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Abstract. Since the seminal work of Dawson and Perkins, mutually catalytic ver-
sions of superprocesses have been studied frequently. In this article we combine two
approaches extending their ideas: the approach of adding correlations to the driv-
ing noise of the system is combined with the approach of obtaining new processes
by letting the branching rate tend to infinity. The processes are considered on a
countable site space.

We introduce infinite rate symbiotic branching processes which surprisingly can
be interpreted as generalized voter processes with additional strength of opinions.
Since many of the arguments go along the lines of known proofs this article is
written in the style of a review article.

1. Introduction

Going back to the seminal work of Watanabe (1968) and Dawson (1978), the
subject of measure-valued diffusion processes arising as scaling limits of branching
particle systems has attracted the interest of many probabilists. Many tools had to
be developed to study the fascinating properties of the Dawson/Watanabe process
(also called superprocess or super-Brownian motion) and its relatives. Characteriza-
tions and constructions of the process via a Laplace transform duality to non-linear
parabolic partial differential equations, infinitesimal generator and corresponding
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martingale problem, the pathwise lookdown construction of Donnelly and Kurtz
(1996, 1999) or Le Gall’s Brownian snake construction based on the Ray-Knight
theorems (see the overview Le Gall, 1999) led to many deep results. Much of
the analysis is based on the branching property, i.e. the sum of two independent
super-Brownian motions X1

t , X
2
t is equal in distribution to a single super-Brownian

motion started at X1
0 +X2

0 .

In the early 90s further directions became popular. Super-Brownian motion
was found to be a universal scaling limit not only of branching systems but also
of interacting particle systems such as voter process and its modifications (see for
instance Cox et al., 2000, Cox and Perkins, 2005). Furthermore, instead of consid-
ering plainly super-Brownian motion, interactions were introduced. Tools such as
Dawson’s generalized Girsanov theorem Dawson (1978) have been successfully ap-
plied in various contexts. Here, we will be mostly interested in variants of catalytic
super-Brownian motion, i.e. super-Brownian motion with underlying branching
mechanism depending on a catalytic random environment. As long as the environ-
ment is fixed, a good deal of the analysis can still be performed with techniques
developed for the super-Brownian motion. More delicately, taking into account
connections to stochastic heat equations, Dawson/Perkins introduced a mutually
catalytic superprocess (see Dawson and Perkins, 1998). Their mutually catalytic
branching model on the continuous site space R consists of two super-Brownian mo-
tions each being the catalyst of branching for the other. The model was described
via stochastic heat equations. They considered

{

∂
∂tut(x) = 1

2∆ut(x) +
√

γut(x)vt(x)W
1
t (dt, dx), t ≥ 0, x ∈ R,

∂
∂tvt(x) = 1

2∆vt(x) +
√

γut(x)vt(x)W
2
t (dt, dx), t ≥ 0, x ∈ R,

driven by two independent white noises Ẇ 1, Ẇ 2 on R+×R. Here, ∆ denotes the one
dimensional Laplacian. The mutually catalytic interaction of two super-Brownian
motions has one particular drawback: the branching property is destroyed so that
many of the previously known tools collapse. Fortunately, some ideas borrowed from
the study of interacting particle systems and interacting diffusion models could be
applied successfully due to the symmetric nature of the model. In particular, a self-
duality that extends the linear system duality known for interacting particle systems
could be established and utilized to prove uniqueness and longterm properties.
Besides the above continuous model, the mutually catalytic model on the lattice
was constructed and studied by Dawson and Perkins as well.

This article, which is focused on spatial branching models on discrete space, is
motivated by two recent developments. First, in the series of papers Klenke and
Mytnik (2010, 2012b,a) the effect of sending the branching rate γ to infinity was
studied in the discrete space mutually catalytic branching model. The resulting
infinite rate mutually catalytic branching model is one of the rare tractable spatial
models with finite 2 − ε moments but infinite 2nd moment forcing the system to
have critical scaling behavior.
Secondly, Etheridge and Fleischmann (2004) introduced the following generalization
of the Dawson-Perkins model. They considered the mutually catalytic branching
model with correlated driving noises which, on the level of a branching system
approximation, corresponds to a two type system of branching particles with cor-
related branching mechanism. They called their model symbiotic branching model
in contrast to the mutually catalytic branching model of Dawson/Perkins that
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appears as a special case for zero correlations. We will use equally the name sym-
biotic branching and mutually catalytic branching with correlations. Correlating
the branching mechanism might seem artificial on first view. On second view one
observes that the extremal correlations lead to well-known models from the the-
ory of interacting diffusion models: the stepping stone model with applications in
theoretical biology and a parabolic Anderson model with applications in statistical
physics. As those models have very different path behavior one could expect phase-
transitions occurring when changing the correlations. On the level of moments
those phase transitions have been revealed recently in Blath et al. (2011): there is
a precise transition for 2nd moments when the correlation parameter changes from
negative to positive.

The main result of this article, formulated here in a slightly simplified version,
is the following theorem which should be viewed as the natural combination of the
two aforementioned developments. In particular, the theorem below extends results
from Klenke and Mytnik (2012a) to the case of “correlated (symbiotic) branching”.

Theorem 1.1. Suppose % ∈ (−1, 1) is a parameter and (uγt , v
γ
t )t≥0 is the unique

non-negative weak solution to the symbiotic branching model on the lattice defined
by

{

dut(k) = ∆ut(k) dt+
√

γvt(k)ut(k) dB
1
t (k), k ∈ Zd,

dvt(k) = ∆vt(k) dt+
√

γvt(k)ut(k) dB
2
t (k), k ∈ Zd.

(1.1)

Here, ∆ denotes the discrete Laplacian on Zd

∆f(k) =
∑

|i−k|=1

1

2d
(f(i) − f(k))

and the driving Gaussian process {B1
· (k), B

2
· (k)}k∈Zd has correlation structure

E
[

B1
t (k)B

1
t (j)

]

= δ0(k − j)t,

E
[

B2
t (k)B

2
t (j)

]

= δ0(k − j)t,

E
[

B1
t (k)B

2
t (j)

]

= %δ0(k − j)t.

(1.2)

Additionally, assume that the non-negative initial conditions (uγ0 , v
γ
0 ) = (U0, V0)

do not depend on γ, satisfy a minor growth condition (for the precise definitions
see (4.2) and Section 3.1.1) and also

(U0(k), V0(k)) ∈ E :=
{

(y1, 0) : y1 ≥ 0
}

∪
{

(0, y2) : y2 ≥ 0
}

⊂ R2

for all k ∈ Zd.

Then (uγ , vγ) converges, as γ tends to infinity, weakly in the Meyer-Zheng
“pseudo-path” topology (introduced in Meyer and Zheng, 1984), to a limiting RCLL
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process (Ut, Vt)t≥0 taking values in E which is the unique weak solution to the sys-
tem of Poissonian integral equations

Ut(k) = U0(k) +

∫ t

0

∆Us(k) ds

+

∫ t

0

∫ Is(k)

0

∫

E

(

y2Vs−(k) + (y1 − 1)Us−(k)
)

(N −N ′)({k}, d(y1, y2), dr, ds),

Vt(k) = V0(k) +

∫ t

0

∆Vs(k) ds

+

∫ t

0

∫ Is(k)

0

∫

E

(

y2Us−(k) + (y1 − 1)Vs−(k)
)

(N −N ′)({k}, d(y1, y2), dr, ds),
(1.3)

for t ≥ 0 and k ∈ Zd. Here, N is a Poisson point measure on Zd×E×(0,∞)×(0,∞)
with intensity measure

N ′({k}, d(y1, y2), dr, ds) = ν%(d(y1, y2)) dr ds, ∀k ∈ Zd,

where

ν%(d(y1, y2)) =















p(%)2
√

1 − %2 y
p(%)−1
1

π
(

y
p(%)
1 −1

)2 du : y2 = 0,

p(%)2
√

1 − %2 y
p(%)−1
2

π
(

y
p(%)
2 +1

)2 dv : y1 = 0,

p(%) =
π

π
2 + arctan

(

%√
1−%2

) ,

and, for any k ∈ Zd,

It(k) =











∆Vt−(k)
Ut−(k) : Ut−(k) > 0,

∆Ut−(k)
Vt−(k) : Vt−(k) > 0,

0 : Ut−(k) = Vt−(k) = 0.

Remark 1.2. Theorem 1.1 will be proved in Section 4 for more general countable
state-space S instead of Zd and Q-matrix A instead of ∆. The proof of the theorem
follows from Theorems 4.4 and 4.15.

The parameter % only occurs in the measure ν% so that it does not surprise that
proofs go along the lines of Klenke and Mytnik (2012a) replacing in their Poissonian
equations p(0) = 2 by some p(%) > 1. The striking fact of the generalization to
% 6= 0 is that it allows to understand (U, V ) as a family of generalized voter processes
with the standard voter process appearing for % = −1.

The generalized voter process interpretation goes as follows: Suppose at each site
k ∈ Zd lives a voter with one of two possible opinions. Their opinions additionally
have a non-negative strength. Mathematically speaking, the type of opinion is
determined by the non-zero coordinate of the opinion-vector (recall the definition
of E) and the strength is determined by the absolute value, i.e.

• (u, 0) ∈ E codes opinion 1 of strength u,
• (0, v) ∈ E codes opinion 2 of strength v.
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Formulated like this, the standard voter process only takes values (1, 0) and (0, 1)
since all opinions do have a fixed strength, say 1. If u (resp. v) is large, we say the
opinion is strong, otherwise weak.
Voters change dynamically their opinions and their strength according to the next
two possibilities:

• Change of opinion strength only: Suppose that N has an atom at
(k, (y1, 0), s, r). Then, by definition of the two integrands, the Poissonian
integrals produce two-dimensional jumps of the form

0

(

Vs−(k)

Us−(k)

)

+ (y1 − 1)

(

Us−(k)

Vs−(k)

)

so that, added to the current state of the system, the state of the system
at site k changes according to

(

Us−(k)

Vs−(k)

)

7→ y1

(

Us−(k)

Vs−(k)

)

.

If before the jump the voter had opinion 1 of strength u, the change is
(u, 0) 7→ (y1u, 0) and (0, v) 7→ (0, y1v) if the voter had opinion 2 before.
Hence, if (y1, 0) is chosen by the basic jump measure ν%, only the strength
of the opinion changes but not the type.

• Change of opinion and its strength: Suppose that N has an atom
at (k, (0, y2), s, r). Then, by definition of the integrands, the Poissonian
integrals produce jumps of the form

y2

(

Vs−(k)

Us−(k)

)

+ (0 − 1)

(

Us−(k)

Vs−(k)

)

so that, added to the current state of the system, the state of the system
at site k changes according to

(

Us−(k)

Vs−(k)

)

7→ y2

(

Vs−(k)

Us−(k)

)

.

If before the jump the voter had opinion 1 of strength u, the change is
(u, 0) 7→ (0, y2u) and (0, v) 7→ (y2v, 0) if the voter had opinion 2 before.
Hence, if (0, y2) is chosen by the basic jump measure ν%, the voter changes
strength and type of opinion.

Remark 1.3. We show in Section 4.5 that Theorem 1.1 extends naturally to % = −1

when ν% is replaced by δ(0,1). If additionally (U0, V0) ∈ {(0, 1), (1, 0)}Z
d

, then
solutions to (1.3) give standard voter processes. Note that in this case only the
second type of changes occurs since N only has atoms at (k, (0, 1), s, r). Hence, the
strength of the opinion does not change. In particular, we only see opinion changes
from (1, 0) to (0, 1) and vice versa.

Finally, we should also give an interpretation to the rates It(k): due to the
definition of It(k) and ∆, the rate of change for the voter at site k is high if the
strength of the opinions of his neighbors of different opinion is high compared to
his opinion. In particular, voters with weak conviction tend to change quicker their
opinions than voters with strong conviction.

The result of Theorem 1.1 might look frightening to the reader not familiar
with interacting diffusion processes and/or jump diffusions. However, once the
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connection to the results of Klenke and Mytnik (2012a) and Blath et al. (2011)
is understood, the proofs of the theorem go along the lines of Klenke and Mytnik
(2012a). Therefore, we decided to write this article in the form of a review article
explaining in depth the background. We do not give many detailed proofs but in-
stead give more detailed calculations to explain the origins of (1.3). In the following
we explain carefully

• the background of catalytic branching processes,
• definitions, existence, uniqueness and tools for (1.1),
• what is known on the longtime behavior of (1.1) to motivate the choice of
ν% in the theorem via planar Brownian motions exiting a cone,

• more details on (1.3) and (alternative) constructions of (U, V ),
• concepts and definitions for jump diffusions.

The background and connections to well-known stochastic processes from the lit-
erature will be explained exhaustively in Section 2. Two different routes from
known models to mutually catalytic branching models are disclosed: the original
motivation of Dawson/Perkins originating from catalytic super-Brownian motion
and symbiotic branching as unifying model for some interacting diffusions. As a
final motivation the connection of stepping stone processes and voter processes
is recalled. Section 3 is devoted to an overview of precise definitions, existence
and uniqueness results and longtime properties for finite rate symbiotic branching
processes. In particular, the second moment transitions are discussed in detail.
Proofs are cooked down to the main ingredients. Finally, in Section 4 the infinite
rate symbiotic branching processes are introduced and reinterpreted as generalized
voter processes in the very end. Additionally, a brief summary of jump diffusions
is included to the appendix.

2. Background and Motivation

2.1. From Superprocesses to Mutually Catalytic Branching. Being a major subject
of probability theory, measure-valued diffusions, or superprocesses, such as super-
Brownian motion and the Fleming-Viot process have been well studied during the
last three decades. Important properties of superprocesses have been proved and
connections to other areas of mathematics such as partial differential equations
have been established. For a detailed exposition of the subject the reader is referred
to Dawson (1993), Perkins (2002) and Etheridge (2000).

Here we introduce briefly super-random walks - the spatially discrete analogues
of super-Brownian motion. Studying these processes gave a strong motivation to
investigate spatial branching processes with interactions, and in particular, mutu-
ally catalytic branching processes on discrete space - the main theme of this article.
To introduce super-random walks, we start with the following approximating par-
ticle system. Assume that an initial configuration of a large number (of order N)
of particles distributed over Zd is given. The particles move as independent simple
random walk in Zd and each particle independently of the others dies after an ex-
ponential time of rate γN , with γ > 0, and at the place of death it leaves a random
number of offspring particles, drawn from a fixed integer valued law µ. The parti-
cles of the updated population continue their motion and reproduction according
to the same rules. This process is usually referred to as a branching random walk
with the branching law µ and we will assume in the sequel that µ has expectation
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1 (this means criticality) and finite variance σ2 > 0. The process X
(N)
t is then

defined to be the finite atomic measure which loosely speaking gives measure of
mass 1 to each particle alive at time t. To be more precise,

X
(N)
t =

∑

i

δxi
, t ≥ 0,

where xi is a position of the i-th particle alive at time t. Assume that, as N tends

to infinity, 1
NX

(N)
0 converges weakly in the space of finite measures on Zd to a mea-

sure X0. Then one can show that the measure-valued process { 1
NX

(N)
t }t≥0 con-

verges weakly to a limiting measure-valued process {Xt}t≥0 which is called super-
random walk and is uniquely characterized via the following martingale problem:
for bounded test-functions φ : Zd → R

Mt(φ) :=

∫ t

0

∫

Zd

1

2
∆φ(x)Xs(dx) ds −

∫

Zd

φ(x)X0(dx)

is a square-integrable martingale with quadratic variation process

σ2γ

∫ t

0

∫

Zd

φ2(x)Xs(dx) ds.

Here, ∆ denotes the discrete Laplace operator as defined in Theorem 1.1. An
interesting observation is the following invariance property: irrespectively of µ,
the finite variance assumption for the branching mechanism µ leads to a universal
limit depending only on the variance σ2 and the parameter γ which is also called
the branching rate. In what follows, we assume σ2 = 1. It is worth mentioning
that if we ignore the spatial motion and count just the total number of particles,
the scaling procedure is nothing else but the scaling of critical and finite variance
Galton-Watson processes which leads towards classical Feller’s branching diffusion

dZt =
√

γZt dBt ,

where Zt = Xt(Z
d), t ≥ 0.

Note that super-random walks can be characterized as solutions to stochastic
differential equations. Abbreviating ut(k) = Xt({k}), the super-random walk is a
weak solution to following system of stochastic differential equations (which is, in
fact, a discrete version of a stochastic heat equation)

dut(k) = ∆ut(k) dt+
√

γut(k) dBt(k), k ∈ Zd, (2.1)

where {B(k)}k∈Zd is a collection of independent Brownian motions. Next, we pro-
ceed to a more recent development: measure-valued processes with interactions.
One way to introduce interaction into the model is to replace the constant branch-
ing rate γ in the particle approximation by a random, adapted and space-time
varying branching rate γ(t, k, ω), also called the catalyst. Some particular choices
of branching environments γ and related models over continuous space have been
discussed in the literature (see for instance Dawson and Fleischmann, 1994, 1995,
Delmas, 1996). For example, one can consider a super-random walk on Zd in a
super-random walk environment. Building upon (2.1), this model can be described
as a solution to the following system of stochastic differential equations:

{

dut(k) = ∆ut(k) dt+
√

vt(k)ut(k) dB
1
t (k), k ∈ Zd,

dvt(k) = ∆vt(k) dt+
√

γvt(k) dB
2
t (k), k ∈ Zd,

(2.2)
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driven by independent families of independent Brownian motions. A solution
(ut)t≥0 is called super-random walk in the catalytic super-random walk environment
γ(·, k, ω) = v·(k)(ω). Note that (2.2) describes the so-called one-way interaction
model: the v-population catalyzes the u-population. Then the natural extension of
(2.2) to two-way interaction is the following mutually catalytic model.

