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Abstract. In the paper Nourdin et al. (2009), written in collaboration with Ge-
sine Reinert, we proved a universality principle for the Gaussian Wiener chaos. In
the present work, we aim at providing an original example of application of this
principle in the framework of random matrix theory. More speci�cally, by combin-
ing the result in Nourdin et al. (2009) with some combinatorial estimates, we are
able to prove multi-dimensional central limit theorems for the spectral moments (of
arbitrary degrees) associated with random matrices with real-valued i.i.d. entries,
satisfying some appropriate moment conditions. Our approach has the advantage
of yielding, without extra e�ort, bounds over classes of smooth (i.e., thrice di�er-
entiable) functions, and it allows to deal directly with dis crete distributions. As a
further application of our estimates, we provide a new \almost sure central limit
theorem", involving logarithmic means of functions of vectors of traces.

1. Introduction

1.1. Overview and main results. In the paper Nourdin et al. (2009), written in
collaboration with Gesine Reinert, we proved severaluniversality results, involving
sequences of random vectors whose components have the form of �nite homogeneous
sums based on sequences of independent random variables. Roughly speaking, our
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main �nding implied that, in order to study the normal approx imations of homoge-
neous sums (and under suitable moment conditions) it is always possible to replace
the original sequence with an i.i.d. Gaussian family. The power of this approach
resides in the fact that homogeneous sums associated with Gaussian sequences are
indeed elements of the so-calledWiener chaos, so that normal approximations can
be established by means of the general techniques developedin Nourdin and Peccati
(2009); Nualart and Peccati (2005); Peccati and Tudor (2005) { that are based on
a powerful interaction between standard Gaussian analysis, Malliavin calculus (see
e.g. Nualart , 2006) and Stein's method (see e.g.Chen and Shao, 2005). Moreover,
in the process one always recovers uniform bounds over suitable classes of smooth
functions.

The aim of this paper is to introduce these techniques into the realm of random
matrix theory. More speci�cally, our goal is to use the universality principles de-
veloped in Nourdin et al. (2009), in order to prove the forthcoming Theorem 1.1,
which consists in a multidimensional central limit theorem (CLT) for traces of non-
Hermitian random matrices with i.i.d. real-valued entries. As explained below, the
computations and estimates involved in the proof of Theorem1.1 will be further
applied in Section 5, where we will establish analmost sure central limit theorem
(ASCLT) for logarithmic means associated with powers of large non-Hermitian ran-
dom matrices. See Theorem1.5 for a precise statement { as well asH•ormann (2007)
for a general discussion on ASCLTs.

Now let X be a centered real random variable, having unit variance andwith
�nite moments of all orders, that is, E (X ) = 0, E(X 2) = 1 and E jX jn < 1 for
every n � 3. We consider a doubly indexed collectionX = f X ij : i; j � 1g of i.i.d.
copies ofX . For every integer N � 2, we denote byX N the N � N random matrix

X N =
�

X ijp
N

: i; j = 1 ; :::; N
�

; (1.1)

and by Tr( �) and X k
N , respectively, the usual trace operator and thekth power of

X N .

Theorem 1.1. Let the above notation prevail. Fix m � 1, as well as integers

1 � k1 < : : : < k m :

Then, the following holds.

(i) As N ! 1 ,

�
Tr( X k1

N ) � E
h
Tr( X k1

N )
i

; : : : ; Tr( X km
N ) � E

h
Tr( X km

N )
i �

Law�!
�
Zk1 ;:::; Zkm

�
; (1.2)

where Z = f Zk : k � 1g denotes a collection of real independent centered
Gaussian random variables such that, for everyk � 1, E (Z 2

k ) = k.
(ii) Write � = E jX j3. Suppose that the function' : Rm ! R is thrice di�er-

entiable and that its partial derivatives up to the order three are bounded
by some constantB < 1 . Then, there exists a �nite constant C =
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C(�; B; m; k 1; :::; km ), not depending onN , such that
�
�
�
�
�
E

2

4'

0

@Tr( X k1
N ) � E [Tr( X k1

N )]
q

Var(Tr( X k1
N ))

; : : : ;
Tr( X km

N ) � E [Tr( X km
N )]

q
Var(Tr( X km

N ))
]

1

A

3

5 (1.3)

� E
�
'

�
Zk1p

k1
; :::;

Zkmp
km

�� �
�
�
�
�

� C N � 1=4:

Remark 1.2. (1) We chose to state and prove Theorem1.1 in the case of non-
Hermitian matrices with real-valuedentries, mainly in order to facilitate the
connection with the universality results proved in Nourdin et al. (2009). For
the extension to the case where the random variableX is complex-valued
and with �nite absolute moments of every order, we refer to the forthcoming
PhD thesis of Noreddine.

(2) Fix an integer K � 2 and assume thatE jX j2K < 1 , while higher moments
are allowed to be possibly in�nite. By inspection of the forthcoming proof of
Theorem1.1, one sees that the CLT (1.2) as well as the bound (1.3) continue
to hold, as long as the integersk1; :::; km verify kj � K for j = 1 ; :::; m.

(3) In a similar vein as at the previous point, by imposing that supi;j EjX ij jn <
1 for all n � 1, one can easily adapt our techniques in order to deal with
random matrices whose entries are independent butnot identically dis-
tributed . One crucial fact supporting this claim is that the universality
principles of Section2 hold for collections of independent, and not neces-
sarily identically distributed, random variables.

(4) For non-Hermitian matrices, limits of moments are not su�cient to pro-
vide an exhaustive description of the limiting spectral measure or of the

uctuations around it. Rather, one would need to consider polynomials in
the eigenvalues and their complex conjugates. These quantities cannot be
represented using traces of powers ofX N , so that our approach cannot be
extended to this case.

1.2. Discussion. In this section we compare our Theorem1.1 with some related
results proved in the existing probabilistic literature.

1. In Rider and Silverstein (2006), the following CLT is shown.

Theorem 1.3. Let X be acomplex random variable such thatE(X ) = E(X 2) = 0 ,
E(jX j2) = 1 , E(jX jk ) � k �k , k � 3 (for some � > 0) and Re(X ), Im(X ) possess
a joint bounded density. For N � 2, let X N be de�ned as in (1.1). Consider the
spaceH of functions f : C ! C which are analytic in a neighborhood of the disk
jzj � 4 and otherwise bounded. Then, asN ! 1 , the random �eld

f Tr( f (X N )) � E [Tr( f (X N ))] : f 2 Hg

converges in the sense of �nite-dimensional distributions(f.d.d.) to the centered
complex-valued Gaussian �eldf Z (f ) : f 2 Hg ; whose covariance structure is given
by

E[Z (f )Z (g)] =
Z

U
f 0(z)g0(z)

d2z
�

: (1.4)

Here, U = f z 2 C : jzj � 1g is the unit disk, and d2z=� stands for the uniform
measure onU (in other words, d2z = dxdy for x; y 2 R such that z = x + iy ).



344 Ivan Nourdin and Giovanni Peccati

By using the elementary relations: for every integersn; m � 0,

1
�

Z

U
zn zm d2z =

�
(n + 1) � 1 if m = n
0 otherwise,

one sees that our Theorem1.1 can be reformulated by saying that

f Tr( f (X N )) � E [Tr( f (X N ))] : f 2 Pol(C)g f :d:d:�! f Z (f ) : f 2 Pol(C)g; (1.5)

where the covariance structure off Z (f ) : f 2 Pol(C)g is given by (1.4). It follows
that Theorem 1.1 roughly agrees with Theorem1.3. However, we stress that the
framework of Rider and Silverstein (2006) is di�erent from ours, since the �ndings
therein cannot be applied to the real case due to the assumption that real and
imaginary parts of entries must possess a joint bounded density. In addition, also
note that (di�erently from Rider and Silverstein, 2006) we do not introduce in the
present paper any requirement on the absolute continuity ofthe law of the real
random variable X , so that the framework of our Theorem1.1 contemplates every
discrete random variable with values in a �nite set and with unit variance.

2. One should of course compare the results of this paper with the CLTs in-
volving traces of Hermitian random matrices, like for instance Wigner random
matrices. One general reference in this direction is the fundamental paper by An-
derson and Zeitouni (2006), where the authors obtain CLTs for traces associated
with large classes of (symmetric) band matrix ensembles, using a version of the
classical method of moments based on graph enumerations. Itis plausible that
some of the �ndings of the present paper could be also deducedfrom a suitable
extension of the combinatorial devices introduced inAnderson and Zeitouni (2006)
to the case of non-Hermitian matrices. However, proving Theorem 1.1 using this
kind of techniques would require estimates for arbitrary joint moments of traces,
whereas our approach merely requires the computation of variances and fourth mo-
ments. Also, the �ndings of Anderson and Zeitouni (2006) do not allow to directly
deduce bounds such as (1.3). We refer the reader e.g. toGuionnet (2009) or to An-
derson et al. (2009), and the references therein, for a detailed overview of existing
asymptotic results for large Hermitian random matrices.

3. The general statement proved byChatterjee (2009, Theorem 3.1) concerns the
normal approximation of linear statistics of random matrices that are possibly non-
Hermitian. However, the techniques used by the author require that the entries
can be re-written as smooth transformations of Gaussian random variables. In
particular, the �ndings of Chatterjee (2009) do not apply to discrete distributions.
On the other hand, the results of Chatterjee (2009) also provide uniform bounds
(based on Poincar�e-type inequalities and in the total variation distance) for one-
dimensional CLTs. Here, we do not introduce any requirements on the absolute
continuity of the law of the real random variable X , and we get bounds formulti -
dimensional CLTs.

4. Let us denote by f � j (N ) : j = 1 ; :::; N g the complex-valued (random) eigen-
values of X N , repeated according to their multiplicities. Theorem 1.1 deals with
the spectral moments ofX N , that are de�ned by the relations:

N �
Z

zk d� X N (z) =
NX

j =1

� j (N )k = Tr( X k
N ); N � 2; k � 1; (1.6)
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where � X N denote the spectral measure ofX N . Recall that

� X N (�) =
1
N

NX

j =1

� � j (N ) (�); (1.7)

where� z (�) denotes the Dirac mass atz, and observe that one has also the alternate
expression

Tr( X k
N ) = N � k

2

NX

i 1 ;:::;i k =1

X i 1 i 2 X i 2 i 3 � � � X i k i 1 : (1.8)

It follows that our Theorem 1.1 can be seen as a partial (see Remark1.2 (4) above)
characterization of the Gaussian 
uctuations associated with the so-called circular
law, whose most general version has been recently proved by Tao and Vu:

Theorem 1.4 (Circular law, see Tao and Vu, 2008). Let X be a complex-valued
random variable, with mean zero and unit variance. ForN � 2, let X N be de�ned
as in (1.1). Then, as N ! 1 , the spectral measure� X N converges almost surely
to the uniform measure on the unit diskU = f z 2 C : jzj � 1g. The convergence
takes place in the sense of the vague topology.

To see why Theorem1.1 concerns 
uctuations around the circular law, one can
proceed as follows. First observe that, sinceE(X 2) = 1 and E(X 4) < 1 by
assumption, one can use a result byBai and Yin (1986, Theorem 2.2) stating that,
with probability one,

lim sup
N !1

max
j =1 ;:::;N

j� j (N )j � 1: (1.9)

Let p(z) be a complex polynomial. Elementary considerations yieldthat, since (1.9)
and the circular law are in order, with probability one,

1
N

Tr( p(X N )) !
1
�

Z

U
p(z)d2z = p(0): (1.10)

On the other hand, it is not di�cult to see that, for every k � 1 and asN ! 1 ,

E
� Z

zk d� X N (z)
�

= E
�

1
N

Tr( X k
N )

�
! 0

(one can use e.g. the same arguments exploited in the second part of the proof
Proposition 3.1 below). This implies in particular

E
�

1
N

Tr( p(X n ))
�

! p(0): (1.11)

Therefore, with probability one

1
N

Tr( p(X N )) � E
�

1
N

Tr( p(X N ))
�

! 0:

That is, the random variable 1
N Tr( p(X N )) tends to concentrate around its mean

asN goes to in�nity, and ( 1.5) describes the Gaussian 
uctuations associated with
this phenomenon.

