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Abstract. We consider a class of stochastic growth models on the integer lattice
which includes various interesting examples such as the number of open paths in
oriented percolation and the binary contact path process. Under some mild as-
sumptions, we show that the total mass of the process grows exponentially in time
whenever it survives. More precisely, we prove that there exists an open path,
oriented in time, along which the mass grows exponentially fast.

1. Introduction

1.1. Overview. We consider a class of stochastic growth models on the integer lat-
tice Z

d which includes a time discretization and a special case of the ‘linear systems’
discussed in Chapter IX of Liggett’s book Liggett (2005). One of the simplest exam-
ples is the number of distinct open paths on the cluster of contact process studied
by Griffeath (1983) and as is discussed there, it can be thought of as a model of
population growth with spatial structure. There has recently been some progress
on this type of models such as; phase transition for the growth rate of total pop-
ulation (Yoshida (2008)); diffusivity (Nakashima (2009); Nagahata and Yoshida
(2009, 2010b)) or localization (Yoshida (2010); Nagahata and Yoshida (2010a)) of
the population density. However, the following fundamental question remains: does
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the total population grow exponentially whenever it survives? It is well known that
the answer is affirmative for the classical Galton-Watson process (see, e.g., Corol-
lary 1.6 on p.20 in Asmussen and Hering (1983)). In this paper, we show that
the same assertion holds for a fairly general growth models with spatial structure.
In fact, we show that there exists a single path along which the population grows
exponentially.

Remark 1.1. We say that a process survives if there always exists at least one
particle, which seems natural. Note, however, that in the theory of linear systems,
the term survival often refers to the stronger condition that the total population
grows as fast as its expectation, see e.g. Theorem 2.4 on p.433 in Liggett (2005).

1.2. Setting and main results. Let us start by describing the definition of the pro-
cess. Although we have results for both discrete and continuous time processes,
we first focus on the discrete time case and discuss the continuous time case in
Section 3. We write N for the set of nonnegative integers and N

∗ for N \ {0}. Let
B = (Bx,y)x,y∈Zd be a random matrix of infinite size whose entries take values in
{0}∪[1,∞). We assume that B is translation invariant in the sense that (Bx,y)x,y∈Zd

and (Bx+z,y+z)x,y∈Zd has the same law for any z ∈ Z
d. Using independent copies

{Bn}n∈N∗ of B, we define a Markov chain {Mn}n∈N = {(Mn,x)x∈Zd}n∈N as follows:

M0,x = δo,x and Mn,x =
∑

y∈Zd

Mn−1,yBn,y,x for n ∈ N
∗, (1.1)

where o denotes the origin of Z
d and δx,y the Kronecker delta:

δx,y =

{

1 if x = y,

0 if x 6= y.
(1.2)

The resulting process is [0,∞]Z
d

-valued since the sum in (1.1) may diverge. If we
regard Mn as a row vector, we can rewrite the above equation as

Mn = (δo,x)x∈ZdB1 · · ·Bn. (1.3)

for n ∈ N
∗. We denote the total mass of the process by

|Mn|
def
=
∑

x∈Zd

Mn,x. (1.4)

We call a sequence {Γ(n)}l
n=k ⊂ Z

d (k < l ≤ ∞) an open path if Bn+1,Γ(n),Γ(n+1) ≥
1 for all k ≤ n < l. For the sake of shorthand, let

cδ(B) = P (|Mn| ≥ 1 for all n ∈ N) sup
x∈Zd

P (Bo,x ≥ 1 + δ) (1.5)

for δ > 0. Now we are in position to state our main result.

Theorem 1.2. Suppose that there exists δ > 0 such that cδ(B1) > 0. Then for
each ε > 0, there exists a random open path {Γ(n)}n∈N such that

lim inf
n→∞

1

n
log Mn,Γ(n) ≥ cδ−ε(B1) log(1 + δ − ε) (1.6)

almost surely on {|Mn| ≥ 1 for all n ∈ N}. In particular, we have

lim inf
n→∞

1

n
log |Mn| ≥ cδ(B1) log(1 + δ) (1.7)
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almost surely on {|Mn| ≥ 1 for all n ∈ N} (since cδ−ε(B1) ≥ cδ(B1) and by the
continuity of the logarithm).

The following corollary is more useful in applications than Theorem 1.2 (see
Section 3 below). In what follows, we denote the matrix product B1 · · ·Bm by
∏m

k=1 Bk.

