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Abstract. In this paper, we establish moderate deviations for the chemical dis-
tance in Bernoulli percolation. The chemical distance D(x, y) between two points
is the length of the shortest open path between these two points. Thus, we study
the size of random fluctuations around the mean value, and also the asymptotic
behavior of this mean value. The estimates we obtain improve our knowledge of the
convergence to the asymptotic shape. Our proofs rely on concentration inequalities
proved by Boucheron, Lugosi and Massart, and also on the approximation theory
of subadditive functions initiated by Alexander.

1. Introduction and results

We consider supercritical Bernoulli percolation on the edges of Z
d, where d ≥ 2

is a fixed integer. The set of edges of Z
d is denoted by E

d and the set Ω =

{0, 1}E
d

is endowed with the probability P = B(p)⊗E
d

: the coordinates (ωe)e∈Ed

are thus independent and identically distributed random variables following the
Bernoulli law with parameter p. We denote by pc(Z

d) the critical point for Bernoulli
percolation on Z

d, and in the following, p > pc(Z
d) is fixed.

We denote by C∞ the infinite percolation cluster. The chemical distance be-
tween two points x, y ∈ Z

d is the length of the shortest open path between these
two points. Asymptotically, this chemical distance is equivalent to a determinis-
tic norm µ – see Garet and Marchand (2004). Moreover, we even obtain large
deviations inequalities in Garet and Marchand (2007):

∀ε > 0 lim
‖y‖1→+∞

log P

(

0 ↔ y, D(0,y)
µ(y) /∈ (1 − ε, 1 + ε)

)

‖y‖1
< 0.
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Our main results here are the following moderate deviation estimates:

Theorem 1.1. There exists a constant C1.1 > 0 such that

∀y ∈ Z
d

E
(

|D(0, y) − µ(y)| 11{0↔y}

)

≤ C1.1

√

‖y‖1 log(1 + ‖y‖1). (1.1)

There exist constants A1.2, B1.2, C1.2 > 0 such that

∀y ∈ Z
d\{0}, ∀x ∈ [C1.2(1 + log ‖y‖1), ‖y‖1/2

1 ]

P

(

|D(0, y) − µ(y)|
√

‖y‖1

> x, 0 ↔ y

)

≤ A1.2e
−B1.2x. (1.2)

There exists a constant C1.3 > 0 such that, P-almost surely, on the event {0 ↔ ∞},
for t large enough,

B0
µ(t− C1.3

√
t log t) ∩ C∞ ⊂ B0(t) ⊂ B0

µ(t+ C1.3

√
t log t), (1.3)

where B0(t) = {x ∈ Z
d : D(0, x) ≤ t} is the ball with radius t for the chemical

distance and B0
µ(t) is the ball with radius t for the norm µ.

In Kesten’s work on first-passage percolation, the analogue of inequality (1.2) is

valid for x ∈ [0, ‖y‖1]. Note however that for x ∈ [
√

‖y‖1, ‖y‖1], the large deviation
estimates are more accurate; on the other hand, we cannot extend our results for
x ∈ [0, C1.2(1+log ‖y‖1)] because of the approximation and renormalization process
we use in the proof.

Let us note first that the chemical distance between two points is infinite as
soon as these points are not in the same open cluster: to overcome this problem,
we introduce a variation of the chemical distance in the following way: for x ∈
Z
d, we denote by x∗ the closest point to x in C∞ (for the ‖.‖1-distance). For

indeterminate cases, we choose x∗ to minimize x∗−x for a given deterministic rule,
as the lexicographic order for instance. Then, we define:

∀x, y ∈ Z
d D∗(x, y) = D(x∗, y∗).

We will mainly work with D∗ and we will come back to the chemical distance D
by bounding the discrepancy between the two quantities. Here are the results we
obtain for D∗:

Theorem 1.2. There exists a constant C1.4 > 0 such that

∀y ∈ Z
d Var D∗(0, y) ≤ C1.4‖y‖1 log(1 + ‖y‖1). (1.4)

For every D1.5 > 0, there exist constants A1.5, B1.5, C1.5 > 0 such that for each
y ∈ Z

d\{0}, for each x ∈ [C1.5(1 + log ‖y‖1), D1.5

√

‖y‖1],

P

(

|D∗(0, y) − E[D∗(0, y)]|
√

‖y‖1

> x

)

≤ A1.5e
−B1.5x. (1.5)

There exists a constant C1.6 > 0 such that

∀y ∈ Z
d\{0} 0 ≤ E[D∗(0, y)] − µ(y) ≤ C1.6

√

‖y‖1 log(1 + ‖y‖1). (1.6)

The last two inequalities easily give some constants A1.7, B1.7, C1.7 > 0 such that
for every y ∈ Z

d\{0},

∀x ∈ [C1.7(1 + log ‖y‖1),
√

‖y‖1] P

(

|D∗(0, y) − µ(y)|
√

‖y‖1

> x

)

≤ A1.7e
−B1.7x.

(1.7)
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As in first-passage percolation (Kesten, 1993), the proof naturally falls into two
parts:

• the control of the random fluctuations of D∗(0, x) around its mean value
(concentration property),

• the control of the discrepancy between the mean value of D∗(0, x) and µ(x).

In his original work, Kesten used martingale techniques. Such techniques were
also used by Howard and Newman (1997, 2001) for Euclidean first-passage percola-
tion (see also the survey by Howard, 2004 and by Pimentel, 2005 for the Vahidi-Asl
and Wierner model). Since then, the concentration method developed by Talagrand
(1995) offered a new approach to this kind of problems and allowed to improve
Kesten’s estimates. In the same spirit, Benäım and Rossignol (2008) managed to
enhance variance estimates in first-passage percolation. Here, we bound the fluc-
tuations (1.4) and (1.5) thanks to recent concentration inequalities of Boucheron,
Boucheron et al. (2003), which are easier to use than the abstract result of Tala-
grand.

The control (1.6) of the discrepancy between E[D∗(0, y)] and µ(y) usually relies
on the moderate deviations estimates for the fluctuations of D∗(0, x) around its
mean value; it is particularly clear for the models with spherical symmetry such
as Euclidean first-passage percolation (see Howard and Newman, 1997, 2001). A
symmetry argument can also give simple proofs in the main direction, see Alexander
(1993). Since this argument does not apply in an arbitrary direction, we choose
to use the techniques developed by Alexander (1997) for the approximation of
subadditive functions.

The paper is organized as follows: in Section 2, we give some estimates for the
chemical distance D and its variation D∗, that are mainly derived from Antal and
Pisztora’s results (see Antal and Pisztora, 1996) ; we also deduce Theorem 1.1 for
D from Theorem 1.2 for D∗. In Section 3, we prove inequalities (1.4) and (1.5) of
Theorem 1.2, using concentration inequalities of Boucheron, Lugosi and Massart on
one hand, and a mesoscopic renormalization argument on the other hand. Section 4
is devoted to the control of the discrepancy (1.6) between µ(x) and E[D∗(0, x)],
following Alexander’s method.