On the other hand, one crucial feature of the proof of the circular law provided
in Tao and Vu (2008) is that it is based on a universality principle. This result
basically states that, under adequate conditions, the distance between the spectral
measures of (possibly perturbed) non-Hermitian matrices converges systematically
to zero, so that Theorem 1.4 can be established by simply focussing on the case
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where X is complex Gaussian (this is the so-called Ginibre matrix ensemble, �rst
introduced in Ginibre, 1965). It is interesting to note that our proof of Theorem 1.1
is also based on a universality result. Indeed, we shall showthat the relevant part
of the vector on the LHS of (1.2) (that is, the part not vanishing at in�nity) has the
form of a collection of homogeneous sums with �xed orders. This implies that the
CLT in ( 1.2) can be deduced from the results established inNourdin et al. (2009),
where it is proved that the Gaussian Wiener chaos has a universal character with
respect to Gaussian approximations. Roughly speaking, this means that, in order to
prove a CLT for a vector of general homogeneous sums, it is su�cient to consider
the case where the summands are built from an i.i.d. Gaussiansequence. This
phenomenon can be seen as a further instance of the so-calledLindeberg invariance
principle for probabilistic approximations, and stems from powerful approximation
results by Rotar' (1979) and Mossel et al. (2010). See the forthcoming Section2
for precise statements.

5. We �nish this section by listing and discussing very brie
y some other results
related to Theorem 1.1, taken from the existing probabilistic literature.

- In Rider (2004) (but see also Forrester, 1999), one can �nd a CLT for
(possibly discontinuous) linear statistics of the eigenvalues associated with
complex random matrices in the Ginibre ensemble. This partially builds
on previous �ndings by Costin and Lebowitz, 1995.

- ReferenceRider and Vir�ag (2007) provides further insights into limit theo-
rems involving sequences in the complex Ginibre ensemble. In particular,
one sees that relaxing the assumption of analyticity on testfunctions yields
a striking decomposition of the variance of the limiting noise, into the sum
of a \bulk" and of a \boundary" term. Another �nding in Rider and Vir�ag
(2007) is an asymptotic characterization of characteristic polynomials, in
terms of the so-calledGaussian free �eld.

- Finally, one should note that the Gaussian sequenceZ in Theorem 1.1
also appears when dealing with Gaussian 
uctuations of vectors of traces
associated with large, Haar-distributed unitary random matrices. See e.g.
Diaconis and Evans(2001) and Diaconis and Shahshahani(1994) for two
classic references on the subject.

1.3. Proof of Theorem 1.1: the strategy. In order to prove (1.2) (and (1.3) as well),
we use an original combination of techniques, which are based both on the univer-
sality results of Nourdin et al. (2009) and on combinatorial considerations. The
aim of this section is to provide a brief outline of this strategy.

For N � 1, write [N ] = f 1; :::; N g. For k � 2, let us denote byD (k )
N the collection

of all vectors i = ( i 1; : : : ; i k ) 2 [N ]k such that all pairs (i a ; i a+1 ), a = 1 ; : : : ; k, are
di�erent (with the convention that i k+1 = i 1), that is, i 2 D (k )

N if and only if
(i a ; i a+1 ) 6= ( i b; i b+1 ) for every a 6= b. Now consider the representation given in
(1.8) and, after subtracting the expectation, rewrite the resulting expression as
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follows:

Tr( X k
N ) � E

�
Tr( X k

N )
�

= N � k
2

NX

i 1 ;:::;i k =1

�
X i 1 i 2 X i 2 i 3 � � � X i k i 1 � E [X i 1 i 2 X i 2 i 3 � � � X i k i 1 ]

�
(1.12)

= N � k
2

X

i 2 D ( k )
N

X i 1 i 2 X i 2 i 3 � � � X i k i 1

+ N � k
2

X

i 62D ( k )
N

�
X i 1 i 2 X i 2 i 3 � � � X i k i 1 � E [X i 1 i 2 X i 2 i 3 � � � X i k i 1 ]

�
: (1.13)

Our proof of (1.2) is based on the representation (1.12){( 1.13), and it is divided in
two (almost independent) parts.

I. In Section 3, we shall prove that the following multi-dimensional CLT ta kes
place for every integers 2� k1 < ::: < k m :

0

B
@N � 1=2

NX

i =1

X ii ; N � k 1
2

X

i 2 D ( k 1 )
N

X i 1 i 2 X i 2 i 3 � � � X i k 1 i 1 ; : : : (1.14)

: : : ; N � k m
2

X

i 2 D ( k m )
N

X i 1 i 2 X i 2 i 3 � � � X i k m i 1

1

C
A

Law�!
�
Z1; Zk1 ; :::; Zkm

�
;

for Z = f Z i : i � 1g as in Theorem 1.1. In order to prove (1.14), we apply the
universality result obtained in Nourdin et al. (2009) (and stated in a convenient
form in the subsequent Section2). This result roughly states that, in order to
show (1.14) in full generality, it is su�cient to consider the special c ase where
the collection X = f X ij : i; j � 1g is replaced by an i.i.d. centered Gaussian
family G = f Gij : i; j � 1g, whose elements have unit variance. In this way, the
components of the vector on the LHS of (1.14) become elements of the so-called
Gaussian Wiener chaosassociated with G: it follows that one can establish the
required CLT by using the general criteria for normal approximations on a �xed
Wiener chaos, recently proved inNourdin and Peccati (2009); Nualart and Peccati
(2005); Peccati and Tudor (2005). Note that the results of Nourdin and Peccati
(2009); Nualart and Peccati (2005); Peccati and Tudor (2005) can be described as a
\simpli�ed method of moments": in particular, the proof of ( 1.14) will require the
mere computation of quantities having the same level of complexity of covariances
and fourth moments.

II. In Section 4, we shall prove that the term (1.13) vanishes asN ! 1 , that
is, for every k � 2,

RN (k) := N � k
2

X

i 62D ( k )
N

�
X i 1 i 2 X i 2 i 3 � � � X i k i 1 � E [X i 1 i 2 X i 2 i 3 � � � X i k i 1 ]

�
! 0

in L 2(
) : (1.15)

The proof of (1.15) requires some subtle combinatorial analysis, that we willillus-
trate by means of graphical devices, known asdiagrams. Some of the combinatorial
arguments and ideas developed in Section4 should be compared with the two works
by Geman (1980, 1986).
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Then, the upper bound (1.3) will be deduced in Section4.4 from the estimates
obtained at the previous steps.

1.4. An application to almost sure central limit theorems. As already pointed out,
one of the main advantages of our approach is that it yields explicit estimates for
the normal approximation of vectors of traces of large random matrices { see e.g.
relation (1.3). In Section 5, we shall show that these estimates can be e�ectively
used in order to deduce multivariate almost sure central limit theorems (ASCLTs),
such as the one stated in the forthcoming Theorem1.5. In particular, this result
involves powers of non-Hermitian random matrices and shedsfurther light on the
asymptotic behavior of their traces. To the best of our knowledge, Theorem1.5 is
the �rst ASCLT ever proved in the context of traces of random matrices.

Theorem 1.5. Fix m � 1, as well as integerskm > : : : > k 1 � 1, and let the
Gaussian vector(Zk1 ; : : : ; Zkm ) be de�ned as in Theorem1.1. Then, a.s.-P,

1
logN

NX

n =1

1
n

'
�

Tr( X k1
n ) � E

�
Tr( X k1

n )
�

; : : : ; Tr( X km
n ) � E

�
Tr( X km

n )
� �

!

! E
�
'

�
Zk1 ;:::; Zkm

��
; (1.16)

as N ! 1 , for every continuous and bounded function' : Rm ! R.

Remark 1.6. (1) Fix m � 1 and, for every N � 1, denote by � N the discrete
random measure onRm assigning mass (n log(N )) � 1 to the points

�
Tr( X k1

n ) � E
�
Tr( X k1

n )
�

; : : : ; Tr( X km
n ) � E

�
Tr( X km

n )
��

; n = 1 ; :::; N:

Then, the usual characterization of weak convergence implythat relation
(1.16) is indeed equivalent to saying that, a.s.-P, the measure� N converges
weakly to the law of (Zk1 ; : : : ; Zkm ), as N ! 1 . For instance, by special-
izing (1.16) to the casem = 1 one obtains that, a.s.-P,

1
logN

NX

n =1

1
n

1f Tr( X k
n ) � E [Tr( X k

n )] � x g �! P
�
Zk � x

�
;

as N ! 1 , for every integer k � 1 and every realx.
(2) The content of Theorem 1.5 should be compared with the following well-

known ASCLT for usual partial sums. Let (Yn )n � 1 be a sequence of real-
valued independent identically distributed random variables with E [Yn ] = 0
and E[Y 2

n ] = 1, and write Sn = 1p
n

P n
k=1 Yk : Then, almost surely, for any

bounded and continuous function' : R ! R,

1
logN

NX

n =1

1
n

' (Sn ) �! E [' (G)]; as N ! 1 ; G � N (0; 1): (1.17)

The asymptotic relation ( 1.17) was �rst stated by L�evy (1937) without
proof, and then forgotten for almost �fty years. It was then r ediscovered
by Brosamler (1988) and Schatte (1988) and �nally proved in its present
form by Lacey and Philipp (1990). We refer the reader to Berkes and
Cs�aki (2001) for a universal ASCLT covering a large class of limit theorems
for partial sums, extremes, empirical distribution functi ons and local times
associated with independent random variables. The paper byH•ormann
(2007) contains several insights into the existing literature on the subject.
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(3) As demonstrated in Section5, in order to prove Theorem 1.5 we shall make
a substantial use of a result byIbragimov and Lifshits (1999), providing a
criterion for ASCLTs such as (1.17), not requiring that the random variables
Sn have the speci�c form of partial sums, nor that G is normally distributed.
Our approach is close to the one developed byBercu et al. (2010), in the
context of ASCLTs on the Wiener space. One should also note that Bercu
et al. (2010) only deals with ASCLTs involving sequences ofsingle real-
valued random variables (and not vectors, as in the present paper).

The rest of the paper is organized as follows. In Section2 we present the univer-
sality results proved in Nourdin et al. (2009), in a form which is convenient for our
analysis. Section3 contains a proof of (1.14). Section 4 deals with (1.15), whereas
Section 5 focuses on the proof of Theorem1.5.

2. Main tool: universality of Wiener chaos

In what follows, every random object is de�ned on an adequatecommon probabil-
ity space (
 ; F ; P). The symbols E and `Var' denote, respectively, the expectation
and the variance associated withP. Also, given a �nite set B , we write jB j to
indicate the cardinality of B . Finally, given numerical sequencesaN ; bN , N � 1,
we write aN � bN wheneveraN =bN ! 1 asN ! 1 .

We shall now present a series of invariance principles and central limit theorems
involving sequences of homogeneous sums. These are mainly taken from Nourdin
et al. (2009) (Theorem 2.2), Peccati and Tudor (2005) (Theorem 2.4) and Nualart
and Peccati (2005) (Theorem 2.6). Note that the framework of Nourdin et al.
(2009) is that of random variables indexed by the set of positive integers. Since in
this paper we mainly deal with random variables indexed bypairs of integers (i.e.,
matrix entries) we need to restate some of the �ndings ofNourdin et al. (2009) in
terms of random variables indexed by a general (�xed) discrete countable setA.

De�nition 2.1 (Homogeneous sums). Fix an integer k � 2. Let Y = f Ya : a 2 Ag
be a collection of square integrable and centered independent random variables,
and let f : Ak ! R be a symmetric function vanishing on diagonals (that is,
f (a1; :::; ak ) = 0 whenever there existsk 6= j such that ak = aj ), and assume that
f has �nite support. The random variable

Qk (f; Y ) =
X

a1 ;:::;a k 2 A

f (a1; :::; ak )Ya1 � � � Yak

=
X

f a1 ;:::;a k g� A k

k!f (a1; :::; ak )Ya1 � � � Yak (2.1)

is called thehomogeneous sum, of orderk, based onf and Y . Clearly, E [Qk (f; Y )]=
0 and also, if E (Y 2

a ) = 1 for every a 2 A, then

E[Qk (f; Y )2] = k!kf k2
k ; (2.2)

where, here and for the rest of the paper, we set

kf k2
k =

X

a1 ;:::;a k 2 A

f 2(a1; :::; ak ):

Now let G = f Ga : a 2 Ag be a collection of i.i.d. centered Gaussian random
variables with unit variance. We recall that, for every k and every f , the random
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variable Qk (f; G) (de�ned according to (2.1)) is an element of thekth Wiener chaos
associated with G. See e.g.Janson (1997) for basic de�nitions and results on the
Gaussian Wiener chaos. The next result, proved inNourdin et al. (2009), shows that
sequences of random variables of the typeQk (f; G) have a universal characterwith
respect to normal approximations. The proof of Theorem2.2 is based on a powerful
interaction between three techniques, namely: theStein's method for probabilistic
approximations (see e.g.Chen and Shao, 2005), the Malliavin calculus of variations
(see e.g.Nualart , 2006), and a general Lindeberg-type invariance principle recently
proved by Mossel et al.(2010).