Corollary 1.3. Suppose that there exist δ > 0 and m ∈ N
∗ such that cδ(

∏m
k=1 Bk) >

0. Then for each ε > 0, there exists a random open path {Γ(n)}n∈N such that

lim inf
n→∞

1

n
log Mn,Γ(n) ≥

1

m
cδ−ε(

∏m
k=1Bk) log(1 + δ − ε) (1.8)

almost surely on {|Mn| ≥ 1 for all n ∈ N}. In particular, we have

lim inf
n→∞

1

n
log |Mn| ≥

1

m
cδ(
∏m

k=1Bk) log(1 + δ) (1.9)

almost surely on {|Mn| ≥ 1 for all n ∈ N}. Suppose on the other hand that
cδ(
∏m

k=1 Bk) = 0 for all δ > 0 and m ∈ N and that there exists rB > 0 such
that Bx,y = 0 if |x − y| ≥ rB. Then

lim sup
n→∞

1

n
log |Mn| ≤ 0 (1.10)

almost surely with the convention log 0 = −∞.

Remark 1.4. The main point of the above results is its generality. We put no
independence assumptions on the elements of (Bx,y)x,y∈Zd , nor the finite range
assumption except for the last assertion in Corollary 1.3. This for instance allows
us to obtain analogous results for certain continuous time models by simply applying
the discrete time results (see Subsection 3.2).

Remark 1.5. As a special case of our results, it follows that the number of open
paths of length n in supercritical oriented percolation grows exponentially in n
(see Subsection 3.1 below). In this special case, the following interesting result has
recently obtained by Kesten et al. (2012+), which is valid also in the subcritical
phase. Consider the oriented paths of length n which go through a maximal number
of open sites. Then, the number of such maximal paths grows exponentially in n
for all p > 0. However, this work seems to have only limited overlap with ours since
they mainly focus on the subcritical phase where the number of such paths does
not obey the evolution rule (1.1).

2. Proof of Theorem 1.2 and Corollary 1.3

We prove Theorem 1.2 and Corollary 1.3 in this section. Let us briefly explain
the strategy to prove Theorem 1.2. We are going to find an infinite open path Γ
which goes through heavy bonds, i.e. Bn+1,Γ(n),Γ(n+1) ≥ 1 + δ−ε, many times. To
this end, we first construct a path γ which is not necessarily open but it prefers to
go through heavy bonds and its construction uses only local information, that is, it
does not refer to the future and also not too much to the past. Next, we consider
certain good events {Gn(γ)}n∈N such that

(1) if Gn happens, then Bn+1,γ(n),γ(n+1) ≥ 1 + δ−ε and
(2) there exists an infinite open path which shares all the bonds where Gn

happens with γ.
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Then we can prove, essentially due to the locality of γ, the law of large numbers
for {1Gn(γ)}n∈N and this ensures the existence of the above Γ.

The proof of Corollary 1.3 will be given in the final subsection.
We introduce the notation used in the sequel. For x, y ∈ Z

d and m, n ∈ N, we
write

(m, x) (m + n, y) (2.1)

if there exists an open path {x(k)}m+n
k=m with x(m) = x and x(m + n) = y. We

adopt the convention that (m, x)  (m, x). We define the process started from
(m, x) ∈ N × Z

d by

M (m,x)
m,y = δx,y and M (m,x)

n,y =
∑

z∈Zd

Mn−1,zBn,z,y for n > m. (2.2)

We call (m, x) ∈ N × Z
d a percolation point if

|M (m,x)
n | ≥ 1 for all n > m (2.3)

and write P for the set of all percolation points. Finally, we introduce the sigma-
fields

Fm,n = σ
[

Bk,x,y : m ≤ k ≤ n, x, y ∈ Z
d
]

(2.4)

for m, n ∈ N
∗ with m ≤ n.

2.1. Construction of the path. We assume for simplicity that

there exists a site x ∈ Z
d which maximizes P (Bo,x ≥ 1 + δ). (2.5)

Otherwise, pick a site for which P (Bo,x ≥ 1 + δ − ε)> 0 and replace δ by δ − ε in
what follows. Let us fix an enumeration of Z

d and write MinA for the first element
appearing in A ⊂ Z

d. We define a path γ = {γ(n)}n∈N according to the following
recursive algorithm:

(i) Let γ(0) = o.
(ii) If (n, γ(n)) (n + 1, γ(n) + x), then let γ(n + 1) = γ(n) + x.

(iii) If (n, γ(n)) 6 (n + 1, γ(n) + x) and |M
(n,γ(n))
n+1 | ≥ 1, then let

γ(n + 1) = γ(n) + Min{y ∈ Z
d : M

(n,γ(n))
n+1,γ(n)+y

≥ 1}.

(iv) If |M
(n,γ(n))
n+1 | = 0 and {k ∈ N : k ≤ n, |M

(k,γ(k))
n+1 | ≥ 1} 6= ∅, then let

Tn = max{k ∈ N : k ≤ n, |M
(k,γ(k))
n+1 | ≥ 1}

and

γ(n + 1) = γ(Tn) + Min{y ∈ Z
d : M

(Tn,γ(Tn))
n+1,γ(Tn)+y

≥ 1}

(v) If |M
(n,γ(n))
n+1 | = 0 and {k ∈ N : k ≤ n, |M

(k,γ(k))
n+1 | ≥ 1} = ∅, then let

γ(n + 1) = o.