2. Some inequalities

2.1. Classical estimates. For each x in Z
d, we denote by C(x) the percolation cluster

of x; |C(x)| is its cardinal. Thanks to Chayes et al. (1989), we can control the radius
of finite clusters: there exist constants A2.1, B2.1 > 0 such that

∀r > 0 P
(

|C(0)| < +∞, C(0) 6⊂ [−r, . . . , r]d
)

≤ A2.1e
−B2.1r. (2.1)

We can also control the size of the holes in the infinite cluster: there exist two
strictly positive constants A2.2 and B2.2 such that

∀r > 0 P
(

C∞ ∩ [−r, . . . , r]d = ∅
)

≤ A2.2e
−B2.2r. (2.2)

When d = 2, this result follows from the large deviation estimates by Durrett
and Schonmann (1988). Their methods can easily be transposed when d ≥ 3.
Nevertheless, when d ≥ 3, the easiest way to obtain it seems to use Grimmett and
Marstrand (1990) slab’s result as follows:
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Proof : Suppose d ≥ 3 and p > pc. For k ∈ Z+, let us denote by pc(Sk) the critical
value for the existence of an infinite cluster contained in the slab

Sk = Z
2 × {0, 1, 2 . . . , k}d−2.

The sequence (pc(Sk))k≥1 is non-increasing. Its limit is denoted by pslab
c . By

Grimmett and Marstrand (1990), we have pslab
c = pc. Let us choose k such that

pc(Sk) < p. Let us note v = (0, . . . , 0, 1) ∈ Z
d and, for x ∈ Z

d,

Ex = {every open path starting from x and contained in x+ Sk is finite.}.
By definition of pc(Sk), q = P(E0) < 1. Since

{[−n, . . . , n]d ∩ C∞ = ∅} ⊂ ∩
0≤i<Int(n/(k+1))

E(k+1)iv ,

the independence of disjoint slabs gives

P([−n, . . . , n]d ∩ C∞ = ∞) ≤ qInt(n/(k+1)) ≤ 1

q
exp(−Bn),

with B = − 1
k+1 ln q > 0. �

2.2. Estimates for the chemical distance. The following lemma is a consequence of
an auxiliary result obtained by Antal and Pisztora (1996). This lemma actually
contains the two theorems stated in their article.

Lemma 2.1. There exist positive constants α2.3, β2.3 such that

∀y ∈ Z
d

E[eα2.311{0↔y}D(0,y)] ≤ eβ2.3‖y‖1 . (2.3)

Proof : Inequality (4.49) in Antal and Pisztora (1996) says that there exist an in-
teger N and a real c > 0 such that

∀ℓ ≥ 0 P(0 ↔ y,D(0, y) > ℓ) ≤ P

(

n
∑

i=0

(|Ci| + 1) > ℓcN−d

)

,

where the Ci’s are independent identically distributed random sets, such that there
exists h > 0 with E[exp(h|Ci|)] < +∞, and n is an integer with n ≤ ‖y‖1/2N ,
which leads to n+ 1 ≤ ‖y‖1. Thus, for each ℓ > 0,

P(0 ↔ y,D(0, y) ≥ ℓ) ≤ P(0 ↔ y,D(0, y) > ℓ/2)

≤ P

(

n
∑

i=0

(|Ci| + 1) >
ℓ

2
cN−d

)

≤ P





‖y‖1
∑

i=1

2Nd

c
(|Ci| + 1) ≥ ℓ



 .

Of course, the last inequality remains true for ℓ ≤ 0, which proves that

11{0↔y}D(0, y) � µ∗‖y‖1 ,

where µ is the distribution of 2Nd

c (|C0|+1) and � denotes the stochastic domination.
Thus, we can choose α2.3 = h c

2Nd and β2.3 = log E[exp(h|C0| + 1)]. �

Corollary 2.2. There exist some constants ρ,A2.4, B2.4 > 0 such that

∀y ∈ Z
d ∀t ≥ ρ‖y‖1 P(0 ↔ y, D(0, y) > t) ≤ A2.4 exp(−B2.4t). (2.4)
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Proof : Let y ∈ Z
d and t > 0. With the Markov inequality and (2.3), we get

P(0 ↔ y, D(0, y) > t) ≤ e−α2.3tE[eα2.311{0↔y}D(0,y)] ≤ eβ2.3‖y‖1−α2.3t.

To get (2.4), we take ρ > 2 β2.3

α2.3
. �

2.3. Estimates for the modified chemical distance D∗. We now show some estimates
for D∗ that are analogous to the ones that we have obtained for the chemical
distance D:

Lemma 2.3. There exist some constants ρ∗, A2.5, B2.5, α2.6, β2.6, A2.7, B2.7 > 0
such that, for each y ∈ Z

d:

∀t ≥ ρ∗‖y‖1 P(D∗(0, y) > t) ≤ A2.5 exp(−B2.5t), (2.5)

E[eα2.6D
∗(0,y)] ≤ eβ2.6‖y‖1 , (2.6)

‖(D∗(0, y) − ρ∗‖y‖1)
+‖2 ≤ A2.7 exp(−B2.7‖y‖1). (2.7)

Proof : Let λ = 1
4ρ and ρ∗ = 2ρ. Since D∗(0, y) = D(0∗, y∗), we have

P(D∗(0, y) > t) ≤ P(‖0∗‖1 ≥ λt) + P(‖y∗ − y‖1 ≥ λt)

+
∑

‖a‖1≤λt
‖b−y‖1≤λt

P(11{a↔b}D(a, b) > t).

The first and second terms are controlled with (2.2). If t ≥ ρ∗‖y‖1, then for each
term in the sum, we have:

‖a− b‖1 ≤ ‖y‖1 + 2λt ≤ t

2ρ
+ 2λt =

t

ρ
,

which permits to use the bound in (2.4), and hence completes the proof of (2.5).
Now, for y ∈ Z

d\{0}, it follows from (2.5) that

E[eαD
∗(0,y)] = 1 +

∫ +∞

0

P(D∗(0, y) > t)αeαtdt

≤ eαρ
∗‖y‖1 +

∫ +∞

ρ∗‖y‖1

A2.5 exp(−B2.5t)αe
αtdt,

which gives (2.6), taking for instance α2.6 = B2.5/2. Similarly, using (2.5) again,

E([(D∗(0, y) − ρ∗‖y‖1)
+]2) =

∫ +∞

0

P(D∗(0, y) − ρ∗‖y‖1 > t)2t dt

≤ A2.5 exp(−B2.5ρ
∗‖y‖1)

∫ +∞

0

2t exp(−B2.5t) dt,

which gives (2.7). �

2.4. Proof of Theorem 1.1. Let us see how Theorem 1.1 follows from Theorem 1.2.
The estimate (2.1) about the radius of large finite clusters makes us able to prove
that on the event {0 ↔ y}, the quantities D(0, y) and D∗(0, y) coincide with a huge
probability: indeed, on the event {0 ↔ y, 0 ↔ ∞}, the identity D(0, y) = D∗(0, y)
holds, and we can bound the probability

P(0 ↔ y, 0 6↔ ∞) ≤ A2.1e
−B2.1‖y‖1 .
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Proof of Theorem 1.1: We begin with the proof of (1.1). Let y ∈ Z
d.

E(|D(0, y) − µ(y)|11{0↔y})

= E(|D(0, y) − µ(y)|11{0↔y, 0↔∞}) + E(|D(0, y) − µ(y)|11{0↔y, 06↔∞}).

