p

∫ t

0

λ(Xu) du

))

is a convex function, as a log-Laplace transform (for example using Hölder’s in-

equality). But (4.1) implies that M
(x)
t converges to −ηp, hence ηp is concave as a

limit of concave functions.
Obviously, one has, for any t > 0 and p > 0, M

(x)
t (p) 6 −pλ and ηp is greater

than pλ.
On the other hand, denoting by T the first jump time of (Xt), one has

M
(x)
t (p) >

1

t
log Ex

(

exp

(

−p

∫ t

0

λ(Xu) du

)

1{T>t}

)

> − pλ(x) +
1

t
log Px(T > t) = −pλ(x) − a(x).

When t goes to infinity, one gets for any p > 0

ηp 6 min
x∈E

(a(x) + pλ(x)). (4.4)

In particular, ηp/p goes to λ as p goes to infinity.

The fact that, when λ > 0, ηp is always positive is clear from (4.3).
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When λ < 0, for p small enough, ηp > 0 since its derivative at p = 0 is positive.
But in this case, we can check that ηp < 0 for p large enough. Equation (4.4)
implies that ηp < 0 as soon as p > minx∈E,λ(x)<0 −a(x)/λ(x). This provides the
upper bound for κ.

With the concavity of ηp, these considerations are sufficient to ensure that ηp

has a unique zero κ, being positive before and negative after. �

Remark 4.3. The relation ηκ = 0 implies that (A − κΛ)ϕκ = 0 which can be
rewritten as Mκϕκ = ϕκ (Mκ being the matrix defined in (1.4)). This ensures that
ρ(Mκ) = 1 since Mκ is non-negative irreducible and ϕκ is positive. Our character-
ization of κ in Theorem 1.5 is hence equivalent to the one given by de Saporta and
Yao in Point 1 of Theorem 1.2.

It is known from Guyon et al. (2004); de Saporta and Yao (2005) that the
invariant measure ν of Y has pth finite moment if and only if p < κ. Their proof is
based on a time discretization of the process (X, Y ) together with generic results on
the ergodicity of discrete time Markov processes and renewal theory (see de Saporta,
2005). The next proposition provides a direct and simple characterization of the
critical moment of ν.

Proposition 4.4. For any p > 0 such that ηp > 0 (i.e. p < κ), and any initial
measure such that the second marginal has a pth finite moment, one has

sup
t>0

E (|Yt|p) < +∞ and

∫

|y|p ν(dy) < +∞.

On the other hand, for any p such that ηp 6 0 (i.e. p > κ) and any initial condition,

lim
t→∞

E (|Yt|p) = +∞ and

∫

|y|p ν(dy) = +∞.

Proof : Let us assume that p > 2. If it is not the case, one has to replace the

function y 7→ |y|p by the C2 function y 7→ |y|p+2

1+|y|2
. Choose T > 0. Itô’s formula

ensures that

d|Yt|p =

(

−pλ(Xt)|Yt|p +
p(p − 1)

2
σ(Xt)

2|Yt|p−2

)

dt + pσ(Xt)Yt|Yt|p−2 dBt.

(4.5)
Let us denote by αp the function defined on [0, T ] by

αp(t) = E
(

|Yt|p|FX
T

)

.

Taking the expectation of (4.5) conditionally to X leads to

α′
p(t) = −pλ(Xt)αp(t) +

p(p − 1)

2
σ2(Xt)αp−2(t),

since B and X are independent. For any ε > 0, there exists c such that

α′
p(t) 6 (−pλ(Xt) + ε)αp(t) + c.

This implies that

αp(t) 6 αp(0)e
R

t

0
(−pλ(Xr)+ε) dr + c

∫ t

0

e
R

t

u
(−pλ(Xr)+ε) dr du.
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One has to take the expectation and use (4.1) to get for any p > 2 such that ηp > 0

E (|Yt|p) 6 C2(p)E (|Y0|p) e(−ηp+ε)t + c C2(p)

∫ t

0

e−(−ηp+ε)u du.

If ε < ηp then supt>0 E(|Yt|p) is finite.
If p = κ, one has

α′
κ(t) = −κλ(Xt)ακ(t) +

κ(κ − 1)

2
σ2(Xt)ακ−2(t).

Then

ακ(t) =

∫ t

0

e−κ
R

t

s
λ(Xu) duκ(κ − 1)σ(Xs)2ακ−2(s) ds + E (|Y0|κ) e−κ

R

t

0
λ(Xu) du

> κ(κ − 1)σ2

∫ t

0

e−κ
R

t

s
λ(Xu) duακ−2(s) ds.

As a consequence, using Proposition 4.1 and the relation ηκ = 0 (see Proposition
4.2),

E (|Yt|κ) > κ(κ − 1)σ2

∫ t

0

E

(

ακ−2(s)E
(

e−κ
R

t

s
λ(Xu) du|FX

s

))

ds

> κ(κ − 1)σ2C1(κ)

∫ t

0

E

(

|Ys|κ−2
)

ds.