Definition 2.1. In the following, weak solutions (ut, vt)t≥0, on a stochastic basis
(Ω,F , (Ft)t≥0,P), to the infinite system of stochastic differential equations (1.1)
driven by independent Brownian motions will be called mutually catalytic branch-
ing processes with initial conditions u0, v0 and branching rate γ > 0. To abbreviate,
solutions will be denoted by MCBγ . In the sequel MCBγ will also denote a mutu-
ally catalytic branching process defined on a more general state space S instead of
Zd and with Q-matrix A instead of ∆.

It is easy to see that the branching property fails for MCBγ . Hence, many of
the classical tools developed for superprocesses also fail. Nonetheless, the simple
symmetric choice of the interaction between u and v makes this mutually catalytic
system tractable.

Convention 2.2. In order to stress the underlying branching processes, the two
components will be called types.

As an example for the convention, if ut(k) = 0 for all k ∈ Zd we will say that
the first type died out.

2.2. From Interacting Diffusions to Symbiotic Branching. Interestingly, the study
of mutually catalytic branching processes can also be motivated by the study of
interacting diffusion processes. Given a family of independent Brownian motions
{Bt(k)}k∈Zd and some function f to be specified below, discrete-space parabolic
stochastic partial differential equations

{

dwt(k) = ∆wt(k) dt+
√

γf(wt(k)) dBt(k),

w0(k) ≥ 0, k ∈ Zd,
(2.3)

have been studied extensively in the literature. Some prominent examples will be
briefly discussed in the sequel.

Example 2.3. For f(x) = x solutions of (2.3) are super-random walks.

This example has already been dealt with in detail in the previous subsection.

Example 2.4. For f(x) = x(1 − x), Equation (2.3) is called stepping stone model.

In fact, the stepping stone model is the spatial generalization of the simple one-
dimensional Wright-Fisher diffusion

dXt =
√

γXt(1 −Xt) dBt (2.4)

that arises as a scaling limit of the Moran model in population genetics similarly
as the Feller diffusion arises as a scaling limit of critical Galton-Watson processes.
In contrast to the Galton-Watson model, the Moran model is not used to model
the total number of individuals but instead counts the proportion of one allele in a
diploid population for a fixed number of individuals. In particular, this interpreta-
tion corresponds to the solution of (2.4) taking values in [0, 1] with absorption at 1
or 0 interpreted as fixation of genetic types. For an introduction to the questions



Finite and Infinite Rate Mutually Catalytic Branching 9

of mathematical population genetics we refer to the lecture notes Etheridge (2011).
The stepping stone model of Example 2.4 can be seen as an island version of the
Wright-Fisher diffusion, i.e. additionally to the change of alleles, individuals live
on islands which they change according to a nearest neighbor random walk.

Changing the scope once more, we have a look at statistical physics. Given a
random field ηt(k), possibly time-inhomogeneous, the discrete heat equation with
random potential η

{

∂
∂tut(k) = ∆ut(k) + ηt(k)ut(k),

u0(k) ≥ 0, k ∈ Zd,
(2.5)

has attracted a lot of interest. It is usually referred to as a parabolic Anderson
model. Again, there is a connection to a branching particle system: started at
localized initial condition u0 = 1{0}, ut(k) is the expected number of particles in
the system where one particle starts at 0 and branches binary according to the
breeding potential η. In particular in the case of time-independent iid random
potential a detailed analysis of the behavior of solutions is possible; we refer to the
overview article Gärtner and König (2005). If η is the white noise case, then (2.5)
is a particular case of (2.3) leading us to the next example.

Example 2.5. For f(x) = x2, Equation (2.3) describes the parabolic Anderson
model with Brownian potential (white noise potential).

A detailed analytic study of the longtime behavior for this model can be found
in the monograph Carmona and Molchanov (1994). For the probabilistic approach
based on an explicit Feynman-Kac representation we refer to Greven and den Hol-
lander (2007) and references therein.

Finally, the simplest example should be mentioned. Already in this case, a non-
trivial interplay of noise and drift can be observed (see Cox and Klenke, 2000).

Example 2.6. Choosing f(x) = 1/γ, Equation (2.3) describes interacting Brownian
motions.

Now, as we have discussed examples that are of very different nature in terms
of their origins and also of their properties, we should explain the connections
to mutually catalytic models. Here is a preliminary definition for the two types
interacting diffusion model introduced by Etheridge/Fleischmann in Etheridge and
Fleischmann (2004). A more precise and more general definition is given in Section
2.

Definition 2.7. In the following, weak solutions (ut, vt)t≥0 on a stochastic basis
(Ω,F , (Ft)t≥0,P) to the infinite system of stochastic differential equations defined
in (1.1) driven by Brownian motions with correlation structure (1.2) are called
symbiotic branching processes with initial conditions u0, v0, branching rate γ > 0
and correlation % ∈ [−1, 1].
To abbreviate, the system of equations (1.1) and their solutions will be denoted by
SBMγ(%) or just SBMγ .

The name symbiotic branching model was used in Etheridge and Fleischmann
(2004) in order to stress the biological interpretation of the mutually catalytic
behavior; the solution processes ut and vt might be considered as the distribution
in space of two types.
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Convention 2.8. For later use let us capture the correlation structure used for
symbiotic branching in a name. We will say that two Brownian motions satisfying
E
[

B1
tB

2
t

]

= %t, t ≥ 0, are %-correlated.

Having introduced the basic equations of this article, their relevance is empha-
sized by the following observation due to Etheridge and Fleischmann (2004). For
correlation % = 0, solutions of the symbiotic branching model are solutions of the
mutually catalytic branching model MCBγ .
The case % = −1 with the additional assumption u0 + v0 ≡ 1 corresponds to the
stepping stone model. To see this, observe that in the perfectly negatively corre-
lated case B1(i) = −B2(i) which implies that the sum u + v solves a discrete heat
equation and with the further assumption u0 + v0 ≡ 1 stays constant for all time.
Hence, for all t ≥ 0, ut ≡ 1 − vt which shows that u is a solution of the stepping
stone model with initial condition u0 and v is a solution with initial condition v0.
Finally, suppose w is a solution of the parabolic Anderson model, then, for % = 1,
the pair (u, v) := (w,w) is a solution of the symbiotic branching model with initial
conditions u0 = v0 = w0 as now B1(i) = B2(i).

2.3. Infinite Rate Symbiotic Branching Processes and Voter Processes I. To moti-
vate the procedure of sending γ to infinity in Theorem 1.1 and to highlight for a
first time why the generalized voter processes appear as limits, let us briefly discuss
the voter process and its connection to the stepping stone model. For extensive in-
formation about interacting particle systems we refer to the monograph of Liggett
(2005).

A way of defining interacting particle systems is a description via infinitesimal
generators. Here, we assume that the voters live on Zd and communicate only with
their nearest neighbors. To define the dynamics via a generator, the state-space

Σ = {0, 1}Z
d

is fixed. The generator acts via

Af(η) =
∑

k∈Zd

c(k, η)
(

f(η(k)) − f(η)
)

, (2.6)

on test-functions f : Σ → R only depending on finitely many coordinates and η(k) is
defined to be the configuration in which the opinion is flipped only at site k and the
rate of change at site k is proportional (normalized to total rate 1) to the number
of neighbors with different opinion:

c(k, η) =
1

2d

∑

|i−k|=1

1{η(i) 6=η(k)}.

Interestingly, the analysis of the longtime behavior of a voter process is drastically
simplified by a pathwise graphical construction (see Durrett, 1995, page 129): for
each voter a vertical line is drawn downwards and each line carries a Poisson process
firing tacks on that line. At each tack, a horizontal line is drawn randomly to a
neighbor. With an initial configuration U0 ∈ Σ, the construction goes as follows:
for each site k with U0(k) = 1 water is filled into the vertical line and disperses
downwards. Whenever there is an arrow pointing away from the line (this corre-
sponds to persuading a neighbor) the water goes on downwards and, additionally,
flows through the arrow to disperse downwards in the neighbor’s line. When an
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arrow points from a neighbor’s line towards the voter’s line the water stops (this
corresponds to be persuaded by a neighbor). At time t ≥ 0, the configuration
Ut is defined as follows: all sites filled by water carry a 1 and al l others a 0. It
is heuristically clear that this construction yields a Markov process with genera-
tor (2.6) but interestingly it simultaneously gives a useful dual relation: reversing
time and using the same arrows in the opposite direction, the resulting process is a
system of instantaneously coalescing random walks. A simple consequence of this
construction is a moment formula for the voter process:

EU0
[

Ut(k1) · · ·Ut(km)
]

= E

[

∏

i

U0(ξ
i
t)

∣

∣

∣
ξ10 = k1, · · · , ξm0 = km

]

, (2.7)

where ξ1, ..., ξm are independent simple random walks that coalesce instantaneously
when colliding. The product runs over all non-coalesced random walks at time t.

Now, let us return to the stepping stone model

dwt(k) = ∆wt(k) dt+
√

γwt(k)(1 − wt(k)) dBt(k) (2.8)

that was already identified to the symbiotic branching process s % = −1. Unfortu-
nately, there is no direct graphical construction for the stepping stone model, but
still, a moment representation similar to (2.7) was derived in Shiga (1980): suppose
the ξi are as above but now two particles coalesce when they have spent together
an independent exponential time of rate γ. More precisely, suppose wγ is a solution
of (2.8) with initial conditions wγ0 . Then

E
[

wγt (k1) · · ·wγt (km)
]

= E

[

∏

i

wγ0 (ξit)
∣

∣

∣
ξ10 = k1, · · · , ξn0 = km

]

,

where again the product runs over all random walks alive at time t. Sending γ to
infinity for the stepping stone model and assuming that wγ0 = U0 ∈ Σ does not
depend on γ, we now observe that

lim
γ→∞

Ew
γ
0
[

wγt (k1) · · ·wγt (km)
]

= EU0
[

Ut(k1) · · ·Ut(km)
]

,

since only the coalescence mechanism has changed: random walks now coalesce
instantaneously after colliding. Boundedness of solutions implies that convergence
of the moments suffices to deduce convergence of the finite dimensional distributions
so that the infinite rate limit of the stepping stone model is nothing but

the standard voter process. For more on this we refer to Section 10.3.1 of
Dawson (1993).

3. Finite Rate Symbiotic Branching Processes

The aim of this section is to give a compressed overview of definitions and results
for symbiotic branching processes SBMγ with finite branching rate. After intro-
ducing some notation, precise definitions and a sketch of existence and uniqueness
proofs we turn our focus to the longtime behavior. Let

Q%u,v :=
(

W 1
τ ,W

2
τ

)

(3.1)

be the exit law of a pair of %-correlated Brownian motions started in (u, v) for some
u ≥ 0, v ≥ 0, stopped at the exit-time

τ = inf
{

t : W 1
t W

2
t = 0

}

. (3.2)
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The laws Q%u,v are concentrated on the boundary of the first quadrant which we
denote by

E =
{

(y1, 0) : y1 ≥ 0
}

∪
{

(0, y2) : y2 ≥ 0
}

⊂ R2.

Whenever the initial condition (u, v) is not crucial we abbreviate the exit-law as
Q%. We present in the sequel those results on the longtime behavior of symbiotic
branching which are related to Q%. Those will serve as preparation for the study
of infinite rate symbiotic branching processes which we will denote by SBM∞.

3.1. Existence, Uniqueness and Tools. Recall Definition 2.7, where we defined
SBMγ as a system of coupled stochastic differential equations with drift operator
∆. With some technical complications, Zd can be replaced by a countable set S
and ∆ by an operator

Aw(i) =
∑

j∈S
a(i, j)w(j),

where
(

a(i, j)
)

i,j∈S is the Q-matrix of a symmetric S-valued Markov process with

uniformly bounded jump-rates. The particular case of ∆ occurs for the choice
S = Zd and a(i, j) = 1

2d if |i− j| = 1.

3.1.1. State Spaces. Let us define an infinite dimensional state-space for solutions
which is commonly used in studying interacting particle systems. To do so, suppose
β : S → R+ is such that

∑

i∈S
β(i) <∞ and

∑

i∈S
β(i)|a(i, k)| < Mβ(k)

for all k ∈ S. The state-space for the two-type model SBMγ then consists of pairs
of sequences that grow slowly enough compared to β:

L2
β =

{

(u, v) : S → R+ × R+ s.t. 〈u, β〉 <∞ and 〈v, β〉 <∞
}

,

where 〈f, g〉 =
∑

k∈S f(k)g(k). L2
β is equipped with the topology induced by the

norm ||(u, v)||β = 〈|u|+ |v|, β〉. Existence of such a sequence β is ensured by Lemma
IX.1.6 of Liggett (2005). In the following we fix a test-sequence β and only work
on the corresponding fixed state-space L2

β .

3.1.2. Precise Definition and Existence of Solutions. Having defined proper state-
spaces, we can give the precise definition of solutions to SBMγ .

Definition 3.1. For (u0, v0) ∈ L2
β , we say that (ut, vt)t≥0, or more precisely the

quadruple (u, v,B1, B2), is a (weak) solution of SBMγ on the filtered probability
space (Ω,F , (Ft)t≥0,P) if

i)
{

B1
· (i), B

2
· (i)

}

i∈S is a set of (Ft)-adapted Brownian motions satisfying for
t > 0

E
[

B1
t (k)B

1
t (j)

]

= δ0(k − j)t,

E
[

B2
t (k)B

2
t (j)

]

= δ0(k − j)t,

E
[

B1
t (k)B

2
t (j)

]

= %δ0(k − j)t,
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ii) u·, v· are (Ft)-adapted stochastic processes, almost surely satisfying the
integral equations

ut(k) = u0(k) +

∫ t

0

Aus(k) ds+

∫ t

0

√

γus(k)vs(k)dB
1
s (k),

vt(k) = v0(k) +

∫ t

0

Avs(k) ds+

∫ t

0

√

γus(k)vs(k)dB
2
s (k),

for k ∈ S,
iii) (u·, v·) is almost surely continuous with (ut, vt) ∈ L2

β for all t ≥ 0.

We now give a quick glance on how to construct solutions for SBMγ . For a very
detailed proof for % = 0 we refer the reader to Dawson and Perkins (1998). From

now on, until the end of the section, we assume S = Zd and A = ∆. The
relations to the exit-law of %-correlated Brownian motions remain unchanged in
this simplified setting so that it serves equally well as a preparation for SBM∞.

Theorem 3.2. If (u0, v0) ∈ L2
β, there is a weak solution of SBMγ.

Sketch of Proof: The proof goes along famous arguments due to Shiga and Shimizu
(1980) based on finite dimensional SDE theory and limit considerations. Cutting
the infinite index set, solutions to the finite system can be constructed and then,
by moment estimates, their convergence to a weak solution of SBMγ can be shown.
For positive integers n, let Sn = Zd ∩ [−n, n]d be a finite subset of Zd. To define
the approximating system, we consider the following system of finite-dimensional
stochastic differential equations which we denote by SBMn

γ :

unt (k) = u0(k) +

∫ t

0

∑

j∈Sn
|j−k|=1

1

2d
(un(j) − un(k)) ds+

∫ t

0

√

γuns (k)v
n
s (k) dB1,n

s (k),

vnt (k) = v0(k) +

∫ t

0

∑

j∈Sn
|j−k|=1

1

2d
(vn(j) − vn(k)) ds+

∫ t

0

√

γuns (k)v
n
s (k) dB2,n

s (k).

The correlation structure of the Brownian motions remains as in Definition 3.1.
Since this is a system of finite-dimensional stochastic differential equations existence
of weak solutions

{

unt (k), v
n
t (k), B1,n(k), B2,n(k)

}

k∈Sn

follows from finite-dimensional diffusion theory for sufficiently “good” coefficients
(see for instance Theorem 5.3.10 of Ethier and Kurtz, 1986). To prove non-
negativity of solutions, one shows that the semimartingale’s local time at zero
equals to zero (see for instance page 1127 of Dawson and Perkins, 1998).

Solutions (un, vn) can be extended to the entire lattice by setting unt (k) =
u0(k), v

n
t (k) = v0(k) for k 6= Sn. Due to the choice of the initial conditions, the

(unt , v
n
t ) are contained in L2

β for all t ≥ 0.