On one hand, with the Cauchy–Schwarz inequality and the estimates (2.4) and (2.1),
we have

E(|D(0, y) − µ(y)|11{0↔y,06↔∞})

≤ ‖(D(0, y) − µ(y))11{0↔y}‖2

√

P(0 ↔ y, 0 6↔ ∞)

≤ (‖D(0, y)11{0↔y}‖2 + µ(y))
√

P(0 ↔ y, 0 6↔ ∞)

= o
(

√

‖y‖1 log(1 + ‖y‖1)
)

.

On the other hand, with the inequalities (1.6) and (1.4) in Theorem 1.2,

E(|D(0, y) − µ(y)|11{0↔y,0↔∞})

= E(|D∗(0, y) − µ(y)|11{0↔y,0↔∞})

≤ E(|D∗(0, y) − µ(y)|)
≤ |E[D∗(0, y)] − µ(y)| +

√

Var (D∗(0, y))

≤ C1.6‖y‖1/2
1 log(1 + ‖y‖1) + (C1.4‖y‖1 log(1 + ‖y‖1))

1/2,

which proves (1.1).
Now we turn to the proof of (1.2). Let y ∈ Z

d.

For each x ∈ [C1.7(1 + log ‖y‖1),
√

‖y‖1], inequality (1.7) in Theorem 1.2 and the
estimate (2.1) ensure that

P

(

|D(0, y) − µ(y)|
√

‖y‖1

> x, 0 ↔ y

)

≤ P

(

|D∗(0, y) − µ(y)|
√

‖y‖1

> x

)

+ P(0 ↔ y, 0 6↔ +∞)

≤ A1.7e
−B1.7x +A2.1e

−B2.1‖y‖1 .

Since x ≤
√

‖y‖1 ≤ ‖y‖1, this proves (1.2).
The proof of (1.3) is standard from (1.2) – see for instance the proof of Theo-

rem 3.1 in Alexander (1997). �

3. Moderate deviations

We prove here the concentration results (1.4) and (1.5) for D∗. The proof is of
course based on Kesten’s one (see Kesten, 1993); however, to overcome the lack of
integrability of the chemical distance, we use an approximation and renormalization
process: for a real t > 0 and any k ∈ Z

d, we denote by Λtk the set of edges whose
centers are closer to tk than to any other point of the grid tZd (in equality cases,
we use an arbitrary deterministic rule to associate the edge to a unique box). We
say that a point in Z

d is in the box Λtk if it is the extremity of an edge in this box:
thus, the boxes (Λtk)k∈Zd partition the set of edges E

d, but not the set of points Z
d.

We denote by Dt(a, b) the distance obtained from the chemical distance as fol-
lows: if two points x and y are in the same box Λtk, we add an extra red edge
between them with length Kt, where K is a constant such that K > 4ρ. Red edges
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are deterministically open. For t large enough, we will check with Lemma 3.3 that
D∗(0, y) and Dt(0∗, y∗) are really close.

Since Dt(0, y) can by deterministically bounded, we can localize optimal paths
in a deterministic box, which was not the case with D∗. Thus we can use a con-
centration result of Boucheron et al. (2003) to bound the fluctuations of Dt(0, y)
around E[Dt(0, y)]:

Lemma 3.1. For every C3.1 > 0, there exist constants B3.1, γ > 0 such that for
every y ∈ Z

d\{0},

∀x ≤ C3.1‖y‖1/2
1 P

(

|Dγx(0, y) − E[Dγx(0, y)]|
√

‖y‖1

≥ x

)

≤ 2 exp(−B3.1x). (3.1)

Proof : Let C3.1 > 0, y ∈ Z
d and t > 0 be fixed. One of the ingredients of the proof

is the existence of exponential moments for Dt(0, y), which mainly follows from the
existence of exponential moments for D∗. First, since we may use red edges,

Dt(0, y) ≤ Kt

(‖y‖1

t
+ 1

)

= K(‖y‖1 + t). (3.2)

Let us now see that there exist constants α, β, η > 0 such that

∀y ∈ Z
d\{0} ∀t > 0 log E(exp(αDt(0, y)) ≤ β‖y‖1 + ηt. (3.3)

Note first that the triangle inequality and (3.2) ensure that

Dt(0, y) ≤ Dt(0, 0∗) +Dt(0∗, y∗) +Dt(y∗, y)

≤ K(2t+ ‖0 − 0∗‖1 + ‖y − y∗‖1) +D∗(0, y).

With Hölder’s inequality, we get

E(exp(αDt(0, y)) ≤ exp(2αKt)[E exp(3αK‖0 − 0∗‖1)]
2/3[E exp(3αD∗(0, y))]1/3.

Inequalities (2.2) and (2.6) give then the announced control (3.3).
By (3.2), any path realizing Dt(0, y) stays inside a finite deterministic box: the

quantity Dt(0, y) only depends on the edges inside a finite family of mesoscopic
boxes (Λtk)k∈Zd , that we number from 1 to N . Let U1, . . . , UN be the random
vectors such that Ui contains the states of the edges in box number i. There exists
a function S = Sy,t such that

Dt(0, y) = S(U1, . . . , UN).

Note that the (Ui) are independent. Let U ′
1, . . . , U

′
N be independent copies of

U1, . . . , UN ; set S(i) = S(U1, . . . , Ui−1, U
′
i , Ui+1, . . . , UN ) and

V+ = E

[

N
∑

i=1

((S − S(i))+)2|U1, . . . , UN

]

,

V− = E

[

N
∑

i=1

((S − S(i))−)2|U1, . . . , UN

]

.

We can already note, with the Efron-Stein-Steele inequality (see Efron and Stein,
1981 and Steele, 1986 or Proposition 1 in Boucheron et al., 2003) that

Var Dt(0, y) ≤ E[V−]. (3.4)
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Moreover, Theorem 2 in Boucheron et al. (2003) gives the following concentration
inequalities: for every λ, θ > 0 such that λθ < 1:

log E[exp(λ(S − E[S]))] ≤ λθ

1 − λθ
log E

[

exp

(

λV+

θ

)]

, (3.5)

log E[exp(−λ(S − E[S]))] ≤ λθ

1 − λθ
log E

[

exp

(

λV−
θ

)]

. (3.6)

Let M t(y, z) denote the shortest path for Dt between y and z, chosen with any
deterministic rule in undetermined cases. If we denote by Ri the event ”M t(0, y)
crosses box number i”, we can see that S(i) − S ≤ Kt11Ri

. Thus, if Y denotes
the number of boxes visited by M t(0, y), then K2t2Y is an upper bound for V−.
The usual ‖.‖1 distance between points that are in the same box Λtk is at most
t+2 ≤ Kt, so we can find an ordinary path x0, . . . , xℓ, with ℓ ≤ Dt(0, y) that visits
the same boxes than M t(0, y) does, and satisfies to ℓ ≤ Dt(0, y). Denote by a the
smallest integer greater than t: we can extract from x0, . . . , xℓ a finite set x′1, . . . x

′
n,

with n ≤ Int( ℓa ) + 1 ≤ Dt(0,y)
t + 1 and

{x0, . . . , xℓ} ⊂
n
∪
i=1

{y : ‖y − x′i‖1 < a}.

