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Abstract. In the paper Nourdin et al. (2009, written in collaboration with Ge-
sine Reinert, we proved a universality principle for the Gawssian Wiener chaos. In
the present work, we aim at providing an original example of gplication of this
principle in the framework of random matrix theory. More speci cally, by combin-
ing the result in Nourdin et al. (2009 with some combinatorial estimates, we are
able to prove multi-dimensional central limit theorems for the spectral moments (of
arbitrary degrees) associated with random matrices with ral-valued i.i.d. entries,
satisfying some appropriate moment conditions. Our approah has the advantage
of yielding, without extra e ort, bounds over classes of smath (i.e., thrice dier-
entiable) functions, and it allows to deal directly with dis crete distributions. As a
further application of our estimates, we provide a new \almaest sure central limit
theorem", involving logarithmic means of functions of vectors of traces.

1. Introduction

1.1. Overview and main results. In the paper Nourdin et al. (2009, written in

collaboration with Gesine Reinert, we proved severalniversality results, involving
sequences of random vectors whose components have the forimite homogeneous
sums based on sequences of independent random variables. Ugbly speaking, our
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main nding implied that, in order to study the normal approx imations of homoge-
neous sums (and under suitable moment conditions) it is alwgs possible to replace
the original sequence with an i.i.d. Gaussian family. The paver of this approach
resides in the fact that homogeneous sums associated with @asian sequences are
indeed elements of the so-calledViener chaos so that normal approximations can
be established by means of the general techniques developedNourdin and Peccati
(2009; Nualart and Peccati (2009; Peccati and Tudor (2005 { that are based on
a powerful interaction between standard Gaussian analysisMalliavin calculus (see
e.g. Nualart, 2006 and Stein's method (see e.g.Chen and Shag 2005. Moreover,
in the process one always recovers uniform bounds over sulie classes of smooth
functions.

The aim of this paper is to introduce these techniques into tle realm of random
matrix theory. More speci cally, our goal is to use the universality principles de-
veloped in Nourdin et al. (2009, in order to prove the forthcoming Theorem 1.1,
which consists in a multidimensional central limit theorem (CLT) for traces of non-
Hermitian random matrices with i.i.d. real-valued entries. As explained below, the
computations and estimates involved in the proof of Theorem1.1 will be further
applied in Section 5, where we will establish analmost sure central limit theorem
(ASCLT) for logarithmic means associated with powers of lage non-Hermitian ran-
dom matrices. See Theoreni.5for a precise statement { as well asHtermann (2007
for a general discussion on ASCLTSs.

Now let X be a centered real random variable, having unit variance andwith
nite moments of all orders, that is, E(X) =0, E(X?) =1 and EjXj" < 1 for
everyn 3. We consider a doubly indexed collectionX = fXj :i;j  1gofi.id.
copies ofX . For every integerN 2, we denote byXy the N N random matrix

XN = E%_:i;j =1;:;N 1.1)

and by Tr( ) and XX , respectively, the usual trace operator and thekth power of
XN -

Theorem 1.1. Let the above notation prevail. Fixm 1, as well as integers
1 ki<::i:<km:

Then, the following holds.
(i) AsN!1

h i h i
(XK E Tr(XK) oo T(XEm) E Tr(xfm) Pz mnze 5 12)

whereZ = fZy : k 1g denotes a collection of real independent centered
Gaussian random variables such that, for everk 1, E(Z2) = k.

(i) Write = EjXj3. Suppose that the function' : R™ ! R is thrice dier-
entiable and that its partial derivatives up to the order thee are bounded
by some constantB < 1. Then, there exists a nite constant C =
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C(2;B;0m;k 1;::km), not depending onN, such that

13
k1 k1 Km Km
E 4 @Tr(éN ) E[Tr(X )] SIeE Tr(éN ) E[Tr(Xy )]]A5 (1.3)
Var(Tr( X (1)) Var(Tr( X ™))
E gk—i;:::;pzk—L CN ¥
K1 Km
Remark 1.2. (1) We chose to state and prove Theorenl.1 in the case of non-

Hermitian matrices with real-valuedentries, mainly in order to facilitate the
connection with the universality results proved in Nourdin et al. (2009. For
the extension to the case where the random variableX is complex-valued
and with nite absolute moments of every order, we refer to the forthcoming
PhD thesis of Noreddine.

(2) Fix aninteger K 2 and assume thatEjX j?K < 1 , while higher moments
are allowed to be possibly in nite. By inspection of the forthcoming proof of
Theorem 1.1, one sees that the CLT (L.2) as well as the bound (L.3) continue
to hold, as long as the integersky; ::;; km verify k; K forj =1;:;m.

(3) In asimilar vein as at the previous point, by imposing that sup;; EjXj j" <
1 forall n 1, one can easily adapt our techniques in order to deal with
random matrices whose entries are independent bunot identically dis-
tributed . One crucial fact supporting this claim is that the universality
principles of Section?2 hold for collections of independent, and not neces-
sarily identically distributed, random variables.

(4) For non-Hermitian matrices, limits of moments are not sucient to pro-
vide an exhaustive description of the limiting spectral meaure or of the
uctuations around it. Rather, one would need to consider pdynomials in
the eigenvalues and their complex conjugates. These quatigs cannot be
represented using traces of powers of \, so that our approach cannot be
extended to this case.

1.2. Discussion. In this section we compare our Theoreml.1 with some related
results proved in the existing probabilistic literature.
1. In Rider and Silverstein (2006), the following CLT is shown.

Theorem 1.3. Let X be acomplexrandom variable such thatE (X )= E(X?) =0,
E(Xj?) =1, E(jXj*) k%, k 3(for some > 0)and Re(X), Im(X) possess
a joint bounded density. ForN 2, let Xy be de ned as in (1.1). Consider the
spaceH of functions f : C! C which are analytic in a neighborhood of the disk
jzj 4 and otherwise bounded. Then, atN |1 , the random eld

fTr(f (Xn))  E[Tr(f (Xn)): f 2Hg

converges in the sense of nite-dimensional distributions(f.d.d.) to the centered
complex-valued Gaussian eldf Z(f): f 2 Hg; whose covariance structure is given
by

Z

- . d2
E[Z(f)Z(9)] = Uf °(Z)g°(2)gi (1.4)

Here, U= fz 2 C:jzj 1gis the unit disk, and d?°z= stands for the uniform
measure onU (in other words, d°z = dxdy for x;y 2 R such thatz = x + iy).
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By using the elementary relations: for every integersn;m 0,
z
17 iomp._ (n+1) ! ifm=n
—  z2"'Z"dz= .
U 0 otherwise,

one sees that our Theoreml.1 can be reformulated by saying that
fTr(f (Xn)) E[T(f (Xn))]: f 2 Pol(C)g"1%" Z(f): f 2 Pol(C)g;  (1.5)

where the covariance structure off Z(f) : f 2 Pol(C)g is given by (1.4). It follows

that Theorem 1.1 roughly agrees with Theorem1.3. However, we stress that the
framework of Rider and Silverstein (2006 is di erent from ours, since the ndings

therein cannot be applied to the real case due to the assumpn that real and

imaginary parts of entries must possess a joint bounded deiity. In addition, also

note that (di erently from Rider and Silverstein, 2006 we do not introduce in the

present paper any requirement on the absolute continuity ofthe law of the real
random variable X , so that the framework of our Theorem 1.1 contemplates every
discrete random variable with values in a nite set and with unit variance.

2. One should of course compare the results of this paper with th CLTs in-
volving traces of Hermitian random matrices, like for instance Wigner random
matrices. One general reference in this direction is the fudamental paper by An-
derson and Zeitouni (2006, where the authors obtain CLTs for traces associated
with large classes of (symmetric) band matrix ensembles, usg a version of the
classical method of moments based on graph enumerations. s plausible that
some of the ndings of the present paper could be also deduceffom a suitable
extension of the combinatorial devices introduced inAnderson and Zeitouni (2006
to the case of non-Hermitian matrices. However, proving Therem 1.1 using this
kind of techniques would require estimates for arbitrary jant moments of traces,
whereas our approach merely requires the computation of vaances and fourth mo-
ments. Also, the ndings of Anderson and Zeitouni (2006 do not allow to directly
deduce bounds such asi(3). We refer the reader e.g. toGuionnet (2009 or to An-
derson et al. (2009, and the references therein, for a detailed overview of esting
asymptotic results for large Hermitian random matrices.

3. The general statement proved byChatterjee (2009 Theorem 3.1) concerns the
normal approximation of linear statistics of random matrices that are possibly non-
Hermitian. However, the techniques used by the author requie that the entries
can be re-written as smooth transformations of Gaussian radom variables. In
particular, the ndings of Chatterjee (2009 do not apply to discrete distributions.
On the other hand, the results of Chatterjee (2009 also provide uniform bounds
(based on Poincae-type inequalities and in the total variation distance) for one-
dimensional CLTs. Here, we do not introduce any requiremerg on the absolute
continuity of the law of the real random variable X, and we get bounds formulti -
dimensional CLTSs.

4. Let us denote byf j(N):j =1;::; Ngthe complex-valued (random) eigen-
values of X, repeated according to their multiplicities. Theorem 1.1 deals with
the spectral moments ofX y , that are de ned by the relations:

z

X
N Z“d x, (2) = (N =Tr(XK); N 2 k 1L (1.6)
j=1
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where x, denote the spectral measure oKy . Recall that

1 X
xy ()= N L () (1.7)
j=1
where ;() denotes the Dirac mass atz, and observe that one has also the alternate

expression

X
T(XK)= N % Xiii,Xiia  Xiriy: (1.8)

It follows that our Theorem 1.1 can be seen as a partial (see Remark 2 (4) above)
characterization of the Gaussian uctuations associated vith the so-called circular
law, whose most general version has been recently proved by Tamd Vu:

Theorem 1.4 (Circular law, see Tao and Vu, 2009. Let X be a complex-valued
random variable, with mean zero and unit variance. ForN 2, let Xy be de ned

as in (1.1). Then, as N !'1 | the spectral measure x, converges almost surely
to the uniform measure on the unit diskU = fz2 C:jzj 1g. The convergence
takes place in the sense of the vague topology.