Also for each (m, v) ∈ N × Z
d, we define a path γ(m,v) = {γ(m,v)(n)}n≥m in the

same way as above but we let γ(m,v)(m) = v in (i), restrict the ranges of k to

m ≤ k ≤ n in (iv) and (v), and let γ(m,v)(n + 1) = v in (v). We denote by T
(m,v)
n

the corresponding Tn.
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The following properties are obvious from the construction:

(n, γ(m,v)(n)) (n + 1, γ(m,v)(n) + x) implies γ(m,v)(n + 1) = γ(m,v)(n) + x,
(2.6)

(γ(m,v)(m), . . . , γ(m,v)(n)) is Fm+1,n-measurable. (2.7)

We also know that the construction does not go back beyond a percolation point,
which will be crucial in the proof of Theorem 1.2:

Proposition 2.1. Let γ = γ(0,o) be the path constructed above and l, m ∈ N. Then

on the event |M
(m,γ(m))
m+l | ≥ 1,

(a) γ(n) = γ(m,γ(m))(n) for all n = m, m + 1, . . . , m + l,
(b) (m, γ(m)) (n, γ(n)) for all n = m, m + 1, . . . , m + l.

In particular, if (m, γ(m)) ∈ P, then (a) and (b) hold for all n ≥ m.

Proof : We prove (a) and (b) simultaneously by induction on n = m, m+1, . . . , m+l.
They are obviously true for n = m. Suppose that the claims hold up to some n ≥ m.

If |M
(n,γ(n))
n+1 | ≥ 1, then both γ(n + 1) and γ(m,γ(m))(n + 1) are chosen by (ii) or

(iii) in the algorithm. Since γ(n) = γ(m,γ(m))(n) by the induction hypothesis, they
are chosen in the same manner and thus γ(n + 1) = γ(m,γ(m))(n + 1). Moreover,
we have (n, γ(n)) (n + 1, γ(n + 1)) in this case and hence it follows that

(m, γ(m)) (n, γ(n)) (n + 1, γ(n + 1)) (2.8)

by the induction hypothesis. If, on the other hand, |M
(n,γ(n))
n+1 | = 0, then note that

|M
(m,γ(m))
n+1 | ≥ 1 as long as n+1 ≤ m+ l by the assumption. In particular, it follows

that γ(n+1) is chosen by (iv) in the algorithm and m ≤ Tn ≤ n. Then the induction

hypothesis shows that (I) Tn = T
(m,γ(m))
n , (II) γ(Tn) = γ(m,γ(m))(T

(m,γ(m))
n ), and

(III) (m, γ(m)) (Tn, γ(Tn)). Since we have

γ(n + 1) = Min{y ∈ Z
d : M

(Tn,γ(Tn))
n+1,y+γ(Tn) ≥ 1}

= Min{y ∈ Z
d : M

(T (m,γ(m))
n ,γ(m,γ(m))(T (m,γ(m))

n ))

n+1,y+γ(m,γ(m))(T
(m,γ(m))
n ))

≥ 1}

= γ(m,γ(m))(n + 1)

(2.9)

by (I) and (II) and

(m, γ(m)) (Tn, γ(Tn)) (n + 1, γ(n + 1)) (2.10)

by (III), the proof is complete. �

Finally, we construct an open path Γ on {(0, o) ∈ P} by connecting percolation
points on γ. Assume (0, o) ∈ P and let τ1 = 0 and

τn+1 = inf{k > τn : (k, γ(k)) ∈ P} (2.11)

for n ≥ 1, so that (τn, γ(τn)) are nothing but the n-th percolation points on γ. We
may assume that τn < ∞ for all n ∈ N

∗ since it will be proved in Proposition 2.4
below. (Note that Proposition 2.4 refers to γ only.) Let us first set Γ(τn) = γ(τn)
for all n ∈ N

∗. Next for τn < k < τn+1 (if any), we define Γ(k) recursively as
follows: Given Γ(k − 1), let

Γ(k) = Min{y ∈ Z
d : (k − 1, Γ(k − 1)) (k, y) (τn+1, γ(τn+1))}. (2.12)
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Note that (τn, γ(τn)) (τn+1, γ(τn+1)) by Proposition 2.1-(b). Then, by induction
on k, we see that the set on the right-hand side of (2.12) is nonempty and that
(k − 1, Γ(k − 1)) (k, Γ(k)) for all k ∈ (τn, τn+1].