Since {y : ‖y − x′i‖1 < a} meets at most 3d boxes, we get Y ≤ 3d(1 +Dt(0, y)/t),
which leads to

V− ≤ 3dK2t(Dt(0, y) + t). (3.7)

This bound, together with the existence of exponential moments forDt(0, y), allows
to bound the lower fluctuations. On the other hand, we cannot obtain such a simple
bound for V+. Instead, we use a variant of inequality (3.5), which was given to us
by R. Rossignol and M. Théret:

Lemma 3.2. Assume there exist δ > 0, real functions (ϕi)1≤i≤n, (ψi)1≤i≤n and
(gi)1≤i≤n such that for any i,

(S − S(i))− ≤ ψi(U
′
i) and (S − S(i))2− ≤ ϕi(U

′
i)gi(U1, . . . , Un)

and αi = E[eδψi(Ui)ϕi(Ui)] < +∞.

If W =

n
∑

i=1

αigi(U1, . . . , Un), then for every θ > 0 and every λ ∈ [0,min(δ, 1
θ )),

log E[exp(λ(S − E[S]))] ≤ λθ

1 − λθ
log E

[

exp

(

λW

θ

)]

. (3.8)

Proof : For any λ > 0, and any i ∈ {1, . . . , n},

eλS
(i)

(S − S(i))2− = eλSeλ(S(i)−S)(S − S(i))2−

≤ eλSeλψi(U
′
i)(S − S(i))2−

≤ eλSeλψi(U
′
i)ϕi(U

′
i)gi(U)

= eλSgi(U)eλψi(U
′
i)ϕi(U

′
i).
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Thus, for any λ ∈ [0, δ] and any i ∈ {1, . . . , n},

E[eλS
(i)

(S − S(i))2−] ≤ E[eλSgi(U)eλψi(U
′
i)ϕi(U

′
i)]

= E[eλSgi(U)]E[eλψi(U
′
i)ϕi(U

′
i)]

= E[eλSαigi(U)].

Let us note F (λ) = E[eλS ] and ϕ(z) = ez−z−1. According to Lemma 8 in Massart
(2000), we have for every λ ∈ [0, δ]:

λF ′(λ) − F (λ) logF (λ) ≤
n
∑

i=1
E[eλSϕ(−λ(S − S(i)))11{S−S(i)≥0}]

≤
n
∑

i=1
E[eλS

λ2

2
(S − S(i))2+]

=
λ2

2

n
∑

i=1
E[eλS

(i)

(S − S(i))2−]

≤ λ2
n
∑

i=1
E[eλSαigi(U)]

= λ2
E[WeλS ],

and the rest of the proof is the same as the proof of Theorem 2 in Boucheron et al.
(2003). �

Remember that S(i) − S ≤ Kt11Ri
; thus we can take ϕi = (Kt)2, ψi = Kt,

gi = 11Ri
and αi = KteδKt; we get

W = K2t2eδKtY ≤ 3dK2teδKt3d(Dt(0, y) + t).

To recover an inequality similar to (3.7), we choose δ = 1/t:

max(V−,W ) ≤ 3dK2eKt(Dt(0, y) + t). (3.9)

The optimizations for θ and λ in (3.6) and (3.8) can then be treated simultaneously,
we only need to keep track of the two conditions: λ < 1/θ and λ < 1/t. Let us take
the constants α, β, η given in (3.3), and choose λ, t > 0 such that

{

λ < 1/t,
λ2 ≤ 1

2
α

3dK2eK t
.

Setting θ = λ3dK2eK t
α , the condition θλ ≤ 1/2 is satisfied, so we can use (3.6)

and (3.8). Since λ
θ 3dK2eKt = α, estimates (3.3) and (3.9) say that

λθ

1 − λθ
log E

[

exp

(

λV−
θ

)]

≤ 2λθ log E[exp(α(Dt(0, y) + t))]

≤ 2 · 3dK2eK

α
λ2t(β‖y‖1 + (η + α)t)

≤ Lλ2(t‖y‖1 + t2), (3.10)

where L is a constant such that L ≥ 2·3dK2eK

α max(β, η + α) and L ≥ C3.1/2 – the
last condition will be used at the very end of the proof. Similarly,(3.9) gives

λθ

1 − λθ
log E

[

exp

(

λW

θ

)]

≤ Lλ2(t‖y‖1 + t2). (3.11)
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Thus, for any u > 0 and any λ, t > 0 such that λ < 1/t and λ2 ≤ 1
2

α
3dK2eK t

, the
Markov inequality, (3.6) and (3.8) ensure that

P
(

|Dt(0, y) − E[Dt(0, y)]| > u
)

≤ 2 exp(−λu+ Lλ2(t‖y‖1 + t2)).

But taking λ =
x‖y‖1/2

1

2Lt(‖y‖1 + t)
<

x

2Lt‖y‖1/2
1

, we get

{

x ≤ 2L‖y‖1/2
1 ,

x2 ≤ 2α
3d

L2

K2eK t‖y‖1

⇒
{

λ < 1/t,
λ2 ≤ 1

2
α

3dK2eK t

and taking now u = x
√

‖y‖1, we obtain

P

(

|Dt(0, y) − E[Dt(0, y)]|
√

‖y‖1

≥ x

)

≤ 2 exp

(

− x2‖y‖1

4Lt(‖y‖1 + t)

)

.

At last, taking t = γx with γ = 3d

α
K2eK

L , we see that

x ≤ 2L‖y‖1/2
1 ⇒

{

λ < 1/t,
λ2 ≤ 1

2
α

3dK2eKt

and we obtain, for any x ≤ C3.1‖y‖1/2
1 ≤ 2L‖y‖1/2

1 :

P

(

|Dγx(0, y) − E[Dγx(0, y)]|
√

‖y‖1

> x

)

≤ 2 exp

(

− x

4Lγ
× 1

1 + 2Lγ

)

,

which ends the proof of Lemma 3.1. �

Lemma 3.3. There exist constants A3.12, B3.12, A3.13, B3.13 > 0 such that for every
y ∈ Z

d and every t ≤ ‖y‖1,

P(Dt(0∗, y∗) 6= D∗(0, y)) ≤ A3.12(1 + ‖y‖1)
2d exp(−B3.12t), (3.12)

‖D∗(0, y) −Dt(0∗, y∗)‖2 ≤ A3.13(1 + ‖y‖1)
d+1 exp(−B3.13t). (3.13)

Proof : Set Γ = {x ∈ Z
d : ‖x‖1 ≤ 3ρ∗‖y‖1)} and

L = {M t(0∗, y∗) ⊂ Γ},

A = ∩
a,b∈Γ: ‖a−b‖1≥t

{11{a↔b}D(a, b) ≤ 2ρ‖a− b‖1},

B = ∩
a∈Γ

{a ∈ C∞ or C(a) ⊂ a+ [−t, . . . , t]d}.

Let us say that two boxes Λtk and Λtℓ are ∗-adjacent if ‖k − ℓ‖∞ = 1. For k ∈ Z
d,

we say that the box Λtk is good if any x ∈ Λtk communicating with any y in Λtk or
in one of the 3d − 1 ∗-adjacent boxes is linked to y by an open path with length
smaller than 4ρt. We also set

G = ∩
‖k‖1≤1+3ρ∗‖y‖1/t

{Λtk is good.}.