From the first part of the proof,

lim
s→∞

E

(

|Ys|κ−2
)

=

∫

|y|κ−2
ν(dy) > 0.

From this

lim
t→∞

E (|Yt|κ) = +∞,

and the κth moment of ν is infinite. This is also true for the pth moment for any
p > κ. �

5. Convergence to equilibrium for the switched diffusion

Under the assumption that ν has a finite pth moment, one can establish an
exponential convergence of (X, Y ) to its invariant measure in terms of mixed total
variation (for X) and Wp Wasserstein distance (for Y ).

Let us start with the easiest case, assuming that L(X0) = L(X̃0).

Proof of Theorem 1.8: Let y and ỹ be two real numbers. We couple two trajectories
of (X, Y ) starting at (x, y) and (x, ỹ) by choosing the same first components and the

same Brownian motion to drive Y and Ỹ . In other words, we compare (Xt, Yt)
x,y

and (X̃t, Ỹt)
x,ỹ where























Xt = X̃t,

Yt = y −
∫ t

0

λ(Xu)Yu du +

∫ t

0

σ(Xu) dBu,

Ỹt = ỹ −
∫ t

0

λ(Xu)Ỹu du +

∫ t

0

σ(Xu) dBu.
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Then,

d
(

Yt − Ỹt

)

= −λ(Xt)(Yt − Ỹt) dt

and
∣

∣

∣
Yt − Ỹt

∣

∣

∣

p

= |y − ỹ|p −
∫ t

0

pλ(Xu)
∣

∣

∣
Yu − Ỹu

∣

∣

∣

p

du.

As a conclusion, (4.1) ensures that

E(x,y),(x,ỹ)

(
∣

∣

∣
Yt − Ỹt

∣

∣

∣

p)

= Ex

(

exp

(

−
∫ t

0

pλ(Xu) du

))

|y − ỹ|p

6 C2(p)e−ηpt|y − ỹ|p.

Then, for any coupling Π of L(Y0) and L(Ỹ0),

Wp

(

L(Yt),L(Ỹt)
)p

6 C2(p)e−ηpt

∫

|y − ỹ|p Π(d(y, ỹ)).

Taking the infimum over Π provides the result. �

Let us turn to the general case.

Theorem 5.1. Consider two processes (X, Y ) and (X̃, Ỹ ) with respective initial laws
π and π̃ two probability measures on E × R such that the second marginal has a
finite θth moment with θ < κ (with κ = +∞ if λ > 0). For any p < θ, we have

Wp

(

L(Yt),L(Ỹt)
)p

6C2(p)(1 − pc)
1−p/θM0(θ)p/θ exp

(

− γηpt

(1 − p/θ)γ + ηp

)

+ pcW
p

pe
−ηpt,

where

pc =
∑

x∈E

µ0(x) ∧ µ̃0(x) = 1 − dTV

(

L(X0),L(X̃0)
)

,

M0(θ)p/θ = 2p

(

sup
t>0

E

(

|Yt|θ
)

+ sup
t>0

E

(

|Ỹt|θ
)

)p/θ

,

W p = max
x∈E

Wp

(

L(Y0|X0 = x),L(Ỹ0|X̃0 = x)
)

,

and γ is such that

dTV(L(Xt),L(X̃t)) 6 e−γtdTV

(

L(X0),L(X̃0)
)

.

Remark 5.2. This estimate can be improved and simplified if λ > 0. In this case,
one can write instead of (5.1) that

E(x,y),(x̃,ỹ)

(∣

∣

∣
Yt − Ỹt

∣

∣

∣

p

1{T>αt}

)

6 CP(T > αt)

thanks to the explicit expression (1.2) of Y . Since pλ 6 ηp this leads to

Wp

(

L(Yt),L(Ỹt)
)p

6 C(p)(1 − pc) exp

(

− γpλ

γ + pλ
t

)

+ pcW
p

pe
−pλt.
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Proof of Theorem 5.1: We have to consider the case X0 6= X̃0. Given x, x̃ ∈ E
(with x 6= x̃) and y, ỹ ∈ R, we introduce the three independent processes (Xt)t>0,

(Xt)t>0 and (Bt)t>0 where the first one is a chain starting at x, the second one is
a chain starting at x̃ and the last one is a standard Brownian motion. The process
X̃ is defined as follows:

X̃t =

{

Xt if t 6 T,

Xt if t > T,

where T = inf
{

t > 0, Xt = Xt

}

. It is well known (since X is a finite irreducible
continuous time Markov chain) that there exists γ > 0 such that

sup
x,x̃∈E

Px,x̃(T > t) 6 e−γt.

Let us now define for any t > 0,

Yt = ye−
R

t

0
λ(Xu) du +

∫ t

0

e−
R

t

u
λ(Xv) dvσ(Xu) dBu,

Ỹt = ỹe−
R

t

0
λ(X̃u) du +

∫ t

0

e−
R

t

u
λ(X̃v) dvσ(X̃u) dBu.