Remark 2.2. A similar construction was used by Kuczek (1989) to show the cen-
tral limit theorem for the right edge of (1+1)-dimensional supercritical oriented
percolation.

2.2. Law of large numbers for good events. Throughout this subsection, we keep
assuming (2.5) and write γ and Γ for the paths constructed in Subsection 2.1. We
consider the following good event

Gn(γ) = {Bn+1,γ(n),γ(n)+x ≥ 1 + δ, (n + 1, γ(n + 1)) ∈ P} (2.13)

for each n ∈ N. Note that on Gn(γ), we have γ(n + 1) = γ(n) + x by (2.6) and
(n, γ(n)) ∈ P . It follows in particular that

γ(n) = Γ(n) and γ(n + 1) = Γ(n + 1) (2.14)

on Gn(γ)∩{(0, o) ∈ P}. The following proposition shows that Mn,Γ(n) is multiplied
by at least (1 + δ) when Gn(γ) occurs and thus explains why this event is good.

Proposition 2.3. On the event Gm(γ) ∩ {(0, o) ∈ P}, Mn,Γ(n) ≥ (1 + δ)Mm,Γ(m)

for all n > m.

Proof : We have Mm+1,Γ(m+1) ≥ Bm+1,Γ(m),Γ(m+1)Mm,Γ(m) ≥ (1 + δ)Mm,Γ(m) by
definition. Since Γ is an open path, we have Mn,Γ(n) ≥ Mm+1,Γ(m+1) for all n >
m + 1 and the claim follows. �

Thanks to this proposition, we have the lower bound

Mn,Γ(n) ≥ (1 + δ)
∑n−1

m=0 1Gm(γ) (2.15)

for the process along Γ on the event {(0, o) ∈ P}. Therefore, the proof of Theo-
rem 1.2 is reduced to proving the following law of large numbers for {1Gn(γ)}n∈N.

Proposition 2.4.

1

n

n−1
∑

m=0

1Gm(γ) → cδ(B) (2.16)

as n → ∞ P -almost surely, where cδ(B) is defined in (1.5).

Proof : By the independence of B1 and {Bn}n≥2 and translation invariance, we
have

P (G0(γ)) = P (B1,o,x ≥ 1 + δ)P ((1, x) ∈ P)

= P (B1,o,x ≥ 1 + δ)P ((0, o) ∈ P).
(2.17)

Thus (2.16) is indeed the law of large numbers for {1Gn(γ)}n∈N.
Let us first show that {1Gn(γ)}n∈N is a stationary sequence. Fix an increasing

sequence of integers 1 ≤ m1 < m2 < · · · < mk and consider the probability

P (
⋂k

i=1 Gmi
(γ)). We divide the event according to the position of γ(m1) and use

Proposition 2.1-(a) to get

P

(

k
⋂

i=1

Gmi
(γ)

)

=
∑

y∈Zd

P

(

{γ(m1) = y} ∩
k
⋂

i=1

Gmi
(γ(m1,y))

)

. (2.18)
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Then by the independence of {γ(m1) = y} ∈ F1,m1 and
⋂k

i=1 Gmi
(γ(m1,y)) ∈

Fm1+1,∞ and translation invariance, it follows that the above right hand side equals

∑

y∈Zd

P (γ(m1) = y)P

(

k
⋂

i=1

Gmi−m1(γ)

)

= P

(

k
⋂

i=1

Gmi−m1(γ)

)

. (2.19)

Applying the same argument to m′
i = mi − 1 (1 ≤ i ≤ k), it follows that

P

(

k
⋂

i=1

Gmi
(γ)

)

= P

(

k
⋂

i=1

Gmi−m1(γ)

)

= P

(

k
⋂

i=1

Gmi−1(γ)

)

,

which implies the stationarity of {1Gn(γ)}n∈N.
Next, we prove that {1Gn(γ)}n∈N has the so-called mixing property, which implies

the ergodicity and hence the law of large numbers (cf. Durrett (1996), Section 6.4).
By Lemma 6.4.4 in Durrett (1996), it suffices to show that for any pair of increasing
sequences of integers 0 ≤ l1 < l2 < · · · < lj and 0 ≤ m1 < m2 < · · · < mk,

P

(

j
⋂

i=1

Gli(γ) ∩
k
⋂

i=1

Gmi+n(γ)

)

→ P

(

j
⋂

i=1

Gli(γ)

)

P

(

k
⋂

i=1

Gmi
(γ)

)

(2.20)

as n → ∞. Note first that for any m < n, if (m + 1, γ(m + 1))  (n, γ(n)) and
(n, γ(n)) ∈ P then (m+1, γ(m+1)) ∈ P . Combined with Proposition 2.1-(b), this
yields

Gm(γ) ∩ Gn(γ)