Let us prove that

L ∩A ∩B ∩G ⊂ {Dt(0∗, y∗) = D∗(0, y)}. (3.14)

Let us focus on the event L ∩ A ∩ B ∩ G. On the event L, the optimal path
M t(0∗, y∗) = (0∗ = y0, . . . , yn = y∗) stays inside Γ. This path is composed by
three types of portions: sequences of red edges, sequences of edges in the infinite



Moderate deviations for the chemical distance 181

cluster and sequences of edges in finite clusters. To jump from a finite cluster to
the infinite cluster, the path has to use a red edge. Set

i0 = max{i : D(0∗, yi) = Dt(0∗, yi)}.
To prove (3.14), we just need to show that i0 = n. Since D(0∗, yi0) = Dt(0∗, yi0) ≤
Dt(0∗, y∗) ≤ D∗(0, y) < +∞, the point yi0 is in the infinite cluster.

Assume by contradiction that i0 < n: the edge between yi0 and yi0+1 is not
open, otherwise the maximality of i0 would be denied. It is thus an extra red edge,
with length Kt, added between two points of a same mesoscopic box: therefore,
Dt(yi0 , yi0+1) = Kt. If yi0 and yi0+1 are in the same open cluster, since G occurs,
D(yi0 , yi0+1) ≤ 4ρt ≤ Kt. But then D(yi0 , yi0+1) ≤ Dt(yi0 , yi0+1), which would
contradict once again the maximality of i0. Thus, yi0 and yi0+1 are not in the same
open cluster, which means that yi0+1 is not in the infinite cluster. Let

j0 = inf{j ∈ [i0 + 1, . . . , n] : yj ∈ C∞}.
Since yn ∈ C∞, we know that j0 < +∞. Between yi0 and yj0 , the path alternatively
uses red edges and pieces of finite clusters. Look now at this microscopic path at
the mesoscopic scale – i.e. consider the path of coordinates of mesoscopic boxes
successively visited. A site of the mesoscopic path is said to be red if the portion
of the microscopic path crossing the corresponding mesoscopic box contains a red
edge. Since event B prevents any finite cluster in Γ to link two non ∗-adjacent
boxes, two consecutive red sites of the mesoscopic path can not be separated by
more than one non-red site. Let us also remark that the edge linking yi0 (in the
infinite cluster) and yi0+1 (in a finite cluster) has be be red. Thus at least half of
the sites of the mesoscopic path are red. Consequently,

D(yi0 , yj0) ≥ Dt(yi0 , yj0) ≥
‖yi0 − yj0‖1

t
× 1

2
×Kt =

K

2
‖yi0 − yj0‖1.

If yi0 and yj0 are not in ∗-adjacent boxes, then ‖yi0−yj0‖1 ≥ t and at the same time,

D(yi0 , yj0) ≥ K
2 ‖yi0 −yj0‖1 > 2ρ‖yi0 −yj0‖1, which cannot occur on event A. Thus

yi0 and yj0 are in ∗-adjacent boxes: the event G ensures then that D(yi0 , yj0) ≤
4ρt ≤ Kt ≤ Dt(yi0 , yj0), which contradicts once again the maximality of i0 and
ends the proof of (3.14).

Thus P(D∗(0, y) 6= Dt(0, y)) ≤ P(Lc) + P(Ac) + P(Bc) + P(Gc), and it now
remains to bound each of these four probabilities.

To bound P(Lc), let us note that since K ≥ 1, any point in M t(0∗, y∗) is at a
‖.‖1-distance less than Dt(0∗, y∗) from 0∗. Since Dt(0∗, y∗) ≤ D∗(0, y), we have,
using (2.2) and (2.5),

P(Lc) = P(M t(0∗, y∗) 6⊂ Γ)

≤ P (‖0 − 0∗‖1 ≥ ρ∗‖y‖1) + P (D∗(0, y) ≥ 2ρ∗‖y‖1)

≤ A2.2 exp(−B2.2‖y‖1) +A2.5 exp(−2ρ∗B2.5‖y‖1).

With (2.4),

P(Ac) =
∑

a,b∈Γ: ‖a−b‖1≥t

P(D(a, b) ≥ 2ρ‖a− b‖1)

=
∑

a,b∈Γ: ‖a−b‖1≥t

A2.4 exp(−2B2.4ρ‖a− b‖1)

= (1 + 2ρ2‖y‖1)
2d exp(−2B2.4ρt).
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With (2.1), P(Bc) = (1 + 3ρ∗‖y‖1)
dA2.1 exp(−B2.1t).

Remember that ρ > 2β2.3/α2.3. Thus, if ‖ℓ − k‖∞ ≤ 1, x ∈ Λtk and y ∈ Λtℓ,
with (2.4),

P(x↔ y, D(x, y) > 4ρt) ≤ exp(−4α2.3ρt) exp(β2.3‖y − x‖1)

≤ exp(−4(α2.3ρ− 2β2.3)t).

Thus,

P(Gc) ≤
∑

‖k‖1≤1+3ρ∗‖y‖1/t

P(Λtk is not good)

≤
∑

‖k‖1≤1+3ρ∗‖y‖1/t

∑

x∈Λt
k

∑

‖ℓ−k‖∞≤1

∑

y∈Λt
ℓ

P(x↔ y, D(x, y) > 4ρt)

≤ (3 + 6ρ∗‖y‖1/t)
d(2t+ 1)d3d(2t+ 1)d exp(−4(α2.3ρ− 2β2.3)t).

Since t ≤ ‖y‖1, we get (3.12).
For the second point, note that

0 ≤ D∗(0, y) −Dt(0∗, y∗) ≤ ρ∗‖y‖111{D∗(0,y) 6=Dt(0∗,y∗)} + (D∗(0, y) − ρ∗‖y‖1)
+.

Thus

‖D∗(0, y) −Dt(0∗, y∗)‖2

≤ ρ∗‖y‖1

√

P(D∗(0, y) 6= Dt(0∗, y∗)) + ‖(D∗(0, y) − ρ∗‖y‖1)
+‖2,

and we conclude with (3.12) and (2.7), using once again that ‖y‖1 ≥ t. �

We can now move forward to the proof of (1.4) and (1.5) in Theorem 1.2. The
idea is quite simple: we use the estimates obtained for Dt in Lemma 3.1, and bound
with Lemma 3.3 the approximation error between D∗ and Dt.

Proof of (1.4): We can write, for y ∈ Z
d,

Var D∗(0, y)

≤ 2(Var Dt(0, y) + Var (D∗(0, y) −Dt(0, y))

≤ 2Var Dt(0, y)

+4
(

E
[

(D∗(0, y) −Dt(0∗, y∗))2
]

+ E
[

(Dt(0∗, y∗) −Dt(0, y))2
])

.

We take t = d+1
B3.13

log(1 + ‖y‖1) ≤ ‖y‖1 as soon as ‖y‖1 is large enough.

• With (2.7), we know that E[D∗(0, y)] = O(‖y‖1); using (3.4) and (3.7), we
get:

Var Dt(0, y) ≤ 3dK2(tE[D∗(0, y)] + t2) = O(‖y‖1 log(1 + ‖y‖1)).

• Inequality (3.13) ensures that

E
[

(D∗(0, y) −Dt(0∗, y∗))2
]

≤ A2
3.13(1 + ‖y‖1)

2d+2 exp(−2B3.13t) = O(1).

• The triangle inequality for Dt together with (3.2) ensure that

|Dt(0∗, y∗) −Dt(0, y)| ≤ Dt(0, 0∗) +Dt(y, y∗)

≤ K(‖0∗‖1 + ‖y − y∗‖1 + 2t).