To see why Theoreml.1 concerns uctuations around the circular law, one can
proceed as follows. First observe that, sinceE(X?) = 1 and E(X?%) < 1 by
assumption, one can use a result bygai and Yin (1986 Theorem 2.2) stating that,
with probability one,

limsup max j j(N)j L (1.9
N 11 j=1;:5N
Let p(z) be a complex polynomial. Elementary considerations yieldhat, since (1.9)
and the circular law are in order, with prozbability one,

1 1
N T(PXn)) = U|O(Z)0|22 = p(0): (1.10)
On the other hand, it isgot di cult to see that, forevery k landasN !1
E Zd x,(2) = E NiTr(x,'g) 10

(one can use e.g. the same arguments exploited in the secondrp of the proof
Proposition 3.1 below). This implies in particular

1
E ST (p(Xa)) 1 pO): (1.11)
Therefore, with probability one
1 1
STRXW) B S T(p(Xn) ¢ O

That is, the random variable NiTr( p(Xn)) tends to concentrate around its mean
asN goes to in nity, and ( 1.5) describes the Gaussian uctuations associated with
this phenomenon.

On the other hand, one crucial feature of the proof of the ciralar law provided
in Tao and Vu (2009 is that it is based on a universality principle. This result
basically states that, under adequate conditions, the disance between the spectral
measures of (possibly perturbed) non-Hermitian matrices anverges systematically
to zero, so that Theorem 1.4 can be established by simply focussing on the case
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where X is complex Gaussian (this is the so-called Ginibre matrix esemble, rst
introduced in Ginibre, 1969. Itis interesting to note that our proof of Theorem 1.1
is also based on a universality result. Indeed, we shall shovhat the relevant part
of the vector on the LHS of (1.2) (that is, the part not vanishing at in nity) has the
form of a collection of homogeneous sums with xed orders. Tis implies that the
CLT in ( 1.2) can be deduced from the results established imourdin et al. (2009,
where it is proved that the Gaussian Wiener chaos has a univesal character with
respect to Gaussian approximations. Roughly speaking, tlé means that, in order to
prove a CLT for a vector of general homogeneous sums, it is sicient to consider
the case where the summands are built from an i.i.d. Gaussiasequence. This
phenomenon can be seen as a further instance of the so-calleghdeberg invariance
principle for probabilistic approximations, and stems from powerful approximation
results by Rotar' (1979 and Mossel et al. (2010. See the forthcoming Section2
for precise statements.

5. We nish this section by listing and discussing very brie y some other results
related to Theorem 1.1, taken from the existing probabilistic literature.

- In Rider (2004 (but see also Forrester, 1999, one can nd a CLT for
(possibly discontinuous) linear statistics of the eigenvéues associated with
complex random matrices in the Ginibre ensemble. This partally builds
on previous ndings by Costin and Lebowitz, 1995

- ReferenceRider and Viag (2007 provides further insights into limit theo-
rems involving sequences in the complex Ginibre ensemblen Iparticular,
one sees that relaxing the assumption of analyticity on tesfunctions yields
a striking decomposition of the variance of the limiting noise, into the sum
of a \bulk" and of a \boundary" term. Another nding in  Rider and Viag
(2007 is an asymptotic characterization of characteristic polynomials, in
terms of the so-calledGaussian free eld

- Finally, one should note that the Gaussian sequenc& in Theorem 1.1
also appears when dealing with Gaussian uctuations of vealrs of traces
associated with large, Haar-distributed unitary random matrices. See e.g.
Diaconis and Evans(2001) and Diaconis and Shahshahani(1994) for two
classic references on the subject.

1.3. Proof of Theorem 1.1: the strategy. In order to prove (1.2) (and (1.3) as well),
we use an original combination of techniques, which are baskeboth on the univer-
sality results of Nourdin et al. (2009 and on combinatorial considerations. The
aim of this section is to provide a brief outline of this strategy.

ForN  1,write[N]= f1;::;;Ng. Fork 2, letus denote byD ﬁ,k) the collection

di erent (with the convention that i+ = i1), thatis, i 2 D(Nk) if and only if
(ia;ia+1) 6 (ip;ips1) for every a 6 b. Now consider the representation given in
(1.8) and, after subtracting the expectation, rewrite the resulting expression as



Universal Gaussian uctuations 347

follows:
T(XK) E Tr(XK)
W

= N ¢ XivioXizis  Xiwin  EXii, Xizis  Xiin]l  (1.12)
iguni k=1
. X
= N 2 XizipmXizis  Xiyis
i2p{
+N z xilizxi2i3 Xikil E[Xilizxi2i3 Xikil] :(1-13)
i6D )

Our proof of (1.2) is based on the representation {.12{( 1.13), and it is divided in
two (almost independent) parts.

I. In Section 3, we shall prove that the following multi-dimensional CLT ta kes
place foBevery integers 2 k; <::<Kpm:

1—2>(\l g X
%N - Xi: N = Xisia Xiyis Xik1i1;53: (1.14)
i=1 iZD,(\‘kl) 1
X
Km
N X Xigis  Xiw X 2020 Ze
i2D{m)
forz =fz;: i 1gasin Theorem1.1. In order to prove (1.14), we apply the

universality result obtained in Nourdin et al. (2009 (and stated in a convenient
form in the subsequent Section?). This result roughly states that, in order to
show (1.14) in full generality, it is su cient to consider the special ¢ ase where
the collection X = fXj : i;] 1g is replaced by an i.i.d. centered Gaussian
family G = fGj :i;] 1g, whose elements have unit variance. In this way, the
components of the vector on the LHS of {.14) become elements of the so-called
Gaussian Wiener chaosassociated with G: it follows that one can establish the
required CLT by using the general criteria for normal approximations on a xed
Wiener chaos, recently proved inNourdin and Peccati (2009; Nualart and Peccati
(2009; Peccati and Tudor (2005. Note that the results of Nourdin and Peccati
(2009; Nualart and Peccati (2005; Peccati and Tudor (2005 can be described as a
\simpli ed method of moments": in particular, the proof of ( 1.14) will require the
mere computation of quantities having the same level of comiexity of covariances
and fourth moments.

Il. In Section 4, we shall prove that the term (1.13) vanishes asN ! 1 , that
is, for everyk 2,

Rn (k) := N & Xiyiz Xiyis Xiiy E[Xilizxizis Xikil] Y
ieDd ()
in L2() : (1.15)

The proof of (1.15 requires some subtle combinatorial analysis, that we willillus-
trate by means of graphical devices, known asliagrams. Some of the combinatorial
arguments and ideas developed in Sectio# should be compared with the two works
by Geman (1980 1986).
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Then, the upper bound (1.3) will be deduced in Section4.4 from the estimates
obtained at the previous steps.

1.4. An application to almost sure central limit theorems. As already pointed out,
one of the main advantages of our approach is that it yields eglicit estimates for
the normal approximation of vectors of traces of large randon matrices { see e.g.
relation (1.3). In Section 5, we shall show that these estimates can be e ectively
used in order to deduce multivariate almost sure central linit theorems (ASCLTSs),
such as the one stated in the forthcoming Theoreml.5. In particular, this result
involves powers of non-Hermitian random matrices and shed$urther light on the
asymptotic behavior of their traces. To the best of our knowkdge, Theoreml1.5is
the rst ASCLT ever proved in the context of traces of random matrices.

Theorem 1.5. Fix m 1, as well as integersky,, > ::: >k 1 1, and let the

Gaussian vector(Zy,;:::;Zk,, ) be de ned as in Theorem1.1. Then, a.s.-P,
1 X
=UOT(XEYD) B Tr(XE) s Tr(XEm) B Tr(X ) !
logN hey N
' E ' ZyginZy, o (1.16)

asN !'1 , for every continuous and bounded function : R™ ! R.

Remark 1.6. (1) Fix m 1 and, for everyN 1, denote by p the discrete
random measure onR™ assigning mass i log(N)) * to the points

Tr(XX) E Tr(XK) ;oinTr(XKm)y E T(XKm) 5 n=1;:5N:

Then, the usual characterization of weak convergence implythat relation
(1.16) is indeed equivalent to saying that, a.s.P, the measure y converges

weakly to the law of (Zy,;:::;Zk, ), asN 'l . For instance, by special-
izing (1.16) to the casem = 1 one obtains that, a.s.-P,
1 X
logN - i Emoxgn xg! P2 x5

asN !'1 | for every integerk 1 and every realx.

(2) The content of Theorem 1.5 should be compared with the following well-
known ASCLT for usual partial sums. Let (Y,)n 1 be a sequence of real—
valued independent identically d|strllg_uted random variables with E[Y,] =
and E[Y,?] = 1, and write S, = p—ﬁ k=1 Yk: Then, almost surely, for any
bounded and continuous function' : R! R,

1 1 (Sn)! E[(G); asN!1l ; G N (0;1): (1.17)
logN aey M
The asymptotic relation (1.17) was rst stated by levy (1937 without
proof, and then forgotten for almost fty years. It was then r ediscovered
by Brosamler (1989 and Schatte (1988 and nally proved in its present
form by Lacey and Philipp (1990. We refer the reader to Berkes and
Csaki (200)) for a universal ASCLT covering a large class of limit theorems
for partial sums, extremes, empirical distribution functions and local times
associated with independent random variables. The paper byHermann
(2007 contains several insights into the existing literature on the subject.
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(3) As demonstrated in Section5, in order to prove Theorem 1.5 we shall make
a substantial use of a result bylbragimov and Lifshits (1999, providing a
criterion for ASCLTs such as (1.17), not requiring that the random variables
Snh have the speci c form of partial sums, nor that G is normally distributed.
Our approach is close to the one developed bercu et al. (2010, in the
context of ASCLTs on the Wiener space. One should also note it Bercu
et al. (2010 only deals with ASCLTSs involving sequences ofsingle real-
valued random variables (and not vectors, as in the present gper).

The rest of the paper is organized as follows. In Sectio we present the univer-
sality results proved in Nourdin et al. (2009, in a form which is convenient for our
analysis. Section3 contains a proof of (L.14). Section 4 deals with (1.15), whereas
Section 5 focuses on the proof of Theorem..5.

