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Abstract. An improved condition to come down from infinity for exchangeable
coalescent processes with simultaneous multiple collisions of ancestral lineages is
provided. For non-critical coalescents this leads to an improved necessary and
sufficient condition for the coalescent to come down from infinity. An analog con-
jecture for the full class of exchangeable coalescents is presented. New examples of
critical coalescents are studied in detail. The results extend those obtained by J.
Schweinsberg in Section 5.5 of ’Coalescents with simultaneous multiple collisions’,
Electron. J. Probab. 5, 1–50.

1. Introduction

Exchangeable coalescents (with simultaneous multiple collisions) are Markov pro-
cesses Π := (Πt)t≥0 taking values in P , the set of partitions of N := {1, 2, . . .}.
Schweinsberg (2000a) characterizes Π in terms of a finite measure Ξ on the infinite
simplex ∆ := {x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0, |x| := ∑∞

i=1 xi ≤ 1}. Through-
out the paper, we use for x = (x1, x2, . . .) ∈ ∆ the notation (x, x) :=

∑∞
i=1 x

2
i . We

furthermore decompose the measure Ξ = aδ0 + Ξ0, where a := Ξ({0}), δ0 denotes
the Dirac measure in 0 := (0, 0, . . .) ∈ ∆ and Ξ0 having no mass at 0. Additionally,
set ν(dx) := Ξ0(dx)/(x, x). Note that ν is a measure on ∆ having no mass at zero.

For n ∈ N, the function ̺n : P → Pn denotes the restriction to the set Pn of
partitions of {1, . . . , n}. For ξ ∈ P and as well for ξ ∈ Pn, the notation |ξ| is used
for the number of blocks (equivalence classes) of ξ. With N := (Nt)t≥0 := (|Πt|)t≥0

we denote the so-called block counting process of Π.
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For n ∈ N let Π(n) = (Π
(n)
t )t≥0 := (̺n ◦ Πt)t≥0 denote the coalescent pro-

cess restricted to Pn. Furthermore, let N (n) := (N
(n)
t )t≥0 := (|Π(n)

t |)t≥0 denote

the corresponding block counting process of Π(n). It is known (see, for example,
Möhle, 2010, p. 2162) that the block counting process N (n) moves from a state
m ∈ {2, . . . , n} to a state k ∈ {1, . . . ,m− 1} at the rate

gmk := lim
hց0

P (N
(n)
t+h = k |N (n)

t = m)

h

= a

(

m

2

)

1{k=m−1} +

∫

∆

P (Y (m,x) = k) ν(dx), (1.1)

where Y (m,x) := X0(m,x) +
∑∞
i=1 1{Xi(m,x)≥1} and (X0(m,x), X1(m,x), . . .) has

an infinite multinomial distribution with parametersm ∈ N and (1−|x|, x1, x2, . . .).
Note that Y (m,x), m ∈ N, x ∈ ∆, has mean

E(Y (m,x)) = m(1− |x|) +
∞
∑

i=1

(1 − (1− xi)
m). (1.2)

Expressions for the probabilities P (Y (m,x) = k), k ∈ {1, . . . ,m}, which oc-
cur below the integral in (1.1), are available. For details on the distribution of
Y (m,x) we refer the reader to the appendix. Similarly as in (1.1), the total rates

gm :=
∑m−1

k=1 gmk, m ∈ N, can be expressed in terms of the measure Ξ. For some
information on related infinite urn schemes we refer the reader to the seminal work
of Karlin (1967) and to the survey of Gnedin et al. (2007). We recall the defini-
tion of coming down from infinity and staying infinite (Pitman, 1999, p. 1886 and
Schweinsberg, 2000a, p. 38). A coalescent Π = (Πt)t≥0 is called standard if Π0 is
the partition of N into singletons.

Definition 1.1. (coming down from infinity, staying infinite) Let Ξ be a
finite measure on ∆, let Π = (Πt)t≥0 be a standard Ξ-coalescent and let N :=
(Nt)t≥0 := (|Πt|)t≥0 denote the corresponding block counting process. We say that
Π comes down from infinity if P (Nt < ∞) = 1 for all t > 0. We say that Π stays
infinite if P (Nt = ∞) = 1 for all t > 0.

Schweinsberg (2000b) provides a necessary and sufficient condition for the Λ-
coalescent to come down from infinity. In Schweinsberg (2000a) he extents his
methods used in Schweinsberg (2000b) and derives a similar sufficient condition
and (under additional constraints) a similar necessary condition for Ξ-coalescents.
We recall Schweinsberg’s results in the following Theorems 1.2 and 1.3. Theorem
1.2 below essentially summarizes the results around Lemma 31 in Schweinsberg
(2000a). In order to state the theorem it is convenient to introduce the set ∆f :=
{x ∈ ∆ : x1 + · · · + xn = 1 for some n ∈ N} and to define the absorption times

T∞ := inf{t > 0 : Nt = 1} and Tn := inf{t > 0 : N
(n)
t = 1} of the block

counting process N (n), n ∈ N. In the biological context Tn is called the time back
to the most recent common ancestor (MRCA) of a sample of size n. Note that
0 ≤ T1 ≤ T2 ≤ · · · and that limn→∞ Tn(ω) = T∞(ω) (∈ [0,∞]) for all ω ∈ Ω. By
monotone convergence, E(T∞) = limn→∞ E(Tn) ∈ [0,∞]. In Schweinsberg (2000a)
it is explained how the problem of coming down from infinity for a coalescent
satisfying Ξ(∆f ) > 0 can be reduced to the same problem for a coalescent which
satisfies Ξ(∆f ) = 0. In the following we therefore focus without loss of generality
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mostly on coalescents satisfying Ξ(∆f ) = 0. It is also assumed without loss of
generality that Ξ is not the zero measure.