= {Bm+1,γ(m),γ(m)+x ≥ 1 + δ, (m + 1, γ(m + 1)) (n, γ(n))} ∩ Gn(γ).
(2.21)

Let us denote the event in braces above by G̃m,n(γ). Then, we can rewrite the
event on the left-hand side of (2.20) as

j
⋂

i=1

Gli(γ) ∩
k
⋂

i=1

Gmi+n(γ) =

j−1
⋂

i=1

G̃li,li+1(γ) ∩ G̃lj ,m1+n(γ) ∩
k
⋂

i=1

Gmi+n(γ) (2.22)

provided lj < m1 + n. Dividing the event according to the position of γ(m1 + n),
one can show that

P

(

j
⋂

i=1

Gli(γ) ∩
k
⋂

i=1

Gmi+n(γ)

)

= P

(

j−1
⋂

i=1

G̃li,li+1(γ) ∩ G̃lj ,m1+n(γ)

)

P

(

k
⋂

i=1

Gmi+n(γ)

)
(2.23)

exactly in the same way as in the proof of the stationarity. Let us look at

G̃lj ,m1+n(γ)

= {Blj+1,γ(lj),γ(lj)+x ≥ 1 + δ, (lj + 1, γ(lj + 1)) (m1 + n, γ(m1 + n))},
(2.24)

where the dependence on n remains. We recall Proposition 2.1-(b) to see

|M
(lj+1,γ(lj+1)
m1+n | ≥ 1 ⇒ (lj + 1, γ(lj + 1)) (m1 + n, γ(m1 + n)). (2.25)

Since the converse is also valid, we conclude that

G̃lj ,m1+n(γ) = {Blj+1,γ(lj),γ(lj)+x ≥ 1 + δ, |M
(lj+1,γ(lj+1)
m1+n | ≥ 1} ↓ Glj (γ) (2.26)
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as n → ∞. Coming back to (2.23) and using stationarity, we obtain

lim
n→∞

P

(

j
⋂

i=1

Gli(γ) ∩
k
⋂

i=1

Gmi+n(γ)

)

= P

(

j−1
⋂

i=1

G̃li,li+1(γ) ∩ Glj (γ)

)

P

(

k
⋂

i=1

Gmi
(γ)

)

= P

(

j
⋂

i=1

Gli(γ)

)

P

(

k
⋂

i=1

Gmi
(γ)

)

(2.27)

and we are done. �

2.3. Proof of Corollary 1.3.

Proof of Corollary 1.3: For the first half, we apply Theorem 1.2 to B =
∏m

k=1Bk

to find an open path {Γ(n)}n∈N with respect to {
∏m

k=1Bmn+k}n∈N such that

lim inf
n→∞

1

n
log Mmn,Γ(n) ≥ cδ−ε(

∏m
k=1Bk) log(1 + δ−ε). (2.28)

Since (
∏m

k=1Bmn+k)m(n+1),Γ(n),Γ(n+1) ≥ 1 implies that there exists a sequence
x(0) = Γ(n), x(1), . . . , x(m − 1), x(m) = Γ(n + 1) such that

Bmn+k,x(k−1),x(k) ≥ 1 for all k = 1, . . . , m, (2.29)

we can construct a path Γ′ that is open with respect to {Bn}n∈N∗ and Γ′(mn) =
Γ(n) for all n ∈ N

∗. Then the claim follows from the fact Mmn+k,Γ′(mn+k) ≥
Mmn,Γ′(mn) for all k = 1, . . . , m.

We next prove the second assertion. If P (|Mn| ≥ 1 for all n ∈ N) = 0, then
(1.10) is obvious. Suppose supx∈Zd P ((

∏n
k=1 Bk)o,x ≥ 1 + δ) = 0 for all δ > 0 and

m ∈ N. This means that
∏n

k=1 Bk is a binary matrix for all n ∈ N and then it

follows Mn,x ≤ 1 for all (n, x) ∈ N × Z
d. Now the finite range assumption implies

#{x ∈ Z
d : Mn,x ≥ 1} ≤ (2rBn)d and hence (1.10). �

3. Applications

3.1. Linear stochastic evolution and its dual. The second author has recently intro-
duced a class of stochastic linear systems in Yoshida (2008), called linear stochastic
evolutions (LSE for short), which contains various interesting processes such as the
number of open paths in site or bond oriented percolation, a time discrete version
of the binary contact path process, and the voter model. Using our results, we can
completely characterize when the total mass of an LSE grows exponentially.