The main ingredients, to prove convergence of (un, vn), are the following esti-
mates. It suffices to show that for k ∈ S, T > 0, and ε > 0

sup
n∈Z+

P
[

sup
t≤T

unt (k) > K
]

→ 0, as K → ∞, (3.3)

sup
n∈Z+

sup
|t−s|≤h,0≤t,s≤T

P
[

|unt (k) − uns (k)| > ε
]

→ 0, as h→ 0, (3.4)
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and analogously for vn. The desired convergence in (3.3), (3.4) is analogous to
(2.9) and (2.10) of Shiga and Shimizu (1980). In order to ensure that all stochastic
integrals are martingales we introduce a sequence of stopping times: T nN = inf

{

t ≥
0 : 〈unt , β〉+ 〈vnt , β〉 > N

}

. This sequence, almost surely, converges to infinity, as N
tends to infinity, since solutions do not explode. Using only the definition of SBMn

γ

we estimate

E
[

sup
t≤T∧Tn

N

〈unt , β〉
]

= E

[

sup
t≤T∧Tn

N

∑

i∈Zd

unt (i)β(i)
]

≤ 〈u0, β〉 + E

[

sup
t≤T∧Tn

N

∑

i∈Sn

β(i)

∫ t

0

∑

j∈Sn
|j−i|=1

1

2d
(uns (j) − uns (i)) ds

]

+ E

[

sup
t≤T∧Tn

N

∑

i∈Sn

β(i)

∫ t

0

√

γuns (i)v
n
s (i) dB1,n

s (i)

]

≤ 〈u0, β〉 + E

[

∑

i∈Sn

β(i)

∫ T∧Tn
N

0

∑

j∈Sn
|i−j|=1

1

2d
uns (j) ds

]

+ E

[

sup
t≤T∧Tn

N

∑

i∈Sn

β(i)

∫ t

0

√

γuns (i)v
n
s (i) dB1,n

s (i)

]

.

(3.5)

Using the Burkholder-Davis-Gundy inequality and then Fubini’s theorem we obtain
the following upper bound for the above expressions

〈u0, β〉 +
∑

i∈Sn

β(i)

∫ T

0

∑

j∈Sn
|i−j|=1

1

2d
E
[

uns (j)
]

ds+ γ
∑

i∈Sn

β(i)

∫ T

0

E
[

uns (i)v
n
s (i)

]

ds.

So far, this procedure is fairly standard for interacting diffusions of type (2.3) where
instead of the mixed moments, the expectations E[f(wt(i))] need to be bounded.
There, linear growth conditions on f lead to a Gronwall inequality which yields the
desired bound. In our case, we need to estimate moments E[uns (j)] and E[uns (i)vns (i)]
uniformly in n. The first moment can be estimated as on page 1129 of Dawson and
Perkins (1998) since the correlations do not influence the first moments. The mixed
second moment is more delicate. Using a point wise representation of solutions, for
% < 0, the same estimates as in Dawson and Perkins (1998) can be performed. The
additional difficulty comes for positively correlated Brownian motions (% > 0) that
spoil the Gronwall argument in Dawson and Perkins (1998) due to the appearance
of an additional positive summand. Nonetheless, the mixed second moment for
the approximating system can be estimated directly: a moment expression for the
finite- dimensional equation, in the same spirit of the moment duality that we
explain below (see Lemma 3.7), gives the uniform in n upper bound

E
[

uns (i)v
n
s (i)

]

≤ CeγT . (3.6)

This is similar to the remark on page 41 of Cox et al. (2004) where the existence of
solutions for % = 0 was justified by the observation that uv ≤ u2 + v2 which leads
to an upper bound by a two-type Anderson model verifying (3.6).
By monotone convergence, getting rid of the stopping times on the lefthand side
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of (3.5), this implies

E
[

sup
t≤T

〈unt , β〉
]

= lim
N→∞

E
[

sup
t≤T∧Tn

N

〈unt , β〉
]

≤ 〈u0, β〉 + CT ,

where CT is independent of n. Hence, in particular we get by Chebychev’s inequality
that

sup
n∈Z+

P[sup
t≤T

unt (k) > K] → 0,

as K tends to infinity. To prove (3.4) one needs to check that E
[

|〈unt − uns , β〉|
]

is bounded uniformly in n. This can be done similarly as before, using the same
bounds on the moments.
Following the arguments on page 399 of Shiga and Shimizu (1980), the bounds (3.3),
(3.4) suffice to ensure convergence (in a sufficiently strong sense) of the sequences
(un, vn) to a limiting process (u, v) solving the equation defining SBMγ . �

3.1.3. Tools: Mild Solutions, Total-Mass Processes and Dualities. From the very
definition, interacting diffusion processes are parabolic equations with random po-
tential functions. In the spirit of the deterministic theory one can equally ask for
representations that are easier to work with in some situations. We will use the
weak-solution representation and the variation of constant form. In the following
we use the semigroup generated by ∆ on Zd, i.e. the family of linear operators

Ptf(k) =
∑

i∈Zd

pt(i, k)f(i), t ≥ 0, (3.7)

where pt(i, k) is the transition kernel of a simple random walk on Zd.

Convention 3.3. The constant function on Zd taking value u ∈ R+ is abbreviated
by u.

For a continuum analogue of the following two representations we refer to Corol-
lary 19 of Etheridge and Fleischmann (2004) and for a very detailed proof on the
lattice for % = 0 to Theorem 2.2 of Dawson and Perkins (1998).

Proposition 3.4. Suppose that (ut, vt) is a solution of SBMγ with u0, v0 summable,
then ut and vt are summable and the total-mass processes satisfy

〈ut,1〉 = 〈u0,1〉 +
∑

j∈Zd

∫ t

0

√

γus(j)vs(j) dB
1
s(j),

〈vt,1〉 = 〈v0,1〉 +
∑

j∈Zd

∫ t

0

√

γus(j)vs(j) dB
2
s (j),

(3.8)

where the infinite sums converge in L2(P). If (u0, v0) ∈ L2
β, then the point wise

representation

ut(k) = Ptu0(k) +
∑

j∈Zd

∫ t

0

pt−s(j, k)
√

γus(j)vs(j) dB
1
s (j),

vt(k) = Ptv0(k) +
∑

j∈Zd

∫ t

0

pt−s(j, k)
√

γus(j)vs(j) dB
2
s(j),

(3.9)

holds. The covariation structure of the Brownian motions is as in the definition of
SBMγ .
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The weak solution representation can be obtained for 〈ut, φ〉 also for more general
test-functions φ. Instead of sketching a proof we give an important application
leading the way from SBMγ to the exit-law Q% defined in (3.1).

A property that is shared by many particle systems is that started at summable
initial conditions the total-mass process is a martingale. A natural question for the
two-type model SBMγ is how the two total-mass martingales relate to each other
if both types are started at summable initial conditions. In order to avoid confu-
sion with 〈·, ·〉 we denote in the following the cross-variations of square-integrable
martingales by [·, ·].
Lemma 3.5. Suppose u0 and v0 are summable, then 〈ut,1〉 and 〈vt,1〉 are non-
negative square-integrable martingales with quadratic-variations

[〈u·,1〉, 〈u·,1〉]t = [〈v·,1〉, 〈v·,1〉]t = γ

∫ t

0

〈us, vs〉 ds

and cross-variation

[〈u·,1〉, 〈v·,1〉]t = %γ

∫ t

0

〈us, vs〉 ds.

Sketch of Proof: Positivity of the total-mass processes comes directly from posi-
tivity of symbiotic branching processes and the martingale property follows from
the representation in Proposition 3.4 as the martingale property is invariant un-
der L2(P)-convergence. Hence, it suffices to calculate the bracket-processes. The
representation stems from the fact that for L2(P)-convergent martingales also the
bracket processes converge so that

[〈u·, 1〉, 〈v·, 1〉]t

= lim
|M|→∞

[

∑

k∈M

∫ ·

0

√

γus(k)vs(k) dB
1
s(k),

∑

k∈M

∫ ·

0

√

γus(k)vs(k) dB
2
s (k)

]

t

= % lim
|M|→∞

∑

k∈M

∫ t

0

γus(k)vs(k) ds

= %γ

∫ t

0

〈us, vs〉 ds.

The derivation of the quadratic variations is similar but without the additional
correlation parameter %. �

3.1.4. Dualities. The results on interacting particle systems obtained during the
last decades showed that the depth of possible results for particular systems depends
in many cases on available duality relations, i.e. relations of characteristics (here:
Laplace transforms or moments) of the process to those of other processes.
In general, one says that a duality between two Markov processes X and Y with
state-spaces X and Y holds if for some duality-function H : X × Y → R and a
potential function f : Y → R

EX0 [H(Xt, Y0))] = EY0
[

H(X0, Yt)e
∫

t

0
f(Ys) ds

]

, t ≥ 0. (3.10)

In fact, the simplified definition of duality involves potential function f = 0 but
we will need the generalized formulation for one of the dualities for SBMγ . Such
a semigroup relation can also be expressed via generators. Suppose AX is the
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generator for X and AY the generator for Y , then, under some conditions (see
Corollary 4.4.13 of Ethier and Kurtz, 1986), (3.10) is equivalent to the generator
identity

AXH(·, y) = AYH(x, ·) + f(·)H(x, ·), ∀x ∈ X , ∀y ∈ Y. (3.11)

The exponential correction is caused by the Feynman-Kac representation for the
semigroup with additional potential f . The generator relation turns out to be useful
in many cases to find a duality expression.
Let us now have a look at the two dual relations for SBMγ . For (x1, x2), (y1, y2) ∈
L2
β, define

〈〈x1, x2, y1, y2〉〉%

=
∑

k∈Zd

[

−
√

1 − %
(

x1(k) + x2(k)
)(

y1(k) + y2(k)
)

+ i
√

1 + %
(

x1(k) − x2(k)
)(

y1(k) − y2(k)
)

]

.

(3.12)

Then, the self-duality relation reads as follows: suppose (ut, vt) and (ũt, ṽt) are two
solutions of SBMγ with initial conditions (u0, v0) ∈ L2

β and ũ0, ṽ0 with compact
support, then

Eu0,v0 [exp(〈〈ut, vt, ũ0, ṽ0〉〉%)] = Eũ0,ṽ0 [exp(〈〈u0, v0, ũt, ṽt〉〉%)]. (3.13)

For % = 0 the self-duality goes back to Mytnik (1998) (see also Section 4 of Cox
et al., 2004) and was generalized subsequently to % 6= 0 in Etheridge and Fleis-
chmann (2004). In order to define the infinite rate analogue SBM∞, the self-
duality will be discussed in more detail in Section 3. On first view the duality looks
frightening but it has very important applications. Here is an application to weak
uniqueness (Proposition 5 of Etheridge and Fleischmann, 2004) of SBMγ .

Lemma 3.6. Weak uniqueness holds for solutions to SBMγ if % ∈ (−1, 1).

Sketch of Proof: In fact, duality in many cases implies weak uniqueness for corre-
sponding processes: for a general result see Proposition 4.4.7 in Ethier and Kurtz
(1986). In this particular case, the proof goes roughly as follows: suppose there
are two solutions (u1

t , v
1
t ) and (u2

t , v
2
t ) with identical initial condition (u0, v0). We

aim at showing that both solutions coincide in law. For any fixed pair of compactly
supported sequences φ, ψ there is a solution (ũt, ṽt) of SBMγ with initial condition
(φ, ψ). Applying the self-duality twice shows that for all t ≥ 0

Eu0,v0 [exp(〈〈u1
t , v

1
t , φ, ψ〉〉%)] = Eφ,ψ[exp(〈〈u0, v0, ũt, ṽt〉〉%)]

= Eu0,v0 [exp(〈〈u2
t , v

2
t , φ, ψ〉〉%)].

A closer look at the complex-valued duality function shows that the equality suffices
to deduce the claim: in the real direction this is a Laplace transform and in the
imaginary direction a Fourier transform. Hence, it comes as no surprise that the
Laplace transform uniquely determines the law of 〈uit + vit, φ+ ψ〉 and the Fourier
transform uniquely determines the law of 〈uit − vit, φ − ψ〉. Now, as for finite-
dimensional random variables, since φ and ψ are arbitrary, this uniquely determines
the laws of the configurations uit+ vit and uit− vit. Taking sums and differences, the



18 Leif Döring and Leonid Mytnik

one-dimensional marginals of (ui, vi) are determined which finally can be extended
to the path-level by Markov process arguments. �

The second duality is of different type. It does not involve an exponential duality
function but a polynomial only. The aim is to give an expression for the moments

E[ut(k1) · · ·ut(kn)vt(kn+1) · · · vt(kn+m)]

in terms of a particle system which we now describe. Suppose that n+m particles in
Zd are given. Each particle moves according to a continuous-time simple random
walk independently of all other particles. At time 0, n particles of color 1 are
located at positions k1, ..., kn and m particles of color 2 are located at positions
kn+1, ..., kn+m. For each pair of particles having the same color, one particle of
the pair changes its color when the time the two particles have spent at same site,
exceeds an independent exponential time with parameter γ. Let

L=
t = total collision time of all pairs of same colors up to time t,

L 6=
t = total collision time of all pairs of different colors up to time t,

l1t (a) = number of particles of color 1 at site a at time t,

l2t (a) = number of particles of color 2 at site a at time t

and define the duality function

(x1, x2)
(A1,A2) =

∏

k∈Zd

x1(k)
A1(k)

∏

k∈Zd

x2(k)
A2(k)

for (x1, x2) ∈ L2
β and A1, A2 ∈ {a : Zd → Z+ | a(k) 6= 0 only finitely many times}.

By definition the number of particles is finite and constant so that the duality
function can be applied to l1, l2. The following lemma is taken from Section 3 of
Etheridge and Fleischmann (2004).

Lemma 3.7. Suppose (u0, v0) ∈ L2
β and ki ∈ Zd, then

E[ut(k1) · · ·ut(kn)vt(kn+1) · · · vt(kn+m)] = E
[

(ut, vt)
(l10,l

2
0)

]

= E
[

(u0, v0)
(l1t ,l

2
t )eγ(L=

t +%L 6=
t )

]

,

where the dual process behaves as explained above.

In the general setting A 6= ∆, only the dynamics of the single particles needs to
be changed: they move as continuous-time Markov process with generator A and
perform the same changes of colors.
A simpler situation occurs if the initial conditions are homogeneous. If u0 = v0 = 1,
then the righthand side of the duality only consists of the exponential perturbation.

Remark 3.8. In the special case of % = 1 and u0 = v0 = 1, Lemma 3.7 was already
stated in Carmona and Molchanov (1994), reproved in Greven and den Hollander
(2007), and used to analyze the Lyapunov exponents of the parabolic Anderson

model. Since then the collision times L=
t and L 6=

t are weighted equally, the colors
can be ignored so that only exponential moments of collision times need to be
analyzed.

For % 6= 1, the difficulty of the dual expression is based on the two interacting
stochastic effects: on the one hand, one has to deal with collision times of random
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walks which were analyzed in Greven and den Hollander (2007) and additionally
particles have colors either 1 or 2 which change dynamically.

3.2. Longtime Behavior and the Exit-Law of %-correlated Brownian Motions. Now,
after we discussed the basic properties and tools, we can derive the connections of
SBMγ and the exit-law Q%. This will explain some longtime properties of SBMγ .
For % = 0 these properties go back to Dawson and Perkins (1998) and Cox and
Klenke (2000), and they were studied for % ∈ (−1, 1) in Blath et al. (2011) and
for % ∈ (−1, 0) in Döring and Mytnik (2011). In the following we briefly explain
the main results on the longtime behavior and sketch the ideas of the proofs. Most
importantly, we show how the exit law (3.1) can be related to limt→∞〈ut,1〉, via
Lemma 3.5, and then this has several interesting consequences: the weak limit
limt→∞ L(ut, vt) can be deduced for infinite initial conditions unifying two classi-
cal results for the stepping stone model and the parabolic Anderson model with
Brownian potential. From this, a general technique of Cox and Klenke (2000) can
be applied to deduce non-convergence in the almost sure sense of the L2

β-valued

processes (ut, vt). As a final consequence of the connection to Q%, we discuss how a
critical curve for the behavior of higher moments can be deduced which then leads
us to the definition of ν% (from Theorem 1.1).

3.2.1. Longtime Analysis for the Total Mass - Transience/Recurrence-Dichotomy.
A typical question for interacting particle systems is the following: does the system
get extinct eventually if the initial conditions are summable? For several examples
this question can be answered easily by taking into account nice duality structures.
For instance, as explained in the introduction, for the voter process this question
is equivalent to finite time coalescence of finitely many random walks which again
is equivalent to recurrence of the random walks.
The question is more subtle for SBMγ by lack of knowledge of a useful duality;
the self-duality and the moment-duality are not very helpful here. Nonetheless, a
weaker question can still be answered by other arguments. Also note that instead of
extinction/non-extinction, the question of coexistence/non-coexistence is addressed
for two type symbiotic model. Let us first define a notion of “coexistence” in the
two-type SBMγ model for which we utilize the martingale property of the non-
negative total-mass processes (recall Lemma 3.5). The martingale convergence
theorem implies existence of

lim
t→∞

〈ut,1〉〈vt,1〉 =: 〈u∞,1〉〈v∞,1〉 ∈ [0,∞)

leading to the following definition.

Definition 3.9. We say that coexistence (of types) is possible, if there are summa-
ble initial conditions u0, v0 such that 〈u∞,1〉〈v∞,1〉 > 0 with positive probability.
Otherwise we say that coexistence is impossible.