2. Main tool: universality of Wiener chaos

In what follows, every random object is de ned on an adequatecommon probabil-
ity space ( ;F ;P). The symbolsE and "Var' denote, respectively, the expectation
and the variance associated withP. Also, given a nite set B, we write jBj to
indicate the cardinality of B. Finally, given numerical sequencesay ;by, N 1,
we write ay by wheneveray=ky ! l1asN!1

We shall now present a series of invariance principles and o&al limit theorems
involving sequences of homogeneous sums. These are maingkén from Nourdin
et al. (2009 (Theorem 2.2), Peccati and Tudor (2005 (Theorem 2.4) and Nualart
and Peccati (2009 (Theorem 2.6). Note that the framework of Nourdin et al.
(2009 is that of random variables indexed by the set of positive inegers. Since in
this paper we mainly deal with random variables indexed bypairs of integers (i.e.,
matrix entries) we need to restate some of the ndings ofNourdin et al. (2009 in
terms of random variables indexed by a general ( xed) discrée countable setA.

De nition 2.1  (Homogeneous sums) Fix an integerk 2. LetY = fY,:a2 Ag
be a collection of square integrable and centered independe random variables,
and let f : AK I R be asymmetric function vanishing on diagonals (that is,
f (ag; i1, a) = 0 whenever there existsk & j such that ax = g;), and assume that
f has nite support. The random ;/(ariable

Qk(f; Y) f(a;ak)Ya,  Ya

= k!f (ag;::5 ak) Ya, Ya, (2.2)
is called thehomogeneous sumof orderk, based onf andY . Clearly, E[Qk(f; Y)]=
0 and also, ifE(Y;2) = 1 for every a2 A, then

E[Qk(f; Y)?] = kIkf k2; (2.2)
where, here and for the rest of the r;?per, we set

kf k& = f2(ag;: a):

Now let G = fG, : a2 Ag be a collection of i.i.d. centered Gaussian random
variables with unit variance. We recall that, for every k and everyf , the random
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variable Q (f; G) (de ned according to (2.1)) is an element of thekth Wiener chaos
associated withG. See e.g.Janson (1997 for basic de nitions and results on the
Gaussian Wiener chaos. The next result, proved irNourdin et al. (2009, shows that
sequences of random variables of the typ&®y (f; G) have auniversal characterwith
respect to normal approximations. The proof of Theorem2.2 is based on a powerful
interaction between three techniques, namely: theStein's method for probabilistic
approximations (see e.g.Chen and Shag 2009, the Malliavin calculus of variations
(see e.g.Nualart, 2006, and a general Lindeberg-type invariance principle recetty
proved by Mossel et al.(2010).

Theorem 2.2 (Universality of Wiener chaos, seeNourdin et al., 2009. Let G =
fG4 : a2 Ag be a collection of standard centered i.i.d. Gaussian randonvariables,

and xintegers m landky;::;km 2. Foreveryj =1;::;m, let ff,‘v") N 19
be a sequence of functions such thdt,s,j) - Ak 1 R is symmetric and vanishes on
diagonals. We also suppose that, for every = 1;:::; m, the support off,s,j), denoted
by supp(f,slj)), is such thatjsupp(f,gj))j 1T ,asN!1 . Dene Q (f,E,j);G),
N 1, according to (2.1). Assume that, for everyj = 1;:::m, the following sequence
of variances is bounded:

E[Q(f{:G)4 N 1 (2.3)

Let V be am m non-negative symmetric matrix, and letN , (0; V) indicate a m-
dimensional centered Gaussian vector with covariance maix V. Then,asN !'1
the following two conditions are equivalent.

(1) The vector f Qy (fﬁ,”;G) :j =1;::;,mg converges in law toN , (0; V).
(2) For every sequenceX = fX, : a 2 Ag of independent centered random
variables, with unit variance and such thatsup, EjX,j® < 1, the law of

the vector f Qy, (fﬁ,j);X) ©j =1;::;mg converges to the law oN , (0;V).

Note that Theorem 2.2 concerns only homogeneous sums of ordér 2: it is
easily seen (see e.ghlourdin et al., 2009 Section 1.6.1) that the statement is indeed
false in the casek = 1. However, if one considers sums with a specic structure
(basically, verifying some Lindeberg-type condition) onecan embed sums of order
one into the previous statement. A particular instance of this fact is made clear in
the following statement, whose proof (combining the resuls of Nourdin et al., 2009
with the main estimates of Mossel et al, 2010 is standard and therefore omitted.

Proposition 2.3.  For m 1, let the kernelsff,&’) N 1g,j =1;::;m, verify
the assumptions of Theorem2.2. Let fa; :i  1g be an in nite subset of A, and
assume that condition (1) in the statement of Theorem2.2 is veri ed. Then, for
every sequenceX = fX, : a2 Ag of independent centered random variables, with
unit variance and such thatsup, EjX,j® < 1, as N Ilbl the law of the vector
fWn ; Q (fﬁ,');x) :j =1;::;mg, where Wy = p% iN:l Xa, converges to the
law of fNg; Nj :j =1;::;;mg, whereNg N (0;1), and (N¢;::5;Nm)  Nn(0;V)
denotes a centered Gaussian vector with covariance, and independent ofNg.

Theorem 2.2 and Proposition 2.3 imply that, in order to prove a CLT involving
vectors of homogeneous sums based on some independent semaeX , it su ces to
replaceX with an i.i.d. Gaussian sequences. In this way, one obtains a sequence
of random vectors whose components belong to a xed Wiener cos. We now
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present two results, showing that proving CLTs for this type of random variables
can be a relatively easy task: indeed, one can apply some ditiés simpli cation of
the method of moments. The rst statement deals with multi-d imensional CLTs
and shows that, in a Gaussian Wiener chaos setting, componémise convergence to
Gaussian always implies joint convergence. See alg@grault et al. (2010 for some
connections with Stokes formula.

Theorem 2.4 (Multidimensional CLTs on Wiener chaos, seeNourdin et al., 2009
Peccati and Tudor, 2009. Let the family G = fG, : @ 2 Ag be i.i.d. centered
standard Gaussian and, forj = 1;:::;m, de ne the sequencey; (fﬁ,');G), N 1
as in Theorem 2.2 (in particular, the functions f,E,” verify the same assumptions as
in that theorem). Suppose that, for everyi;j =1;:;;m,asN 1

EQufy:G) Qu(d:6) 1 V(i) (2.4)

whereV is am m covariance matrix. Finally, assume that Wy, N 1, is a
sequence ofN (0;1) random variables with the representation

Wy = WN (a) Ga;
a2A

here the weightswy (a) are zero for all but a nite number of indices a, and
a2 Wn (8)? = 1. Then, the following are equivalent:

(1) The random vector fWy ; Qy; (fﬁ,”;G) :j = 1;::;mg converges in law
to fNo; N; :j = 1;:5mg, where Ng N (0;1), and (N1;::;;Np)
N (0;V) denotes a centered Gaussian vector with covarianc¥, and in-
dependent ofNy.

(2) Forevery xedj =1;::;m, the sequenceQy (fﬁ,');G), N 1, converges in
lawtoZ N O;V(j;j) , thatis, to a centered Gaussian random variable
with variance V (j;j ).

The previous statement implies that, in order to prove CLTs for vectors of homo-
geneous sums, one can focus on the componentwise convergenttheir (Gaussian)
Wiener chaos counterpart. The forthcoming Theorem 2.6 shows that this type
of one-dimensional convergence can be studied by focussiegclusively on fourth
moments. To put this result into full use, we need some furthe de nitions.

De nition 2.5. Fix k 2. Letf : A1 R be a (not necessarily symmetric)
function vanishing on diagonals and with nite support. For everyr =0;:::;k, the
contraction f ?, f is the function on A% 2 given by

f?rfggl;:::;azk 2r) (2.5)

f(ag;rae oyXe o Xe)f (@ ren i@k 2 X150 X )

Observe that (even whenf is symmetric) the contraction f ?, f is not necessarily
symmetric and not necessarily vanishes on diagonals. The nanical symmetrization
of f 2, f is written f &f.

Theorem 2.6 (The simpli ed method of moments, seeNualart and Peccati, 2005.
Fix k 2 Let G =fG,;:a2 Agbe ani.i.d. centered standard Gaussian family.
Let ffy : N 1g be a sequence of functions such thdty : AK | R is symmetric
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and vanishes on diagonals. Suppose also thaupp(fn)j!1 ,asN !1 . Assume
that
E[Qu(fn;G)?]! 2>0; asN!1 . (2.6)
Then, the following three conditions are equivalent, as\ ! 1
(1) The sequenceQy(fn;G), N 1, converges in law toZ N (0; ?).
(2) E[Q«(fn:G)*! 3 “.
(3) Foreveryr =1;:5k 1, kfy 2 fnkok 2o ! O

Finally, we present a version of Theorem2.2 with bounds, that will lead to the
proof of Theorem 1.1-(ii) provided in Section 4.4.

Theorem 2.7 (Universal bounds, see\ourdin et al., 2009. Let X = fX,:a2 Ag

be a collection of independent centered random variables, ith unit variance and

such that = sup,EjX4j® < 1. Fix integers m 1, ky > 2 >k, 2

For every j = 1;:;m, let f0) : Ak 1 R be a symmetric function vanishing

on diagonals. De ne Q/ (X) = Q, (f 1);X) according to (2.1), and assume that

E[Qj (X)?]=1 forall j =1;:::;m. Also, assume thatK > 0 is given such that
azpa Maxy j mInfa(f@)) K, where

Infa(f 0))

[
-
~
2
&
o
=
Nt
N

k1)

Let' : R™ | R be a thrice di erentiable function such that k' %; + k' %R; < 1,

1
L o X X
E[ (Q'(X);::5Q"(X) E[ (2)] k' % @ +2 i
i=1 10 m
r _| 2 33r
' 00 8 0 Pt -
+K k' O%R, + — 4 (16 2)T Kd max max Inf 4 (f ());
[=1 1j ma2A
where j,1 i j m,isgiven by
« 1
Ki " ki 1 Kk 1 9 —
I , , !
p—irzl (r 1) F1or 1 (ki + kj  2r)!
kf D2 f Ok + kf O 9 F Dk,
S
Ki

+1fki<kjg k]' kf(J)okJ kif(j)kZKi:

i
We nish this section by a useful result, which shows how thein uence Inf,f of
f : AK1 R can be bounded by the norm of the contraction off of orderk 1:

Proposition 2.8. Letf : AX! R be a symmetric function vanishing on diagonals.
Then

X
(k  1)maxInf,(f) := max f(ajap;::iax)? k f2¢ 1fks:
a2A a2A
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Proof. We have

32
X X
kf?2, 1fk3 = 4 faja;:::;a)f(b;a;::i;ak)2
ab2A az;ax2A
2 3,
4 f2(a; ;105 ak)d
a2A ap;ag2A
2 3,
2
A4 7 f2aea e 5 _— I
TZE}AX fe(ajaz; i a) (k 1).r6{1za}AXInfa(f)
az;inak2A

As a consequence of Theorem.7 and Proposition 2.8, we immediately get the
following result.