Theorem 2.2 (Universality of Wiener chaos, seeNourdin et al., 2009). Let G =
f Ga : a 2 Ag be a collection of standard centered i.i.d. Gaussian randomvariables,
and �x integers m � 1 and k1; :::; km � 2. For every j = 1 ; :::; m, let f f ( j )

N : N � 1g
be a sequence of functions such thatf ( j )

N : Ak j ! R is symmetric and vanishes on

diagonals. We also suppose that, for everyj = 1 ; :::; m, the support of f ( j )
N , denoted

by supp(f ( j )
N ), is such that jsupp(f ( j )

N )j ! 1 , as N ! 1 . De�ne Qk j (f ( j )
N ; G),

N � 1, according to (2.1). Assume that, for everyj = 1 ; :::m, the following sequence
of variances is bounded:

E [Qk j (f ( j )
N ; G)2]; N � 1: (2.3)

Let V be am � m non-negative symmetric matrix, and letN m (0; V ) indicate a m-
dimensional centered Gaussian vector with covariance matrix V . Then, as N ! 1 ,
the following two conditions are equivalent.

(1) The vector f Qk j (f ( j )
N ; G) : j = 1 ; :::; mg converges in law toN m (0; V ).

(2) For every sequenceX = f X a : a 2 Ag of independent centered random
variables, with unit variance and such thatsupa EjX a j3 < 1 , the law of
the vector f Qk j (f ( j )

N ; X ) : j = 1 ; :::; mg converges to the law ofN m (0; V ).

Note that Theorem 2.2 concerns only homogeneous sums of orderk � 2: it is
easily seen (see e.g.Nourdin et al., 2009, Section 1.6.1) that the statement is indeed
false in the casek = 1. However, if one considers sums with a speci�c structure
(basically, verifying some Lindeberg-type condition) onecan embed sums of order
one into the previous statement. A particular instance of this fact is made clear in
the following statement, whose proof (combining the results of Nourdin et al., 2009
with the main estimates of Mossel et al., 2010) is standard and therefore omitted.

Proposition 2.3. For m � 1, let the kernels f f ( j )
N : N � 1g, j = 1 ; :::; m, verify

the assumptions of Theorem2.2. Let f ai : i � 1g be an in�nite subset of A, and
assume that condition (1) in the statement of Theorem2.2 is veri�ed. Then, for
every sequenceX = f X a : a 2 Ag of independent centered random variables, with
unit variance and such that supa EjX a j3 < 1 , as N ! 1 the law of the vector
f WN ; Qk j (f ( j )

N ; X ) : j = 1 ; :::; mg, where WN = 1p
N

P N
i =1 X a i , converges to the

law of f N0 ; N j : j = 1 ; :::; mg, where N0 � N (0; 1), and (N1; :::; Nm ) � N m (0; V )
denotes a centered Gaussian vector with covarianceV, and independent ofN0.

Theorem 2.2 and Proposition 2.3 imply that, in order to prove a CLT involving
vectors of homogeneous sums based on some independent sequenceX , it su�ces to
replaceX with an i.i.d. Gaussian sequenceG. In this way, one obtains a sequence
of random vectors whose components belong to a �xed Wiener chaos. We now
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present two results, showing that proving CLTs for this type of random variables
can be a relatively easy task: indeed, one can apply some drastic simpli�cation of
the method of moments. The �rst statement deals with multi-d imensional CLTs
and shows that, in a Gaussian Wiener chaos setting, componentwise convergence to
Gaussian always implies joint convergence. See alsoAirault et al. (2010) for some
connections with Stokes formula.

Theorem 2.4 (Multidimensional CLTs on Wiener chaos, seeNourdin et al., 2009;
Peccati and Tudor, 2005). Let the family G = f Ga : a 2 Ag be i.i.d. centered
standard Gaussian and, forj = 1 ; :::; m, de�ne the sequencesQk j (f ( j )

N ; G), N � 1,

as in Theorem 2.2 (in particular, the functions f ( j )
N verify the same assumptions as

in that theorem). Suppose that, for everyi; j = 1 ; :::; m, as N ! 1

E
�
Qk i (f

( i )
N ; G) � Qk j (f ( j )

N ; G)
�

! V (i; j ); (2.4)

where V is a m � m covariance matrix. Finally, assume that WN , N � 1, is a
sequence ofN (0; 1) random variables with the representation

WN =
X

a2 A

wN (a) � Ga ;

where the weightswN (a) are zero for all but a �nite number of indices a, andP
a2 A wN (a)2 = 1 . Then, the following are equivalent:

(1) The random vector f WN ; Qk j (f ( j )
N ; G) : j = 1 ; :::; mg converges in law

to f N0 ; N j : j = 1 ; :::; mg, where N0 � N (0; 1), and (N1; :::; Nm ) �
N m (0; V ) denotes a centered Gaussian vector with covarianceV , and in-
dependent ofN0.

(2) For every �xed j = 1 ; :::; m, the sequenceQk j (f ( j )
N ; G), N � 1, converges in

law to Z � N
�
0; V(j; j )

�
, that is, to a centered Gaussian random variable

with variance V (j; j ).

The previous statement implies that, in order to prove CLTs for vectors of homo-
geneous sums, one can focus on the componentwise convergence of their (Gaussian)
Wiener chaos counterpart. The forthcoming Theorem2.6 shows that this type
of one-dimensional convergence can be studied by focussingexclusively on fourth
moments. To put this result into full use, we need some further de�nitions.

De�nition 2.5. Fix k � 2. Let f : Ak ! R be a (not necessarily symmetric)
function vanishing on diagonals and with �nite support. For every r = 0 ; :::; k, the
contraction f ? r f is the function on A2k � 2r given by

f ? r f (a1; :::; a2k � 2r ) (2.5)

=
X

(x 1 ;:::;x r )2 A r

f (a1; :::; ak � r ; x1; :::; xr )f (ak � r +1 ; :::; a2k � 2r ; x1; :::; xr ):

Observe that (even whenf is symmetric) the contraction f ? r f is not necessarily
symmetric and not necessarily vanishes on diagonals. The canonical symmetrization
of f ? r f is written f e?r f .

Theorem 2.6 (The simpli�ed method of moments, seeNualart and Peccati, 2005).
Fix k � 2. Let G = f Ga : a 2 Ag be an i.i.d. centered standard Gaussian family.
Let f f N : N � 1g be a sequence of functions such thatf N : Ak ! R is symmetric
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and vanishes on diagonals. Suppose also thatjsupp(f N )j ! 1 , as N ! 1 . Assume
that

E [Qk (f N ; G)2] ! � 2 > 0; as N ! 1 . (2.6)
Then, the following three conditions are equivalent, asN ! 1 .

(1) The sequenceQk (f N ; G), N � 1, converges in law toZ � N (0; � 2).
(2) E [Qk (f N ; G)4] ! 3� 4.
(3) For every r = 1 ; :::; k � 1, kf N ?r f N k2k � 2r ! 0.

Finally, we present a version of Theorem2.2 with bounds, that will lead to the
proof of Theorem 1.1-(ii) provided in Section 4.4.

Theorem 2.7 (Universal bounds, seeNourdin et al., 2009). Let X = f X a : a 2 Ag
be a collection of independent centered random variables, with unit variance and
such that � := supa EjX a j3 < 1 . Fix integers m � 1, km > ::: > k 1 � 2.
For every j = 1 ; :::; m, let f ( j ) : Ak j ! R be a symmetric function vanishing
on diagonals. De�ne Qj (X ) := Qk j (f ( j ) ; X ) according to (2.1), and assume that
E [Qj (X )2] = 1 for all j = 1 ; : : : ; m. Also, assume thatK > 0 is given such thatP

a2 A max1� j � m Inf a(f ( j ) ) � K , where

Inf a(f ( j ) ) =
X

f a2 ;:::;a k j g� A k j

f ( j ) (a; a2; : : : ; ak j )2

=
1

(kj � 1)!

X

a2 ;:::;a k j 2 A

f ( j ) (a; a2; : : : ; ak j )2:

Let ' : Rm ! R be a thrice di�erentiable function such that k' 00k1 + k' 000k1 < 1 ,
with k' (k ) k1 = max j � j = k

1
� ! supz2 Rm j@� ' (z)j. Then, for Z = ( Z 1; : : : ; Z m ) �

N m (0; I m ) (standard Gaussian vector onRm ), we have

�
�E [' (Q1(X ); : : : ; Qm (X ))] � E [' (Z )]

�
� � k ' 00k1

0

@
mX

i =1

� ii + 2
X

1� i<j � m

� ij

1

A

+ K k' 000k1

 

� +

r
8
�

! 2

4
mX

j =1

(16
p

2� )
k j � 1

3 kj !

3

5

3
r

max
1� j � m

max
a2 A

Inf a(f ( j ) );

where � ij , 1 � i � j � m, is given by

kjp
2

k j � 1X

r =1

(r � 1)!
�

ki � 1
r � 1

��
kj � 1
r � 1

� q
(ki + kj � 2r )!

�
kf ( i ) ?k i � r f ( i ) k2r + kf ( j ) ?k j � r f ( j ) k2r

�

+ 1f k i <k j g

s

kj !
�

kj

ki

�
kf ( j ) ?k j � k i f ( j ) k2k i :

We �nish this section by a useful result, which shows how thein
uence Inf a f of
f : Ak ! R can be bounded by the norm of the contraction off of order k � 1:

Proposition 2.8. Let f : Ak ! R be a symmetric function vanishing on diagonals.
Then

(k � 1)! max
a2 A

Inf a(f ) := max
a2 A

X

a2 ;:::;a k 2 A

f (a; a2; : : : ; ak )2 � k f ? k � 1 f k2:



Universal Gaussian 
uctuations 353

Proof. We have

kf ? k � 1 f k2
2 =

X

a;b2 A

2

4
X

a2 ;:::;a k 2 A

f (a; a2; : : : ; ak )f (b; a2; : : : ; ak )

3

5

2

�
X

a2 A

2

4
X

a2 ;:::;a k 2 A

f 2(a; a2; : : : ; ak )

3

5

2

� max
a2 A

2

4
X

a2 ;:::;a k 2 A

f 2(a; a2; : : : ; ak )

3

5

2

=
�
(k � 1)! max

a2 A
Inf a(f )

� 2

:

As a consequence of Theorem2.7 and Proposition 2.8, we immediately get the
following result.

Corollary 2.9. Let X = f X a : a 2 Ag be a collection of independent centered
random variables, with unit variance and such that� := supa EjX a j3 < 1 . Fix
integers m � 1, km > ::: > k 1 � 1. For every j = 1 ; :::; m, let f f ( j )

N : N � 1g
be a sequence of functions such thatf ( j )

N : Ak j ! R is symmetric and vanishes

on diagonals. De�ne Qj
N (X ) := Qk j (f ( j )

N ; X ) according to (2.1), and assume that
E [Qj

N (X )2] = 1 for all j = 1 ; : : : ; m and N � 1. Let ' : Rm ! R be a thrice
di�erentiable function such that k' 00k1 + k' 000k1 < 1 . If, for some � > 0,
kf ( j )

N ?k j � r f ( j )
N k2r = O(N � � ) for all j = 1 ; : : : ; m and r = 1 ; : : : ; kj � 1, then,

by noting (Z 1; : : : ; Z m ) a centered Gaussian vector such thatE [Z i Z j ] = 0 if i 6= j
and E[(Z j )2] = 1 , we have

�
�E [' (Q1

N (X ); : : : ; Qm
N (X ))] � E [' (Z 1; : : : ; Z m )]

�
� = O(N � �= 2):

3. Gaussian 
uctuations of non-diagonal trace components

Our aim in this section is to prove the multidimensional CLT ( 1.14), by using
the universality results presented in Section2. To do this, we shall use an auxiliary
collection G = f Gij : i; j � 1g of i.i.d. copies of aN (0; 1) random variable.