Minkowski’s inequality and (2.2) say then that

‖Dt(0∗, y∗) −Dt(0, y)‖2 = O(log(1 + ‖y‖1)),

which ends the proof of (1.4). �
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Proof of (1.5): Let us remark first that it is sufficient to prove (1.5) for y large
enough. Let D1.5 > 0. Choose γ given by Lemma 3.1 with C3.1 = D1.5. We set

C1.5 = max

{

1,
4d

γB3.12
,
d+ 1

γB3.13

}

.

For every y ∈ Z
d\{0}, if x ≤ D1.5

√

‖y‖1 and x ≥ C1.5(1 + log ‖y‖1), then, us-
ing (3.13) and (3.2),

|E[D∗(0, y)] − E[Dγx(0, y)]|
≤ |E[D∗(0, y)] − E[Dγx(0∗, y∗)]| + |E[Dγx(0∗, y∗)] − E[Dγx(0, y)]|
≤ ‖D∗(0, y) −Dγx(0∗, y∗)‖1 + E[Dγx(0, 0∗)] + E[Dγx(y, y∗)]

≤ A3.13(1 + ‖y‖1)
d+1 exp(−B3.13γC1.5(1 + log ‖y‖1))

+KE(‖0∗‖1) +KE(‖y − y∗‖1) + 2Kγx.

With (2.2), we know that E(‖0∗‖1) = E(‖y − y∗‖1) < +∞. Thus, since C1.5 ≥
d+1
γB3.13

, for y large enough, if x ≤ D1.5

√

‖y‖1 and x ≥ C1.5(1 + log ‖y‖1), we have

|E[D∗(0, y)] − E[Dγx(0, y)]|
√

‖y‖1

≤ x/2,

which leads to

P

(

|D∗(0, y) − E[D∗(0, y)]|
√

‖y‖1

> x

)

≤ P(D∗(0, y) 6= Dγx(0∗, y∗)) + P

(

|Dγx(0∗, y∗) − E[Dγx(0, y)]|
√

‖y‖1

> x/2

)

.

Since x ≥ C1.5(1 + log ‖y‖1) and C1.5 ≥ 4d
B3.12γ

, estimate (3.12) ensures that

P(D∗(0, y) 6= Dγx(0∗, y∗)) ≤ A3.12(1 + ‖y‖1)
2d exp(−B3.12γx)

≤ A3.122
2d exp

(

−B3.12

2
γx

)

,

For the second term, we write with (3.2):

|Dγx(0∗, y∗) − E[Dγx(0, y)]|
≤ |Dγx(0, y) − E[Dγx(0, y)]| +Dγx(0, 0∗) +Dγx(y, y∗)

≤ |Dγx(0, y) − E[Dγx(0, y)]| +K‖0∗‖1 +K‖y − y∗‖1 + 2Kγx

Then, for y large enough,

P

(

|Dγx(0∗, y∗) − E[Dγx(0, y)]|
√

‖y‖1

> x/2

)

≤ P

(

|Dγx(0, y) − E[Dγx(0, y)]|
√

‖y‖1

> x/9

)

+ 2P

(

‖0∗‖1 ≥ x
√

‖y‖1

9K

)

.

Lemma 3.1 gives a bound of the correct order for the first term, while (2.2) gives a
bound of the correct order for the second term, which ends the proof. �
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4. Asymptotic behavior of the mean value

The aim of this section is to prove (1.6) in Theorem 1.2.
The function D∗ inherits the subadditivity from D. Besides, we can note that for

each a in Z
d, the joint distribution of (D∗(x+ a, y + a))x∈Zd,y∈Zd does not depend

on a. Thus, if we define h(x) = E[D∗(0, x)], we have

∀x, y ∈ Z
d h(x+ y) ≤ h(x) + h(y).

Since h is subadditive, we can use the techniques developed by Alexander (1997)
for the approximation of subadditive functions. First, we prove the convergence of
h(ny)/n to µ(y):

Lemma 4.1. For each y ∈ Z
d, the sequence D∗(0,ny)

n converges almost surely and

in L1 to µ(y). Particularly, h(ny)/n converges to µ(y).

Proof : Since D∗(0, y) is integrable and (D∗(x, y))x∈Zd,y∈Zd is stationary, the subad-
ditive ergodic theorem tells us that there exists µ∗(y) such that D∗(ny)/n converges
almost surely and in L1 to µ∗(y). Thus, we just have to prove that µ∗(y) coincides
with µ(y). By Garet and Marchand (2004), on the event {0 ↔ ∞}, we can almost
surely find a sequence (nky)k≥1 with 0 ↔ nky and D(0, nky)/nk tends to µ(y) when
k goes to infinity. Obviously, D∗(0, nky)/nk converges to µ∗(y). Since the equality
D(0, nky) = D∗(0, nky) holds on {0 ↔ ∞}, we get that µ(y) = µ∗(y). �

We recall the results of Alexander on the approximation of subadditive functions.
Let us introduce some notation derived from Alexander (1997). For some positive
constants M and C, we define

GAP (M,C) =

{

h : Z
d → R,

(‖x‖1 ≥M) ⇒
(

µ(x) ≤ h(x) ≤ µ(x) + C‖x‖1/2
1 log ‖x‖1

)

}

.

For x ∈ R
d, we choose a linear form µx on R

d such that µx(x) = µ(x) and such
that

∀y ∈ B0
µ(µ(x)) µx(y) ≤ µ(x).

The quantity µx(y) is the µ-length of the projection of y onto the line from 0 to x,
following a hyperplane tangent to the convex set B0

µ(µ(x)) at x. It is easy to see

that for each y ∈ R
d, |µx(y)| ≤ µ(y). Then, for each positive constant C, we define

Qhx(C) =

{

y ∈ Z
d : ‖y‖1 ≤ (2d+ 1)‖x‖1,

µx(y) ≤ µ(x), h(y) ≤ µx(y) + C‖x‖1/2
1 log ‖x‖1

}

.

The idea is that the elements of Qhx(C) permit to realize a mesh of Z
d with incre-

ments for which µx correctly approaches h. We also define, forM > 0, C > 0, a > 1,

CHAP (M,C, a) =

{

h : Z
d → R, (‖x‖1 ≥M) ⇒

(

∃α ∈ [1, a],
x/α ∈ Co(Qhx(C))

) }

,

where Co(A) is the convex hull of A in R
d. Alexander has the following results:

Lemma 4.2 (Alexander, 1997). Let h be a nonnegative subadditive function on
Z
d, M > 1, C > 0, a > 1 some fixed constants. We assume that for each x ∈ Z

d

with ‖x‖1 ≥M , there exist a natural number n, a lattice path γ from 0 to nx, and
a sequence of points 0 = v0, v1, . . . , vm = nx in γ such that m ≤ an and whose
increments vi − vi−1 belong to Qhx(C). Then h ∈ CHAP (M,C, a)
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Theorem 4.3 (Alexander, 1997). Let h be a nonnegative subadditive function on
Z
d and M > 1, C > 0, a > 1 some fixed constants. If h ∈ CHAP (M,C, a), then

h ∈ GAP (M,C).

Definition 4.4. We call Qhx(C)-path every sequence (v0, . . . , vm) such that for each
i ∈ {0, . . . ,m− 1}, vi+1 − vi ∈ Qhx(C).