Corollary 2.9. Let X = fX, : a2 Ag be a collection of independent centered

random variables, with unit variance and such that := sup, ijaj_3 < 1. Fix
integersm 1, kn >::>ky 1. Foreveryj =1;::;m, let ff,ﬁ') . N 19
be a sequence of functions such theft,sl’) : Ak 1 R is symmetric and vanishes

on diagonals. De ne QjN (X) = Q (f ,s,j);X) according to (2.1), and assume that

E[Qj,\‘(x)z]=1for all j =1;::;;mandN 1 Let' : R™ ! R be a thrice
di erentiable function such that k' %, + k'R, < 1. If for some > 0,
kf,ff) % r fﬁ,‘)kgr = ONN )forall j=1;:::;;mandr =1;::5k 1, then,

3. Gaussian uctuations of non-diagonal trace components

Our aim in this section is to prove the multidimensional CLT (1.14), by using
the universality results presented in Section2. To do this, we shall use an auxiliary

collection G = fGj :i;j 1gofi.id. copies of aN (0;1) random variable.
As in Section 1.3, for a given integerk 2, we write Df\‘k) to indicate the set
of vectorsi = (i1;:::;ik) 2 [N]€ such that all the elements (a;ia+1), a=1;:::;Kk,

are di erent in pairs (with the convention that ix+1 = i1). We have the following
preliminary result:

Proposition 3.1. For any xed integer k 2,
X
N k=2 Gii, G, ™ Zk N (0;k) asN!1
i2D
Remark 3.2. When k =1, the conclusion of the above proposition continues to be

true, since in this case we obviously have

N = * Gi N (0;1):
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Proof of Proposition 3.1: The main idea is to use the results of Sectior?, in the
special caseA = N?, that is, A is the collection of all pairs (i;j ) such that i;j 1.
Observe that X

N =2 Giii, 1:Giyiy = Qu(fn 1 G);
2D

with fin @ (INJD* ! R the symmetric function de ned by

1 X
fon = o fin (3.1)
258y
where we used the notation
fin CHLAGEHCHONS
N =2 1t @ =auii gm =byg -t L (0= akii (k1 =begs (3.2)

i2D
and S denotes the set of all permutations of k]. Hence, by virtue of Theorem?2.6,
to prove Proposition 3.1 it is su cient to accomplish the following two steps: ( Step
1) prove that property (3) (with fy.n replacing fy) in the statement of Theorem

2.6 takes place, and Step 2 show that relation (2.6) (with f.n replacing fn) is
veri ed.

Fin 2 fon (Xuya)iioss (Xak 2riYak 2r) (3-3)
= N k X
i;j2D{

1 @ =X @a =Y1g"'1fi (k 1)=Xk r3i (k 1 =Yk rQ

1fj @ =Xk 41 @ =Yk r+1g---1fj (k r)=X2k 2r30 (k rpp1 Y2k 2r @
1 (k r+1) ) (k r+1) o1 (k reper T (ko rene g"'lfi =1 b o Tk g

We now want to assess the quantitykf éN) % flﬁ;N) k3, 5 - To do this, we exploit the
representation (3.3) in order to write

W k .
Kfin 2 Fin K3 2 = {2V (D)4 N

whereF{"" ) is the subset of (N ]*)* composed of those quadrupletsi(j; a; b) such
that

b @w=a@, @ =aa::

bk =@ w s 0ok e =@ (ko

Jw=ba: @1 =bawsiiy

j (k r)y = b(k ry j (k ry+1 = b(k r)+1

bk re1) =0 (kom0 reer T (k rensr o oiii

bag =0 s T oo =1 o

Ak r+1) = Dk reny s @k reprr = Dk renyen 500

au = by Ay = b g (3.4)
It is immediate that, among the equalities in (3.4), the 2k equalities appearing in
the forthcoming display (3.5) are pairwise disjoint (that is, an index appearing in
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one of the equalities does not enter into the others):

im=a@:h lwn=awn

fw=ba:y Jwkn=bwn

bk ore) =0 ok i a0 = s

a(k r+1) :b(k r+1);:::; a(k):b(k): (35)

Hence, the cardinality of F{"*  is less thanN 2, from which we infer that kf ) %
flﬁ;N) k3, , is bounded by 1. This is not su cient for our purposes, since we need

to show that kf éN) % flﬁ;,\} k3, , tends to zero asN ! 1 . To prove this, it is
su cient to extract from ( 3.4) one supplementary equality which is not already
written in ( 3.5). We shall prove that this equality exists by contradiction. Set
L=f (s):1 s k rgandR=f (s)+1:1 s k rg/(withthe convention
that k+1 =1). Now assume that R= L. Then (1)+1 2 R also belongs toL, so
that (1)+2 2 R. By repeating this argument, we get that L = R = [k], which is a
contradiction becauser 1. Hence,R 6 L. In particular, the display ( 3.4) implies
at least one relation involving two indices that are not already coupled in (3.5).
This yields that the cardinality of F{*' ) is at most N2 ! and consequently
that kflJ % fin K3 » N 1. This fact implies immediately that the norms
kfkn 2r fon Kok 2rs r =150k 1, verify

Kfin 2 fion kak 20 = O(N *7%); (3.6)
and tend to zero asN ! 1 . In other words, we have proved that condition (3) in
the statement of Theorem2.6 is met.

Step 2 We have
0 1

X X
Var %N k=2 Gi1i2 ZZZGikilg =N K E[Gilig:::GikilGjljz ZZZijjl]Z
i2D i;ji2D
For xed i;j 2 D, observe that the expectation E[Gi,i, :::Gi,i, Gj.j, 11 :Gjyj.]
can only be zero or one. Moreover, it is one if and only if, for b s 2 [k], there is
exactly onet 2 [k] such that (is;is+1) = (jt;jt+1). In this case, we dene 2 Sy

as the bijection of [k] into itself which maps eachs to the correspondingt and we
have, for all s 2 [k],

is=1] (=1 (s 11 (3.7)

, P
To summarize, one has that Var N *=2 20 Gi,i, :::Gj,i, equals

X
N X ;i) 2 O{N)?: (ississ1) = (i (9i] (9r1) forall s2 k] : (3.8)
2S¢

If 2Sgissuchthat (s)= (s 1)+1forall s(itis easily seen that there are
exactly k permutations verifying this property in Sy), we get, by letting s run over

(k] in (3.7),
(i51) 2 (OS2 (isiise) = (i (93] (9+1)
forall s2 [k] = N¥+ O(NK 1); asN!1
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In contrast, if 2 Sk isnotsuchthat (s)= (s 1)+1forall s, then by letting
s run over [k], one deduces from .7) at least k + 1 di erent conditions, so that, in
this case,

(i51) 2 (OR)?: (istiss) = (§ (93] (spe1)

forall s2 [k] = O(NX %); asN!1
Taking into account these two properties together with the representation (3.8), we
deduce that the variance of X

N k=2 Giliz:::Gikil
i2D
tendstok asN !'1 . It follows that the required property ( 2.6) in Theorem 2.6
(with 2 = k) is met.
The proof of Proposition 3.1 is concluded.

Remark 3.3. By inspection of the previous proof, one also deduces thatof every
k 2, there exists a c8nstantCk (independent of Nl) such that, forall N 1,

, X C
Var %N k=2 GiliZZZZGikilg k Wkl (3.9)
i2D

The multidimensional version of Proposition 3.1 reads as follows:

Proposition 3.4. Fix m 1, as well as integersky, >::: >k 1 2. Then, as
NIl
0

1:2>(\' o X
%N Gi; N 2 Gi,i, Giy,irs 0t (3.10)

i=1 iZD,(\‘kl) 1

X
Km
N Ghi, G X P ZuZi:nZe
i2D{m)

where Z = fZy : k 1g denotes a collection of independent centered Gaussian
random variables such that, for everyk 1, E(Z?2) = k.

Proof: It is an application of Theorem 2.4, in the following special case:
- wn (i) = p% ifi=j N andwy(i;j ) = 0 otherwise;
- V is equal to the diagonal matrix such that V(a;b = 0 if a 6 b and
V(a;a) = ky, fora=1;::;m;

- forj=1;:5;m, fﬂ) = fk, ;v , where we used the notation §.1).
Indeed, in view of Proposition 3.1, one has that condition (2) in the statement
of Theorem 2.4 is satis ed. Moreover, for xed a 6 b and since G consists of a
collection of independent and centered (Gaussian) randomariables, it is clear that,

for all N,
3
X X
Eﬁ Giliz:::Gikail Gjljz:::ijbjlg:O;

: k . k
i2D{fa) j2D
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so that condition (2.4) is met. The proof is concluded.

By combining Proposition 3.4 and Proposition 2.3, we can nally deduce the
following general result for non-diagonal trace componers.

Corollary 3.5. For N 2, let Xy be theN N random matrix given by (1.1),

where the reference random variableX has mean zero, unit variance and nite

absolute third moment. Fix m 1, as well as integers2 ki < i < kK.

Then, the CLT (1.14) takes place, withZ = fZy : k  1g denoting a sequence
of independent centered Gaussian random variables such thafor every k 1,

E(Z2) = k.

Remark 3.6. In order to prove Corollary 3.5, one only needs the existence of third
moments. Note that, as will become clear in the following Setion 4, moments of
higher orders are necessary for our proof ofl(15).

4. The remainder: combinatorial bounds on partitioned chai ns and proof
of Theorem 1.1

Fix an integer k 2. From section 1.3, recall that D(Nk) denotes the subset of

are di erent in pairs (with the convention that ix.; = i1). From the Introduction,
recall that X is a centered random variable, having unit variance and with nite
moments of all orders. Let alsoX = fXj :i;j  1g be a collection of i.i.d. copies
of X . In the present section, our aim is to prove the asymptotic rdation (1.15),
that is

Proposition 4.1. OFor everyk 2,asN!1 , L

X
E(Ry (K)?) = Var N <=2 Xii, 5 X, E(Xii, X0, X = O(N 1):
iep ()
4.1)

The proof of Proposition 4.1 is detailed in Section 4.4, and builds on several
combinatorial estimates derived in Sections4.2{4.3. To ease the reading of the
forthcoming material, we now provide an intuitive outline of this proof.