As in Section 1.3, for a given integer k � 2, we write D (k )
N to indicate the set

of vectors i = ( i 1; : : : ; i k ) 2 [N ]k such that all the elements (i a ; i a+1 ), a = 1 ; : : : ; k,
are di�erent in pairs (with the convention that i k+1 = i 1). We have the following
preliminary result:

Proposition 3.1. For any �xed integer k � 2,

N � k=2
X

i 2 D ( k )
N

Gi 1 i 2 : : : Gi k i 1

Law�! Zk � N (0; k) as N ! 1 .

Remark 3.2. When k = 1, the conclusion of the above proposition continues to be
true, since in this case we obviously have

N � 1=2
NX

i =1

Gii � N (0; 1):
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Proof of Proposition 3.1: The main idea is to use the results of Section2, in the
special caseA = N2, that is, A is the collection of all pairs (i; j ) such that i; j � 1.
Observe that

N � k=2
X

i 2 D ( k )
N

Gi 1 i 2 : : : Gi k i 1 = Qk (f k;N ; G);

with f k;N : ([N ]2)k ! R the symmetric function de�ned by

f k;N =
1
k!

X

� 2 S k

f ( � )
k;N ; (3.1)

where we used the notation

f ( � )
k;N

�
(a1; b1); : : : ; (ak ; bk )

�
=

N � k=2
X

i 2 D ( k )
N

1f i � (1) = a1 ; i � (1)+1 = b1 g : : : 1f i � ( k ) = ak ; i � ( k )+1 = bk g; (3.2)

and S k denotes the set of all permutations of [k]. Hence, by virtue of Theorem2.6,
to prove Proposition 3.1 it is su�cient to accomplish the following two steps: ( Step
1) prove that property (3) (with f k;N replacing f N ) in the statement of Theorem
2.6 takes place, and (Step 2) show that relation ( 2.6) (with f k;N replacing f N ) is
veri�ed.

Step 1. Let r 2 f 1; : : : ; k � 1g. For �; � 2 S k , we compute

f ( � )
k;N ?r f ( � )

k;N

�
(x1; y1); : : : ; (x2k � 2r ; y2k � 2r )

�
(3.3)

= N � k
X

i ;j 2 D ( k )
N

1f i � (1) = x 1 ; i � (1)+1 = y1 g : : : 1f i � ( k � r ) = x k � r ; i � ( k � r )+1 = yk � r g

� 1f j � (1) = x k � r +1 ; j � (1)+1 = yk � r +1 g : : : 1f j � ( k � r ) = x 2k � 2r ; j � ( k � r )+1 = y2k � 2r g

� 1f i � ( k � r +1) = j � ( k � r +1) ; i � ( k � r +1)+1 = j � ( k � r +1)+1 g : : : 1f i � ( k ) = j � ( k ) ; i � ( k )+1 = j � ( k )+1
g:

We now want to assess the quantitykf ( � )
k;N ?r f ( � )

k;N k2
2k � 2r . To do this, we exploit the

representation (3.3) in order to write

kf ( � )
k;N ?r f ( � )

k;N k2
2k � 2r =

�
�F ( r;�;� )

N \ (D (k )
N )4

�
� N � 2k ;

whereF ( r;�;� )
N is the subset of ([N ]k )4 composed of those quadruplets (i ; j ; a; b) such

that

i � (1) = a� (1) ; i � (1)+1 = a� (1)+1 ; : : : ;

i � (k � r ) = a� (k � r ) ; i � (k � r )+1 = a� (k � r )+1

j � (1) = b� (1) ; j � (1)+1 = b� (1)+1 ; : : : ;

j � (k � r ) = b� (k � r ) ; j � (k � r )+1 = b� (k � r )+1

i � (k � r +1) = j � (k � r +1) ; i � (k � r +1)+1 = j � (k � r +1)+1 ; : : : ;

i � (k ) = j � (k ) ; i � (k )+1 = j � (k )+1

a� (k � r +1) = b� (k � r +1) ; a� (k � r +1)+1 = b� (k � r +1)+1 ; : : : ;

a� (k ) = b� (k ) ; a� (k )+1 = b� (k )+1 : (3.4)

It is immediate that, among the equalities in (3.4), the 2k equalities appearing in
the forthcoming display (3.5) are pairwise disjoint (that is, an index appearing in
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one of the equalities does not enter into the others):

i � (1) = a� (1) ; : : : ; i � (k � r ) = a� (k � r ) ;

j � (1) = b� (1) ; : : : ; j � (k � r ) = b� (k � r )

i � (k � r +1) = j � (k � r +1) ; : : : ; i � (k ) = j � (k ) ;

a� (k � r +1) = b� (k � r +1) ; : : : ; a� (k ) = b� (k ) : (3.5)

Hence, the cardinality of F ( r;�;� )
N is less thanN 2k , from which we infer that kf ( � )

k;N ?r

f ( � )
k;N k2

2k � 2r is bounded by 1. This is not su�cient for our purposes, since we need

to show that kf ( � )
k;N ?r f ( � )

k;N k2
2k � 2r tends to zero asN ! 1 . To prove this, it is

su�cient to extract from ( 3.4) one supplementary equality which is not already
written in ( 3.5). We shall prove that this equality exists by contradiction . Set
L = f � (s) : 1 � s � k � r g and R = f � (s)+1 : 1 � s � k � r g (with the convention
that k + 1 = 1). Now assume that R = L . Then � (1) + 1 2 R also belongs toL , so
that � (1)+2 2 R. By repeating this argument, we get that L = R = [ k], which is a
contradiction becauser � 1. Hence,R 6= L . In particular, the display ( 3.4) implies
at least one relation involving two indices that are not already coupled in (3.5).
This yields that the cardinality of F ( r;�;� )

N is at most N 2k � 1, and consequently
that kf ( � )

k;N ?r f ( � )
k;N k2

2k � 2r � N � 1. This fact implies immediately that the norms
kf k;N ?r f k;N k2k � 2r , r = 1 ; : : : ; k � 1, verify

kf k;N ?r f k;N k2k � 2r = O(N � 1=2); (3.6)

and tend to zero asN ! 1 . In other words, we have proved that condition (3) in
the statement of Theorem2.6 is met.

Step 2. We have

Var

0

B
@N � k=2

X

i 2 D ( k )
N

Gi 1 i 2 : : : Gi k i 1

1

C
A = N � k

X

i ;j 2 D ( k )
N

E[Gi 1 i 2 : : : Gi k i 1 Gj 1 j 2 : : : Gj k j 1 ]:

For �xed i ; j 2 D (k )
N , observe that the expectation E[Gi 1 i 2 : : : Gi k i 1 Gj 1 j 2 : : : Gj k j 1 ]

can only be zero or one. Moreover, it is one if and only if, for all s 2 [k], there is
exactly one t 2 [k] such that (i s; i s+1 ) = ( j t ; j t +1 ). In this case, we de�ne � 2 S k

as the bijection of [k] into itself which maps eachs to the correspondingt and we
have, for all s 2 [k],

i s = j � (s) = j � (s� 1)+1 : (3.7)

To summarize, one has that Var
�

N � k=2 P
i 2 D ( k )

N
Gi 1 i 2 : : : Gi k i 1

�
equals

N � k
X

� 2 S k

�
� � (i ; j ) 2 (D (k )

N )2 : (i s ; i s+1 ) = ( j � (s) ; j � (s)+1 ) for all s 2 [k]
	 �

� : (3.8)

If � 2 S k is such that � (s) = � (s � 1) + 1 for all s (it is easily seen that there are
exactly k permutations verifying this property in S k ), we get, by letting s run over
[k] in (3.7),

�
(i ; j ) 2 (D (k )

N )2 : (i s; i s+1 ) = ( j � (s) ; j � (s)+1 )

for all s 2 [k]
	

= N k + O(N k � 1); as N ! 1 :
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In contrast, if � 2 S k is not such that � (s) = � (s � 1) + 1 for all s, then by letting
s run over [k], one deduces from (3.7) at least k + 1 di�erent conditions, so that, in
this case,

�
(i ; j ) 2 (D (k )

N )2 : (i s; i s+1 ) = ( j � (s) ; j � (s)+1 )

for all s 2 [k]
	

= O(N k � 1); as N ! 1 :

Taking into account these two properties together with the representation (3.8), we
deduce that the variance of

N � k=2
X

i 2 D ( k )
N

Gi 1 i 2 : : : Gi k i 1

tends to k as N ! 1 . It follows that the required property ( 2.6) in Theorem 2.6
(with � 2 = k) is met.

The proof of Proposition 3.1 is concluded.

Remark 3.3. By inspection of the previous proof, one also deduces that, for every
k � 2, there exists a constantCk (independent of N ) such that, for all N � 1,

�
�
�
�
�
�
�
Var

0

B
@N � k=2

X

i 2 D ( k )
N

Gi 1 i 2 : : : Gi k i 1

1

C
A � k

�
�
�
�
�
�
�

�
Ck

N
: (3.9)

The multidimensional version of Proposition 3.1 reads as follows:

Proposition 3.4. Fix m � 1, as well as integerskm > : : : > k 1 � 2. Then, as
N ! 1 ,
0

B
@N � 1=2

NX

i =1

Gii ; N � k 1
2

X

i 2 D ( k 1 )
N

Gi 1 i 2 � � � Gi k 1 i 1 ; : : : (3.10)

: : : ; N � k m
2

X

i 2 D ( k m )
N

Gi 1 i 2 � � � Gi k m i 1

1

C
A

Law�!
�
Z1; Zk1 ; :::; Zkm

�
;

where Z = f Zk : k � 1g denotes a collection of independent centered Gaussian
random variables such that, for everyk � 1, E (Z 2

k ) = k.

Proof: It is an application of Theorem 2.4, in the following special case:
- wN (i; j ) = 1p

N
, if i = j � N and wN (i; j ) = 0 otherwise;

- V is equal to the diagonal matrix such that V (a; b) = 0 if a 6= b and
V (a; a) = ka , for a = 1 ; :::; m;

- for j = 1 ; :::; m, f ( j )
N = f k j ;N , where we used the notation (3.1).

Indeed, in view of Proposition 3.1, one has that condition (2) in the statement
of Theorem 2.4 is satis�ed. Moreover, for �xed a 6= b and since G consists of a
collection of independent and centered (Gaussian) random variables, it is clear that,
for all N ,

E

2

6
4

X

i 2 D ( k a )
N

Gi 1 i 2 : : : Gi k a i 1 �
X

j 2 D
( k b )
N

Gj 1 j 2 : : : Gj k b
j 1

3

7
5 = 0 ;
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so that condition (2.4) is met. The proof is concluded.

By combining Proposition 3.4 and Proposition 2.3, we can �nally deduce the
following general result for non-diagonal trace components.

Corollary 3.5. For N � 2, let X N be theN � N random matrix given by (1.1),
where the reference random variableX has mean zero, unit variance and �nite
absolute third moment. Fix m � 1, as well as integers2 � k1 < : : : < k m .
Then, the CLT ( 1.14) takes place, with Z = f Zk : k � 1g denoting a sequence
of independent centered Gaussian random variables such that, for every k � 1,
E (Z 2

k ) = k.

Remark 3.6. In order to prove Corollary 3.5, one only needs the existence of third
moments. Note that, as will become clear in the following Section 4, moments of
higher orders are necessary for our proof of (1.15).

4. The remainder: combinatorial bounds on partitioned chai ns and proof
of Theorem 1.1

Fix an integer k � 2. From section 1.3, recall that D (k )
N denotes the subset of

vectors i = ( i 1; : : : ; i k ) 2 [N ]k such that all the elements (i a ; i a+1 ), a = 1 ; : : : ; k,
are di�erent in pairs (with the convention that i k+1 = i 1). From the Introduction,
recall that X is a centered random variable, having unit variance and with�nite
moments of all orders. Let alsoX = f X ij : i; j � 1g be a collection of i.i.d. copies
of X . In the present section, our aim is to prove the asymptotic relation ( 1.15),
that is

Proposition 4.1. For every k � 2, as N ! 1 ,

E(RN (k)2) = Var

0

B
@N � k=2

X

i 62D ( k )
N

�
X i 1 i 2 : : : X i k i 1 � E (X i 1 i 2 : : : X i k i 1 )

�

1

C
A = O(N � 1):

(4.1)

The proof of Proposition 4.1 is detailed in Section 4.4, and builds on several
combinatorial estimates derived in Sections4.2{ 4.3. To ease the reading of the
forthcoming material, we now provide an intuitive outline o f this proof.