Let us first recall the definition of an LSE. Let A = (Ax,y)x,y∈Zd be a random
matrix satisfying the following:

Ax,y ≥ 0 for all x, y ∈ Z
d, (3.1)

the columns (A · ,y)y∈Zd are independent, (3.2)

Ax,y = 0 if |x − y| ≥ rA for some non-random rA ∈ N, (3.3)

(Ax+z,y+z)x,y∈Zd
law
= A for all z ∈ Z

d. (3.4)

A few more assumptions were posed in Yoshida (2008) such as square integrability
of the matrix elements and a certain aperiodicity (cf. (1.8) in Yoshida (2008)) but
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we do not need them in this article. On the other hand, we need the following extra
assumption

Ax,y ∈ {0} ∪ [1,∞) for all x, y ∈ Z
d (3.5)

to use the results in Section 1. Let {An}n∈N∗ be a collection of independent copies
of the random matrix A. The LSE generated by {An}n∈N∗ is the Markov chain

{Nn}n∈N with values in [0,∞)Z
d

defined for given N0 ∈ [0,∞)Z
d

by

Nn+1,y =
∑

x∈Zd

Nn,xAn+1,x,y, for n ∈ N and y ∈ Z
d. (3.6)

If we consider the dual process of an LSE, then it can be realized in the same way
as above but (3.2) is replaced by

the rows (Ax ,·)x∈Zd are independent, (3.7)

see Section 4 in Yoshida (2008) for detail. We call this type of process the dual
LSE and write DLSE for short.

Example 1. (Oriented percolation): Let (ηn,y)(n,y)∈N∗×Zd be {0, 1}-valued indepen-
dent and identically distributed random variables with P (ηn,y = 1) = p ∈ [0, 1].
The LSE {Nn}n∈N generated by

An,x,y = ηn,y1{|x−y|=1} (3.8)

represents the number of open oriented paths up to level n in the oriented site
percolation. We call this process the oriented site percolation for shorthand. The
bond oriented percolation can be constructed in a similar way (see p.1036 in Yoshida
(2008)).

Example 2. (Binary contact path process): Let (ηn,y)(n,y)∈N∗×Zd and
(ζn,y)(n,y)∈N∗×Zd be {0, 1}-valued independent and identically distributed random
variables with

P (ηn,y = 1) = p ∈ [0, 1] and P (ζn,y = 1) = q ∈ [0, 1]. (3.9)

We further introduce another family of independent and identically distributed
random variables (en,y)(n,y)∈N∗×Zd which are uniformly distributed on {e ∈ Z

d :
|e| = 1}. Then the LSE {Nn}n∈N generated by

An,x,y = ηn,y1{en,y=y−x} + ζn,yδx,y (3.10)

gives a time-discrete version of the binary contact path process studied in Griffeath
(1983). We simply call this discrete version the binary contact path process in this
article. We can also define another time-discretization by considering the DLSE
generated by

An,x,y = ηn,x1{en,x=y−x} + ζn,xδx,y. (3.11)

In this DLSE-version, a site at time n chooses the target of infection whereas in
the LSE-version above, a site at time n + 1 chooses the source of infection.

The following theorem says that we can characterize when LSE and DLSE grow
exponentially in terms of A1.

Theorem 3.1. Let {Nn}n∈N be an LSE generated by {An}n∈N∗ satisfying (3.5)
and |N0| < ∞. Then, either of the following holds true:
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(1) If cδ(A1) > 0 for some δ > 0, then

lim inf
n→∞

1

n
log |Nn| ≥ cδ(A1) log(1 + δ) (3.12)

P -almost surely on the event {|Nn| ≥ 1 for all n ∈ N}.

(2) If P (|Nn| ≥ 1 for all n ∈ N) > 0 and P (A1,−x,o ≥ 1 and A1,−y,o ≥ 1) > 0
for some distinct x, y ∈ Z

d, then

lim inf
n→∞

1

n
log |Nn| ≥

1

2
c1(A1A2) log 2 > 0 (3.13)

P -almost surely on the event {|Nn| ≥ 1 for all n ∈ N}.

(3) If both of the assumptions in (1) and (2) fail, then

lim sup
n→∞

1

n
log |Nn| ≤ 0 (3.14)

P -almost surely.

The same assertions hold for DLSE with the second assumption in (2) replaced by

P (A1,o,x ≥ 1 and A1,o,y ≥ 1) > 0 for some distinct x, y ∈ Z
d. (3.15)

Proof : We prove (1)–(3) only for the LSE case since the proof for the DLSE case
is almost identical. By linearity it suffices to show the claims for the case N0 =
(δo,x)x∈Zd . Note first that (1) is a direct consequence of Theorem 1.2. Next, suppose
that the assumption in (2) holds. Then it follows from translation invariance and
(3.2) that

P ((A1A2)o,x+y ≥ 2)

≥ P (A1,o,x ≥ 1, A1,o,y ≥ 1, A2,x,x+y ≥ 1, and A2,y,x+y ≥ 1)

≥ P (A1,−x,o ≥ 1)P (A1,−y,o ≥ 1)P (A2,−x,o ≥ 1 and A2,−y,o ≥ 1)

> 0.