Remark on notation.  Given an integerk 2, we denote byP (k) the collection
of all partitions of [k] = f1;::;;kg. Recall that a partition 2 P (k) is an object
of the type = fBy;:::;B;g, where theBj's are disjoint and non-empty subsets of

.....

write a X whenevera and x are in the same block of . We also use the symbol
% to indicate the one-block partition 4 = f[k]g (this is standard notation from
combinatorics { see e.g.Stanley, 1997). In this section, for the sake of simplicity

and becausek is xed, we write Dy instead ofD(Nk).

4.1. Sketch of the proof of Proposition4.1. Our starting point is the following ele-
mentary decomposition: [
IN]*nDy = An();
2Q (k)
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where Q(k) stands for the collection of all partitions of [k] containing at least one
block of cardinality 2, and Ay ( ) is the collection of all vectorsi 2 [N]¥ such
that the equality (ia;ia+1) = (ix;ix+1) holds if and only if a x. (Recall that, for
a;b2 [K], we write a bto indicate that a and b belong to the same block of .)
Using this decomposition, one sees immediately that, in ordr to show (4.1), it is
su ciegt to prove that, for each xed 2 Q(k), the quantlity

X
Var @N k=2 Xigip 111 X0 i, E(Xim:::xikil) A 4.2)
i2An ()
=N X [EXizin 22 Xiia Xiajz 230 X1)

(BN2AN () An()
E(Xii, 11 X )B4y, 110 Xy u) ]
isSO(N 1),asN !1 . Let Gy ( )denote the subsetofpairs(;j)2 An( ) An()
such that the following non-vanishing condition is in order:

E(Xi1i2 :::Xikillejz ZZZXjkjl) E(Xi1i2 :::Xikil)E(lejz :::Xjkjl) 60: (4.3)
Henc63 1
k=2 X

Var @N = Xivip i0 i Xieiy EXKiyip i Xq,0,) A (4.4)

i2AN ()

I N ) X

=N [E(xiliz:::xikillejZ:::xjkjl)
(i5)2Gn ()
E(Xiliz ZZZXikil)E(lejz ZZZXjkjl)]Z

Due to the nite moment assumptions for X, and by applying the generalized
Helder inequality, it is clear that, for a generic pair (i;j),

E(Xi1i2 :::Xikillejz:::xjkh) E(Xiliz:::Xikil)E(lejz ZZZXjkjl)
2E(jXj*) < 1:

It follows that, in order to prove that the sum in ( 4.4) is O(N 1), it is enough to
show that

Gn() (ki ONK (4.5)
for some constant (k; ) not depending onN. Our way of proving (4.5) is to show
that, if (ii;j) denotes ageneric element of Gy ( ), then, necessarily, there exists

that by “equality’ we just mean the existence of two di erent integers a;b 2 [K]

such that iy = ip Or jo = jp, Or the existence of two integersa; b 2 [k] such that

ia = jp. Proving this fact implies that the 2 k indices of a generic elementsi(j) of

Gy () have at mostk 1 degrees of freedonfsee Point7 of Section 4.2 for a precise
de nition), so that ( 4.5) holds immediately | the constant (  k; ) merely counting

the number of ways in which the k + 1 equalities can be consistently distributed

among the indices composingij). In order to extract these k+1 equalities between
the 2k indices of a generic elementi(j) of Gy ( ), we will consider two cases,
according as the partition 2 Q (k) contains at least one singleton or not.

Case A: No singletons in . By de nition of Ay ( ), and due to the absence of
singleton in , we already see that there are at leask=2 or (k + 1) =2 (according

to the evenness ofk) equalities between thek indices ofi (resp. j). Moreover,
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the non-vanishing condition (4.3) implies that there is at least one further equality
between one index ofi and one index ofj. So, we proved the existence ok + 1
equalities between the X indices of (i;j), and the proof of (4.5) in the Case A is
done.

Case B: At least one singleton in . Let S denote the collection of the singleton(s)
of . In order for (4.3) to be true, observe that, for all s 2 S, we must have
(is;js+1) =(lia;ias1) for somea 2 [K]. In particular, this means that there exist |Sj
equalities of the typejs = i, for the indices composing (;j). Also, by de nition of
the objects we are dealing with, for allt 2 [k]nS, we must have (¢;it+1) = (ia;ia+1)
for somea, dierent from t, in the same -block ast. Of course, the same must
hold with i replaced byj. Hence, in order for (4.5) to be true, it remains to produce
one equality between indices that has not been already condéred. We mentioned
above that for all t 2 [k] nS, there existsa, di erent from t and in the same block
ast, such that j; = j4. Hence, to conclude it remains to show that we havg = j,
for at least one integert belonging to k] nS and one integera not belonging to
the same block ast. Since, by assumption, contains at least one singleton and
one block of cardinality 2 (indeed, 2 Q (k)), without loss of generality (up to
relabeling the indices according to a cyclic permutation oflk]), we can assume that
S contains the singletonfkg. Consider now the singletonfs g of S, wheres is
de ned as the greatest of the integersm such that f mg is adjacent from the right
to a block, sayB, , of cardinality 2. For a particular example of this situation,
see the diagram in Fig. 4.1, where each row represents the same partition of [7]
having s =6 (see Point 3. in the subsequent Section4.2 for a formal construction
of diagrams). To nish the proof, once again we split it into two cases:

Case B1: The blockB, contains two consecutive integers This assumption
implies that jx = j; = ji+1 for all x;t 2 B, . Sincefag is adjacent from the right
to By , we havej, = j; for all t 2 By , which is exactly what we wanted to show.

Case B2: The blockB, does not contain two consecutive integersFig. 4.7is an
illustrative example of such situation, where each row repesents the same partition
of [8], with s = 7. As we see on this picture, we have necessarilyy = js, yielding
the desired additional equality, which could not be extracted from the previous
discussion. In Section4.3, it is shown that this line of reasoning can be extended
to general situations.

Remark 4.2. The sketch given above contains all the main ideas enteringnithe proof
of Proposition 4.1. The reader not interested in technical combinatorial detals, can
then go directly to Section 4.4, where the proof of Theorem1.1 is concluded. The
subsequent Sectionst.?{4.3 Il the gaps of the above sketch, by providing exact
de nitions as well as complete formal arguments leading to he estimate ¢@.1).

4.2. De nitions. In the following list, we introduce some further de nitions that
are needed for the analysis developed in the rest of this saoh.

1. Fix integers N;k 2. A chain c of length 2k, built from [ N], is an object
given by the juxtaposition of 2k pairs of integers of the type

c=(igsi2)(iziz)(iks i) 1si2)(J2)8) (U ksa)s (4.6)
whereig;jx 2 [N], for a;x = 1;:::;k. The class of all chains of length R built from

[N]is denoted by C(2k;N). As a notational convention, we will use the letteri to
write the rst k pairs in the chain, and the letter j to write the remaining ones.
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For instance, an element ofC(6;5) (that is, a chain of length 6 built from the set
f1;2;3;4;5q) is

c=(1;5)(5;1)(1;1)(3;3)(3;3)(3; 3);
wherei; =1, i, =5, i3 =1, j1 = j2 = js = 3. According to the graphical
conventions given below (at Point 3 of the present list) we wil sometimes say that
(i1;i2)(i25i3)(ik;11) and (j1;j2)(J2:03) =(ik;)1) are, respectively, the upper sub-
chain and the lower sub-chainassociated with the chainc in (4.6). For instance, in
the previous example the upper sub-chain is (15)(5; 1)(1; 1), whereas the lower one
is (3;3)(3; 3)(3; 3). We shall say that (i;;i+1) is the Ith pair in the upper sub-chain
of ¢ (and similarly for the elements of the lower sub-chain). We $all sometimes
call i, the left index of the pair (i5;ia+1). Also, we use the conventionix+1 = i3
and jx+1 = j1. Of course, a chain is completely determined by the left indies of
its pairs.

2. Let 2 P (k) be a partition of [k]. We say that a chain c as in (4.6) has
partition if, for every a;b2 [k], the following double implications take place: (i)
(ia;ias1) = (ipsiper) ifand only if @ b, and (i) (ja;ja+1) = (jb;jo+1) if and only
if a b In other words, a chain has partition if and only if the partitions of [ k]
induced by the identical pairs in its upper and lower sub-chan are both equal to

, that is (with the notation of Section 4.1), if and only if (iq;::550k); (15 ]k) 2
An (). Forinstance, takek =4 and = ff 1;3g;f2;4gg. Then, the following chain
built from [3] has partition

c=(1;2)(2;1)(1;2)(2; 1)(3; 1)(1; 3)(3; 1)(1; 3):

Note the “only if' part in the de nition given above, implyin g that, if a chain
has partition  and if x and y are not in the same block of , then necessarily
(ix;ix+1) 6 (iy;iy+1) and (jx;jx+1) 6 (jy:jy+1). This yields in particular that a
chain cannot have two di erent partitions.

3. Given k 2, we shall sometimes represent a generic chain with partitin

2 P (k) by means ofdiagrams. These diagrams are mnemonic devices composed
of an upper row and a lower row, ofk dots each. These rows represent, respectively,
the upper and lower sub-chain of a given chain, in such a way tht the Ith dot (from
left to right) in the upper (resp. lower) row corresponds the Ith pair in the upper
(resp. lower) sub-chain. Each blockB of the partition is represented by two closed
curves: the rst one is drawn around the dots of the upper row @rresponding to
the pairs (i4;ia+1 ) Verifying a 2 B; the second one is drawn around the dots of the
lower row corresponding to those jx;jx+1 ) verifying x 2 B. The resulting diagram
is the superposition of two identical combinations of dots ad curves. Note that
the shape of the diagram does not depend oN . For instance, the diagram in Fig.
4.1 corresponds to the cas& = 7, and = ff 1;4;5g;f2g;f 3g; f 6g; f 799, whereas
the diagram in Fig. 4.2 corresponds tok = 6 and the one-block partition 4 = f[6]g.