Remark on notation. Given an integer k � 2, we denote byP(k) the collection
of all partitions of [ k] = f 1; :::; kg. Recall that a partition � 2 P (k) is an object
of the type � = f B1; :::; B r g, where the B j 's are disjoint and non-empty subsets of
[k], called blocks, such that [ j =1 ;:::;r B j = [ k]. Given a; x 2 [k] and � 2 P (k), we
write a �� x whenevera and x are in the same block of� . We also use the symbol
1̂ to indicate the one-block partition 1̂ = f [k]g (this is standard notation from
combinatorics { see e.g.Stanley, 1997). In this section, for the sake of simplicity
and becausek is �xed, we write DN instead of D (k )

N .

4.1. Sketch of the proof of Proposition4.1. Our starting point is the following ele-
mentary decomposition:

[N ]k n DN =
[

� 2Q (k)

AN (� );
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where Q(k) stands for the collection of all partitions of [k] containing at least one
block of cardinality � 2, and AN (� ) is the collection of all vectors i 2 [N ]k such
that the equality ( i a ; i a+1 ) = ( i x ; i x +1 ) holds if and only if a �� x. (Recall that, for
a; b 2 [k], we write a

�
� b to indicate that a and b belong to the same block of� .)

Using this decomposition, one sees immediately that, in order to show (4.1), it is
su�cient to prove that, for each �xed � 2 Q (k), the quantity

Var

0

@N � k=2
X

i 2 A N ( � )

�
X i 1 i 2 : : : X i k i 1 � E (X i 1 i 2 : : : X i k i 1 )

�
1

A (4.2)

= N � k
X

( i ;j )2 A N ( � ) � A N ( � )

[ E (X i 1 i 2 : : : X i k i 1 X j 1 j 2 : : : X j k j 1 )

� E (X i 1 i 2 : : : X i k i 1 )E (X j 1 j 2 : : : X j k j 1 ) ]

is O(N � 1), asN ! 1 . Let GN (� ) denote the subset of pairs (i ; j ) 2 AN (� )� AN (� )
such that the following non-vanishing condition is in order:

E (X i 1 i 2 : : : X i k i 1 X j 1 j 2 : : : X j k j 1 ) � E (X i 1 i 2 : : : X i k i 1 )E (X j 1 j 2 : : : X j k j 1 ) 6= 0 : (4.3)

Hence

Var

0

@N � k=2
X

i 2 A N ( � )

�
X i 1 i 2 : : : X i k i 1 � E (X i 1 i 2 : : : X i k i 1 )

�
1

A (4.4)

= N � k
X

( i ;j )2 GN ( � )

[ E (X i 1 i 2 : : : X i k i 1 X j 1 j 2 : : : X j k j 1 )

� E (X i 1 i 2 : : : X i k i 1 )E (X j 1 j 2 : : : X j k j 1 ) ] :

Due to the �nite moment assumptions for X , and by applying the generalized
H•older inequality, it is clear that, for a generic pair ( i ; j ),

�
�E (X i 1 i 2 : : : X i k i 1 X j 1 j 2 : : : X j k j 1 ) � E (X i 1 i 2 : : : X i k i 1 )E (X j 1 j 2 : : : X j k j 1 )

�
�

� 2E(jX j2k ) < 1 :

It follows that, in order to prove that the sum in ( 4.4) is O(N � 1), it is enough to
show that �

�GN (� )
�
� � �( k; � )N k � 1; (4.5)

for some constant �( k; � ) not depending onN . Our way of proving (4.5) is to show
that, if ( i ; j ) denotes a generic element of GN (� ), then, necessarily, there exists
at least k + 1 equalities between the 2k indices i 1; : : : ; i k ; j 1; : : : ; j k of (i ; j ). Note
that by `equality' we just mean the existence of two di�erent integers a; b 2 [k]
such that i a = i b or j a = j b, or the existence of two integersa; b 2 [k] such that
i a = j b. Proving this fact implies that the 2 k indices of a generic elements (i ; j ) of
GN (� ) have at most k � 1 degrees of freedom(see Point7 of Section 4.2 for a precise
de�nition), so that ( 4.5) holds immediately | the constant �( k; � ) merely counting
the number of ways in which the k + 1 equalities can be consistently distributed
among the indices composing (i ; j ). In order to extract these k+1 equalities between
the 2k indices of a generic element (i ; j ) of GN (� ), we will consider two cases,
according as the partition � 2 Q (k) contains at least one singleton or not.
Case A: No singletons in � . By de�nition of AN (� ), and due to the absence of
singleton in � , we already see that there are at leastk=2 or (k + 1) =2 (according
to the evenness ofk) equalities between the k indices of i (resp. j ). Moreover,
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the non-vanishing condition (4.3) implies that there is at least one further equality
between one index ofi and one index of j . So, we proved the existence ofk + 1
equalities between the 2k indices of (i ; j ), and the proof of (4.5) in the Case A is
done.

Case B: At least one singleton in� . Let S denote the collection of the singleton(s)
of � . In order for (4.3) to be true, observe that, for all s 2 S, we must have
(j s ; j s+1 ) = ( i a ; i a+1 ) for somea 2 [k]. In particular, this means that there exist jSj
equalities of the type j s = i a for the indices composing (i ; j ). Also, by de�nition of
the objects we are dealing with, for allt 2 [k]nS, we must have (i t ; i t +1 ) = ( i a ; i a+1 )
for some a, di�erent from t, in the same � -block as t. Of course, the same must
hold with i replaced byj . Hence, in order for (4.5) to be true, it remains to produce
one equality between indices that has not been already considered. We mentioned
above that for all t 2 [k] n S, there exists a, di�erent from t and in the same block
as t, such that j t = j a . Hence, to conclude it remains to show that we havej t = j a

for at least one integer t belonging to [k] n S and one integera not belonging to
the same block ast. Since, by assumption,� contains at least one singleton and
one block of cardinality � 2 (indeed, � 2 Q (k)), without loss of generality (up to
relabeling the indices according to a cyclic permutation of[k]), we can assume that
S contains the singleton f kg. Consider now the singletonf s� g of S, where s� is
de�ned as the greatest of the integersm such that f mg is adjacent from the right
to a block, say Bu� , of cardinality � 2. For a particular example of this situation,
see the diagram in Fig. 4.1, where each row represents the same partition of [7]
having s� = 6 (see Point 3. in the subsequent Section4.2 for a formal construction
of diagrams). To �nish the proof, once again we split it into t wo cases:

Case B1: The blockBu� contains two consecutive integers. This assumption
implies that j x = j t = j t +1 for all x; t 2 Bu� . Since f ag is adjacent from the right
to Bu� , we havej a = j t for all t 2 Bu� , which is exactly what we wanted to show.

Case B2: The blockBu� does not contain two consecutive integers. Fig. 4.7 is an
illustrative example of such situation, where each row represents the same partition
of [8], with s� = 7. As we see on this picture, we have necessarilyj 7 = j 5, yielding
the desired additional equality, which could not be extracted from the previous
discussion. In Section4.3, it is shown that this line of reasoning can be extended
to general situations.

Remark 4.2. The sketch given above contains all the main ideas entering in the proof
of Proposition 4.1. The reader not interested in technical combinatorial details, can
then go directly to Section 4.4, where the proof of Theorem1.1 is concluded. The
subsequent Sections4.2{ 4.3 �ll the gaps of the above sketch, by providing exact
de�nitions as well as complete formal arguments leading to the estimate (4.1).

4.2. De�nitions. In the following list, we introduce some further de�nitions that
are needed for the analysis developed in the rest of this section.

1. Fix integers N; k � 2. A chain c of length 2k, built from [ N ], is an object
given by the juxtaposition of 2k pairs of integers of the type

c = ( i 1; i 2)( i 2; i 3):::(i k ; i 1)( j 1; j 2)( j 2; j 3):::(j k ; j 1); (4.6)

where i a ; j x 2 [N ], for a; x = 1 ; :::; k. The class of all chains of length 2k built from
[N ] is denoted byC(2k; N ). As a notational convention, we will use the letter i to
write the �rst k pairs in the chain, and the letter j to write the remaining ones.
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For instance, an element ofC(6; 5) (that is, a chain of length 6 built from the set
f 1; 2; 3; 4; 5g) is

c = (1 ; 5)(5; 1)(1; 1)(3; 3)(3; 3)(3; 3);

where i 1 = 1, i 2 = 5, i 3 = 1, j 1 = j 2 = j 3 = 3. According to the graphical
conventions given below (at Point 3 of the present list) we will sometimes say that
(i 1; i 2)( i 2; i 3):::(i k ; i 1) and (j 1; j 2)( j 2; j 3) :::(j k ; j 1) are, respectively, theupper sub-
chain and the lower sub-chainassociated with the chainc in (4.6). For instance, in
the previous example the upper sub-chain is (1; 5)(5; 1)(1; 1), whereas the lower one
is (3; 3)(3; 3)(3; 3). We shall say that (i l ; i l +1 ) is the l th pair in the upper sub-chain
of c (and similarly for the elements of the lower sub-chain). We shall sometimes
call i a the left index of the pair (i a ; i a+1 ). Also, we use the conventioni k+1 = i 1

and j k+1 = j 1. Of course, a chain is completely determined by the left indices of
its pairs.

2. Let � 2 P (k) be a partition of [ k]. We say that a chain c as in (4.6) has
partition � if, for every a; b 2 [k], the following double implications take place: (i)
(i a ; i a+1 ) = ( i b; i b+1 ) if and only if a �� b, and (ii) ( j a ; j a+1 ) = ( j b; j b+1 ) if and only
if a �� b. In other words, a chain has partition � if and only if the partitions of [ k]
induced by the identical pairs in its upper and lower sub-chain are both equal to
� , that is (with the notation of Section 4.1), if and only if ( i 1; :::; i k ); (j 1; :::; j k ) 2
AN (� ). For instance, take k = 4 and � = ff 1; 3g; f 2; 4gg. Then, the following chain
built from [3] has partition � :

c = (1 ; 2)(2; 1)(1; 2)(2; 1)(3; 1)(1; 3)(3; 1)(1; 3):

Note the `only if' part in the de�nition given above, implyin g that, if a chain
has partition � and if x and y are not in the same block of � , then necessarily
(i x ; i x +1 ) 6= ( i y ; i y+1 ) and (j x ; j x +1 ) 6= ( j y ; j y+1 ). This yields in particular that a
chain cannot have two di�erent partitions.

3. Given k � 2, we shall sometimes represent a generic chain with partition
� 2 P (k) by means ofdiagrams. These diagrams are mnemonic devices composed
of an upper row and a lower row, ofk dots each. These rows represent, respectively,
the upper and lower sub-chain of a given chain, in such a way that the l th dot (from
left to right) in the upper (resp. lower) row corresponds the l th pair in the upper
(resp. lower) sub-chain. Each blockB of the partition � is represented by two closed
curves: the �rst one is drawn around the dots of the upper row corresponding to
the pairs (i a ; i a+1 ) verifying a 2 B ; the second one is drawn around the dots of the
lower row corresponding to those (j x ; j x +1 ) verifying x 2 B . The resulting diagram
is the superposition of two identical combinations of dots and curves. Note that
the shape of the diagram does not depend onN . For instance, the diagram in Fig.
4.1 corresponds to the casek = 7, and � = ff 1; 4; 5g; f 2g; f 3g; f 6g; f 7gg,1 whereas
the diagram in Fig. 4.2 corresponds tok = 6 and the one-block partition 1̂ = f [6]g.