(3.16)

Therefore Corollary 1.3 shows (3.13). Finally, we prove (3) by checking the as-
sumption for (1.10). If both of the assumptions in (1) and (2) fail, then we have
either

P (|Nn| ≥ 1 for all n ∈ N) = 0 (3.17)

or

P (A1,x,y ∈ {0, 1}) = 1 for all x, y ∈ Z
d and (3.18)

P (A1,−x,o ≥ 1 and A1,−y,o ≥ 1) = 0 for all distinct x, y ∈ Z
d. (3.19)

From (3.18) and (3.19) one can conclude that (
∏m

k=1 Ak)x,y ∈ {0, 1} for all m ∈ N
∗

and x, y ∈ Z
d. Thus in both cases, cδ(

∏m
k=1 Ak) = 0 for all δ > 0 and m ∈ N. �

Theorem 3.1 applies to both site and bond oriented percolations and the binary
contact path process. Therefore we see that both the number of open paths in
supercritical oriented percolation and the total mass of supercritical binary contact
path process grow exponentially on the event of survival.

Remark 3.2. For the oriented site/bond percolation with d = 1, it is possible to
show by using the rightmost path instead of Γ above that

lim inf
n→∞

1

n
log |Nn| ≥ c (3.20)
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with some absolute constant c > 0 almost surely on {|Nn| ≥ 1 for all n ∈ N}. This
shows that our lower bound c1(A1A2) log 2 on the growth rate is not sharp in this
case since it is smaller than the percolation probability which decreases to 0 as
p ↓ pc, as was proved in Grimmett and Hiemer (2002).

Finally, we show that surviving LSE and DLSE satisfy the assumption in (1) or
(2) in Theorem 3.1 except for a few unimportant examples. Therefore for fairly
general LSE and DLSE, we have the coincidence of the events that the process
survives and that the total mass grows exponentially. Let us start by defining
the exceptional class. We say that an LSE generated by {An}n∈N∗ is trivial if An

(n ∈ N
∗) are nonrandom, that is, the laws of An concentrate on one matrix. A

DLSE generated by {An}n∈N∗ is said to be trivial if An (n ∈ N
∗) are nonrandom

or expressed as

An,x,y = δx+en,x,y (3.21)

with {en,x}(n,x)∈N∗×Zd a family of Z
d-valued independent and identically distributed

random variables. In the latter case, {Nn}n∈N is nothing but the coalescing random
walks for which the questions about survival/extinction and about growth rate are
trivial.

Corollary 3.3. For a nontrivial LSE or DLSE satisfying (3.5) and |N0| < ∞,

{|Nn| ≥ 1 for all n ∈ N} =

{

lim inf
n→∞

1

n
log |Nn| > 0

}

(3.22)

modulo a P -null set. In particular, if

lim
n→∞

1

n
E[log(1 + |Nn|)] = 0, (3.23)

then the process dies out almost surely.

Proof : Let {Nn}n∈N be a nontrivial LSE or DLSE generated by {An}n∈N∗ . The
second assertion follows from (3.22) and Fatou’s lemma. To prove (3.22), it suffices
to show that if the assumptions in (1) and (2) in Theorem 3.1 fail, then

P (|Nn| ≥ 1 for all n ∈ N) = 0. (3.24)

We begin with the LSE case. Suppose that both of the assumptions fail. Then,
either (3.24) holds or An are binary matrices and for any fixed y ∈ Z

d, An,x,y = 1 for
at most one x ∈ Z

d. The latter means that our process is stochastically dominated
by a finite range version of the nearest neighbor voter model (see p.1037 in Yoshida
(2008)). Then, under the non-triviality assumption, one can show that it dies out
almost surely by an argument similar to the proof of Lemma 1.3.3 and subsequent
Remark in Yoshida (2008). Next we turn to the DLSE case. In this case if both of
the assumptions fail, then either (3.24) holds or An are binary matrices and for any
fixed x ∈ Z

d, An,x,y = 1 for at most one y ∈ Z
d. Together with the non-triviality,

the latter implies that Nn is a coalescing random walks killed at positive rate, which
dies out almost surely. �

Remark 3.4. The last part of above proof gives an alternative proof of Theorem 3.1-
(3) for DLSE without the finite range assumption. Since the proofs of (1) and
(2) rely only on Theorem 1.2 and the first half of Corollary 1.3, it follows that
Theorem 3.1 for DLSE holds without the finite range assumption.
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3.2. Continuous time process. We discuss the continuous time analogue of our re-
sults in this subsection. More precisely, we show results similar to the preceding
section for the continuous time version of LSE or DLSE studied in Nagahata and
Yoshida (2010a,b).