4. In general, given a chainc as in (4.6) with partition = fBy;::;;Brg as at
Point 2 of the present list, we shall say the the blockB, of the upper sub-chain
correspondsto the block B, of the lower sub-chain, wheneveri(y;ia+1) = (jx:jx+1)

1A chain with partition as in Fig. 4.1 is
c=(1;1)(1;2)2; DA; DE; 1)E;3)E; DE; DA; H)E; 1DE; DA, 1DA; 5)6G; 1):
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Qo0 /00
Qoo oo

Figure 4.1. a chain with a ve-block partition

Figure 4.2. a chain with a one-block partition

for everya 2 B, and everyx 2 B,. Note that one given blockB, in the upper sub-
chain cannot correspond to more than one block in the lower sbrchain. For =
fB1;:::;Brg 2 P(k), we shall now de ne a class of chaingC (2k;N) C(2k;N),
whose elements have partition and are characterized by two facts: the associated
upper and lower sub-chains have at least one pair in common,ral \no singletons are
left on their own". Formally, the class C (2k;N) is de ned as follows (recall that
we use the letteri for the elements of the upper sub-chain, and the letterj for the
elements of the lower sub-chain). (i) IfjB;j 2 foreveryt =1;::;r,thenC (2k;N)
is the collection of all chains of partition verifying that there exists a; x 2 [k] such
that the block B, in the upper sub-chain corresponds to the blockB, in the lower
sub-chain. (ii) If contains at least one singleton, thenC (2k;N) is the collection
of all chains of partition  such that every singleton in the upper (resp. lower) sub-
chain corresponds to a block of the lower (resp. upper) subdin, that is: for every
fag 2 , there existsu = 1;:::;r such that (i5;ia+1) = (ji;j1+1) for every | 2 By,
and, for everyfxg 2 , there existsv =1;:::;r such that (jx;jx+1) = (js;js+1) for
everys 2 B,. Forinstance, if k =3 and = f[3]g, then one element ofC (6;5) is

c=(5;5)(5;5)(5;5)(5; 5)(5; 5)(5; 5):
If k=6 and = ff 1;2;3g;f4g;f5q; f 6gg, then one element ofC (12;5) is
c=(1;1)(1; 1)(1; 1)(1; 2)(2; 5)(5; 1)(2; 2)(2; 2)(2; 2)(2; 5)(5; 1)(1; 2):

5. Fix k;N 2, as well as a partition = fB1;::;;B,g 2 P (k). Given two
subsetsU;V  [r]suchthatjUj = jVj,letR:U! V :u 7! R(u)be abijection from
U onto V. We shall denote byCR (2k; N ) the subset ofC (2k; N ) composed of those
chainsc 2 C (2k;N) such that the block B, in the upper sub-chain corresponds to
the block Br(yy in the lower sub-chain. WhenU = fugandV = fvg are singletons,
we shall simply write CYY (2k;N) to indicate the set of thosec 2 C (2k;N) such
that the block B, in the upper sub-chain corresponds to the blockB, in the lower
sub-chain. For instance, the chain

a = (1115 1)1 2)(2;5)(5: 1)(2; 2)(2; 2)(2; 5)(5: 1)(1; 2)
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is an element of CR(10;4), where = fB1;B,;B3;Bsg = ff 1;2g;f3g;f4g;f 5g0,
U=V =123;4g, and R(2) =4, R(3) =2 and R(4) = 3. The chain

c2 = (3:3)(3;3)(3;3)(3;3)

belongs toCil;l(4; 3), where® = fB,g = f[2]g. Note that the de nition of CR(2k;N)
does not give any information concerning the blocks of the uper and lower sub-
chains that do not belong, respectively, to the domain and tke image ofR. In other
words, for a chainc 2 CR(2k;N), one can have that the block B, in the upper
sub-chain corresponds to the blockB, in the lower sub-chain even ifu 2U and
v 2V. For instance, the chain

c=(1; D)@ 1)(2;2)(2;5)(5: DL (15 1)(2;2)(2;5)(5: 1)
is counted as an element ofcR (10; 4), where
= fB1;B2;Bs;Bag = ff 1;29;f3g; f 4g; f 59g;

U=V =123;49,and R(u) = u, foru=2;3;4.

6. Fix k;N 2, as well as a partition = fBj;::;;B;g 2 P(k). Given a
bijection R : U ! V as at Point 5 above, we shall represent a generic element
of the classCR(2k;N) by means of a diagram built as follows: rst (i) draw the
diagram associated with the clas<C (2k;N), as explained at Point 3 of the present
list, then (ii) for every pair of blocks B, and By, such that u 2 U, v 2 V and
v = R(u) (note that By is in the upper sub-chain, andB, in the lower sub-chain),
draw a segment linking a representative element oB, with a representative element
of B,. For instance, the classCR(10;N), associated with the chainc; appearing
at Point 5 above, is represented by the diagram appearing in k. 4.3, whereas the
chain ¢, is associated with the clas£§;1(4; 3), whose diagram is drawn in Fig. 4.4.

Figure 4.3. a chain with three pairs of corresponding singletons

Figure 4.4. a chain with two corresponding blocks

7. Fix k;N 2and let C C(2k;N) be a generic subset ofC(2k;N). Let
g=1;::; 2k be an integer. We say thatC has at most q degrees of freedonfor,
equivalently, that C has at mostq free indiceg if there exists two subsetsD;E  [K]
suchthatjDj 1 and the following two properties are veri ed: (i) jDj+jEj g, and
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(ii) for every? xp = fxa :a2 Dg 2 [N]JPi and everyye = fyp: b2 Eg 2 [NJEI,
there existsat most one chainc as in (4.6) such that i, = x, for everya 2 D and
jb = Yyp for every b2 E. Note that our de nition contemplates the possibility that
E = ;, and in this case the role ofye = ; is immaterial. In other words, the classC
has at most q degrees of freedom if everg 2 C is completely determined by those
i5 in the upper sub-chain such thata 2 D and thosejy, in the lower sub-chain such
that b2 E. Forinstance, itis easily seen the clas€ (2k; N ) has (exactly) 2k degrees
of freedom. Another example is the diagram in Fig.4.5, which corresponds to the
casek =6, = ff 1,29;f3;50;f4;6ggand u = v =1. One sees that, for everyN,
specifying i1, is and j4 completely identi es a chain inside the classC*1(12;N),
which has therefore three degrees of freedom.

Figure 4.5. a class with three degrees of freedom

The proof of the two (useful) results contained in the next statement is elemen-
tary and omitted.

Lemma 4.3. Fix K;N 2.

(1) Let g=1;::;2k. Assume that a generic classC  C(2k;N) has at mostq
degrees of freedom. ThenjCj N9,

(2) Let 2 = f[k]g be the one-block partition of[k]. Then, the class C;(2k;N)
contains only \constant" chains of the type (4.6) such that (i1;i2) = (ia;ia+1) =
(jx;jx+1), foreverya=2;::;k and everyx = 1;::;;k. It follows that jC4(2k; N )j =
N.

Lemma 4.3 will be used in the subsequent section.

4.3. Combinatorial upper bounds. We keep the notation introduced in the previous
section. The following statement, which is the key elementér proving Proposition
4.1, contains the main combinatorial estimate of the paper.

Proposition 4.4.  Fix k;N 2, and let = fBy1;::;;Brg 2 P(k) be a partition
containing at least one block of cardinality 2. Let the classC (2k;N) be de ned as
at Point 4. of the previous section. Then, there exists a nite constan ( k; ) 0,
depending only onk and (and not on N), such that

jC (2N) (k) N & (4.7)
Proof: We shall consider separately the two cases
A. Foreveryv=1;::5r,jByj 2.
B. The partition  contains at least one singleton.

2As indicated by our notation, we regard xp and yg as vectors, respectively in [N]'PJ and
[NJEJ, by endowing D and E with the natural ordering induced by the ordering on [  k].
3Indeed, one has necessarily that i1 = i = ig=i5=j1=j2=j3=]s,ia=1Igand ja=js.
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Case A. When k = 2: 3, the only partition meeting the needed requirements isf.
According to Lemma 4.3-(2), jC4(2k; N )j = N, so that the claim is proved, and we
shall henceforth assume thatk 4. Start by observing that r  k=2. Moreover,
the classC (2k; N) contains only chains such that at least one block in the uppe
sub-chain corresponds to a block in the lower sub-chain, wich yields in turn that
.
C (2k;N) = C"V (2k;N);
uv =1

where we adopted the notation introduced at Point5. of Section4.2. This implies
the crude estimate

X
iC (2k;N)j JC™Y (2k;N)j: (4.8)

uv =1
According to Lemma 4.3-(1), it is now su cient to prove that each class C“" (2k;N)
has at most 2 1 degrees of freedom: indeed,4(8) together with the fact that
2r 1 k 1 would imply relation (4.7), with ( k; )= r?2 k?=4. Fix u;v 2
f1;::;rg. To prove that C*V (2k;N) has at most 2 1 degrees of freedom, we
shall build two sets D;E  [k] as follows. For everys =1;:::;r, choose an element
of the block B, and denote this element byas. Then, de ne

D=fas:s=1;::rg; E = Dnfayg;
where n' denotes the di erence between sets. We now c!ai‘m that, for eery xp =
fxa:a2 Dg2 [N]JPI and everyye = fyp: b2 Eg 2 [N]JEI, there exists at most
one chainc2 C*V (2k;N) as in (4.6) such that i, = x, foreverya2 D andj, = yp

for every b2 E. To prove this fact, suppose that such a chainc exists, and assume
that there exists another chain

c¥= (ig;i)(i2;18):x:( 1D LD 219G ki D)
verifying this property and such that c®2 C"V (2k;N). The following hold: (a) for
everys=1;::r and everya 2 Bs, one has thati® = x5, = ia, = ia, (b) for every
s6 vandeverya2 Bs,j=vya, = ja. = ja and (c) for s= v and everya 2 B,,

Jg: ng = igu = Xa, = la, = ja, = Ja:

As a consequence¢”’ = c. SincejDj+ jJEj = 2r 1, this concludes the proof of
Proposition 4.4 in the Case A.