4. In general, given a chainc as in (4.6) with partition � = f B1; :::; B r g as at
Point 2 of the present list, we shall say the the blockBu of the upper sub-chain
correspondsto the block Bv of the lower sub-chain, whenever (i a ; i a+1 ) = ( j x ; j x +1 )

1A chain with partition � as in Fig. 4.1 is

c = (1 ; 1)(1; 2)(2; 1)(1; 1)(1; 1)(1; 3)(3; 1)(1; 1)(1; 4)(4; 1)(1; 1)(1; 1)(1; 5)(5; 1):
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b bb bb b b

b bb bb b b

Figure 4.1. a chain with a �ve-block partition

b b b b b b

b b b b b b

Figure 4.2. a chain with a one-block partition

for every a 2 Bu and everyx 2 Bv . Note that one given blockBu in the upper sub-
chain cannot correspond to more than one block in the lower sub-chain. For � =
f B1; :::; B r g 2 P (k), we shall now de�ne a class of chainsC� (2k; N ) � C(2k; N ),
whose elements have partition� and are characterized by two facts: the associated
upper and lower sub-chains have at least one pair in common, and \no singletons are
left on their own". Formally, the class C� (2k; N ) is de�ned as follows (recall that
we use the letter i for the elements of the upper sub-chain, and the letterj for the
elements of the lower sub-chain). (i) IfjB t j � 2 for everyt = 1 ; :::; r , then C� (2k; N )
is the collection of all chains of partition � verifying that there exists a; x 2 [k] such
that the block Ba in the upper sub-chain corresponds to the blockBx in the lower
sub-chain. (ii) If � contains at least one singleton, thenC� (2k; N ) is the collection
of all chains of partition � such that every singleton in the upper (resp. lower) sub-
chain corresponds to a block of the lower (resp. upper) subchain, that is: for every
f ag 2 � , there exists u = 1 ; :::; r such that (i a ; i a+1 ) = ( j l ; j l +1 ) for every l 2 Bu ,
and, for every f xg 2 � , there exists v = 1 ; :::; r such that (j x ; j x +1 ) = ( j s ; j s+1 ) for
every s 2 Bv . For instance, if k = 3 and � = f [3]g, then one element ofC� (6; 5) is

c = (5 ; 5)(5; 5)(5; 5)(5; 5)(5; 5)(5; 5):

If k = 6 and � = ff 1; 2; 3g; f 4g; f 5g; f 6gg, then one element ofC� (12; 5) is

c = (1 ; 1)(1; 1)(1; 1)(1; 2)(2; 5)(5; 1)(2; 2)(2; 2)(2; 2)(2; 5)(5; 1)(1; 2):

5. Fix k; N � 2, as well as a partition � = f B1; :::; B r g 2 P (k). Given two
subsetsU; V � [r ] such that jUj = jV j, let R : U ! V : u 7! R(u) be a bijection from
U onto V . We shall denote byCR

� (2k; N ) the subset ofC� (2k; N ) composed of those
chainsc 2 C� (2k; N ) such that the block Bu in the upper sub-chain corresponds to
the block BR(u) in the lower sub-chain. WhenU = f ug and V = f vg are singletons,
we shall simply write Cu;v

� (2k; N ) to indicate the set of those c 2 C� (2k; N ) such
that the block Bu in the upper sub-chain corresponds to the blockBv in the lower
sub-chain. For instance, the chain

c1 = (1 ; 1)(1; 1)(1; 2)(2; 5)(5; 1)(2; 2)(2; 2)(2; 5)(5; 1)(1; 2)
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is an element ofCR
� (10; 4), where � = f B1; B2; B3; B4g = ff 1; 2g; f 3g; f 4g; f 5gg,

U = V = f 2; 3; 4g, and R(2) = 4, R(3) = 2 and R(4) = 3. The chain

c2 = (3 ; 3)(3; 3)(3; 3)(3; 3)

belongs toC1;1
1̂

(4; 3), where1̂ = f B1g = f [2]g. Note that the de�nition of CR
� (2k; N )

does not give any information concerning the blocks of the upper and lower sub-
chains that do not belong, respectively, to the domain and the image ofR. In other
words, for a chain c 2 CR

� (2k; N ), one can have that the block Bu in the upper
sub-chain corresponds to the blockBv in the lower sub-chain even ifu 2= U and
v 2= V. For instance, the chain

c = (1 ; 1)(1; 1)(1; 2)(2; 5)(5; 1)(1; 1)(1; 1)(1; 2)(2; 5)(5; 1)

is counted as an element ofCR
� (10; 4), where

� = f B1; B2; B3; B4g = ff 1; 2g; f 3g; f 4g; f 5gg;

U = V = f 2; 3; 4g, and R(u) = u, for u = 2 ; 3; 4.
6. Fix k; N � 2, as well as a partition � = f B1; :::; B r g 2 P (k). Given a

bijection R : U ! V as at Point 5 above, we shall represent a generic element
of the classCR

� (2k; N ) by means of a diagram built as follows: �rst (i) draw the
diagram associated with the classC� (2k; N ), as explained at Point 3 of the present
list, then (ii) for every pair of blocks Bu and Bv such that u 2 U, v 2 V and
v = R(u) (note that Bu is in the upper sub-chain, andBv in the lower sub-chain),
draw a segment linking a representative element ofBu with a representative element
of Bv . For instance, the classCR

� (10; N ), associated with the chain c1 appearing
at Point 5 above, is represented by the diagram appearing in Fig. 4.3, whereas the
chain c2 is associated with the classC1;1

1̂
(4; 3), whose diagram is drawn in Fig. 4.4.

b b b b

b b b b

b

b

b

b

Figure 4.3. a chain with three pairs of corresponding singletons

b b

b b

Figure 4.4. a chain with two corresponding blocks

7. Fix k; N � 2 and let C � C(2k; N ) be a generic subset ofC(2k; N ). Let
q = 1 ; :::; 2k be an integer. We say that C has at most q degrees of freedom(or,
equivalently, that C has at mostq free indices) if there exists two subsetsD; E � [k]
such that jD j � 1 and the following two properties are veri�ed: (i) jD j+ jE j � q, and
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(ii) for every 2 xD = f xa : a 2 Dg 2 [N ]jD j and every yE = f yb : b 2 Eg 2 [N ]jE j ,
there exists at most one chainc as in (4.6) such that i a = xa for every a 2 D and
j b = yb for every b 2 E. Note that our de�nition contemplates the possibility that
E = ; , and in this case the role ofyE = ; is immaterial. In other words, the classC
has at most q degrees of freedom if everyc 2 C is completely determined by those
i a in the upper sub-chain such thata 2 D and thosej b in the lower sub-chain such
that b 2 E. For instance, it is easily seen the classC(2k; N ) has (exactly) 2k degrees
of freedom. Another example is the diagram in Fig.4.5, which corresponds to the
casek = 6, � = ff 1; 2g; f 3; 5g; f 4; 6gg and u = v = 1. One sees that, for everyN ,
specifying i 1, i 4 and j 4 completely identi�es a chain inside the classC1;1

� (12; N ),
which has therefore three degrees of freedom.3

bbbb b b

bbbb b b

Figure 4.5. a class with three degrees of freedom

The proof of the two (useful) results contained in the next statement is elemen-
tary and omitted.

Lemma 4.3. Fix k; N � 2.
(1) Let q = 1 ; :::; 2k. Assume that a generic classC � C(2k; N ) has at mostq

degrees of freedom. Then,jCj � N q.
(2) Let 1̂ = f [k]g be the one-block partition of[k]. Then, the class C1̂(2k; N )

contains only \constant" chains of the type (4.6) such that (i 1; i 2) = ( i a ; i a+1 ) =
(j x ; j x +1 ), for every a = 2 ; :::; k and everyx = 1 ; :::; k. It follows that jC1̂(2k; N )j =
N .

Lemma 4.3 will be used in the subsequent section.

4.3. Combinatorial upper bounds. We keep the notation introduced in the previous
section. The following statement, which is the key element for proving Proposition
4.1, contains the main combinatorial estimate of the paper.

Proposition 4.4. Fix k; N � 2, and let � = f B1; :::; B r g 2 P (k) be a partition
containing at least one block of cardinality� 2. Let the classC� (2k; N ) be de�ned as
at Point 4. of the previous section. Then, there exists a �nite constant �( k; � ) � 0,
depending only onk and � (and not on N ), such that

jC� (2k; N )j � �( k; � ) � N k � 1: (4.7)

Proof: We shall consider separately the two cases
A. For every v = 1 ; :::; r , jBv j � 2.
B. The partition � contains at least one singleton.

2As indicated by our notation, we regard xD and yE as vectors, respectively in [ N ]j D j and
[N ]j E j , by endowing D and E with the natural ordering induced by the ordering on [ k].

3Indeed, one has necessarily that i 1 = i 2 = i 3 = i 5 = j 1 = j 2 = j 3 = j 5 , i 4 = i 6 and j 4 = j 6 .
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Case A. When k = 2 ; 3, the only partition meeting the needed requirements is1̂.
According to Lemma 4.3-(2), jC1̂(2k; N )j = N , so that the claim is proved, and we
shall henceforth assume thatk � 4. Start by observing that r � k=2. Moreover,
the classC� (2k; N ) contains only chains such that at least one block in the upper
sub-chain corresponds to a block in the lower sub-chain, which yields in turn that

C� (2k; N ) =
r[

u;v =1

Cu;v
� (2k; N );

where we adopted the notation introduced at Point 5. of Section4.2. This implies
the crude estimate

jC� (2k; N )j �
rX

u;v =1

jCu;v
� (2k; N )j: (4.8)

According to Lemma 4.3-(1), it is now su�cient to prove that each class Cu;v
� (2k; N )

has at most 2r � 1 degrees of freedom: indeed, (4.8) together with the fact that
2r � 1 � k � 1 would imply relation ( 4.7), with �( k; � ) = r 2 � k2=4. Fix u; v 2
f 1; :::; r g. To prove that Cu;v

� (2k; N ) has at most 2r � 1 degrees of freedom, we
shall build two sets D; E � [k] as follows. For everys = 1 ; :::; r , choose an element
of the block Bs , and denote this element byas . Then, de�ne

D = f as : s = 1 ; :::; r g; E = Dnf av g;

where ǹ' denotes the di�erence between sets. We now claim that, for every xD =
f xa : a 2 Dg 2 [N ]jD j and every yE = f yb : b 2 Eg 2 [N ]jE j , there exists at most
one chainc 2 Cu;v

� (2k; N ) as in (4.6) such that i a = xa for every a 2 D and j b = yb

for every b 2 E. To prove this fact, suppose that such a chainc exists, and assume
that there exists another chain

c0 = ( i 0
1; i 0

2)( i 0
2; i 0

3):::(i 0
k ; i 0

1)( j 0
1; j 0

2)( j 0
2; j 0

3):::(j 0
k ; j 0

1)

verifying this property and such that c0 2 Cu;v
� (2k; N ). The following hold: (a) for

every s = 1 ; :::; r and every a 2 Bs , one has that i 0
a = xas = i as = i a , (b) for every

s 6= v and every a 2 Bs , j 0
a = yas = j as = j a and (c) for s = v and every a 2 Bv ,

j 0
a = j 0

av
= i 0

au
= xau = i au = j av = j a :

As a consequence,c0 = c. Since jD j + jE j = 2 r � 1, this concludes the proof of
Proposition 4.4 in the Case A.

Case B. We shall denote by S the collection of the singleton(s) of � , that is the
subset of [k] composed of those indicesa such that f ag 2 � . Note that jSj > 0
by assumption. We also write P for the collection of the indicesu 2 [r ] such that
jBu j � 2. Note that P is a subset of [r ], whereasS � [k]. Note also that the set
[r ]nP is the collection of all thosev 2 [r ] such that Bv is a singleton. Clearly,

jP j = r � j Sj �
k � j Sj

2
:

By exploiting the cyclic nature of sub-chains, we can alwaysassume, without loss
of generality, that S contains the singleton f kg. SinceP is not empty, this entails
that there exists at least one singleton of� that is adjacent from the right to a
block of cardinality at least two. Formally, this means that there existss� 2 S and
u� 2 P such that s� � 1 2 Bu � . We shall distinguish two cases

B1. The block Bu � contains two consecutive integers.