Let us denote, for any p < κ and y, ỹ ∈ R,

C(p, x, y) = sup
t>0

Ex,y (|Yt|p) and C(p, x, y, x̃, ỹ) = 2p (C(p, x, y) + C(p, x̃, ỹ)) .

Let α ∈ (0, 1) and s be the conjugate of θ/p. Theorem 1.8 ensures that

E(x,y),(x̃,ỹ)

(∣

∣

∣
Yt − Ỹt

∣

∣

∣

p)

= E(x,y),(x̃,ỹ)

(∣

∣

∣
Yt − Ỹt

∣

∣

∣

p
(

1{T>αt} + 1{T<αt}

)

)

6 C(θ, x, y, x̃, ỹ)p/θe−γαt/s (5.1)

+ E(x,y),(x̃,ỹ)

(
∣

∣

∣
YT − ỸT

∣

∣

∣

p

C2(p)e−ηp(t−T )1{T<αt}

)

6 C2(p)C(θ, x, y, x̃, ỹ)p/θ
(

e−γαt/s + e−ηp(1−α)t
)

.

Optimizing over α in order to have γα/s = ηp(1 − α) i.e. α =
sηp

γ+sηp
leads to

E(x,y),(x̃,ỹ)

(
∣

∣

∣
Yt − Ỹt

∣

∣

∣

p)

6 C2(p)C(θ, x, y, x̃, ỹ)p/θ exp

(

− γηp

γ + sηp
t

)

.

Let us now turn to the case of general initial conditions. Let π0 and π̃0 be
two probability measures on E × R such that the second marginal has a finite θth

moment. Let us start coupling the marginals µ0 and µ̃0 on E. Define the coupling
probability pc

pc =
∑

x∈E

µ0(x) ∧ µ̃0(x),

and D = {x ∈ E, µ0(x) > µ̃0(x)}. We introduce the random variables U , V , W
and Z such that for any x ∈ E

P(U = x) =
µ0(x) ∧ µ̃0(x)

pc
,

P(V = x) =
µ0(x) − µ̃0(x)

1 − pc
1D(x),

P(W = x) =
µ̃0(x) − µ0(x)

1 − pc
1Dc(x),
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and P(Z = 1) = 1−P(Z = 0) = pc, Z being independent of (U, V, W ). We can now
define

X0 =

{

U if Z = 1,

V if Z = 0,
X̃0 =

{

U if Z = 1,

W if Z = 0.

We check by a standard computation that the law of X0 (resp. X̃0) is µ0 (resp.
µ̃0).

Now, for any x ∈ E, let us introduce two random variables Y x
0 and Ỹ x

0 , indepen-
dent of (U, V, W, Z) such that

E

(

∣

∣

∣
Y x

0 − Ỹ x
0

∣

∣

∣

θ
)

= Wθ

(

L(Y0|X0 = x),L(Ỹ0|X̃0 = x)
)θ

.

With this construction (X0, Y
X0
0 ) has law π0 and (X̃0, Ỹ

X̃0
0 ) has law π̃0. We consider

the processes (X, Y ) and (X̃, Ỹ ) with these initial conditions, the sticky Markov
chains and the same Brownian motion. Thanks to the previous computations, we
have

E

(∣

∣

∣
Yt − Ỹt

∣

∣

∣

p)

= E

(∣

∣

∣
Yt − Ỹt

∣

∣

∣

p (

1{X0=X̃0} + 1{X0 6=X̃0}
))

6 E

(

1{X0=X̃0}
∣

∣

∣
Y X0

0 − Ỹ X̃0
0

∣

∣

∣

p)

e−ηpt

+ C2(p)E
(

1{X0 6=X̃0}C(θ, X0, Y
X0
0 , X̃0, Ỹ

X̃0
0 )p/θ

)

e
−

γηpt

γ+sηp .

On the one hand, we have

E

(

1{X0=X̃0}
∣

∣

∣
Y X0

0 − Ỹ X̃0
0

∣

∣

∣

p)

= E

(

1{X0=X̃0}E

(
∣

∣

∣
Y X0

0 − Ỹ X0
0

∣

∣

∣

p

|X0 = X̃0

))

6 pcW
p

p,

where W p = maxx∈E Wp

(

L(Y0|X0 = x),L(Ỹ0|X̃0 = x)
)

. On the other hand,

E

(

1{X0 6=X̃0}C(θ, X0, Y
X0
0 , X̃0, Ỹ

X̃0
0 )p/θ

)

is smaller that

P(X0 6= X̃0)1/s
E

(

C(θ, X0, Y
X0
0 , X̃0, Ỹ

X̃0
0 )

)p/θ

.

As a conclusion we get the following bound:

Wp

(

L(Yt),L(Ỹt)
)p

6C2(p)(1 − pc)1/sM0(θ)p/θ exp

(

− γηp

γ + sηp
t

)

+ p1/s
c W

p/θ

θ e−ηpt,

where

M0(θ)p/θ = 2p
(

E (C(θ, X0, Y0)) + E

(

C(θ, X̃0, Ỹ0)
))p/θ

.
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