Case B We shall denote by S the collection of the singleton(s) of , that is the
subset of k] composed of those indices such that fag 2 . Note that |Sj > 0
by assumption. We also write P for the collection of the indicesu 2 [r] such that
jBuj 2. Note that P is a subset of f], whereasS [k]. Note also that the set
[rInP is the collection of all thosev 2 [r] such that By is a singleton. Clearly,
k jSj

2
By exploiting the cyclic nature of sub-chains, we can alwaysassume, without loss
of generality, that S contains the singletonfkg. SinceP is not empty, this entails
that there exists at least one singleton of that is adjacent from the right to a
block of cardinality at least two. Formally, this means that there existss 2 S and
u 2 Psuchthats 12 B, . We shall distinguish two cases

B1. The block B, contains two consecutive integers.

iPj=r1 ] S
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B2. The block B, does not contain two consecutive integers.
(Proof under B1.) The situation of B1 is illustrated in Fig. 4.6, wherek =9,

= fB1;::;Byg= ff 1g;f2g; f 3; 6; 7g; f 4g; f 50; f 8g; f 9gg;

and one can takes =8, u = 3, and the two consecutive integers inB, are 6 and
7.

O O O O O O

@@@@

Figure 4.6. a singleton is adjacent to a 3-block with two consec-
utive elements

Since each element of2 (2k;N) is such that every singleton in a given sub-chain
corresponds to a block in the opposite sub-chain, we have tha

C (2k;N) = CR(2k;N); (4.9)
R2R
where we adopted the same notation as at Poinb. of Section4.2, and the union
runs over the classR of all bijections R : U! V such that both U and V contain
the set [r]nP, and every pair (u; R(u)) is such that at least one of the two blocks
Bu and Bg(y) is a singleton. This entails the estimate

X
iC (2k;N)j iCR(2k; N)j: (4.10)

R2R
To conclude the proof, we shall show that every clas€R (2k; N ) appearing in (4.10)
has at mostk 1 degrees of freedom: indeed, this fact together with Lemm&.3-(1)
yields the desired conclusion 4.7), with the constant ( k; )= jRj (note that the
de nition of R does not depend orN) . To prove that CR(2k;N) has at mostk 1
degrees of freedom, we de ne two set®;E  [k] as follows. For everys=1;::;r,
choose an element of the blociBg, and denote this element byas. Then, de ne

D=fas:s=1;:;rg; E=Dnffa, g[f as:s2 [rlnPgg:

In other words, E is obtained by subtracting from D the singleton(s) and the
representative element of the blockB, , that is, of the block adjacent to fs g.
We now want to prove that, for every xp = fxs : @a 2 Dg 2 [NJPI and every
ye = fyp: b2 Eg 2 [N]JEI, there is at most one chainc 2 CR(2k;N) as in (4.6)
such that i, = x4 for everya 2 D and j, = Yy, for every b2 E. To show this,
assume that such a chainc exists, and suppose that there exists another chain

= (i%i)213):(G 1D 2190519
verifying this property and such that ¢®2 CR(2k;N) and c® 6 c. By construction
of the setsD and E, all the indices composing the upper chain are completely
determined by the choice ofxp, whereas the choice ofyjg determines the indices

jx such that either x is a singleton orx 2 B, for some blockB, of cardinality 2
and such that v 6 u . This entails in turn that, necessarily since c® 6 c, one has
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that jO 6 jx for every x 2 B, . This is absurd. Indeed, sinceB, contains two
consecutive integers, one has thaf? = j2,, and jyx = jx«1 for everyx 2 By ; it
follows that, sincefs gis adjacent from the rightto B, and therefores 12 B,

nglg 1=j2=)’s=js=js 1= jx;
which is indeed a contradiction. Since
iDj+jEj=r+jPj 1 k1251+jsj+k]251 1=k 1.

the proof is concluded.

(Proof under B2.) SinceB, does not contain two consecutive integers angB, j

2, we deduce the existence of a blocBy 2 , which is dierent from B, and
fs g, enjoying the following \interlacement property": there e xists an integer a 2
[K] such that a+1 < s 1, a2 By anda+1 2 By. The block By can
be either a singleton or a block with two or more elements. Th$ situation is
illustrated in Fig. 4.7, corresponding to the casek = 8 and = fBj;::;Bsg =
ff 1;29;f3;5q;f4;6q;f79;f8gg. Here,s =7, B, = B3=f4;69,By= B,=3;59

I QUOFPRD Nole
I QUIFPRNNcHC

Figure 4.7. a singleton is adjacent to a 2-block with no consecu-
tive elements

The crucial remark is now that, for a chain c as in (4.6) with partition , one has
that is = ia+1. Indeed,aands 1bothbelongtoB, , andtherefore (s 1;is )=

(ia;ia+1). Sincea+1 2 By, this fact yields in particular that, ix = is for every
X 2 By, that is, the left indices associated with By are completely determined by
the choice ofis . By the same argument, one shows thajs = ja+1. The rest of
the proof is similar to the case B1. First, we observe that therepresentation (4.9),

with R de ned exactly as for B1, continues to be true, from which we aéduce the
estimate (4.10). It is now su cient to show that each class CR(2k;N) has at most
k 1 degrees of freedom. To do this, one chooses a representatiglement from
each blockBs 2 , noted ag, and then de nes the sets

D=fas:s=1;:;rs6 109, E=Dnfas:s2[r]nPg;

that is, D is built by selecting one element from each block of , except for By,
and E is obtained by subtracting from D all the remaining indices a such that f ag
is a singleton of . One has that

iDj+jEj k 1 (4.11)

Indeed,jDj=r 1=jPj+jS] 1 @ﬂSj 1, and then one has to consider two
cases: either (a)By is a singleton, from which it follows that JEj = jDj (jS] 1)

181 or (b) By is not a singleton, yielding jEj = jDj j Sj L% 1. In these
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two cases, {.11) is then in order. To conclude, it remains to show that, for every

Xp = fXa:a2 Dg2 [NJPI and everyyg = fy,:b2 Eg 2 [NJEI, there is at most
one chainc2 CR(2k;N) as in (4.6) such that i, = X, for everya2 D andj, = yp

for every b2 E. To see this, assume that such a chairt exists, and observe that,
due to the above considerations, the choice ofp completely determines the upper
sub-chain ofc, as well as those indicegx in the lower sub-chain such that f xg is

a singleton of or (whenever By is not a singleton) such that x 2 By. Since the
remaining left indices in the lower sub-chain ofc are determined by the choice of
ye, the claim is proved. In view of (4.11), this shows that CR(2k;N) has at most
k 1 free indices. This concludes the proof of Propositiont.4.

As an illustration of the above arguments, one can considertte diagram in Fig. 4.8,

that is constructed from the situation in Fig. 4.7 by selectingU = V = f2;3;4;5g

and R(2) =4, R(3) =5, R(4) =2 and R(5) = 3. In particular, it is easily seen

that xing i4, iz and ig completely identi es a chain c inside the classCR (16;N),

that has therefore three degrees of freedom.

Figure 4.8. a class with three free indices

4.4. Proofs of Proposition 4.1 and Theorem 1.1. Proof of Proposition 4.1: We take
up the notation introduced in Section 4.1. In view of Proposition 4.4, in order to
prove relation (4.5) (and therefore Proposition 4.1), it is su cient to show that, for
every 2 Q(k), each pair (i;j) 2 Gn( ) is such that the corresponding chain
(i;i2)::(k;11)(1;i2)::(k;j1) is an element of C (2k;N), from which one de-
ducesjGn( )] | C (2k;N)j ( k; )Nk 1. To show the desired property, it
is enough to prove that, for every pair (i;j) 2 An( ) An( ) such that the chain
(i;i2)::(ik;11)(J13j2) (ks j2) is not in C (2k;N), one has that (i;j) 62GN ( ).
By de nition of C (2k;N), we have to examine two cases. Start by considering
a partition 2 Q(k) not containing any singleton: if (i;j) 2 AN( ) Anx( ) is
such that (i1;i2)::(k;i0)(1;2)::(«k;j1) 62C (2k;N), then the random variables
Xi.i.., indexed by the upper sub-chain are independent of those inded by the
lower sub-chain, and consequently

E(Xiii, D SHIPSHP :::xjkjl) = E(Xi.i, :::Xikil)E(lejZ :::xjkjl);
yielding (i;j) 62GN ( ). On the other hand, if 2 Q (k) contains a singleton and
if (i;]) is such that (iq;i2)::(ik;i1)(1;]2)::(k;j1) 62C (2k;N), then there exists
a=1;::k such that Xj,i,., or Xj,j.., is independent of all the other variables
indexed by the elements of the chain. This gives

E(Xi1i2 :::Xikillejz :::Xjkjl) = E(Xi1i2 :::Xikil)E(lejz ZZZXjkjl) =0;
thus proving the required property (i;j) 62Gy ( ). The proof is nished.



368 Ivan Nourdin and Giovanni Peccati

Proof of Theorem 1.1-(i) : By virtue of the representation (1.12{(1.13 and of
Proposition 4.1, one sees that, for every 2 k; <::: <k m, the limit in distribution
of the vector h i h i

Tr(Xn); TR(XE) B Tr(X{) snTr(XEm)  E Tr(XEm)
coincides with the limit in distribution of

0

N o X
ES@N Xi; N 2 XiyipXigis  Xigins 1103
i=1 iZD(Nkl) 1

m

kX 2
N Xiyip Xizig Xy, i1A;
i2D{m)
so that the desired conclusion follows from Corollary3.5.

Proof of Theorem 1.1-(ii) : For the simplicity of exposition, we assume thatk; 2,
the proof when k; = 1 being completely similar and easier. We have, using the

notation D(Nk)zintéoduced in the beginning of Section1.3 and using (1.13%
1

g4 @MW) EMOXEN. . TOW)  EM(X\)las

Var(Tr( X £1)) Var(Tr( X ™))
E ' pzk—_l;::'; Zkl AN + By
k]_ km

where, by writing Var(Tr( X 9)) = Cj(N),
20

1 X

An = Egl %7k xiliz:::xik PR
1=2N] = 1
Ca(N)*2N = i2p (kD)
" 13
1 X &L v Lk Lk
NI TN Xiziz 111 Xy s S
Cm(N) N\ i2D,(\‘km) 1 m
and
BNv= 5 g
1 X
Eg' %7k Xigip 10 i X igs it
1=2N 3 1
Ca(N)*2N = i2D (kD)
N
13
1 X
— xim:::xikmil%
Cm(N) N 2 i2D,(Vkm)
2 0 13

g4 @AW EMMXEO] . TIOGM)  EMMXE")] A

Var(Tr( X k1)) Var(Tr( X §m))
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By combining Corollary 2.9 with the computations made in the proof of Proposition

3.1, we immediately getzthat An = O(N ). For By, we can write 3

o xXn oo X
Bni Kk % E§N F Xiviz 12 X0, 10 EXiyip 10X, 1] 5
=1 i ()
N
Yy —=6 t
u
X' v X
Kk q(l F Var%)N + XiliZ:::Xikjil E[Xiliz :::xikiill ) X;
=1 iep ()

N

for some constantk not depending onN, so that By = O(N '72) = O(N )
by Proposition 4.1.