Universal Gaussian 
uctuations 365

B2. The block Bu � does not contain two consecutive integers.
(Proof under B1.) The situation of B1 is illustrated in Fig. 4.6, where k = 9,

� = f B1; :::; B7g = ff 1g; f 2g; f 3; 6; 7g; f 4g; f 5g; f 8g; f 9gg;

and one can takes� = 8, u� = 3, and the two consecutive integers inBu � are 6 and
7.

b bb bb b b

b bb bb b b

b b

b b

Figure 4.6. a singleton is adjacent to a 3-block with two consec-
utive elements

Since each element ofC� (2k; N ) is such that every singleton in a given sub-chain
corresponds to a block in the opposite sub-chain, we have that

C� (2k; N ) =
[

R2R

CR
� (2k; N ); (4.9)

where we adopted the same notation as at Point5. of Section 4.2, and the union
runs over the classR of all bijections R : U ! V such that both U and V contain
the set [r ]nP, and every pair (u; R(u)) is such that at least one of the two blocks
Bu and BR(u) is a singleton. This entails the estimate

jC� (2k; N )j �
X

R2R

jCR
� (2k; N )j: (4.10)

To conclude the proof, we shall show that every classCR
� (2k; N ) appearing in (4.10)

has at mostk � 1 degrees of freedom: indeed, this fact together with Lemma4.3-(1)
yields the desired conclusion (4.7), with the constant �( k; � ) = jRj (note that the
de�nition of R does not depend onN ) . To prove that CR

� (2k; N ) has at most k � 1
degrees of freedom, we de�ne two setsD; E � [k] as follows. For everys = 1 ; :::; r ,
choose an element of the blockBs, and denote this element byas. Then, de�ne

D = f as : s = 1 ; :::; r g; E = Dn ff au � g [ f as : s 2 [r ]nPgg:

In other words, E is obtained by subtracting from D the singleton(s) and the
representative element of the blockBu � , that is, of the block adjacent to f s� g.
We now want to prove that, for every xD = f xa : a 2 Dg 2 [N ]jD j and every
yE = f yb : b 2 Eg 2 [N ]jE j , there is at most one chainc 2 CR

� (2k; N ) as in (4.6)
such that i a = xa for every a 2 D and j b = yb for every b 2 E. To show this,
assume that such a chainc exists, and suppose that there exists another chain

c0 = ( i 0
1; i 0

2)( i 0
2; i 0

3):::(i 0
k ; i 0

1)( j 0
1; j 0

2)( j 0
2; j 0

3):::(j 0
k ; j 0

1)

verifying this property and such that c0 2 CR
� (2k; N ) and c0 6= c. By construction

of the sets D and E, all the indices composing the upper chain are completely
determined by the choice ofxD , whereas the choice ofyE determines the indices
j x such that either x is a singleton orx 2 Bv for some blockBv of cardinality � 2
and such that v 6= u� . This entails in turn that, necessarily since c0 6= c, one has
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that j 0
x 6= j x for every x 2 Bu � . This is absurd. Indeed, sinceBu � contains two

consecutive integers, one has thatj 0
x = j 0

x +1 and j x = j x +1 for every x 2 Bu � ; it
follows that, since f s� g is adjacent from the right to Bu � and therefores� � 1 2 Bu �

,
j 0

x = j 0
s� � 1 = j 0

s� = ys� = j s� = j s� � 1 = j x ;

which is indeed a contradiction. Since

jD j + jE j = r + jP j � 1 �
k � j Sj

2
+ jSj +

k � j Sj
2

� 1 = k � 1;

the proof is concluded.

(Proof under B2.) SinceBu � does not contain two consecutive integers andjBu � j �
2, we deduce the existence of a blockBu 2 � , which is di�erent from Bu � and
f s� g, enjoying the following \interlacement property": there e xists an integer a 2
[k] such that a + 1 < s � � 1, a 2 Bu � and a + 1 2 Bu . The block Bu can
be either a singleton or a block with two or more elements. This situation is
illustrated in Fig. 4.7, corresponding to the casek = 8 and � = f B1; :::; B5g =
ff 1; 2g; f 3; 5g; f 4; 6g; f 7g; f 8gg. Here, s� = 7, Bu � = B3 = f 4; 6g, Bu = B2 = f 3; 5g
and a = 4.

bb bb bb b b

bb bb bb b b

Figure 4.7. a singleton is adjacent to a 2-block with no consecu-
tive elements

The crucial remark is now that, for a chain c as in (4.6) with partition � , one has
that i s� = i a+1 . Indeed,a and s� � 1 both belong toBu � , and therefore (i s� � 1; i s� ) =
(i a ; i a+1 ). Since a + 1 2 Bu , this fact yields in particular that, i x = i s� for every
x 2 Bu , that is, the left indices associated with Bu are completely determined by
the choice of i s� . By the same argument, one shows thatj s� = j a+1 . The rest of
the proof is similar to the case B1. First, we observe that therepresentation (4.9),
with R de�ned exactly as for B1, continues to be true, from which we deduce the
estimate (4.10). It is now su�cient to show that each class CR

� (2k; N ) has at most
k � 1 degrees of freedom. To do this, one chooses a representative element from
each blockBs 2 � , noted as, and then de�nes the sets

D = f as : s = 1 ; :::; r; s 6= ug; E = Dn f as : s 2 [r ]nPg;

that is, D is built by selecting one element from each block of� , except for Bu ,
and E is obtained by subtracting from D all the remaining indices a such that f ag
is a singleton of� . One has that

jD j + jE j � k � 1: (4.11)

Indeed, jD j = r � 1 = jP j+ jSj� 1 � k �j Sj
2 + jSj� 1, and then one has to consider two

cases: either (a)Bu is a singleton, from which it follows that jE j = jD j � (jSj � 1) �
k �j Sj

2 , or (b) Bu is not a singleton, yielding jE j = jD j � j Sj � k �j Sj
2 � 1. In these
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two cases, (4.11) is then in order. To conclude, it remains to show that, for every
xD = f xa : a 2 Dg 2 [N ]jD j and every yE = f yb : b 2 Eg 2 [N ]jE j , there is at most
one chainc 2 CR

� (2k; N ) as in (4.6) such that i a = xa for every a 2 D and j b = yb

for every b 2 E. To see this, assume that such a chainc exists, and observe that,
due to the above considerations, the choice ofxD completely determines the upper
sub-chain of c, as well as those indicesj x in the lower sub-chain such that f xg is
a singleton of � or (whenever Bu is not a singleton) such that x 2 Bu . Since the
remaining left indices in the lower sub-chain ofc are determined by the choice of
yE , the claim is proved. In view of (4.11), this shows that CR

� (2k; N ) has at most
k � 1 free indices. This concludes the proof of Proposition4.4.
As an illustration of the above arguments, one can consider the diagram in Fig. 4.8,
that is constructed from the situation in Fig. 4.7 by selecting U = V = f 2; 3; 4; 5g
and R(2) = 4, R(3) = 5, R(4) = 2 and R(5) = 3. In particular, it is easily seen
that �xing i 4, i 7 and i 8 completely identi�es a chain c inside the classCR

� (16; N ),
that has therefore three degrees of freedom.

bb bb bb b b

bb bb bb b b

Figure 4.8. a class with three free indices

4.4. Proofs of Proposition 4.1 and Theorem 1.1. Proof of Proposition 4.1: We take
up the notation introduced in Section 4.1. In view of Proposition 4.4, in order to
prove relation (4.5) (and therefore Proposition 4.1), it is su�cient to show that, for
every � 2 Q (k), each pair (i ; j ) 2 GN (� ) is such that the corresponding chain
(i 1; i 2):::(i k ; i 1)( j 1; j 2):::(j k ; j 1) is an element of C� (2k; N ), from which one de-
duces jGN (� )j � j C� (2k; N )j � �( k; � )N k � 1. To show the desired property, it
is enough to prove that, for every pair (i ; j ) 2 AN (� ) � AN (� ) such that the chain
(i 1; i 2):::(i k ; i 1)( j 1; j 2):::(j k ; j 1) is not in C� (2k; N ), one has that (i ; j ) 62GN (� ).
By de�nition of C� (2k; N ), we have to examine two cases. Start by considering
a partition � 2 Q (k) not containing any singleton: if ( i ; j ) 2 AN (� ) � AN (� ) is
such that (i 1; i 2):::(i k ; i 1)( j 1; j 2):::(j k ; j 1) 62C� (2k; N ), then the random variables
X i a i a +1 indexed by the upper sub-chain are independent of those indexed by the
lower sub-chain, and consequently

E(X i 1 i 2 : : : X i k i 1 X j 1 j 2 : : : X j k j 1 ) = E(X i 1 i 2 : : : X i k i 1 )E (X j 1 j 2 : : : X j k j 1 );

yielding (i ; j ) 62GN (� ). On the other hand, if � 2 Q (k) contains a singleton and
if ( i ; j ) is such that (i 1; i 2):::(i k ; i 1)( j 1; j 2):::(j k ; j 1) 62C� (2k; N ), then there exists
a = 1 ; :::; k such that X i a i a +1 or X j a j a +1 is independent of all the other variables
indexed by the elements of the chain. This gives

E(X i 1 i 2 : : : X i k i 1 X j 1 j 2 : : : X j k j 1 ) = E(X i 1 i 2 : : : X i k i 1 )E (X j 1 j 2 : : : X j k j 1 ) = 0 ;

thus proving the required property ( i ; j ) 62GN (� ). The proof is �nished.
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Proof of Theorem 1.1-(i) : By virtue of the representation (1.12){( 1.13) and of
Proposition 4.1, one sees that, for every 2� k1 < ::: < k m , the limit in distribution
of the vector

�
Tr( X N ); Tr( X k1

N ) � E
h
Tr( X k1

N )
i
;:::; Tr( X km

N ) � E
h
Tr( X km

N )
i �

coincides with the limit in distribution of

0

B
@N � 1=2

NX

i =1

X ii ; N � k 1
2

X

i 2 D ( k 1 )
N

X i 1 i 2 X i 2 i 3 � � � X i k 1 i 1 ; : : : ;

N � k m
2

X

i 2 D ( k m )
N

X i 1 i 2 X i 2 i 3 � � � X i k m i 1

1

C
A ;

so that the desired conclusion follows from Corollary3.5.
Proof of Theorem 1.1-(ii) : For the simplicity of exposition, we assume thatk1 � 2,
the proof when k1 = 1 being completely similar and easier. We have, using the
notation D (k )

N introduced in the beginning of Section1.3 and using (1.13),
�
�
�
�
�
E

2

4'

0

@Tr( X k1
N ) � E [Tr( X k1

N )]
q

Var(Tr( X k1
N ))

; : : : ;
Tr( X km

N ) � E [Tr( X km
N )]

q
Var(Tr( X km

N ))

1

A

3

5

� E
�
'

�
Zk1p

k1
; :::;

Zkmp
km

�� �
�
�
�
�

� AN + BN ;

where, by writing Var(Tr( X k j

N )) = Cj (N ),

AN =

�
�
�
�
�
E

2

6
4'

0

B
@

1

C1(N )1=2N
k 1
2

X

i 2 D ( k 1 )
N

X i 1 i 2 : : : X i k 1 i 1 ; : : : ;

1

Cm (N )1=2N
k m

2

X

i 2 D ( k m )
N

X i 1 i 2 : : : X i k m i 1

1

C
A

3

7
5 � E

�
'

�
Zk1p

k1
; :::;

Zkmp
km

�� �
�
�
�
�

and

BN =
�
�
�
�
�
E

2

6
4'

0

B
@

1

C1(N )1=2N
k 1
2

X

i 2 D ( k 1 )
N

X i 1 i 2 : : : X i k 1 i 1 ; : : : ;

1

Cm (N )1=2N
k m

2

X

i 2 D ( k m )
N

X i 1 i 2 : : : X i k m i 1

1

C
A

3

7
5

� E

2

4'

0

@Tr( X k1
N ) � E [Tr( X k1

N )]
q

Var(Tr( X k1
N ))

; : : : ;
Tr( X km

N ) � E [Tr( X km
N )]

q
Var(Tr( X km

N ))

1

A

3

5

�
�
�
�
�
:
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By combining Corollary 2.9with the computations made in the proof of Proposition
3.1, we immediately get that AN = O(N � 1=4). For BN , we can write

jBN j � K k' 0k1

mX

j =1

E

2

6
4N �

k j
2

�
�
�
�
�
�
�

X

i 62D
( k j )

N

�
X i 1 i 2 : : : X i k j i 1 � E [X i 1 i 2 : : : X i k j i 1 ]

�

�
�
�
�
�
�
�

3

7
5

� K k' 0k1

mX

j =1

vu
u
u
u
t Var

0

B
@N �

k j
2

�
�
�
�
�
�
�

X

i 62D
( k j )

N

�
X i 1 i 2 : : : X i k j i 1 � E [X i 1 i 2 : : : X i k j i 1 ]

�
;

�
�
�
�
�
�
�

1

C
A ;

for some constantK not depending on N , so that BN = O(N � 1=2) = O(N � 1=4)
by Proposition 4.1.

5. Almost sure central limit theorems (ASCLTs)

5.1. Preliminaries: a result by Ibragimov and Lifshits. For x; y 2 Rm (m � 1 �xed),
we write hx; y i = x1y1 + : : : + xm ym (resp. jxj =

p
hx; x i ) to indicate the inner

product of x and y (resp. the norm of x). The following result, due to Ibragimov
and Lifshits, plays a crucial role in the proof of Theorem1.5.