For MCBγ , Dawson/Perkins proved the following dichotomy. (Recall again that
we state everything for the case of S = Zd and A = ∆, while some of the results
have been proved in a more general setting.)

Theorem 3.10 (Dichotomy for Finite Initial Conditions). Coexistence of types
for MCBγ is possible if and only if a simple random walk on Zd is transient (i.e.
d ≥ 3).
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For % 6= 0 the situation is not completely clear, yet. The following result was
proved in Blath et al. (2011).

Proposition 3.11. Let % 6= 0, then coexistence of types for SBMγ(%) is impossible
if a simple random walk on Zd is recurrent (i.e. d = 1, 2).

For % < 0 the above result has been improved in Döring and Mytnik (2011) and
the following recurrence/transience dichotomy has been verified there via moment
arguments.

Proposition 3.12. Let % < 0, then coexistence of types for SBMγ(%) is possible if
and only if a simple random walk on Zd is transient (i.e. d ≥ 3).

Propositions 3.11 and 3.12 imply that the question that remains open is whether
coexistence of types is possible whenever % > 0 and a simple random walk on Zd is
transient (i.e. d ≥ 3).

Conjecture 3.13. We conjecture that if d ≥ 3 and % > 0, there is a critical
constant γ(%, d) ∈ (0,∞) such that coexistence of types for SBMγ(%) occurs if γ <
γ(%, d) and coexistence is impossible if γ > γ(%, d).

The conjecture is based on a known similar statement for the parabolic Anderson
model corresponding to % = 1 (see Greven and den Hollander, 2007).

In the following we are going to sketch the arguments used in the approach of
Dawson and Perkins (1998) to prove Theorem 3.10.

Lemma 3.14. Suppose u0 and v0 are summable and let T (t) = γ
∫ t

0
〈us, vs〉 ds.

Then

(W 1
t ,W

2
t ) :=

(

〈uT−1(t),1〉, 〈vT−1(t),1〉
)

is a pair of %-correlated Brownian motions stopped when it hits the boundary E of
the first quadrant.

Sketch of Proof: The claim follows directly from Lemma 3.5 and the Dubins-
Schwartz theorem (see for instance Theorem 3.4.6 of Karatzas and Shreve, 1991)
applied to both total-mass processes separately. The correlation is directly inherited
from the driving noises. �

With the lemma in hand, let us emphasize the idea behind Theorem 3.10. The
pair of total-masses is a time-changed planar Brownian motion that stops once it
hits E. Hence, in order to prove the theorem one has to find a characterization
under which the time-change T−1 levels off before the planar Brownian motion hits
E, i.e. one has to show

〈u∞,1〉〈v∞,1〉 = W 1
τW

2
τ = 0 ⇐⇒ T (∞) = γ

∫ ∞

0

〈us, vs〉 ds = τ

⇐⇒ d = 1, 2.

Morally, in the transient case islands carrying only type u and islands carrying
only type v can move away from each other so that 〈us, vs〉 is small even though
〈us,1〉, 〈vs,1〉 are not. Such scenarios might cause the time-change to stop increas-
ing before one of the types vanished.
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Remark 3.15. In fact, the argument of Dawson/Perkins proves more, also for % ∈
(−1, 1), than stated in Theorem 3.10. For d = 1, 2 and % ∈ (−1, 1), the limit
(〈u∞,1〉, 〈v∞,1〉) is distributed according to the law Q%〈u0,1〉,〈v0,1〉 of (W 1

τ ,W
2
τ ) (see

Blath et al., 2011) and this will be the crucial ingredient of the proof of the next
theorem.

3.2.2. Weak Longtime Analysis for Infinite Initial Conditions in dimensions d =
1, 2. An important observation of Dawson/Perkins in their study of MCBγ was the
use of the self-duality to deduce from Theorem 3.10 also the longtime behavior
for the system started at infinite initial conditions. This task is often much more
complicated than in the case of summable initial conditions since simple martingale
arguments fail. The extension of their approach to % 6= 0 leads to the next result
for the recurrent regime (see Proposition 2.1 of Blath et al., 2011). The Brownian
motions W 1,W 2 and the stopping time τ are as in (3.1) and (3.2).

Theorem 3.16 (Infinite Initial Conditions). Suppose that d ≤ 2, % ∈ (−1, 1) and
u0 = u, v0 = v, then

Lu,v(ut, vt)
t→∞
=⇒ Lu,v(W̄ 1

τ , W̄
2
τ ).

Here, (W̄ 1
τ , W̄

2
τ ) denotes the pair of functions with constant values (W 1

τ ,W
2
τ ).

Sketch of Proof: Due to the arguments in the uniqueness proof of Corollary 3.6, it
comes as no suprise that

Lu,v(ut, vt) converges weakly to Lu,v(W̄ 1
τ , W̄

2
τ )

⇐⇒ lim
t→∞

Eu,v[exp(〈〈ut, vt, φ, ψ〉〉%)] = Eu,v[exp(〈〈W̄ 1
τ , W̄

2
τ , φ, ψ〉〉%)]

for all compactly supported φ, ψ. The argument is the same: convergence of the
Laplace transform determines weak convergence of the sum ut+vt and convergence
of the Fourier transform determines convergence of the difference ut − vt. Taking
sums and differences, convergence of the pair (ut, vt) follows. Employing the self-
duality, one obtains by dominated convergence

lim
t→∞

Eu,v[exp(〈〈ut, vt, φ, ψ〉〉%)]

= lim
t→∞

Eφ,ψ[exp(〈〈u,v, ũt, ṽt〉〉%)]

= Eφ,ψ
[

exp
(

−
√

1 − %(u + v) lim
t→∞

〈1, ũt + ṽt〉 + i
√

1 + %(u − v) lim
t→∞

〈1, ũt − ṽt〉
)]

so that the almost sure convergence of the total-mass processes

(〈1, ũt〉, 〈1, ṽt〉) → (〈1, ũ∞〉, 〈1, ṽ∞〉) d
= (W 1

τ ,W
2
τ )

(see Remark 3.15) gives equality to

E〈φ,1〉,〈ψ,1〉
[

exp
(

−
√

1 − %(u+ v)(W 1
τ +W 2

τ ) + i
√

1 + %(u− v)(W 1
τ −W 2

τ )
)]

.

Finally, it remains to show the identity

E〈φ,1〉,〈ψ,1〉
[

exp
(

−
√

1 − %(u+ v)(W 1
τ +W 2

τ ) + i
√

1 + %(u− v)(W 1
τ −W 2

τ )
)]

= Eu,v[exp(〈〈W̄ 1
τ , W̄

2
τ , φ, ψ〉〉%)]
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for %-correlated Brownian motions which can either be done via stochastic calculus
(for % = 0 see page 1111 of Dawson and Perkins, 1998) or by considering the
self-duality for the simplest symbiotic branching model

{

dut =
√
γutvtdB

2
t

dvt =
√
γutvtdB

2
t

(see the proof of Proposition 4.4 of Blath et al., 2011). �

The need for the assumption d ≤ 2 becomes apparent in the proof: due to the
self-duality, the convergence claimed in the theorem is equivalent to convergence of
laws of the total-mass processes to Q%. This occurs precisely in dimensions d = 1, 2
(see Remark 3.15).

The most striking feature of the extension in Theorem 3.16 from % = 0 to
% ∈ (−1, 1) is a unifying property for SBMγ in the recurrent regime based on
the unifying property presented in the Section 2.2. The theorem is restricted to
% ∈ (−1, 1) which is partly caused by the use of the self-duality in the proof.
However, comparing Theorem 3.16 with well-known results for the boundary cases
% = −1, 1, in dimensions d = 1, 2, it turned out that the classical results can be
reformulated in a unified language via %-correlated Brownian motions.

First, suppose wt is a solution of the stepping stone model (see Example 2.4), in
dimension d ≤ 2, and w0 ≡ w ∈ [0, 1]. It was proved in Shiga (1980) that

Lw(wt)
t→∞
=⇒ wδ1 + (1 − w)δ0, (3.14)

where δ1 (resp. δ0) denotes the Dirac distribution concentrated on the constant
function 1 (resp. 0). This can be reformulated in terms of perfectly anti-correlated
Brownian motions (W 1,W 2): For % = −1, the pair (W 1,W 2) takes values only on
the straight-line connecting (0, 1) and (1, 0), and stops at the boundaries. Hence,
the law of (W 1

τ ,W
2
τ ) is a mixture of δ(0,1) and δ(1,0) and the probability of hitting

(1, 0) is equal to the probability of a one-dimensional Brownian motion started at
w ∈ [0, 1] hitting 1 before 0, which is w, and hence it matches (3.14).
Secondly, let wt be a solution of the parabolic Anderson model with Brownian
potential (see Example 2.5), in dimension d ≤ 2, and constant initial condition
w0 ≡ w ≥ 0. In Shiga (1992) it was shown that

Lw(wt)
t→∞
=⇒ δ0.

As discussed above, if the Anderson model is viewed as a symbiotic branching
process with % = 1, this implies

Lw,w(ut, vt)
t→∞
=⇒ δ0,0.

From the viewpoint of two perfectly positive-correlated Brownian motions in The-
orem 3.16 we obtain the same result since they simply move on the diagonal dis-
secting the upper right quadrant until they eventually get absorbed at the origin,
i.e. (W 1

τ ,W
2
τ ) = (0, 0) almost surely.

3.2.3. Almost Sure Longtime Analysis for d = 1, 2. Started in homogeneous initial
conditions, Theorem 3.10 states that for d = 1, 2, (ut, vt) converges weakly to a
law under which one type completely disappears. It is natural to ask whether this
convergence also holds pathwise. The negative answer is the following result taken
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from Blath et al. (2011) which is based upon the general strategy of Cox and Klenke
(2000).

Theorem 3.17 (Almost Sure Non-Convergence). Suppose (ut, vt) solves SBMγ in
dimensions d = 1, 2 for % ∈ (−1, 1) with u0 = u, v0 = v. Then

P

[

lim inf
t→∞

sup
k∈K

∣

∣

∣

∣

(

(ut(k)

vt(k)

)

−
(

u′

v′

)∣

∣

∣

∣

= 0

]

= 1

for all (u′, v′) ∈ E and K ⊂ Zd bounded.

Contrasting the weak convergence to L
(

W̄ 1
τ , W̄

2
τ

)

of the previous section, the
almost sure behavior is entirely different: In contrast to choosing, according to the
exit-law Q%, one point (u′, v′) ∈ E as a limit point, the process locally approaches
every possible (u′, v′) ∈ E infinitely often. Hence, looking at a fixed box K, the
dominant type changes infinitely often and both types approach arbitrarily high
values.

Theorem 3.17 is consistent with the known results for the boundary cases even
though they appear to be very different. Looking inside the proofs of Cox and
Klenke (2000), one realizes that, in fact, they proved more than we stated here.
Each point of the support of the limit measure

(

W̄ 1
τ , W̄

2
τ

)

is an accumulation point
for (ut, vt). Plugging this into the limit measures of the boundary cases discussed
below Theorem 3.16, the theorem extends smoothly to % = −1: The support of
uδ1 + (1 − u)δ0 only contains 1 and 0 leading to the classical result that solutions
to Example 2.4 alternate locally between 0 and 1 (see Theorem 2 of Cox and Klenke,
2000).
Interestingly, the well known almost sure convergence to 0 for the Anderson model
from Example 2.5 (see for instance Greven and den Hollander, 2007) does not
contradict the findings here: the weak limit law is δ0 so that the only point of
the support is 0. Hence, the techniques of Cox and Klenke (2000) only show that
solutions locally approach 0 infinitely often which is much weaker than the well
known exponentially fast almost sure convergence to 0.

3.2.4. Longtime Analysis for the Moments - The Critical Moment Curve. Here we
follow the arguments of Blath et al. (2011) to find bounds for pth moments of SBMγ

started at homogeneous initial conditions and for pth moments of the total-masses
for compactly supported initial conditions. The calculations appearing here are the
main building blocks for SBM∞ so that this section is more elaborate.

We start with a simple self-duality based lemma connecting the moments of so-
lutions with infinite initial conditions with the moments of the total-mass processes
for solutions starting at finite initial conditions.

Lemma 3.18. For any k ∈ Zd and t ≥ 0

E1,1
[

(ut(k) + vt(k))
p
]

= E1k,1k
[

(〈1, ut〉 + 〈1, vt〉)p
]

. (3.15)

Proof : Employing the self-duality with φ = ψ = θ
21k gives the Laplace transform

identity

E1,1
[

e−
√

1−%θ(ut(k)+vt(k))
]

= E1,1
[

e−
√

1−%〈ut+vt,φ+ψ〉]

= E
θ
21k,

θ
21k

[

e−
√

1−%〈1+1,ut+vt〉]

= E1k,1k
[

e−
√

1−%θ〈1,ut+vt〉],
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where the final equality comes from the uniqueness of the solutions. �

With identity (3.15) in hand, to understand the behavior of the moments of the
solutions starting at homogeneous initial conditions, it suffices to understand the
behavior of the moments for the total-masses for which we already found a useful
structure in Lemma 3.14.

A crucial ingredient is an exit-point exit-time equivalence for %-correlated Brow-
nian motions (W 1,W 2) and their exit time τ from the first quadrant Q as defined
in (3.1), (3.2).

Lemma 3.19 (Exit-Point Exit-Time Equivalence). Let p > 0 and u, v > 0, then
the following conditions are equivalent:

i)

p < p(%) :=
π

π
2 + arctan

(

%√
1−%2

) ,

ii)

Eu,v
[

τ
p
2

]

<∞,

iii)

Eu,v
[∣

∣(W 1
τ ,W

2
τ )

∣

∣

p]
<∞.

The function p is plotted in Figure 1; the critical curve p is strictly decreasing,
with p(−1) = ∞, p(0) = 2 and p(1) = 1. The particular case of % = 0 corresponds
to planar Brownian motion in Q. It is a classical result of Feller (see Feller, 1951)
that, independently of the initial value, the first hitting-time of the boundary only
has 1 − ε finite moments. This part of the theorem is non-trivial! The second part
is simpler as the exit point distribution can be calculated explicitly: with

Q → H, z 7→ z2

the first quadrant is mapped conformally to the upper half plane H ⊂ R2 so that, by
conformal invariance, the planar Brownian path in Q is mapped to a time-changed
planar Brownian path in H. Luckily, the time-change does not influence the exit-
points (only the exit-time) and the exit-distribution from H is known to be Cauchy.
Plugging this into the conformal mapping, the density of the exit-law Q0 from Q

can be calculated (see page 1094 of Dawson and Perkins, 1998). The density has no
pole at zero with tail decreasing polynomially so that the number of finite moments
can be deduced.

For %-correlated Brownian motions the result follows from a simple change of
the space; via

(W̃ 1, W̃ 2) :=

(

W 1,
W 2 − %W 1

√

1 − %2

)

,

the %-correlated Brownian motions are transformed into independent Brownian
motions. Simultaneously, the quadrant Q is transformed into a wedge W(θ) of
angle

θ :=
π

2
+ arctan

( %
√

1 − %2

)

using the conformal map

Q → W(θ), z 7→ zπ/θ.
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The angle of W(θ) increases for increasing % explaining, at least morally, the de-
crease of the number of finite moments: if the domain is enlarged, the duration of
a planar Brownian path to hit the boundary increases, hence, the exit-time might
have less finite moments. At the same time, if the Brownian paths run for longer
time it will hit larger values so that the hitting-point distribution might have less
finite moments. Making this rigorous and calculating the exact number of finite
moments is done in the same manner as for % = 0. That is, the exact distribution
of the exit-law Q% can be found:

Pu,v
(

W 1
τ = 0,W 2

τ ∈ dr) =
1

π
√

1 − %2
π/θ

π
θ r

π
θ
−1z2

z2
2 +

(

(

r√
1−%2

)
π
θ + z1

)2 dr,

Pu,v
(

W 1
τ ∈ dr,W 2

τ = 0
)

=
1

π
√

1 − %2
π/θ

π
θ r

π
θ
−1z2

z2
2 +

(

(

r√
1−%2

)
π
θ − z1

)2 dr,

(3.16)

with the constants

z1 =
(

u2+
(v − %u)2

1 − %2

)
π
2θ

cos
(π

θ

(

arctan
( v − %u

√

1 − %2u

)

+arctan
( %

√

1 − %2

))

,

z2 =
(

u2+
(v − %u)2

1 − %2

)
π
2θ

sin
(π

θ

(

arctan
( v − %u

√

1 − %2u

)

+arctan
( %

√

1 − %2

))

.

(3.17)

From the polynomial decay of the densities given in (3.16) the number of finite
moments can be deduced.

Remark 3.20. The explicit density (3.16) will play a crucial part in Section 3. For
the purposes of this section, the density serves as a tool to understand the longtime
behavior of moments, whereas for SBM∞ it will be the main building block of a
construction of the process.

A direct application of the exit-point exit-time equivalence is a proof for the
critical moment curve of symbiotic branching processes.

Theorem 3.21 (Critical Moment Curve). Suppose % ∈ (−1, 1) and γ > 0, then
the following hold for p > 1:

a) If d = 1, 2, then

p < p(%) ⇐⇒ E1,1[ut(k)
p] is bounded in t ≥ 0.

b) If d ≥ 3, then

p < p(%) =⇒ E1,1
[

ut(k)
p
]

is bounded in t ≥ 0.