Let us recall the definition of the process. We introduce a random vector
K = (Kx)x∈Zd such that each element takes value in {0}∪ [1,∞) and Kx = 0 if |x|
is larger than some positive constant rK . Let us further introduce two mutually in-
dependent collections of i.i.d. random variables {τz,i}z∈Zd,i∈N∗ and {Kz,i}z∈Zd,i∈N∗

whose distributions are mean-one exponential and the same as that of K, respec-

tively. We suppose that the process {Yt}t≥0 starts from Y0 ∈ [0,∞)Z
d

and at each
time t = τz,1 + τz,2 + · · ·+ τz,i for some (z, i) ∈ Z

d ×N
∗, the process is updated as

follows:

Yt,x =

{

Kz,i
0 Yt−,z if x = z,

Yt−,x + Kz,i
x−zYt−,z if x 6= z.

(3.25)

We also consider the dual process Zt ∈ [0,∞)Z
d

, t ≥ 0 which evolves in the same
way as {Yt}t≥0 except that (3.25) is replaced by its transpose:

Zt,x =

{

∑

y∈Zd Kz,i
y−xZt−,y if x = z,

Zt−,x if x 6= z.
(3.26)

Remark 3.5. Note that the process (3.25) is a continuous-time counterpart of DLSE,
while its dual (3.26) is that of LSE.

For processes of above types, we have the following simple characterization of
exponential growth in terms of K.

Theorem 3.6. Let {Yt}t≥0 be the process defined above satisfying |Y0| < ∞. Then,
the following holds:

(1) If P (|Yt| ≥ 1 for all t ≥ 0) > 0 and P (
∑

x∈Zd Kx ≥ 1 + δ) > 0 for some
δ > 0, then

lim inf
t→∞

1

t
log |Yt| > 0 (3.27)

P -almost surely on the event {|Yt| ≥ 1 for all t ≥ 0}.

(2) Otherwise,

lim sup
t→∞

1

t
log |Yt| ≤ 0 (3.28)

P -almost surely.

The same assertions hold for the dual process {Zt}t≥0.

Proof : We prove (1) only for {Yt}t≥0. We first consider the time discretized process
{Yn}n∈N and apply Theorem 1.2. Then it can be extended to {Yt}t≥0 as in the
proof of Corollary 1.3.

For given {τz,i}z∈Zd,i∈N∗ and {Kz,i}z∈Zd,i∈N∗ , let Bn+1,x,y be Y
(n,x)
n+1,y, that is,

the population at (n + 1, y) starting from one particle at (n, x) (cf. (2.2)). Then it
follows that {Yn}n∈N is nothing but the Markov chain described in Subsection 1.2.
Therefore it suffices to check that P (Y1,x ≥ 1 + δ) > 0 for some x ∈ Z

d when
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Y0 = (δ0,x)x∈Zd . Suppose first that P (Kx ≥ 1 + δ) > 0 for some x ∈ Z
d. Then,

P (Y1,x ≥ 1 + δ)

≥ P (τo,1 < 1, τx,1 > 1, Ko,1
x ≥ 1 + δ)

= P (τo,1 < 1)P (τx,1 > 1)P (Ko,1
x ≥ 1 + δ)

> 0.

(3.29)

Next, if Kx ∈ {0, 1} for all x ∈ Z
d, then P (

∑

x∈Zd Kx ≥ 1 + δ) > 0 implies

P (Kx = Ky = 1) > 0 for some distinct x, y ∈ Z
d. (3.30)

Thus we have

P (Y1,x+y ≥ 2)

≥ P (τo,1 ∈ [0, 1/2), τx,1 ∈ [1/2, 1), τy,1 ∈ [1/2, 1), τx+y,1 > 1,

Ko,1
x = Ko,1

y = Kx,1
y = Ky,1

x = 1)

> 0.

(3.31)

The proof of (2) for {Yt}t≥0 is immediate since P (
∑

x∈Zd Kx = 1) = 1 implies
that {Yt}t≥0 is a coalescing random walk. To prove (2) for the dual process {Zt}t≥0,
we use the fact that the cardinality of suppZt = {x ∈ Z

d : Zt,x ≥ 1} grows at
most polynomially fast, which is proved in Harris (1978). Indeed, suppZt forms an
“additive set-valued process” introduced there and (13.10) in Harris (1978) implies
that #suppZt = O(td) almost surely. The rest of the proof is very similar to that
of Theorem 3.1-(3) and we omit the detail. �

Remark 3.7. It should be pointed out that the generality of Theorem 1.2 is impor-
tant in this proof. Indeed, the matrix Bn defined above is neither of finite range
nor of independent entries.

One can also formulate and prove a continuous version of Corollary 3.3.
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