5. Almost sure central limit theorems (ASCLTS)

5.1. Preliminaries: a result by lbragimov and Lifshits, For x;y 2 R™ (m 1 xed),
we write h;yi = X1y1 + 10+ XmYm (resp. jxj = hx;xi) to indicate the inner
product of x and y (resp. the norm of x). The following result, due to Ibragimov
and Lifshits, plays a crucial role in the proof of Theorem1.5.

Theorem 5.1 (Seelbragimov and Lifshits, 1999. Let G= fG, :n 1g be a se-
guence ofR™-valued random variables converging in distribution towads a random
variable G; , and set

N (Git) = ement E[@MC1I]; t2 R™: (5.1)

1 X
logN hey D
If, for all r> 0,

R OEj N (GiH)?

sup <1; (5.2)
iti T N =2 N |OgN
then, almost surely, for all continuous and bounded functio ' : R™ | R, we have
1 X (Gw)
_ N7 ' 1 . ' .
ogN " n ' E['(G1)]; asN!1 : (5.3)

Remark 5.2, (1) If Ej N (G;1)j? = O(1=logN) uniformly in t on bounded sets,
then (5.2) is automatically satis ed.

(2) SeeBercu et al. (2010 for several applications of Theorem5.1in the frame-
work of ASCLTs on Wiener space.

The following useful result allows to deal with sequences ofandom variables
having the form of a sum of two terms, one of which vanishes inle mean-square
sense.

Lemma 5.3. LetG=fG,:n 1g be a sequence dR™-valued random variables
converging in distribution towards a random variableG; , and satisfying in addi-
tion (5.2). Let R = fR, : n  1g be a sequence oR™-valued random variables
converging inL?() to Ry =0, and such that

X, W

1
———  ZEjRnj?< 1: (5.4)
2
N= Nlog"N . n
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Then
X E \(G+Rt)®

sup <1,;
ity N |OgN

whereG+ R=fG,+ R, :n 1gand §(G+ R;t) is de ned according to (5.1).

Remark 5.4. If EjR,j?2 = O(n 2), for some a > 0, then (5.4) is automatically
satis ed.

P
Proof of Lemma 5.3. Since (G + R;t) = r’:':
one has that

1 ohtG o +Ryi ihtG 1 i
1y €TEnTEel E@MELI]

VGHRID= (G X Lgne.i gnrn g .
' ' logN _ n '
n=1
P
so that, by using jx + yj2  2jxj2+2jyj2, Jensen inequality and \_, X logN as

N 'l | there exists a constantc > 0 (independent of N ) such that, for all N 2,

X ) )
Ej n(G+RDP 26 nGi)P+ o g ehRai 12
logN hey N

Sinceje™ 1 1j j tjjxj, we deduce

gtz X 1
logN__, nEIRnI%

Ej n(G+R;t)j®2 2Ej n(Git)j+
The desired conclusion follows.

5.2. Proof of Theorem 1.5. For the sake of brevity, we shall prove TheoremLl.5 only
for powersk; strictly greater than one. The general casek{ 1) can be deduced
from similar arguments.

Throughout this section, we x integers m landky, > ::: >k 2. For
N 1 and k 2, we denote (as above) byD(Nk) the collection of all vectors
i=(ig;::;ik) 2F 1, Ngk such that all pairs (iq;iq+1 ), a=1;:::;k, are di erent
(with the convention that ix+1 = i1), thatis, i 2 D&k) if and only if (ia;iq+1) 6
(ip;ip+r) foreverya® band 1 i, N foreverya=1;::;k. Let
SN k2 X RO
\]N(k)— N XiliZXi2i3...Xikil, and LN(k)— pﬁ

2D
Observe thatE[Jy (k)] = E[Ln (k)] = 0and Var[ Ly (k)] = 1. The proof of Theorem
1.5is divided into several steps.

Step I bounding E[L»(K)Lp(k)]. Fix k 2. We shall prove that there exists a
constant Cx > 0 such that, for all n;p 1,

r
ElLn(k)Lp(k)]  Ck

n/\
n_p

By symmetry, we assume without loss of generality thatp n. If i 2 D and
j2 Dék) nDY, then

E[Xi1i2 :::Xikillejz :::Xjkjl] =0;

©

(5.5)
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indeed, ifi 2 D andj 2 Dék) nDY, then necessarily there exista = 1;::;;k such
that j, > n, and therefore the centered random variableX;,;,,, is independent of
Xinin., for every b= 1;::k, and also (by the de nition of Dﬁ,k)) independent of
Xisiss fOreverysé a. It follows that

1 k2 X X
E[In(K)Jp(k)] = e EXii, 11 Xiiy Xjaj, 101Xy
2D j2D
1 k=2 x x
= n—p E[Xi1i2:::Xikillejg:::xjkjl]
i2D{ j2p
k=2
= = E Jn(k)? :

2l —
Thus E[Ln(K)Lp(k)] = & E[[jggtgj}: But we have E[J,(k)?]! kasn!l |,

see indeed 8.9). As a consequence, we immediately get the existence of a catant
Ck such that (5.5) is in order.

Step 2 showing thatsup,; , N E'NNloi(gL,g)'z <1.Fixk 2 Letfgn be

asin (3.1). Setgen = pﬁfm . We obviously haveLy (k) = Qu(gn ;X).

Combining (3.9) and (3.6), we immediately get that kgen 2 Gen Kok 2r = O(N - 172),

From now on, for simplicity write Ly = Ln(ki);:::;Ln(Km) , N 1, and
g(t) = el "2 t 2 RM. Corollary 2.9 yields that
E[@™-"'] g(t) = O(N *): (5.6)
On the other hand, forallr =1;:::;k 1, we can write

K(Gkn  Okm ) 2r (kN Okom DKok 2r
= KON ?r OeN F OkM P OeM OkeN 2 Ok Oem P Okn Kok 2
K gen ?r Oen Kok 2r + KOem 2 Ok Kok 2r + 2K0kn 2r Giem Kok 2r

But q
KOn 7r Okm Kok 2 = OGN %k 1 OkN ;gk;(l\]/I % orOeM g
! Kn 2k r O Kar | KGkm 2k r Gem Ker
% Kgan 2 r Gen Kor + KGom 2 r Oom Kor
Consequently,

OGN . M 5 G GkM
p .

z 2k 2r
Kgen 2 Okn Kok 2r + KGem 2 Gem Kok 2r = O(N 172);

asN !'1 ,uniformlyon M N andr =1;::;k 1,thatis, there exists a constant
Ck > 0 (depending solely onk) such that, for every N,

OeN o GaM o, GkN o Gk Cr .
sup p—M g I p ey
11k 1;M N 2 2 a 2 N
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|
Since Var £l tu 0 =1 E[Ly (K)Lu (k)] for all k, by using Corollary 2.9

with

Qun (X)= Ln(ki) Lu (ki) 3 2E[Ln (ki)Lwm (ki)]

exp P 1 E[Ln(ki)bwm (ko)ltzza + oo+ P 1 E[Ln(km)lm (Km)ltmzZm

we get that

Ly L
j ot —Np_M
E e 2

t2 t2
exp 1 E[Ln(ki)Lwm (ki) 71 it 1 Efbn (km)Lw (km)] 2
(5.7)
isON ¥)asN !1 ,uniformlyon M N. On the other hand, combining (5.5)
with e X*=2 g @ )x*=2 x 2=2 for all x 2 R and 0, we get that there
exists C; > 0 such that, for all t 2 R™ with jtj r,
t2 t2
gt) exp 1 E[Ln(ki)Lm (ki)] El 1 E[Ln(km)Lm (Km)] %
r
N~AM
¢ now 69

Dene n(L;t) according to (5.1), with Lq Nm(0;Im). For jtj r, we have,
due to (5.6)-(5.7)-(5.9):
Ei n(L;t)j?
1 X h S !
E elht;Lnl g(t) e intL i g(t)

1
log? N ., P
1 X gh
log> N np

E eiht;Ln Lpi gZ(t) g(t) E eiht;Lni g(t)
n;p=1 i

g(t) E e Mol g(t)
X 1 .P—D,Ln LpE

= — Ee*'77 o3 g E "o g
log° N np=1 P

i
gt) E e Mtel gt)

¢ X 1 wrp, 1
log> N

n;p=1
It is obvious that
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Moreover,
r—
1 X 1 wAp 22N>(“1><‘p1_
|092an_1 np n_p log N ﬁp:l p
1 1
N 7O gn
log°N _, N 0g

Hence, sup;  Ej « (L;t)j? = O(1=logN), implying immediately

X OEj] (L)}

Sup N logN

it TNz

<1: (5.9)

Step 3 using Lemmab.3. SetTy (k) = J—%% Using (3.9) and elementary calcula-
tions, it is immediate that

E Jn(k)? k°?

kK ke P EDN@T

Ce .
k2N?2’

EiTn(k)  Ln(k)j®=

so that Ry := Ty Ln Vveries condition (5.4) of Lemma 5.3. Since (.9) is also
. NG
in order, we deduce that supy; ,  y-, e < 1, which in turns implies
hs ; “11i2
Ej nGOI _ .

Sup N logN

it TNz

(5.10)

Step 4 using Lemma 5.3 once again. For any k 2, set Sy (k) = Tr( AK)
E Tr(AX) . We have

Sn(k) = N £ Xiziy Xisig Xiia E[Xilizxi2i3 Xikil]
= JIn(k)+ Rn(k);

with
. X
Rn(k)= N 2 Xizi, Xizis  Xigin  EXiyip Xizis  Xigig] -
ieD ()

Forall k 2, we haveEjRy (k)jZP: O(1=N), see ¢.1). Hence, Lemmab5.3 together

with (5.10) imply that sup i , - W < 1. To nish the proof of

Theorem 1.5, it su ces to apply Theorem 5.1
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