By symmetry, the same statement holds for u replaced by v. The inverse direction
of b) fails and depends on γ.

Sketch of Proof: Taking into account Lemma 3.18, it suffices to prove the equiva-
lence for the total-mass process 〈ut,1〉 started at localized initial condition.

“⇒”: The proof basically follows from Lemma 3.14 and works for a) and b): The
total-masses are time-changed %-correlated Brownian motions and furthermore the
quadratic variation (which is nothing but the time-change of the Brownian motions)
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Figure 3.1. The critical moment curve p as a function of % ∈ (−1, 1).

is bounded by τ as otherwise one of the total-mass processes would become negative.
Hence, by the Burkholder-Davis-Gundy inequality

E1k,1k
[

(〈1, ut〉 + 〈1, vt〉)p
]

≤ CE1,1
[

τp/2
]

.

The righthand side is independent of t and finite due to the exit-point exit-time
equivalence so that the claim follows.

”⇐”: Suppose p > p(%). As in the proof of Theorem 3.16 we use the almost
sure convergence of (〈1, ut〉, 〈1, vt〉) to (W 1

τ ,W
2
τ ) (this only works in case a), see

Remark 3.15). Combining this with Fatou’s Lemma gives

lim inf
t→∞

E1k,1k
[

(〈1, ut〉 + 〈1, vt〉)p
]

≥ lim inf
t→∞

E1k,1k
[

〈1, ut〉p
]

≥ E1k,1k
[

lim inf
t→∞

〈1, ut〉p
]

= E1,1
[

(W 1
τ )p

]

.

The righthand side is infinite due to the exit-point exit-time equivalence so that
the moment diverges. The results for E1,1

[

ut(k)
p
]

can now be readily deduced by
considering the cases ut(k) ≤ vt(k) and vt(k) ≤ ut(k). �

3.3. Continuuum Model and the Interface Problem. All results discussed above can
equally be shown for the continuum space analogue model in low dimensions. We
will briefly discuss this setting as it serves as an important motivation for the study
of SBM∞.
Let us first introduce the model for d = 1. The continuum space symbiotic branch-
ing model is defined by the pair of stochastic heat equations

{

∂
∂tut(x) = 1

2∆ut(x) +
√

γut(x)vt(x)W
1(dt, dx),

∂
∂tvt(x) = 1

2∆vt(x) +
√

γut(x)vt(x)W
2(dt, dx),

(3.18)

where now ∆ = ∂2

∂x2 denotes the typical Laplace operator on R. The driving noises

W 1,W 2 are standard Gaussian white noises on R+ ×R with correlation parameter



Finite and Infinite Rate Mutually Catalytic Branching 27

% ∈ [−1, 1], i.e. the unique Gaussian processes with covariance structure

E
[

W 1
t1(A1)W

1
t2 (A2)

]

= (t1 ∧ t2)λ(A1 ∩A2),

E
[

W 2
t1(A1)W

2
t2 (A2)

]

= (t1 ∧ t2)λ(A1 ∩A2),

E
[

W 1
t1(A1)W

2
t2 (A2)

]

= %(t1 ∧ t2)λ(A1 ∩A2),

where λ denotes Lebesgue measure, A1, A2 ∈ B(R) and t1, t2 ≥ 0. Solutions of
this model have been considered rigorously in the framework of the corresponding
martingale problem in Theorem 4 of Etheridge and Fleischmann (2004), which
states that, under suitable growth conditions on the initial conditions u0, v0, a
solution exists for all % ∈ [−1, 1]. Uniqueness for % ∈ (−1, 1) can be obtained via
the self-duality as in the proof of Corollary 3.6. The moment duality also holds
with particles moving as Brownian motions and collision times replaced by collision
local times.

Stochastic heat equations typically have function-valued solutions only in spatial
dimension d = 1. The particular symmetric nature of MCBγ changes this property:
it was shown in Dawson et al. (2002) and Dawson et al. (2003) that MCBγ do exist
in the continuous setting in dimension d = 2 for γ small enough. Existence of
solutions in dimensions d > 2 is unknown.

The results on the longtime behavior will not be repeated here; those are similar
to the results discussed for the discrete spatial case for d = 1, 2. Instead, we include
a result of Blath et al. (2011) refining a Theorem of Etheridge and Fleischmann
(2004). To explain this, the notion of the interface of continuous-space symbiotic
branching processes is needed.

Definition 3.22. The interface at time t of a solution (ut, vt) of the symbiotic
branching model SBMγ with % ∈ [−1, 1] is defined as

Ifct = cl
{

x : ut(x)vt(x) > 0
}

,

where cl(A) denotes the closure of the set A in R.

The main question addressed in Etheridge and Fleischmann (2004) is whether
for complementary Heaviside initial conditions

u0(x) = 1R−(x) and v0(x) = 1R+(x).

the so-called compact interface property holds, that is, whether the interface is
compact at each time almost surely. This is answered affirmatively in Theorem 6
in Etheridge and Fleischmann (2004), together with the assertion that the interface
propagates with at most linear speed, i.e. for each % ∈ [−1, 1] there exists a constant
c > 0 and a finite random-time T0 so that almost surely for all T ≥ T0

⋃

t≤T
Ifct ⊆

[

− cT, cT
]

. (3.19)

For the stochastic heat equation with Wright-Fisher noise corresponding to % = −1,
it was shown in Tribe (1995) that the correct propagation of the interface is of order√
T so that one might ask whether (3.19) is sharp for % > −1. Here is a refinement

of (3.19), proved in Blath et al. (2011), for which the critical moment curve was
originally developed.
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Theorem 3.23. Suppose % is chosen sufficiently small such that p(%) > 35 and
γ > 0, then there is a constant C > 0 and a finite random-time T0 such that almost
surely for all T > T0.

⋃

t≤T
Ifct ⊆

[

− C
√

T log(T ), C
√

T log(T )
]

.

The strong restriction on % is probably not necessary and is only caused by the
technique of the proof which is based on the dyadic grid technique utilized for the
proof of Tribe (1995). To circumvent the boundedness of all moments that holds
only for % = −1, 35th moments have to be bounded in time.
Though the assumption forces % ≤ −0.9958 the result is still interesting. It shows
that sub-linear speed of propagation is not restricted to situations in which solutions
are uniformly bounded as they are for % = −1.

Finally, let us motivate the construction and the study of SBM∞ in Section 3.
The scaling property for symbiotic branching on the continuum (see Lemma 8 of
Etheridge and Fleischmann, 2004) states that if (ut, vt) is a solution started at
Heavyside initial conditions, then

(ũt(x), ṽt(x)) :=
(

uNt
(
√
Nx

)

, vNt
(
√
Nx

))

is a solution of SBM√
Nγ with Heavyside initial condition. Hence, propagation of

the interface of order
√
T will be intimately related to the behavior of SBMγ with

γ tending to infinity.
Unfortunately, the constructions in Section 3 can only be seen as a first step towards
the correct order of interface propagation: the construction for the limiting process
SBM∞ could so far be carried out only for discrete spatial symbiotic branching
processes. It is still an open question how to extend the characterizations and
constructions of SBM∞ to the continuum analogue.

4. Infinite Rate Symbiotic Branching Processes

In Section 2.3 we discussed how the standard voter processes can be viewed as an
infinite rate stepping stone model, or, in other words, SBM∞(%) for % = −1. It is not
at all clear if and how that motivation extends to % 6= −1 as the coalescing particles
duality seems to have no extension to % 6= −1. Taking into account the colored
particles dual instead, it is by no means clear whether sending γ to infinity leads
to a non-trivial process: for γ = ∞ the changes of color occur instantaneously but
at the same time the exponent is multiplied by ∞, so that the moment expression
only makes sense if the exponent is almost surely non-positive.
Nonetheless, using the self-duality instead of the moment-duality, it can be shown
that sending the branching rate to infinity makes sense. To understand the effect in
a nutshell, let us take a closer look at the non-spatial system of symbiotic branching
SDEs

{

dut =
√
γutvt dB

1
t ,

dvt =
√
γutvt dB

2
t ,

(4.1)

with non-negative initial conditions (u, v). Due to the symmetric structure, we got
in Lemma 3.14 that

(

W 1
t ,W

2
t

)

:=
(

uT−1(t), vT−1(t)

)
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are %-correlated Brownian motions if we use the time-change T (t) = γ
∫ t

0
usvs ds.

Caused by the product structure of the time-change the boundary E of the first
quadrant is absorbing. Hence, the Brownian motions W 1,W 2 stop at the first
hitting-time τ of E. Increasing γ only has the effect that (ut, vt) follows the Brow-
nian paths with different speed so that γ = ∞ corresponds to at once picking a
point in E according to the exit-measure Q% on E and freeze thereafter (recall
(3.1)).
To make this argument precise one has to be slightly more careful as the parameter
γ does not only occur as multiple in the time-change T but also effects the solution
itself. To circumvent this obstacle one has to take into account the structure of the
equations. Let us label the solutions by their fixed branching rate γ. It can be shown
that the sequence (uγ , vγ) converges in the so-called Me yer-Zheng “pseudo-path”
topology (for which we refer to Meyer and Zheng, 1984 and Jakubowski, 1997) to a

limit (U, V ). Stochastic boundedness in γ and t of the square-function γ
∫ t

0 u
γ
sv
γ
s ds

by τ implies that
∫ t

0 UsVs ds = 0. Hence, the limiting process (U, V ) takes values in
E. The only possible limit is the constant process (Ut, Vt) = (U0, V0), t ≥ 0, where
(U0, V0) is distributed according to Q%u,v because the prelimiting processes (uγ , vγ)
are eventually trapped at E at a point distributed according to Q%u,v.

Incorporating space, a second effect occurs: both types change their mass on
S according to a heatflow. This smoothing effect immediately tries to lift a zero
coordinate if it was pushed by the exit-measure Q% to zero. Interestingly, none of
the two effects dominates and a non-trivial limiting process (with values in E for
each site k ∈ S) can be obtained when letting the branching rate tend to infinity.

Convention 4.1. In contrast to Section 3 we do not restrict to the discrete Laplacian
∆ here and instead replace ∆ by A as in Section 3.1. Accordingly, Zd is replaced
by a general countable set S.

The aim of this section is to explain how the results of Klenke and Mytnik (2012a)
and Klenke and Oeler (2010) on the infinite rate mutually catalytic branching
process MCB∞ can be generalized to % 6= 0. After introducing more notation for
the state-spaces, different approaches to infinite rate symbiotic branching processes
are presented: a characterization via an abstract martingale problem, two limiting
constructions and a more hands-on representation via Poissonian integral equations.

4.0.1. Some Notation. The finite rate symbiotic branching processes were studied

on subspaces of
(

R+ × R+
)S

, i.e. at each site of the countable set S the solution
processes consist of a pair of non-negative values. According to the heuristic rea-
soning above, at each site k ∈ S infinite rate processes take values on the boundary
E of the first quadrant so that we can expect to find an ES-valued process. As
usual, certain growth restrictions need to be imposed to find a tractable subspace
of ES . In accordance with the state-space L2

β for finite rate symbiotic branching

processes we stick to the analogue subspace of ES :

L2,E
β := L2

β ∩ ES (4.2)

equipped with the same norm as L2
β . Furthermore, we will use subspaces of com-

pactly supported and summable initial conditions that will be denoted by Lf,E and
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LΣ,E. In contrast to SBMγ , the infinite rate processes are not continuous so that so-

lutions have paths in D
(

[0,∞), L2,E
β

)

, the set of functions that are right-continuous
with limits from the left.

4.1. Martingale Properties. In order to define infinite rate processes rigorously, in
Klenke and Mytnik (2012a) a martingale problem characterization was proposed
for infinite rate mutually catalytic branching processes. This formulation uniquely
determines the process but is not very useful for understanding properties of the
process. Crucial properties of the process, such as non-continuity of sample paths,
are not clear from this formulation. Nonetheless, it seems to be the most convenient
way to introduce the process as it directly reveals the connection to the finite rate
processes. In what follows we are going to extend the results of Klenke and Mytnik
(2012a) to % 6= 0.

To define the characterizing martingale problem one crucially uses the self-
duality function

F (x1, x2, y1, y2) = exp
(

〈〈x1, x2, y1, y2〉〉%
)

(4.3)

defined in (3.12). We include the next two simple (stochastic) calculus lemmas in
order to clarify the appearance of % in the definition of 〈〈·, ·, ·, ·〉〉%.
Lemma 4.2. Suppose (x1, x2) ∈ L2

β and (y1, y2) are compactly supported, then for
all k ∈ S

∂

∂x1(k)
F (x1, x2, y1, y2) = F (x1, x2, y1, y2)〈〈1, 0, y1, y2〉〉%

∂

∂x2(k)
F (x1, x2, y1, y2) = F (x1, x2, y1, y2)〈〈0, 1, y1, y2〉〉%

and
[

1

2

∂2

∂x1(k)2
+

1

2

∂2

∂x2(k)2
+ %

∂2

∂x1(k)∂x2(k)

]

F (x1, x2, y1, y2)

= 4(1 − %2)F (x1, x2, y1, y2)y1(k)y2(k),

where ∂/∂x1(k) (resp. ∂/∂x2(k)) denotes the partial derivative with respect to the
kth coordinate of the first (resp. second) entry.

Proof : First note that all appearing infinite sums are actually finite as y1 and y2
are compactly supported. We leave the simple derivations of the first derivatives
to the reader as it does not clarify the influence of %.
Abbreviating c(k) = y1(k) + y2(k) and d(k) = y1(k) − y2(k), by the chain rule we
obtain

[

1

2

∂2

∂x1(k)2
+

1

2

∂2

∂x2(k)2
+ %

∂2

∂x1(k)∂x2(k)

]

F (x1, x2, y1, y2)

= F (x1, x2, y1, y2)

[

1

2

(

−
√

1 − %c(k) + i
√

1 + %d(k)
)2

+
1

2

(

−
√

1 − %c(k) − i
√

1 + %d(k)
)2

+ %
(

−
√

1 − %c(k) + i
√

1 + %d(k)
)(

−
√

1 − %c(k) − i
√

1 + %d(k)
)

]
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which is equal to

F (x1, x2, y1, y2)
[

(1 − %)(1 + %)c2(k) − (1 + %)(1 − %)d2(k)
]

= F (x1, x2, y1, y2)4(1 − %2)y1(k)y2(k).

�

The intrinsic need for the particular choice of 〈〈·, ·, ·, ·〉〉% can now be revealed:
the additional square-roots involving % are chosen in such a way that the cross-
variations caused by the correlated driving noises cancel.

Proposition 4.3. Suppose (u0, v0) ∈ L2
β, (y1, y2) ∈ Lf,E and (ut, vt)t≥0 is a sym-

biotic branching process with finite branching rate γ > 0 and correlation parameter
% ∈ [−1, 1], then

M%,γ
t (u0, v0, y1, y2) := F (ut, vt, y1, y2) − F (u0, v0, y1, y2)

−
∫ t

0

〈〈Aus,Avs, y1, y2〉〉%F (us, vs, y1, y2) ds
(4.4)

is a martingale null at zero.

Proof : Noting again that all infinite sums are, in fact, finite as the test-sequences
y1 and y2 have compact support, we may apply Itô’s formula to the finite set of
stochastic differential equations to get

F (ut, vt, y1, y2)

= F (u0, v0, y1, y2) +
∑

k∈S

∫ t

0

∂

∂x1(k)
F (us, vs, y1, y2) dus(k)

+
∑

k∈S

∫ t

0

∂

∂x2(k)
F (us, vs, y1, y2) dvs(k)

+
1

2

∑

k∈S

∫ t

0

∂2

∂x1(k)2
F (us, vs, y1, y2)d〈u·(k)〉s

+
1

2

∑

k∈S

∫ t

0

∂2

∂x2(k)2
F (us, vs, y1, y2)d〈v·(k)〉s

+
∑

k∈S

∫ t

0

∂2

∂x1(k)∂x2(k)
F (us, vs, y1, y2)d〈u·(k), v·(k)〉s,

where we used that by definition the Brownian motions at different sites are inde-
pendent. The correlation structure for the Brownian motions at the same sites and
the previous lemma yield equality of the above expression to

F (u0, v0, y1, y2) + local mart.

+

∫ t

0

F (us, vs, y1, y2)〈〈Aus, 0, y1, y2〉〉% ds+ local mart.

+

∫ t

0

F (us, vs, y1, y2)〈〈0,Avs, y1, y2〉〉% ds

+

∫ t

0

F (us, vs, y1, y2)
∑

k∈S
4(1 − %2)y1(k)y2(k)γus(k)vs(k) ds.
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Sorting the terms leads to

F (ut, vt, y1, y2) = F (u0, v0, y1, y2) + local mart.

+

∫ t

0

F (us, vs, y1, y2)〈〈Aus,Avs, y1, y2〉〉% ds

+

∫ t

0

F (us, vs, y1, y2)
∑

k∈S
4(1 − %2)y1(k)y2(k)γus(k)vs(k) ds.