Let γ = (γ(0), . . . , γ(n)) be a simple lattice path in Z
d. We consider the unique

sequence of indices (ui)0≤i≤m such that

u0 = 0, um = n,
∀i ∈ {0, . . . ,m− 1} ∀j ∈ {ui + 1, . . . , ui+1} γ(j) − γ(ui) ∈ Qhx(C),
∀i ∈ {0, . . . ,m− 1} γ(ui+1 + 1) − γ(ui) 6∈ Qhx(C).

Then, the Qhx(C)-skeleton of γ is the sequence (γ(ui))0≤i≤m.

We will prove the following result relative to the modified chemical distance
h(.) = E[D∗(0, .)]:

Proposition 4.5. There exist some constants M > 1 and C > 0 such that if
‖x‖1 ≥M , then for sufficiently large n there exists a lattice path from 0 to nx with
a Qhx(C)-skeleton of 2n+ 1 or fewer vertices.

Let us first see how this proposition leads to (1.6) and concludes the proof of
Theorem 1.2.

Proof of (1.6): Proposition 4.5 and Lemma 4.2 ensure that h(.) = E[D∗(0, .)] is in
CHAP (M,C, 2), which implies, thanks to Theorem 4.3, that h is in GAP (M,C).
This gives (1.6) for each y ∈ Z

d such that ‖y‖1 ≥M , hence for each y ∈ Z
d, should

we increase C1.6. �

Let us go to the proof of Proposition 4.5. We now choose h(.) = E[D∗(0, .)], take
β and C such that

0 < β < B1.5, C >
√

2d

(

d

β
+ C1.5

)

and C′ = 48C. (4.1)

We define

Qx = Qhx(C
′),

Gx = {y ∈ Z
d : µx(y) > µ(x)},

∆x = {y ∈ Qx : y adjacent to Z
d\Qx, y not adjacent to Gx},

Dx = {y ∈ Qx : y adjacent to Gx}.
Lemma 4.6. There exists a constant M such that if ‖x‖1 ≥M , then

(1) if y ∈ Qx, then µ(y) ≤ 2µ(x) and ‖y‖1 ≤ 2d‖x‖1;

(2) if y ∈ ∆x, then E[D∗(0, y)] − µx(y) ≥ C′

2 ‖x‖1/2
1 log ‖x‖1;

(3) if y ∈ Dx, then µx(y) ≥ 5
6µ(x);

(4) if x is large enough, (‖y‖1 ≤ ‖x‖1/2
1 ) =⇒ (y ∈ Qx).

Proof : The arguments are simple and essentially deterministic. One can refer to
Lemma 3.3 in Alexander (1997), which is the analogous result in first-passage per-
colation. Particularly, we use the fact that E[D∗(0,±ei)] ≤ ρ∗ + A2.7 < +∞,
which plays the same role as the integrability of passage times does in first-passage
percolation. �
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We denote by D(v1, vm; (vi)) the length of the shortest open path from v1 to vm
that visits v1, . . . , vm in this order. Then,

Lemma 4.7.

lim
‖x‖1→+∞

P







∃m ≥ 1 ∃ a Qx-path (v0 = 0, . . . , vm) :
m−1
∑

i=1

E[D∗(vi, vi+1)] −D(v1, vm; (vi)) > Cm‖x‖1/2
1 log ‖x‖1






= 0.

The proof of this lemma relies on a denumeration of the Qx-paths, on a bound on
exponential moments for E[D∗(vi, vi+1)]−D(vi, vi+1) and on a BK-like inequality.
Of course, it would be more natural to deal with quantities like E[D∗(vi, vi+1)] −
D∗(vi, vi+1). But D∗ lacks the monotonicity property of D needed to use this kind
of tools. Once more, we have to deal alternatively with D and D∗.

Proof : Let us fix m ≥ 1 and x large enough. Let (v0 = 0, v1, . . . , vm) be a
Qx-path starting from 0. Lemma 4.6 implies that for each i, ‖vi+1−vi‖1 ≤ 2d‖x‖1.
We define

Yi = E[D∗(vi, vi+1)] −D∗(vi, vi+1),

Zi = E[D∗(vi, vi+1)] −D(vi, vi+1).

The moderate deviation result allows first to bound some exponential moments of
Yi for large x. Indeed, we can write

E

[

exp

(

β(Yi)+
√

2d‖x‖1

)]

= 1 +

∫ +∞

0

βeβtP
(

Yi ≥ t
√

2d‖x‖1

)

dt.

Let us note that (2.7) already gives the simple bound:

max(Yi, Zi) ≤ E[D∗(vi, vi+1)] ≤ A2.7 + ρ∗‖vi+1 − vi‖1;

remarking that ‖vi+1 − vi‖1 ≥ 1, this particularly implies, for ‖x‖1 large enough,
that

max(Yi, Zi)
√

2d‖x‖1

≤ 2ρ∗
√

‖vi+1 − vi‖1. (4.2)

This ensures that P(Yi ≥ t
√

2d‖x‖1) = 0 as soon as t > 2ρ∗
√

‖vi+1 − vi‖1. On the
other hand, the moderate deviation result (1.5) ensures the existence of constants

A1.5, B1.5 > 0 such that if C1.5(1 + log ‖vi+1 − vi‖1) ≤ t ≤ 2ρ∗
√

‖vi+1 − vi‖1, then,
since ‖vi+1 − vi‖1 ≤ 2d‖x‖1,

P(Yi ≥ t
√

2d‖x‖1) ≤ P(Yi ≥ t‖vi+1 − vi‖1/2
1 ) ≤ A1.5 exp(−B1.5t).

Thus, since β < B1.5, we get

E

[

exp

(

β(Yi)+
√

2d‖x‖1

)]

≤ 1 +

∫ C1.5(1+log(2d‖x‖1))

0

βeβtdt

+

∫ +∞

0

βeβtA1.5e
−B1.5tdt

≤ (2de)βC1.5‖x‖βC1.5

1 +
A1.5β

B1.5 − β
. (4.3)

Let us note that the bound for the exponential moments of Yi is not as good as in
first-passage percolation, where it does not depend on ‖x‖1 (see Alexander, 1997):
this is due to the renormalization used to get the moderate deviations (1.5).
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We can remark that

• if vi 6↔ vi+1, then (Zi)+ = 0;
• if vi ↔ vi+1 and vi ↔ ∞, then (Zi)+ = (Yi)+;

Then, using (4.2),

exp

(

β(Zi)+
√

2d‖x‖1

)

≤ 1 + exp

(

β(Yi)+
√

2d‖x‖1

)

+ 11nvi↔vi+1

vi 6↔∞

o exp
(

2βρ∗
√

‖vi+1 − vi‖1

)

.

Using (2.1) then (4.3), we get, for x large enough:

E

[

exp

(

β(Zi)+
√

2d‖x‖1

)]

(4.4)

≤ 1 + E

[

exp

(

β(Yi)+
√

2d‖x‖1

)]

+ exp
(

2βρ∗
√

‖vi+1 − vi‖1

)

P

(

vi ↔ vi+1

vi 6↔ ∞

)

≤ 1 + E

[

exp

(

β(Yi)+
√

2d‖x‖1

)]

+A2.1 exp
(

2βρ∗
√

‖vi+1 − vi‖1 −B2.1‖vi+1 − vi‖1

)

≤ (6d‖x‖1)
βC1.5 .