Theorem 5.1 (SeeIbragimov and Lifshits , 1999). Let G = f Gn : n � 1g be a se-
quence ofRm -valued random variables converging in distribution towards a random
variable G1 , and set

� N (G; t) =
1

logN

NX

n =1

1
n

�
ei ht;G n i � E [ei ht;G 1 i ]

�
; t 2 Rm : (5.1)

If, for all r > 0,

sup
j t j� r

1X

N =2

Ej� N (G; t)j2

N logN
< 1 ; (5.2)

then, almost surely, for all continuous and bounded function ' : Rm ! R, we have

1
logN

NX

n =1

' (Gn )
n

�! E [' (G1 )]; as N ! 1 : (5.3)

Remark 5.2. (1) If E j� N (G; t)j2 = O(1=logN ) uniformly in t on bounded sets,
then (5.2) is automatically satis�ed.

(2) SeeBercu et al. (2010) for several applications of Theorem5.1 in the frame-
work of ASCLTs on Wiener space.

The following useful result allows to deal with sequences ofrandom variables
having the form of a sum of two terms, one of which vanishes in the mean-square
sense.

Lemma 5.3. Let G = f Gn : n � 1g be a sequence ofRm -valued random variables
converging in distribution towards a random variableG1 , and satisfying in addi-
tion ( 5.2). Let R = f Rn : n � 1g be a sequence ofRm -valued random variables
converging in L 2(
) to R1 = 0 , and such that

1X

N =2

1

N log2 N

NX

n =1

1
n

E jRn j2 < 1 : (5.4)
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Then

sup
j t j� r

1X

N =2

E
�
�� N (G + R; t )

�
�2

N logN
< 1 ;

where G + R = f Gn + Rn : n � 1g and � N (G + R; t ) is de�ned according to (5.1).

Remark 5.4. If E jRn j2 = O(n� a), for some a > 0, then (5.4) is automatically
satis�ed.

Proof of Lemma 5.3. Since � N (G + R; t ) =
P N

n =1
1
n

�
ei ht;G n + R n i � E [ei ht;G 1 i ]

�
,

one has that

� N (G + R; t ) = � N (G; t) +
1

logN

NX

n =1

1
n

ei ht;G n i � ei ht;R n i � 1
�
;

so that, by using jx + yj2 � 2jxj2 + 2 jyj2, Jensen inequality and
P N

n =1
1
n � logN as

N ! 1 , there exists a constantc > 0 (independent ofN ) such that, for all N � 2,

E j� N (G + R; t )j2 � 2E j� N (G; t)j2 +
c

logN

NX

n =1

1
n

E
�
�ei ht;R n i � 1

�
�2

:

Sincejei ht;x i � 1j � j t jj xj, we deduce

E j� N (G + R; t )j2 � 2E j� N (G; t)j2 +
cjt j2

logN

NX

n =1

1
n

E jRn j2:

The desired conclusion follows.

5.2. Proof of Theorem 1.5. For the sake of brevity, we shall prove Theorem1.5 only
for powers ki strictly greater than one. The general case (ki � 1) can be deduced
from similar arguments.

Throughout this section, we �x integers m � 1 and km > : : : > k 1 � 2. For
N � 1 and k � 2, we denote (as above) byD (k )

N the collection of all vectors
i = ( i 1; : : : ; i k ) 2 f 1; : : : ; N gk such that all pairs (i a ; i a+1 ), a = 1 ; : : : ; k, are di�erent
(with the convention that i k+1 = i 1), that is, i 2 D (k )

N if and only if ( i a ; i a+1 ) 6=
(i b; i b+1 ) for every a 6= b and 1 � i a � N for every a = 1 ; :::; k. Let

JN (k) = N � k=2
X

i 2 D ( k )
N

X i 1 i 2 X i 2 i 3 : : : X i k i 1 ; and L N (k) =
JN (k)

p
E [JN (k)2]

:

Observe that E [JN (k)] = E [L N (k)] = 0 and Var[ L N (k)] = 1. The proof of Theorem
1.5 is divided into several steps.

Step 1: bounding E[L n (k)L p(k)]. Fix k � 2. We shall prove that there exists a
constant Ck > 0 such that, for all n; p � 1,

E [L n (k)L p(k)] � Ck

r
n ^ p
n _ p

: (5.5)

By symmetry, we assume without loss of generality thatp � n. If i 2 D (k )
n and

j 2 D (k )
p n D (k )

n , then

E[X i 1 i 2 : : : X i k i 1 X j 1 j 2 : : : X j k j 1 ] = 0;
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indeed, if i 2 D (k )
n and j 2 D (k )

p nD (k )
n , then necessarily there existsa = 1 ; :::; k such

that j a > n , and therefore the centered random variableX j a j a +1 is independent of

X i b i b+1 for every b = 1 ; :::; k, and also (by the de�nition of D (k )
p ) independent of

X j s j s +1 for every s 6= a. It follows that

E [Jn (k)Jp(k)] =
�

1
np

� k=2 X

i 2 D ( k )
n

X

j 2 D ( k )
p

E[X i 1 i 2 : : : X i k i 1 X j 1 j 2 : : : X j k j 1 ]

=
�

1
np

� k=2 X

i 2 D ( k )
n

X

j 2 D ( k )
n

E[X i 1 i 2 : : : X i k i 1 X j 1 j 2 : : : X j k j 1 ]

=
�

n
p

� k=2

E
�
Jn (k)2�

:

Thus E[L n (k)L p(k)] =
�

n
p

� k=2 q
E [J n (k )2 ]
E [J p (k )2 ] : But we have E[Jn (k)2] ! k as n ! 1 ,

see indeed (3.9). As a consequence, we immediately get the existence of a constant
Ck such that (5.5) is in order.

Step 2: showing that supj t j� r
P 1

N =2
E j � N (L;t ) j 2

N log N < 1 . Fix k � 2. Let f k;N be
as in (3.1). Set gk;N = 1p

E [J N (k )2 ]
f k;N . We obviously haveL N (k) = Qk (gk;N ; X ).

Combining (3.9) and (3.6), we immediately get that kgk;N ?r gk;N k2k � 2r = O(N � 1=2),
for all r = 1 ; : : : ; k � 1.

From now on, for simplicity write L N =
�
L N (k1); : : : ; L N (km )

�
, N � 1, and

g(t) = e�j t j 2 =2, t 2 Rm . Corollary 2.9 yields that
�
�
�E [ei ht;L N i ] � g(t)

�
�
� = O(N � 1=4): (5.6)

On the other hand, for all r = 1 ; : : : ; k � 1, we can write

k(gk;N � gk;M ) ?r (gk;N � gk;M )k2k � 2r

= kgk;N ?r gk;N + gk;M ?r gk;M � gk;N ?r gk;M � gk;M ?r gk;N k2k � 2r

� k gk;N ?r gk;N k2k � 2r + kgk;M ?r gk;M k2k � 2r + 2 kgk;N ?r gk;M k2k � 2r :

But

kgk;N ?r gk;M k2k � 2r =
q 


gk;N ?k � r gk;N ; gk;M ?k � r gk;M
�

2r

�
q

kgk;N ?k � r gk;N k2r

q
kgk;M ?k � r gk;M k2r

�
1
2

�
kgk;N ?k � r gk;N k2r + kgk;M ?k � r gk;M k2r

�
:

Consequently,









gk;N � gk;Mp
2

?r
gk;N � gk;Mp

2










2k � 2r
�

kgk;N ?r gk;N k2k � 2r + kgk;M ?r gk;M k2k � 2r = O(N � 1=2);

asN ! 1 , uniformly on M � N and r = 1 ; :::; k � 1, that is, there exists a constant
Ck > 0 (depending solely onk) such that, for every N ,

sup
1� r � k � 1 ; M � N










gk;N � gk;Mp
2

?r
gk;N � gk;Mp

2










2k � 2r
�

Ck

N
:
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Since Var
h

L N (k ) � L M (k )p
2

i
= 1 � E [L N (k)L M (k)] for all k, by using Corollary 2.9

with
Qi

M;N (X ) =
�
L N (ki ) � L M (ki )

�
=
p

2 � 2E [L N (ki )L M (ki )]

and

' (z1; : : : ; zm ) =

exp
� p

1 � E [L N (k1)L M (k1)]t1z1 + : : : +
p

1 � E [L N (km )L M (km )]tm zm

�
;

we get that

�
�
�
�E

�
ei

D
t; L N � L Mp

2

E �

� exp
�

�
�
1 � E [L N (k1)L M (k1)]

� t2
1

2
� : : : �

�
1 � E [L N (km )L M (km )]

� t2
m

2

� �
�
�
�

(5.7)

is O(N � 1=4) as N ! 1 , uniformly on M � N . On the other hand, combining (5.5)
with

�
�e� x 2 =2 � e� (1 � � )x 2 =2

�
� � �x 2=2 for all x 2 R and � � 0, we get that there

exists Cr > 0 such that, for all t 2 Rm with jt j � r ,
�
�
�
�g(t) � exp

�
�

�
1 � E [L N (k1)L M (k1)]

� t2
1

2
� : : : �

�
1 � E [L N (km )L M (km )]

� t2
m

2

� �
�
�
�

� Cr

r
N ^ M
N _ M

: (5.8)

De�ne � N (L; t ) according to (5.1), with L 1 � N m (0; I m ). For jt j � r , we have,
due to (5.6)-(5.7)-(5.8):

E j� N (L; t )j2

=
1

log2 N

NX

n;p =1

1
np

E
h�

ei ht;L n i � g(t)
��

e� i ht;L p i � g(t)
� i

=
1

log2 N

NX

n;p =1

1
np

h�
E

�
ei ht;L n � L p i � � g2(t)

�
� g(t)

�
E

�
ei ht;L n i � � g(t)

�

� g(t)
�

E
�
e� i ht;L p i � � g(t)

�i

=
1

log2 N

NX

n;p =1

1
np

��
E

�
ei

p
2

D
t;

L n � L pp
2

E �
� g(

p
2t)

�
� g(t)

�
E

�
ei ht;L n i � � g(t)

�

� g(t)
�

E
�
e� i ht;L p i � � g(t)

�i
:

�
Cr

log2 N

NX

n;p =1

1
np

� r
n ^ p
n _ p

+
1

n1=4
+

1
p1=4

�
:

It is obvious that

1

log2 N

NX

n;p =1

1
np

�
1

n1=4
+

1
p1=4

�
= O

�
1

logN

�
as N ! 1 :
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Moreover,

1

log2 N

NX

n;p =1

1
np

r
n ^ p
n _ p

�
2

log

2

N
NX

n =1

1
n

p
n

nX

p=1

1
p

p

�
c

log2 N

NX

n =1

1
n

= O
�

1
logN

�
:

Hence, supj t j� r Ej� N (L; t )j2 = O(1=logN ), implying immediately

sup
j t j� r

1X

N =2

Ej� N (L; t )j2

N logN
< 1 : (5.9)

Step 3: using Lemma 5.3. Set TN (k) = J N (k )p
k

. Using (3.9) and elementary calcula-
tions, it is immediate that

E jTN (k) � L N (k)j2 =

�
�E

�
JN (k)2

�
� k

�
�2

k
� p

k +
p

E [JN (k)2]
� 2 �

C2
k

k2 N 2 ;

so that eRN := TN � L N veri�es condition ( 5.4) of Lemma 5.3. Since (5.9) is also

in order, we deduce that supj t j� r
P 1

N =2
E j � N (T;t ) j 2

N log N < 1 , which in turns implies

sup
j t j� r

1X

N =2

Ej� N (J; t )j2

N logN
< 1 : (5.10)

Step 4: using Lemma 5.3 once again. For any k � 2, set SN (k) = Tr( Ak
N ) �

E
�
Tr( Ak

N )
�
. We have

SN (k) = N � k
2

NX

i 1 ;:::;i k =1

�
X i 1 i 2 X i 2 i 3 � � � X i k i 1 � E [X i 1 i 2 X i 2 i 3 � � � X i k i 1 ]

�

= JN (k) + RN (k);

with

RN (k) = N � k
2

X

i 62D ( k )
N

�
X i 1 i 2 X i 2 i 3 � � � X i k i 1 � E [X i 1 i 2 X i 2 i 3 � � � X i k i 1 ]

�
:

For all k � 2, we haveE jRN (k)j2 = O(1=N), see (4.1). Hence, Lemma5.3 together

with ( 5.10) imply that sup j t j� r
P 1

N =2
E j � N (S;t ) j 2

N log N < 1 . To �nish the proof of
Theorem 1.5, it su�ces to apply Theorem 5.1.
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