By assumption y ∈ Lf,E so that y1(k)y2(k) = 0 for all k ∈ S. Hence, the last
summand vanishes and it only remains to show that the local martingale is a mar-
tingale. But this follows directly from the fact that F is bounded and the moments
E[ut(k)vt(k)] are locally bounded. The latter follows for instance from the moment
duality of Lemma 3.7. �

It would be desirable to uniquely define solutions of finite rate symbiotic branch-
ing processes via this martingale property which unfortunately is impossible: the
corresponding martingale problem does not involve γ and it is satisfied by SBMγ(%)
for arbitrary γ. As symbiotic branching processes for different branching rates do
not coincide in law, the martingale problem has infinitely many solutions.

However, the class of processes on the restricted state-space L2,E
β is less rich so

that the small class of test-functions suffices here for the martingale problem to
be well-posed. In particular, the restriction rules out all solutions of SBMγ . Here
is the generalization from % = 0 to % ∈ (−1, 1) of Proposition 4.1 of Klenke and
Mytnik (2012a).

Theorem 4.4. Let % ∈ (−1, 1), then there is a unique solution to the following

martingale problem: For all initial conditions (x1, x2) ∈ L2,E
β , there exists a process

(U, V ) with paths in D([0,∞), L2,E
β ) such that for all test-sequences (y1, y2) ∈ Lf,E

the process

M%,∞
t (x, y) := F (Ut, Vt, y1, y2) − F (x1, x2, y1, y2)

−
∫ t

0

〈〈AUs,AVs, y1, y2〉〉%F (Us, Vs, y1, y2) ds
(4.5)

is a martingale null at zero. The induced law on D
(

[0,∞), L2,E
β

)

constitutes a
strong Markov family and the corresponding strong Markov process will be called
infinite rate symbiotic branching SBM∞(%).

We postpone a sketch of a proof to Section 4.4 where solutions are constructed
by means of the Poissonian equations already mentioned in Theorem 1.1.

Since we discussed extensively the longtime behavior of finite rate symbiotic
branching processes we say a few words about the longtime behavior of infinite rate
symbiotic branching processes. The case of % = 0 has been studied in Klenke and
Mytnik (2012b) and some sufficient conditions for coexistence and impossibility
of coexistence have been derived there. For % < 0 a full recurrence/transience
dichotomy has been established in Döring and Mytnik (2011) in the spirit of the
results presented in Section 3.2.1.

Proposition 4.5. Let % < 0, then coexistence of types for SBM∞(%) is possible if
and only if a Markov process on S with Q-matrix A is transient.
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Note that this proposition extends Proposition 3.12 to γ = ∞ on a general
countable site space S and an arbitrary symmetric Markov process with Q-matrix
A. For the proof we refer the reader to Döring and Mytnik (2011).

4.2. Main Limit Theorem. So far we have discussed the finite rate symbiotic branch-
ing processes and introduced the well-posed martingale problem from which one can
define the family of processes SBM∞(%), % ∈ (−1, 1). To get the link between the
two, we sketch in this section how to show that SBMγ converges in some weak
sense to the solution SBM∞ of the martingale problem (4.5) as γ goes to infinity.
This, in fact, justifies to call the processes of Theorem 4.4 infinite rate symbiotic
branching processes.

Unfortunately, the convergence of SBMγ to SBM∞ will not hold in the convenient
Skorohod topology in which continuous processes converge to continuous processes.
As a solution of the system of Brownian equations (1.1), SBMγ is continuous,
whereas SBM∞ is non-continuous as solution to the system of Poissonian equations.

Even though the convergence can not hold in the Skorohod topology, it holds in
some weaker sense. The suitable “pseudo-path” topology on the Skorohod space of
RCLL functions was introduced in Meyer and Zheng (1984). The topology is much
weaker than the Skorohod topology and is, in fact, equivalent to convergence in
measure (see Lemma 1 of Meyer and Zheng, 1984 and also results in Jakubowski,
1997). Sufficient (but not necessary) tightness conditions for this “pseudo-path”
topology were given in Meyer and Zheng (1984). In particular, these conditions are
convenient to check the tightness of semimartingales.

Here is the extension of Theorem 1.5 of Klenke and Mytnik (2012a) to % 6= 0.

Theorem 4.6. Fix any % ∈ (−1, 1). Suppose that for any γ > 0, (uγt , v
γ
t )t≥0 solves

SBMγ(%) and the initial conditions (uγ0 , v
γ
0 ) = (U0, V0) ∈ L2,E

β do not depend on γ.
Then, for any sequence γn tending to infinity, we have the convergence in law

(uγn , vγn) =⇒ (U, V ), n→ ∞,

in D([0,∞), L2
β) equipped with the Meyer-Zheng “pseudo-path” topology. Here,

(U, V ) is the unique solution of the martingale problem of Theorem 4.4.

Sketch of Proof: The proof consists of three steps:
Step 1: Tightness in the Meyer-Zheng “pseudo-path” topology follows from the
tightness criteria of Meyer and Zheng (1984). To carry this out, one has to show
tightness for the drift and the martingale terms in the definition of SBMγ : By
standard estimates the drift terms are, in fact, tight in the stronger Skorohod
topology: this follows from

sup
γ

E

[

sup
t≤T

〈uγt , β〉p
]

<∞, p ∈ (1, p(%)). (4.6)

Apart from the facts that β 6= 1 and uγ0 is not assumed to be summable this
is close to the moment bounds for the total-mass processes that we obtain from
Lemma 3.18 and Theorem 3.21. With the same trick as in Lemma 6.1 of Klenke
and Mytnik (2012a), the lefthand side of (4.6) can be bounded uniformly in γ by a
multiple of E[τp/2], where τ is the exit-time of Theorem 3.21. Replacing p ∈ (1, 2)
by p ∈ (1, p(%)), the arguments in the proof of Lemma 6.2 of Klenke and Mytnik
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(2012a) carry over line by line. The crucial observation is that for all % ∈ (−1, 1)
the critical curve p(%) is strictly larger than 1 which is all that is needed.
To prove tightness of the martingale part, the tightness criteria for martingales can
be applied (compare Theorem 4 combined with Remark 2 of Meyer and Zheng,
1984).
Step 2: To show that all limit points indeed solve the martingale problem, we
only have to use Proposition 4.3 and some moment estimates. For all fixed γ > 0
the same martingale problem is fulfilled so that it comes as no surprise that the
martingale problem is fulfilled in the limit if one can show that the martingales
converge to a martingale. But this follows from the same estimates that are used
for the tightness proof involving crucially the critical curve p(%).
Step 3: In the previous section we stressed out that the martingale problem (4.5)

is only well-posed if the involved process takes values in the restricted space L2,E
β .

To show that for any limit point (U, V ), we indeed have Ut(k)Vt(k) = 0 for all
t ≥ 0, k ∈ S, one can show that almost surely

∫ t

0

(Us(k)Vs(k) ∧ 1) ds = 0, ∀t ≥ 0, k ∈ S, (4.7)

since then, by right-continuity, (Ut(k), Vt(k)) ∈ E for all t ≥ 0, k ∈ S. By tightness

of step 1 one can easily derive stochastic boundedness of γ
∫ t

0
uγsv

γ
s ds uniformly in

γ for any k ∈ S as in the proof of Lemma 6.3 in Klenke and Mytnik (2012a) from
which (4.7) follows by taking into account that convergence in the Meyer-Zheng
“pseudo-path” topology is equivalent to convergence in (Lebesgue) measure. �

Now that above we have made precise sense of SBM∞ in terms of a weak limit
of SBMγ that solves a well-posed martingale problem, the next two sections are
devoted to constructions that shed more light on the properties of the processes.

4.3. Trotter Type Construction. A very different perspective for MCB∞ was pre-
sented in Klenke and Oeler (2010). Their main idea was to combine “by hands”
the precise infinite rate limit for the mutually catalytic SDE (4.1) with the heatflow
corresponding to the generator A, to construct a more instructive approximation.
The approximation converges in the stronger Skorohod topology, instead of only in
the weaker Meyer-Zheng “pseudo-path” topology, which might be helpful to deduce
properties for the limiting process. We now briefly discuss here how their approach
extends to SBM∞(%) for % ∈ (−1, 1).
Separating the deterministic and stochastic terms in the very definition of SBMγ ,
one has to consider the pair of evolution equations

∂

∂t
ut = Aut,

∂

∂t
vt = Avt (4.8)

and the set of independent two-dimensional symbiotic branching processes

dut(i) =
√

γut(i)vt(i) dB
1
t (i), dvt(i) =

√

γut(i)vt(i) dB
2
t (i). (4.9)

The evolution equations (4.8) can be solved explicitly in terms of the semigroup
Pt corresponding to A (recall (3.7) for A = ∆) and the solutions do not depend
on the branching rate γ. The processes in (4.9) obey a more interesting behavior
as we have discussed in the introduction of this section: the pairs of independent
stochastic integrals provide a set of independent diffusions indexed by S which, for
γ = ∞, correspond to a set of independent choices of the exit-law Q%.
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The Trotter type approach to SBM∞ is built upon these two explicit represen-
tations: the heatflow based on A and the independent choices of the exit-law Q%

are alternated with increasing frequency. For ε > 0, the approximating processes
(U ε, V ε) are defined as follows:

i) Within each interval [nε, (n + 1)ε), (U εt , V
ε
t ) is the explicit (deterministic)

solution of (4.8) with initial condition (U εnε, V
ε
nε).

ii) At times nε, (U εnε−, V
ε
nε−) is replaced at each site k ∈ S independently by a

point in E chosen from the exit-law Q% of %-correlated Brownian motions
started at

(

U εnε−(k), V εnε−(k)
)

.

It follows almost directly from the definition of the approximation that for any
ε > 0 fixed, (U ε, V ε) is a solution to the martingale problem (4.5). As discussed
below Proposition 4.3 this does not cause any contradiction since even with initial

condition (U0, V0) ∈ L2,E
β , the processes (U ε, V ε) take values in L2

β but not in the

restricted state-space L2,E
β . The adaption of the main result of Klenke and Oeler

(2010) is then as follows.

Theorem 4.7. Suppose % ∈ (−1, 1) and (U0, V0) ∈ L2,E
β . Then, as ε tends

to zero, the family {(U ε, V ε)}ε>0 converges weakly, in the Skorohod topology on
D([0,∞), L2

β), to SBM∞(%).

Sketch of Proof: The proof consists of three steps:
Step 1: Tightness in the Skorohod topology is proved via Aldous’ criterion and
moment estimates that are based on estimates for the exit-measures Q%. The
extension from % = 0 to % ∈ (−1, 1) is crucially built upon the fact that the
estimates of Klenke and Oeler (2010) are based on boundedness of some moments
greater than 1 and this equally holds for any % ∈ (−1, 1) (see Lemma 3.19).
Step 2: The identification of the limit points is not difficult since the approximating
sequence already solves the martingale problem for any ε > 0. It is only needed
to show that the sequence of martingales remains a martingale for which again
moment estimates based on Lemma 3.19 are needed.
Step 3: The limiting process takes values in the smaller space L2,E

β ⊂ L2
β due to

the construction and continuity of the heatflow. �

4.4. Poissonian Construction. Up to now the infinite rate symbiotic branching pro-
cesses have only been characterized as weak limits of approximating sequences and
via an abstract martingale problem. The most explicit construction of SBM∞ is
presented here as the unique weak solution to a system of Poissonian integral equa-
tions from which we deduce the connection to the voter process.

4.4.1. Jump Measure. To describe the jumps of SBM∞, the following definition is
needed:

Definition 4.8. Suppose Q%(u,v) is the exit-measure of %-correlated Brownian mo-

tions started at (u, v) from the first quadrant (see (3.1)). Define

ν%(a,0) := lim
ε→0

Q%(a,ε)

ε
,

where the limit is in the vague topology on measures (i.e. integrated against con-
tinuous functions with compact support).
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Recalling that by definition Q% is a probability measure for arbitrary initial con-
ditions, after rescaling the measure ν% has to be an infinite measure on E equipped
with the restricted Borel σ-algebra.

Next, a density for ν% will be derived. The core of the work has already been
done in Blath et al. (2011) where the density for Q% was calculated (see (3.16));
with this density in hand we get the following result.

Lemma 4.9. For % ∈ (−1, 1) and a > 0 the measure ν% is absolutely continu-
ous with respect to the two-dimensional Lebesgue measure restricted to E with the
density

ν%(a,0)(d(y1, y2)) =















p(%)2ap(%)−1
√

1 − %2 y
p(%)−1
1

π
(

y
p(%)
1 −ap(%)

)2 dy1 : y2 = 0,

p(%)2ap(%)−1
√

1 − %2 y
p(%)−1
2

π
(

y
p(%)
2 +ap(%)

)2 dy2 : y1 = 0,

where p(%) = π
θ(%) and θ(%) = π

2 + arctan
(

%√
1−%2

)

.

Proof : By definition of ν%, all we need to do is to plug-in (u, v) = (a, ε) into the the
explicit density given in (3.16), divide by ε and go to the limit. With the notation
used in (3.16), (3.17) we obtain

z1(ε) =
(

a2 +
(ε− a%)2

1 − %2

)
π

2θ(%)

cos
( π

θ(%)

(

arctan
( ε− a%

√

1 − %2a

)

+arctan
( %

√

1 − %2

))

ε→0→ ap(%)
( 1

√

1 − %2

)p(%)

.

Taking into account sin(x) ∼ x at 0 and l‘Hôpital’s rule with arctan′(x) = 1/(1+x2),
leads to

ε−1z2(ε) = ε−1
(

a2 +
(ε− a%)2

1 − %2

)
π

2θ(%)

× sin
( π

θ(%)

(

arctan
( ε− a%

√

1 − %2a

)

+arctan
( %

√

1 − %2

)))

ε→0∼ ap(%)
( 1

1 − %2

)
π

2θ(%)

ε−1 sin
( π

θ(%)
εa−1

√

1 − %2
)

ε→0∼ ap(%)−1
( 1

√

1 − %2

)p(%) π

θ(%)

√

1 − %2.

Plugging this calculation into (3.16), (3.17) the claim follows. �

In fact, it will always be sufficient to consider the case a = 1 by simple scaling
as we will see below in Lemma 4.11.

Definition 4.10. The special case for a = 1 will serve as basic jump measure. We
abbreviate

ν%(d(y1, y2)) = ν%(1,0)(d(y1, y2)) =















p(%)2
√

1 − %2 y
p(%)−1
1

π
(

y
p(%)
1 −1

)2 dy1 : y2 = 0,

p(%)2
√

1 − %2 y
p(%)−1
2

π
(

y
p(%)
2 +1

)2 dy2 : y1 = 0,

in the sequel.
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A quick glance at the explicit density of ν% shows that the densities are far from
being symmetric for the x- and y-axis: a pole is found only at (1, 0). Moreover, the
tail behavior shows that the measure restricted to the y-axis is finite and is infinite
for the x-axis. This comes as no surprise from the definition: starting the correlated
Brownian motions in (1, ε) and sending ε to zero forces the Brownian motions to
exit the first quadrant closer and closer to the point (1, 0). The additional factor
1/ε then leads to the pole at (1, 0).

The reduction from ν%(a,0) to ν%(1,0) is motivated by the following scaling property.

Lemma 4.11. Suppose f maps E to R continuously, then
∫

E

f(y1, y2) ν
%
(a,0)(d(y1, y2)) =

1

a

∫

E

f(ay1, ay2) ν
%(d(y1, y2)).

Proof : Splitting E in the two positive parts of the axes, the claim follows from a
change of variables in the third line of the following computation:

∫

E

f(y1, y2)ν
%
(a,0)(d(y1, y2))

=

∫

E

f(y1, 0)ν%(a,0)(d(y1, 0)) +

∫

E

f(0, y2)ν
%
(a,0)(d(0, y2))

=

∫ ∞

0

f(y1, 0)p(%)2
√

1 − %2ap(%)−1 y
p(%)−1
1

π
(

y
p(%)
1 − ap(%)

)2 dy1

+

∫ ∞

0

f(0, y2)p(%)
2
√

1 − %2ap(%)−1 y
p(%)−1
2

π
(

y
p(%)
2 + ap(%)

)2 dy2

=
1

a

∫ ∞

0

f(ay1, 0)p(%)2
√

1 − %2
y
p(%)−1
1

π
(

y
p(%)
1 − 1

)2 dy1

+
1

a

∫ ∞

0

f(0, ay2)p(%)
2
√

1 − %2
y
p(%)−1
2

π
(

y
p(%)
2 + 1

)2 dy2

=
1

a

∫

E

f(ay1, ay2)ν
%(d(y1, y2)).

�

4.4.2. Poissonian Integral Equations. The aim of this section is to discuss properly
the objects appearing in Theorem 1.1 and to give elements of the proof. For con-
venience of the reader not familiar with jump diffusions we added a (very brief)
summary to the appendix.
Let N be a Poisson point process on S×E× (0,∞)× (0,∞) with intensity measure

N ′({k}, d(y1, y2), dr, ds) = ν%(d(y1, y2)) dr ds, ∀k ∈ S. (4.10)

The Poisson random measure N can be interpreted as a collection of independent
Poisson point measures {N ({k}, ·, ·, ·), k ∈ S} on E × (0,∞) × (0,∞) running
independently at each site k ∈ S. Then at each site k ∈ S, the basic jump measure
ν% will be used to determine the target point of a jump from E to E at that site.
To incorporate a state-dependent jump rate the r-component will be used. That
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is, as the jump intensity will depend on the current state of the system before time
s, which we denote by (Us−, Vs−), we define the intensities

Is(k) =











AVs−(k)
Us−(k) : Us−(k) > 0,
AUs−(k)
Vs−(k) : Vs−(k) > 0,

0 : Us−(k) = Vs−(k) = 0.