We can apply a BK-like inequality to D(v1, vm; (vi)): by Theorem 2.3 in Alexander
(1993), for each t > 0, if the Z ′

i’s are independent copies of the Zi’s, then, with (4.4),

P

(

m−1
∑

i=1

E[D∗(vi, vi+1)] −D(v1, vm; (vi)) > Cm‖x‖1/2
1 log ‖x‖1

)

≤ P

(

m−1
∑

i=1

Z ′
i > Cm‖x‖1/2

1 log ‖x‖1

)

≤ exp

(

−βCm log ‖x‖1√
2d

)m−1
∏

i=1

E

[

exp

(

βZi
√

2d‖x‖1

)]

≤
(

(6d)βC1.5‖x‖−
βC√
2d

+βC1.5

1

)m

.

From Lemma 4.6, there exists a constant K such that there are at most (K‖x‖d)m
Qx-paths of m+ 1 points starting from 0. Then, summing on these paths, we get

P







∃ a Qx-path (v0 = 0, . . . , vm) :
m−1
∑

i=1

E[D∗(vi, vi+1)] −D(v1, vm; (vi)) > Cm‖x‖1/2
1 log ‖x‖1







≤
(

K(6d)βC1.5‖x‖d−
βC√
2d

+βC1.5

1

)m

=

(

L

‖x‖α1

)m

,

where L and α are some constants; the choice (4.1) we made for β and C ensures
that α > 0. Thus, for x large enough, L‖x‖−α1 ≤ 1

2 , so summing over all possible
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lengths m:

P







∃m ≥ 1 ∃ a Qx-path (v0, . . . , vm) :
m−1
∑

i=1

E[D∗(vi, vi+1)] −D(v1, vm; (vi)) > Cm‖x‖1/2
1 log ‖x‖1






≤ 2L

‖x‖α1
,

which completes the proof of the lemma. �

Proof of Proposition 4.5: This proposition corresponds to Proposition 3.4 in
Alexander (1997).

The proof of this deterministic result uses the so-called “probabilistic method”:
we are going to prove that with positive probability, we can construct such a Qx-
path from a path realizing D∗(0, nx). With Lemma 4.7 and (2.2), we can find
M > 1 such that if ‖x‖1 ≥M , then

P







∃m ≥ 1 ∃ a Qx-path (v0 = 0, . . . , vm) :
m−1
∑

i=1

E[D∗(vi, vi+1)] −D(v1, vm; (vi)) > Cm‖x‖1/2
1 log ‖x‖1






≤ 1

5
,

and P

(

‖0∗‖ ≥ ‖x‖1/2
1

)

≤ 1

5
.

Should we take a greater M , we can also assume that if ‖y‖1 ≤ ‖x‖1/2
1 and ‖x‖1 ≥

M , then y ∈ Qx. Now fix x ∈ Z
d with ‖x‖1 ≥ M . Lemma 4.1 ensures that there

exists n0 ∈ Z+ such that

∀n ≥ n0 P(D∗(0, nx) > n(µ(x) + 1)) ≤ 1

5
.

Let n ≥ n0. With probability at least 1/5, the following properties hold:

a) for each m ≥ 1, for each Qx-path (v0 = 0, . . . , vm),

m−1
∑

i=1

E[D∗(vi, vi+1)] −D(v1, vm; (vi)) ≤ Cm‖x‖1/2
1 log ‖x‖1,

b) D∗(0, nx) ≤ n(µ(x) + 1),

c) ‖0∗‖1 ≤ ‖x‖1/2
1 ,

d) ‖(nx)∗ − nx‖1 ≤ ‖x‖1/2
1 .

Then, we can find ω fulfilling these properties, and work from now on with this
particular realization. Let v1 = 0∗, . . . , vm = (nx)∗ be the Qx-skeleton of some
path γ realizing the chemical distance from 0∗ to (nx)∗. Define v0 = 0 and vm+1 =
nx: properties c) and d) ensure that we get a Qx-path from 0 to nx. We will prove
that m + 2 ≤ 2n+ 1, which will conclude the proof of the proposition. Note that,
by construction,

D(v1, vm; (vi)) = D∗(0, nx).

From a), our Qx-path satisfies, for this particular ω,

m−1
∑

i=1

E[D∗(vi, vi+1)] −D(v1, vm; (vi)) ≤ Cm‖x‖1/2
1 log ‖x‖1. (4.5)
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Besides, using the definition of Qx, property d), the fact that µ is a norm and (2.4),
we get

mµ(x) ≥
m−1
∑

i=0

µx(vi+1 − vi) = µx((nx)
∗)

= µx((nx)) + µx((nx)
∗ − nx)

≥ nµ(x) − µ((nx)∗ − nx) ≥ nµ(x) − ρ‖x‖1/2
1 .

Thus, should we take a larger M , we get n ≤ 11
10m. Now, with b) and taking once

more a larger M if necessary,

m−1
∑

i=1

E[D∗(vi, vi+1)] ≤ D∗(0, nx) + Cm‖x‖1/2
1 log ‖x‖1

≤ n(µ(x) + 1) + Cm‖x‖1/2
1 log ‖x‖1

≤ nµ(x) + 2Cm‖x‖1/2
1 log ‖x‖1.

We now distinguish in the Qx-skeleton the short increments and the long ones:

S((vi)) = {i : 1 ≤ i ≤ m− 1, vi+1 − vi ∈ ∆x},
L((vi)) = {i : 1 ≤ i ≤ m− 1, vi+1 − vi ∈ Dx}.

By the definition of a Qx-skeleton, these two sets partition {1, . . . ,m− 1}. Let us
first bound the number of short increments with Lemma 4.6, estimate (2): recall
that µx(y) ≤ µ(y) ≤ E[D∗(0, y)], so

m−1
∑

i=1

E[D∗(vi, vi+1)] =
m−1
∑

i=1

[µx(vi+1 − vi) + (ED∗(vi, vi+1) − µx(vi+1 − vi))]

≥ µx((nx)
∗) − µx(0

∗) + |S((vi))|
C′

2
‖x‖1/2

1 log ‖x‖1

≥ nµ(x) − 2ρ‖x‖1/2
1 + |S((vi))|

C′

2
‖x‖1/2

1 log ‖x‖1.

Thus, summing the two estimates and enlarging M if necessary, we get

|S((vi))|
C′

2
‖x‖1/2

1 log ‖x‖1 ≤ 2ρ‖x‖1/2
1 + 2Cm‖x‖1/2

1 log ‖x‖1

≤ 3Cm‖x‖1/2
1 log ‖x‖1,

hence

|S((vi))| ≤ 6
C

C′
m =

m

8
.

Similarly, we bound the number of long increments with Lemma 4.6, estimate (3):

m−1
∑

i=1

E[D∗(vi, vi+1)] =

m−1
∑

i=1

[µx(vi+1 − vi) + (E[D∗(vi, vi+1)] − µx(vi+1 − vi))]

≥ nµ(x) − 2ρ‖x‖1/2
1 +

5

6
|L((vi))|µ(x) ≥ 5

6
|L((vi))|µ(x),

increasing M if necessary; this gives

|L((vi))| ≤
6

5
n+ 2Cm

‖x‖1/2
1 log ‖x‖1

µ(x)
≤ 6

5
n+m/8.
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Finally, m = |S((vi))| + |L((vi))|+ ≤ 6
5n +m/4, so m ≤ 8

5n, which concludes the
proof. �

We would like to thank Raphaël Rossignol and Marie Théret for kindly giving
us the extension of Boucheron, Lugosi and Massart’s result.
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