(4.11)

Let us take a closer look at (4.11), and assume for a moment that the current state
at site k is (Us−(k), 0). Then the intensity of jumps at k at time s is high if Us−(k)
is small compared to the total size of the population of “type V ” at neighboring
sites.

Next, we need to specify the integrand that describes the jumps of SBM∞ at an
atom of N at (k, (y1, y2), s, r):

J
(

y1, y2, Us−(k), Vs−(k)
)

= y2

(

Vs−(k)

Us−(k)

)

+ (y1 − 1)

(

Us−(k)

Vs−(k)

)

so that at an atom (k, (y1, y2), s, r) of N the system in state (Us−, Vs−) changes at
site k via one of the following transitions:











































































(

Us−(k)

0

)

7→
(

y1Us−(k)

0

)

: y =

(

y1
0

)

,

(

Us−(k)

0

)

7→
(

0

y2Us−(k)

)

: y =

(

0

y2

)

,

(

0

Vs−(k)

)

7→
(

0

y1Vs−(k)

)

: y =

(

y1
0

)

,

(

0

Vs−(k)

)

7→
(

y2Vs−(k)

0

)

: y =

(

0

y2

)

.

(4.12)

The second and fourth cases will be referred to as change of type as the jump
changes the current state from one axis to the other. Next, after compensating the
jump term and adding an additional drift term, we are ready to define the system
of Poissonian equations:

Definition 4.12. The system of Poissonian integral equations, indexed by the
possibly infinite set S,

Ut(k) = U0(k) +

∫ t

0

AUs(k) ds

+

∫ t

0

∫ Is(k)

0

∫

E

(

y2Vs−(k) + (y1 − 1)Us−(k)
)

(N −N ′)({k}, d(y1, y2), dr, ds),

Vt(k) = V0(k) +

∫ t

0

AVs(k) ds

+

∫ t

0

∫ Is(k)

0

∫

E

(

y2Us−(k) + (y1 − 1)Vs−(k)
)

(N −N ′)({k}, d(y1, y2), dr, ds),
(4.13)
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or in short
(

Ut(k)

Vt(k)

)

=

(

U0(k)

V0(k)

)

+

(

∫ t

0
AUs(k) ds

∫ t

0
AVs(k) ds

)

+

∫ t

0

∫ Is(k)

0

∫

E

(

y2

(

Vs−(k)

Vs−(k)

)

+(y1 − 1)

(

Us−(k)

Vs−(k)

))

(N −N ′)({k}, d(y1, y2), dr, ds)

will be called infinite rate symbiotic branching SPDE.

For a further discussion and connections of the above Poissonian SPDE to the
standard voter process we refer to the next section.

Theorem 4.13. Let % ∈ (−1, 1) and suppose (U0, V0) ∈ L2,E
β . Then Equation

(4.13) admits a weak solution with paths almost surely in D([0,∞), L2,E
β ).

Sketch of Proof: The proof is along the lines of Sections 2 and 3 of Klenke and
Mytnik (2012a) for % = 0. The basic idea is to construct the approximating sequence
of equations with the following modifications:

(1) truncate the infinite index set (compare with the proof of Theorem 3.2)),
(2) modify the jump measure ν% by truncating its jumps near the pole (1, 0).

This makes the modified jump measure finite.
(3) modify the jump intensity I by truncation its big values.

With these truncations there are only finitely many jumps up to any t ≥ 0 so that
solutions can be built merely “by hands” via interlacing. To be more precise, we
consider equations on subsets Sm ⊂ S with m elements and we redefine

νε,%(d(y1, y2)) = ν%(d(y1, y2))1{y1−1>ε,1−y1>ε′}.

This asymmetric truncation around (1, 0) is slightly strange but if ε, ε′ are chosen
such that

∫

E
(y1−1)νε,%(d(y1, y2)) = 0 then solutions stay on the boundary E of the

first quadrant, i.e. the drift does not push solutions into the interior. The modified
state-dependent jump rate becomes

Iεt (k) =















AV m,ε
t− (k)

Um,ε
t− (k)∨ε : Um,εt− (k) > 0,

AUm,ε
t− (k)

Vm,ε
t− (k)∨ε : Vm,εt− (k) > 0,

1
εAU

m,ε
t− (k) + 1

εAV
m,ε
t− (k) : Um,εt− (k) = V m,εt− (k) = 0.

Replacing ν% by νε,%, I by Iε and adding additional jumps away from (0, 0), so-
lutions (Um,ε, V m,ε) can be constructed by hands via a Poisson point measure N
since jumps do not accumulate. By definition it seems clear (ignoring the addi-
tional jumps away from zero which will vanish in the limit) that a possible limit
for m → ∞ and ε → 0 fulfills Equation (4.13). This can be made rigorous via
the method of characteristics for semimartingales and classical convergence theo-
rems. To ensure that the sequence converges, tightness in the Skorohod space is
justified by Aldous’ criterion. Up to now the arguments copied directly those of
Klenke and Mytnik (2012a), with only difference in replacing ν0 by ν%. To apply
Aldous’ criterion one then has to find pth moment estimates which again can be
obtained as in Klenke and Mytnik (2012a) by replacing their arguments relying on
p ∈ (1, 2) = (1, p(0)) by the same arguments based on p ∈ (1, p(%)). �
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In order to clarify the connection of Equation (4.13) to infinite rate symbiotic
branching processes we give more elaborate arguments for the next result which for
% = 0 was proved in Lemma 3.12 of Klenke and Mytnik (2012a).

Proposition 4.14. Let % ∈ (−1, 1) and suppose (U, V ) is a weak solution to Equa-

tion (4.13) taking values in L2,E
β , then (U, V ) is a solution of the martingale problem

(4.5).

Sketch of Proof: To show that the martingale problem (4.5) is satisfied by weak
solutions to (4.13), one can proceed similarly to the proof of Proposition 4.3 by
applying Itô’s formula to F (Ut, Vt, z1, z2) for compactly supported z1, z2. Let us
first define the integrands of the Poissonian integrals as

(

J1

(

y1, y2, Us−(k), Vs−(k)
)

J2

(

y1, y2, Us−(k), Vs−(k)
)

)

:= y2

(

Vs−(k)

Us−(k)

)

+ (y1 − 1)

(

Us−(k)

Vs−(k)

)

and abbreviate for (x1, x2), (z1, z2) ∈ ES

〈〈x1, x2, z1, z2〉〉%,k = −
√

1 − %
(

x1(k) + x2(k)
)(

z1(k) + z2(k)
)

+ i
√

1 + %
(

x1(k) − x2(k)
)(

z1(k) − z2(k)
)

.

First, by Itô’s formula for non-continuous semimartingales and the notation for
partial derivatives already used in Lemma 4.2, we obtain for (z1, z2) ∈ Lf,E

F (Ut, Vt, z1, z2)

= F (U0, V0, z1, z2) +
∑

k∈S

∫ t

0

∂

∂x1(k)
e〈〈Us,Vs,z1,z2〉〉%AUs(k) ds

+
∑

k∈S

∫ t

0

∂

∂x2(k)
e〈〈Us,Vs,z1,z2〉〉% AVs(k) ds

+
∑

k∈S

∫ t

0

∫ Is(k)

0

∫

E

[

e〈〈(Us,Vs)+J(y1,y2,Us,Vs),z1,z2〉〉%,k − e〈〈Us,Vs,z1,z2〉〉%,k

− J1(y1, y2, Us(k), Vs(k))
∂

∂U(k)
e〈〈Us,Vs,z1,z2〉〉%,k

− J2(y1, y2, Us(k), Vs(k))
∂

∂V (k)
e〈〈Us,Vs,z1,z2〉〉%,k

]

N ′({k}, d(y1, y2), dr, ds)

+ local martingale

which, carrying out the partial derivatives via Lemma 4.2 and plugging-in the
definition of N ′, yields

F (Ut, Vt, z1, z2)

= F (U0, V0, z1, z2) +

∫ t

0

F (Us, Vs, z1, z2)〈〈AUs,AVs, z1, z2〉〉% ds+ local martingale

+
∑

k∈S

∫ t

0

e〈〈Us,Vs,z1,z2〉〉%,kIs(k)

∫

E

[

e〈〈J(y1,y2,Us,Vs),z1,z2〉〉%,k − 1

− 〈〈J
(

y1, y2, Us, Vs
)

, z1, z2〉〉%,k
]

ν%(d(y1, y2)) ds.
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The righthand side is already close to the martingale problem (4.5) if we can show
that the sum of the integrals with respect to ν%(d(y1, y2)) ds equals to zero and
the local martingale is a martingale. Note that this is very similar to the proof of
Proposition 4.3. To prove the first assertion, note that, by definition of ν%,

∫

E

[

e〈〈J(y1,y2,Us,Vs),z1,z2〉〉%,k − 1 − 〈〈J(y1, y2, Us, Vs), z1, z2〉〉%,k
]

ν%(d(y1, y2))

= lim
ε→0

1

ε
E(1,ε)

[

e〈〈J(W 1
τ ,W

2
τ ,Us,Vs),z1,z2〉〉%,k − 1 − 〈〈J(W 1

τ ,W
2
τ , Us, Vs), z1, z2〉〉%,k

]

so that we are done if we can show that, for any (x1, x2), (z1, z2) ∈ ES and ε > 0,

E(1,ε)
[

e〈〈J(W 1
τ ,W

2
τ ,x1,x2),z1,z2〉〉%,k − 1 − 〈〈J(W 1

τ ,W
2
τ , x1, x2), z1, z2〉〉%,k

]

= 0.

(4.14)

But this identity holds, if τ is replaced by t > 0, by Itô’s lemma as in the proof
of Proposition 4.3. The necessary arguments that justify the changes of limits and
integration are as in Lemma 3.11 of Klenke and Mytnik (2012a). Those incorporate
the exit-time exit-point equivalence of Lemma 3.19 for % 6= 0. The martingale
property for the local martingale then follows as in the proof of Lemma 3.12 of
Klenke and Mytnik (2012a) from first moment estimates that are not affected by
% ∈ (−1, 1). �

In the proof Proposition 4.14 we did not utilize the particular form of the inten-
sity It(k) so that arbitrary changes in the intensity seem to lead to other solutions
of the martingale problem, and by this seemingly imply a contradiction to unique-
ness of the martingale problem (4.5). However, this chain of reasoning is not true
because of the particular choice (4.11) for It(k) forces solutions to have paths in

L2,E
β and uniqueness for the martingale problem (4.5) only holds for solutions with

paths restricted to L2,E
β .

Let us make this more precise: suppose that UT (k) = 0 for some random time
T > 0 and some k ∈ S. From the density of the basic jump measure ν% it is clear
that for some positive time no jump changing the types occurs (by finiteness of ν%

restricted to the y2, jumps that change types come with finite rate). Hence, for
some positive random time δ, no jump occurs so that

UT+r(k) = 0, r ∈ [0, δ].

In particular, this shows that N ′ must be such that

∫ T+r

T

AUs(k) ds

−
∫ T+r

T

∫ Is(k)

0

∫

E

J1(y1, y2, Us−(k), Vs−(k))N ′({k}, d(y1, y2), dr, ds) = 0,
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for all r ∈ [0, δ]. We now briefly show that the choice (4.11) indeed does the job:
∫ T+r

T

∫

E

J1(y1, y2, Us−(k), Vs−(k)) Is(k) ν
%(d(y1, y2)) ds

=

∫ T+r

T

∫ ∞

0

y2Vs−(k)
AUs−(k)

Vs−(k)
p(%)2

√

1 − %2
y
p(%)−1
2

π
(

y
p(%)
2 + 1

)2 dy2 ds

=

∫ T+r

T

AUs−(k) ds,

because
∫ ∞

0

y2p(%)
2
√

1 − %2
y
p(%)−1
2

π
(

y
p(%)
2 + 1

)2 dy2 = lim
ε→0

1

ε
E1,ε

[

W 2
τ

]

= lim
ε→0

1

ε
lim
t→∞

E1,ε
[

W 2
t∧τ

]

= lim
ε→0

1

ε
ε

= 1.

Note that here the superscript in W refers to the second coordinate of the pair of
Brownian motions and not to the second moment. The first equality follows from
the definition of ν%; the second follows from the martingale convergence theorem
for which the uniform integrability is ensured by the upper bound

E1,ε
[(

W 2
t∧τ

)p(%)−µ] ≤ E1,ε
[

τ
p(%)−µ

2

]

<∞,

where the positive constant µ is chosen sufficiently small such that p(%) − µ > 1
(existence of µ is ensured by the exit-time exit-point equivalence of Lemma 3.19).

With the Poissonian construction of SBM∞ in hand we now sketch a proof of
Theorem 4.4.

Sketch of Proof for Theorem 4.4: Existence of solutions to the martingale problem
follows from Theorem 4.13 and Proposition 4.14.
The uniqueness proof is inspired by the proof of Lemma 3.6 for γ <∞ based on self-
duality. Here, we sketch the chain of arguments of Section 4 in Klenke and Mytnik
(2012a) which can be copied line by line while replacing the duality function in
Klenke and Mytnik (2012a) by the %-dependent duality function F defined in (4.3).

Step 1: For compactly supported initial conditions (Ũ0, Ṽ0) solutions (Ũ , Ṽ ) to the
martingale problem are constructed via the Poissonian equations (4.13). From the
first moment estimates one obtains that solutions decay sufficiently fast at infinity.
Step 2: First moment bounds for arbitrary solutions of the martingale problem
are derived by differentiating the Laplace transform part (see Lemma 4.2 of Klenke
and Mytnik, 2012a for % = 0).
Step 3: The crucial part is to derive the self-duality relation

E[F (Ut, Vt, Ũ0, Ṽ0)] = E
[

F (U0, V0, Ũt, Ṽt)
]

between the two independent solutions (U, V ) and (Ũ , Ṽ ) starting at (U0, V0) ∈ L2,E
β

and (Ũ0, Ṽ0) ∈ Lf,E. Now, as in the proof of Corollary 3.6, self-duality determines
the one-dimensional laws (Ut, Vt) along the lines of the proof of Proposition 4.7
in Klenke and Mytnik (2012a) for % = 0. Standard theory (see Theorem 4.4.2
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of Ethier and Kurtz, 1986) allows us to extend the uniqueness of 1-dimensional
distributions to uniqueness of finite dimensional distributions. Finally, the strong
Markov property for (U, V ) follows from measurability in the initial condition which
is inherited from the finite jump rate approximation processes. �

Combining Theorems 4.4, 4.13 and Proposition 4.14 we immediately get the
following theorem.

Theorem 4.15. Let % ∈ (−1, 1) and (U0, V0) ∈ L2,E
β . Then there exists unique

weak solution to (4.13) which is the unique solution to the martingale problem from
Theorem 4.4.

4.5. Infinite Rate Symbiotic Branching Processes and Voter Processes II. The in-
finite rate symbiotic branching processes SBM∞ were characterized in previous
subsections via various approaches. In this final section we describe SBM∞ from
the viewpoint of the standard voter process which is closely related to symbiotic
branching with % = −1 as we have already seen in the Section 2.3.

For the rest of this section we stick to A = ∆ on S = Zd for convenience.

We start with restating Theorem 4.6 for the % = −1 case. However, note that
we additionally have to assume uγ0 + vγ0 ≡ 1 since we cannot use the self-duality
anymore as for % = −1 it does not carry enough information to characterize the full
law of the limiting process (U, V ). Under this additional assumption we can rely
on the folklore results mentioned at the very end of Section 2.3 whereas for general
initial conditions a different approach should be developed.

Theorem 4.16. Suppose % = −1 and for any γ > 0, (uγt , v
γ
t )t≥0 solves SBMγ(−1)

and the initial condition (uγ0 , v
γ
0 ) = (U0, V0) do not depend on γ. If furthermore we

suppose
(U0(k), V0(k)) ∈ {(0, 1), (0, 1)}, k ∈ Zd,

then, for any sequence γn tending to infinity, we have the convergence in law

(uγn , vγn) =⇒ (U, V ), n→ ∞,

in D([0,∞), L2
β) equipped with the Meyer-Zheng “pseudo-path” topology. Here, U

is a standard voter process and V = 1−U its reciprocal voter process (i.e. opinions
1 and 0 are interchanged).

Convention 4.17. In what follows the pair of voter processes constructed in the
above theorem will be called SBM∞(−1).

Sketch of Proof: As discussed in the end of Section 2.2, with the additional as-
sumption on the initial conditions, uγ is a solution to the stepping stone model
of Example 2.4 and vγ = 1 − uγ . For γ tending to infinity, a well-known result
(see for instance Section 10.3.1 of Dawson, 1993) states that the finite dimensional
distributions of solutions to the stepping stone model converge to those of the stan-
dard voter process; solutions are bounded and the moments converge as discussed
in Section 2.3. Tightness in the Meyer-Zheng “pseudo-path” topology follows as
for % ∈ (−1, 1). �

To understand SBM∞ and the voter process in a unified framework let us first
summarize. The infinite rate symbiotic branching processes SBM∞(%) are the weak
limits of SBMγ(%), as γ → ∞,
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• for % ∈ (−1, 1), by Theorem 4.6,
• for % = −1 and U0 + V0 = 1, by Theorem 4.16.

A unified representation can be given with the Poissonian approach developed
above if ν% is extended to % = −1 as

ν−1(d(v1, v2)) = δ(0,1)(v1, v2).

With the intensities Is(k) defined in (4.11) and the Poisson point processes N with
intensity measure N ′ as in (4.10) we can extend Theorem 4.15 as follows:

Theorem 4.18. Suppose % ∈ [−1, 1), (U0, V0) ∈ L2,E
β and for % = −1 assume

additionally U0 +V0 ≡ 1. Then the infinite rate symbiotic branching process (U, V )
with initial condition (U0, V0) coincides in law with the unique weak solution to
(4.13).

Note that the additional assumption on the initial condition is not necessary for
Equation (4.13) to have weak solutions. We believe that also the convergence of
SBMγ(−1) to the solutions of (4.13) holds without the restriction.

Proof : For the case % ∈ (−1, 1) the theorem is nothing else but Theorem 4.15 so
that we only need to discuss the extension to % = −1.
Existence of a weak solution to (4.13), for % = −1, can be verified as sketched in
the proof of Theorem 4.13 for % ∈ (−1, 1); since the jump measure ν−1 is finite the
proof is simpler since no truncation procedure for ν−1 is needed.
To identify the weak solutions to (4.13) with SBM∞(−1) it suffices, by Theorem
4.16, to show that, for any weak solution (U, V ) to (4.13), U is a voter process and
V = 1−U . We use two facts: first, the jumps preserve the property (Ut(k), Vt(k)) ∈
{(1, 0), (0, 1)} for all t ≥ 0, k ∈ Zd and, secondly, the drift and the compensator
integral cancel each other. To establish the first, note that the choice of ν−1 implies
that always y1 = 0 and y2 = 1 so that the only transitions are (compare with (4.12))

(

Us−(k)

0

)

7→
(

0

Us−(k)

)

,

(

0

Vs−(k)

)

7→
(

Vs−(k)

0

)

,

or, simply,

(

1

0

)

7→
(

0

1

)

,

(

0

1

)

7→
(

1

0

)

.
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The latter follows from the simple computation

∫ t

0

∫ Is(k)

0

∫

E

y2

(

Vs−(k)

Us−(k)

)

+ (y1 − 1)

(

Us−(k)

Vs−(k)

)

N ′({k}, d(y1, y2), dr, ds)

=

∫ t

0

(

Vs(k) − Us(k)

Us(k) − Vs(k)

) (

∆Us(k)

Vs(k)
1{Us(k)=0} +

∆Vs(k)

Us(k)
1{Vs(k)=0}

)

ds

=

(

∫ t

0 ∆Us(k)1{Us(k)=0} − ∆Vs(k)1{Vs(k)=0} ds
∫ t

0 −∆Us(k)1{Us(k)=0} + ∆Vs(k)1{Vs(k)=0} ds

)

=

(

∫ t

0
∆Us(k) ds

∫ t

0
∆Vs(k) ds

)

for which we used Us(k), Vs(k) ∈ {0, 1} and

∆Us(k) + ∆Vs(k)

=
∑

|j−k|=1

1

2d

(

Us(j) + Vs(j)
)

−
(

Us(k) + Vs(k)
)

=
∑

|j−k|=1

1

2d
− 1

= 0.

Hence, canceling the compensator integral with the drift shows that Equation (4.13)
can be written equivalently in the simplified form

(

Ut(k)

Vt(k)

)

=

(

U0(k)

V0(k)

)

+

∫ t

0

∫ Is(k)

0

∫

E

((

Vs−
Us−

)

−
(

Us−
Vs−

))

N ({k}, d(y1, y2), dr, ds).

Since the configurations only change by a jump and the jumps only switch 0 to
1 and vice versa one can already guess that both coordinates are reciprocal voter
processes. To make this precise we apply Itô’s formula to functions of (Ut, Vt) and
derive that (U, V ) satisfies the martingale problem for the standard voter process.
It suffices to carry this out for U since we already know that Vt = 1 − Ut , for all
t ≥ 0.
Let us fix a test-function f : {(0, 1)}Z

d → R that only depends on finitely many
coordinates k ∈ K, #K <∞, and apply Itô’s formula to f(Ut) to obtain

f(Ut)

= f(U0) +
∑

k∈K

∫ t

0

∫ Is(k)

0

∫

E

[

f
(

(Us−)(k)
)

− f
(

Us−
)

]

N ({k}, d(y1, y2), dr, ds).

We denoted again by η(k) the configuration that is obtained from the configuration
η flipping only the opinion at site k. Adding and subtracting the compensated
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integral leads to

f(Ut)

= f(U0)

+
∑

k∈K

∫ t

0

∫ Is(k)

0

∫

E

[

f
(

(Us−)(k)
)

− f
(

Us−
)

]

(N −N ′)({k}, d(y1, y2), dr, ds)

+
∑

k∈K

∫ t

0

Is(k)
[

f
(

(Us−)(k)
)

− f
(

Us−
)

]

ds.

Next, we use that for all s ≥ 0, k ∈ Zd we have Us−(k), Vs−(k) ∈ {0, 1} to obtain

Is(k) =

{

∆Vs−(k)
Us−(k) : Us−(k) > 0

∆Us−(k)
Vs−(k) : Vs−(k) > 0

=

{

∆Vs−(k) : Us−(k) = 1

∆Us−(k) : Us−(k) = 0

=
1

2d
#

{

neighbors of the voter at k who have

an opinion different than his at time s−
}

= c(k, Us).

Plugging-in, we proved that

Mf
t := f(Ut) − f(U0) −

∫ t

0

∑

k∈K
c(k, Us)

[

f
(

(Us)
(k)

)

− f
(

Us
)

]

ds

is a local martingale and since everything is bounded it is, in fact, a martingale.
This shows that Ut has the generator (2.6) of the voter process.
Well-posedness for this martingale problem implies the weak uniqueness statement
of the theorem for % = −1. �

Finally, we want to explain that the extended choice of ν% is more natural than it
appears on first view. There are two good reasons. First, going back to Definitions
4.8 and 4.10 let us see what we get for % = −1:

lim
ε→0

Q−1
(1,ε)

ε
= lim

ε→0

1

ε

(

ε

1 + ε
δ(0,1+ε) +

1

1 + ε
δ(1+ε,0)

)

= δ(0,1) + ∞δ(1,0),

since for completely negatively correlated Brownian motions (B1, B2) started at
(u, v) the exit-measure from the first quadrant is v

u+v δ(0,u+v) + u
u+v δ(u+v,0). Sec-

ondly, a more careful look at the density of ν% for % ∈ (−1, 1) shows that the mass
accumulates at (1, 0) and (0, 1) since p(%) explodes for % tending to −1. More
precisely, ν% converges in the vague topology (extended to the completion of R) to
δ(0,1) + ∞δ(1,0). Unfortunately, both justifications lead to ν−1 with an additional
infinite atom at (1, 0). Luckily, the infinite atom at (1, 0) has no impact on the
Poissonian equations since the integrand of (4.13) vanishes if y2 = 0 and y1 = 1.
We believe that some rigorous work on this observation might lead to some inter-
esting results.
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This brief discussion explains the natural unification of the family

SBM∞ with the voter process at its boundary % = −1 and justifies our

interpretation of SBM∞(%) as generalized voter process, given below

Theorem 1.1.

Appendix A. A Very Rough Primer on Jump SDEs

Symbiotic branching models are by definition solutions of (possibly infinite) sys-
tems of ordinary stochastic differential equations

dXt = b(Xt)dt+ σ(Xt)dBt. (A.1)

Interestingly, the infinite rate analogues that have been defined so far as solutions
to exponential martingale problems can be represented as solutions to jump-type
stochastic differential equations. The most straight-forward generalization of (A.1)
is

dXt = b(Xt)dt+ σ(Xt)dBt + c(Xt−)dLt (A.2)

for a Lévy process Lt. The modeling drawback of (A.2) is that once Lt has a jump
x, then Xt has a jump c(Xt−)x. If the jumps of the solution process are meant to
depend on the jumps of the jump-measure in a non-linear way, other concepts are
needed. One way to model such processes is to replace the jump noise by a general
compensated random measure:

dXt = b(Xt)dt+ σ(Xt)dBt + c(Xt−, x)(N −N ′)(dt, dx).

This notion of jump-type stochastic differential equation is needed for our purposes.
Unfortunately, the basic jump measure ν% of Theorem 1.1 has a second order singu-
larity at (1, 0) and a polynomial decreasing tail which for % ≥ 0 prevents existence
of second moments. This causes the general second moment integration theory to
collapse here and the abstract martingale integration theory with respect to com-
pensated random measures comes into play. To guide the reader unfamiliar with
those concepts we briefly recall some core definitions and concepts.

First, suppose N (dt, dx)(ω) is a Poisson point measure on [0,∞) × Rd with
compensator measure λ on a stochastic basis (Ω,F , (Ft)t≥0,P), i.e. for all measur-
able sets A with λ(A) < ∞, N ([0, t], A) is a Poisson process in t with parameter
λ(A) such that for disjoint sets A1, A2 the processes N ([0, t], Ai) are independent.
Defining N ′([0, t], A) = tλ(A), it then follows that the compensated process

(N −N ′)([0, t], A) := N ([0, t], A) −N ′([0, t], A) (A.3)

is a martingale. This property motivates the name martingale measure for the
random measure N −N ′. Given a predictable integrand H(s, x)(ω), defined on the
stochastic basis of the driving point process, one then aims to define the integral
process

∫ t

0

∫

Rd

H(s, x)(N −N ′)(ds, dx)

of H against the compensated martingale measure N−N ′ via an L2-approximation
procedure for integrands in the space

H =

{

H : E

[
∫ t

0

∫

Rd

H(s, x)2N ′(ds, dx)

]

<∞
}

.
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Integrals are then defined as limits of integrals of simple processes against N −N ′.
The martingale property of the driving measure implies that the stochastic integral
itself is a square-integrable martingale. For a more detailed introduction we refer
the reader for instance to the overview article Bass (2004) or Ikeda and Watanabe
(1981).

Unfortunately, it turns out that for % ≥ 0 our basic jump measure ν% has too
heavy tails so that the integrands fail to be members of H. Fortunately, abstract
martingale theory allows for an integration theory with respect to compensated
random measures without requiring H ∈ H. The rest of this section consists of a
short summary of the integration theory developed in Section II.1d of Jacod and
Shiryaev (2003). To make our life simpler (and this is what we need) we assume
that the appearing compensator measure is absolutely continuous in t so that the
presentation is slightly simplified in contrast to the general theory presented in
Jacod and Shiryaev (2003).
Suppose that for a subspace E of Rn, N is an integer valued random measure (not
necessarily Poissonian) on [0,∞) × E, i.e. a family of measures N (dt, dx)(ω) on
([0,∞)×E,B⊗E) such that N ({0}×E)(ω) = 0 almost surely, i.e. no jump at time
0, and that N (·) is an integer. Building upon (A.3) the concept of a compensator
measure for general random point processes is generalized as follows: N ′ is the up
to a null set unique (now possibly random) measure such that

W ∗ Nt −W ∗ N ′
t (A.4)

is a martingale null at zero for a suitably class of test-functions W . Here, · ∗ ·t
stands for pathwise Lebesgue integration on E× [0, t]. As, by assumption, the jump
measure N is integer valued it should come as no surprise that N may be regarded
as counting measure for the jumps of an auxiliary E-valued optional process βt, i.e.

N ([0, t] ×A)(ω) =
∑

s≤t
1A(∆βs(ω)).

With this notation in hand we can proceed with the abstract definition of the
stochastic integral (see Definition II.1.27b) of Jacod and Shiryaev, 2003). Absolute
continuity in time of the compensator implies that N ′({t} × dx)(ω) = 0 almost

surely so that the quantity Ŵ in Jacod and Shiryaev (2003) vanishes. The set of
possible integrands is changed to

G =

{

H : E

[

∑

s≤t
H2(s,∆βs)1{∆βs 6=0}

]1/2

<∞
}

and the stochastic integral

H ∗ (N −N ′)t =

∫ t

0

∫

E

H(s, x)(N −N ′)(ds, dx)

is defined to be the unique (up to indistinguishable) purely discontinuous local
martingale Xt such that

∆X· and H(·,∆β·)1{∆β· 6=0} are indistinguishable. (A.5)

Hence, if N has an atom at (s, x), the stochastic integral H ∗ (N − N ′) has a
jump H(s−, x). Recall that by definition a purely discontinuous local martingale
is required to be orthogonal to all continuous martingales but not to be pathwise
everywhere discontinuous. For example, if Nt is a standard Poisson process, the
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compensated process Nt − t is purely discontinuous but far from being pathwise
everywhere discontinuous.
The integrability condition for class G is rather unsatisfactory as it involves the
jump measure itself rather than only its compensator which might be more easy to
handle. A characterization of the set G is given in Theorem II.1.33 of Jacod and
Shiryaev (2003): it suffices to show that (recall that in our setting Ŵ of Jacod and
Shiryaev, 2003 vanishes)

E

[
∫ t

0

∫

E

H2(s, x)1{|H(s,x)|≤1}N ′(ds, dx)

]

<∞,

E

[
∫ t

0

∫

E

|H(s, x)|1{|H(s,x)|≥1}N ′(ds, dx)

]

<∞,

(A.6)

showing in particular that G ⊂ H. Finally, to motivate the naming “stochastic
integral” for the abstract local martingale H ∗ (N − N ′)t, the following property
should be mentioned. If the integrand is nice, that is, additionally E[|H |∗N ′

t ] <∞,
then both integrals against N and the compensator measure N ′ can be defined
pathwise and

H ∗ (N −N ′)t = H ∗ Nt −H ∗ N ′
t . (A.7)
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J. Gärtner and W. König. The parabolic Anderson model. In Interacting stochastic
systems, pages 153–179. Springer, Berlin (2005). MR2118574.

A. Greven and F. den Hollander. Phase transitions for the long-time behavior of
interacting diffusions. Ann. Probab. 35 (4), 1250–1306 (2007). MR2330971.

http://www.ams.org/mathscinet-getitem?mr=MR1242575
http://www.ams.org/mathscinet-getitem?mr=MR1944004
http://www.ams.org/mathscinet-getitem?mr=MR1258279
http://www.ams.org/mathscinet-getitem?mr=MR1308677
http://www.ams.org/mathscinet-getitem?mr=MR1959845
http://www.ams.org/mathscinet-getitem?mr=MR1634416
http://www.ams.org/mathscinet-getitem?mr=MR1424697
http://www.ams.org/mathscinet-getitem?mr=MR1404525
http://www.ams.org/mathscinet-getitem?mr=MR1681126
http://arxiv.org/abs/1109.6105v1
http://www.ams.org/mathscinet-getitem?mr=MR1383122
http://www.ams.org/mathscinet-getitem?mr=MR1779100
http://www.ams.org/mathscinet-getitem?mr=MR2759587
http://www.ams.org/mathscinet-getitem?mr=MR2094150
http://www.ams.org/mathscinet-getitem?mr=MR838085
http://www.ams.org/mathscinet-getitem?mr=MR0046022
http://www.ams.org/mathscinet-getitem?mr=MR2118574
http://www.ams.org/mathscinet-getitem?mr=MR2330971


Finite and Infinite Rate Mutually Catalytic Branching 51

N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes,
volume 24 of North-Holland Mathematical Library. North-Holland Publishing
Co., Amsterdam (1981). ISBN 0-444-86172-6. MR637061.

J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes, volume 288
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, second edition (2003). ISBN
3-540-43932-3. MR1943877.

A. Jakubowski. A non-Skorohod topology on the Skorohod space. Electron. J.
Probab. 2, no. 4, 21 pp. (electronic) (1997). MR1475862.

I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus, volume 113
of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition
(1991). ISBN 0-387-97655-8. MR1121940.

A. Klenke and L Mytnik. Infinite rate mutually catalytic branching. Ann. Probab.
38 (4), 1690–1716 (2010). MR2663642.

A. Klenke and L. Mytnik. Infinite rate mutually catalytic branching in infinitely
many colonies: Construction, characterization and convergence. to appear in
Probab. Theory Related Fields (2012a).

A. Klenke and L. Mytnik. Infinite rate mutually catalytic branching in infinitely
many colonies: The longtime behaviour. The Annals of Probability 40 (1), 103–
129 (2012b).

A. Klenke and M. Oeler. A Trotter-type approach to infinite rate mutually catalytic
branching. Ann. Probab. 38 (2), 479–497 (2010). MR2642883.

J.-F. Le Gall. Spatial branching processes, random snakes and partial differential
equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1999).
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