Theorem 1.2. (Schweinsberg, 2000a) Let Ξ be a finite measure on ∆ satisfying
Ξ(∆f ) = 0 and let Π be a standard Ξ-coalescent. Then either Π comes down from
infinity or Π stays infinite. Moreover, Π comes down from infinity if and only if
E(T∞) <∞ or, equivalently, if and only if the sequence (E(Tn))n∈N is bounded.

The sequence (Tn)n∈N satisfies (see, for example, Freund and Möhle, 2009,

Eq. (1.2)) the distributional recursion T1 = 0 and Tn
d
= τn + TIn , where In

is independent of T1, . . . , Tn−1 with distribution pnk := P (In = k) = gnk/gn,
k ∈ {1, . . . , n − 1}, and τn is independent of TIn and exponentially distributed
with parameter gn, n ∈ N. Note that for Λ-coalescents this recursive structure
was already found by Pitman (1999, p. 1886) and the same recursion holds for

Ξ-coalescents due to the strong Markov property of (Π
(n)
t )t≥0. In particular, the

expectation E(Tn) follows the recursion E(T1) = 0 and

E(Tn) = E(τn) + E(TIn) =
1

gn
+

n−1
∑

k=1

pnkE(Tk), n ∈ {2, 3, . . .}. (1.3)

Note that E(T2) = 1/g2 = 1/Ξ(∆). Thus, under the natural restriction that
Ξ(∆f ) = 0, Theorem 1.2 together with the recursion (1.3) provides a necessary
and sufficient condition for the standard Ξ-coalescent Π to come down from infinity
in terms of the infinitesimal rates gnk, n, k ∈ N with k < n, of its associated block
counting process. However, the analysis of the recursion (1.3) is not as simple as
it seems to be at a first glance. In general it is not straightforward to decide from
(1.3) directly for which given triangular array of infinitesimal rates gnk, n, k ∈ N,
with k < n, the sequence (E(Tn))n∈N is bounded. The study of functionals of
Π(n), such as the absorption time Tn, has recently become one of the main research
interests in coalescent theory (see, for example, Gnedin et al., 2011 and Gnedin
et al., 2012). For example, for many beta coalescents, the limiting distribution as
n → ∞ of Tn, properly centered and scaled, is known (Gnedin et al., 2012, Table
2). However, for arbitrary Ξ-coalescents, no general results are available, not even
for the asymptotics of the expectation E(Tn) as n→ ∞.

So far, Schweinsberg (2000a) provided the most general criterion for E(T∞) <∞.
In order to state his result, put ∆ε := {x ∈ ∆ : |x| ≤ 1 − ε} for ε ∈ (0, 1) and
define the function γ : [0,∞) → R by

γ(q) := γΞ(q) := a

(

q

2

)

+

∫

∆

∞
∑

i=1

((1− xi)
q − 1 + qxi) ν(dx), q ≥ 0. (1.4)

Note that, by (1.1) and (1.2), γ(n) =
∑n−1

k=1 (n− k)gnk for all n ∈ N. The following
theorem summarizes Propositions 32 and 33 of Schweinsberg (2000a).

Theorem 1.3. (Schweinsberg, 2000a) Let Ξ be a finite measure on ∆ satisfying
Ξ(∆f ) = 0 and let Π be a standard Ξ-coalescent.
a) If

∑∞
n=2 1/γ(n) <∞, then E(T∞) <∞, so Π comes down from infinity.

b) If
∑∞
n=2 1/γ(n) = ∞ and ν(∆ \∆ε) <∞ for some ε ∈ (0, 1), then E(T∞) = ∞,

so Π stays infinite.

However, there do exist Ξ-coalescents with Ξ(∆f ) = 0,
∑∞

n=2 1/γ(n) = ∞ and
yet E(T∞) <∞. The most prominent example of such a coalescent is provided by
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Schweinsberg (2000a, p. 42, Example 34). We refer the reader to Example 6.1 b)
in Section 6, where Schweinsberg’s example is re-explored and generalized. There
are many other examples, in which Schweinsberg’s criterion,

∞
∑

n=2

1

γ(n)
< ∞, (1.5)

does not work. All of them necessarily violate the additional assumption in Theorem
1.3 b). We believe that such coalescents are worth studying and therefore give them
a special name.

Definition 1.4. Let Ξ be a finite measure on ∆ and let Π be a standard Ξ-
coalescent. If ν(∆ \∆ε) = ∞ for all ε ∈ (0, 1), then Π is called critical.

Several examples of critical coalescents are introduced and studied in Section 6
in detail.

All other approaches concerning the problem of coming down from infinity for
Ξ-coalescents Berestycki et al. (2010); Foucart (2011, 2012); Limic (2010); Schweins-
berg (2000a,b) are also based on the function γ in (1.4) or on the closely related
and slightly larger function ψ : [0,∞) → [0,∞), defined via

ψ(q) := ψΞ(q) := a
q2

2
+

∫

∆

∞
∑

i=1

(e−qxi − 1 + qxi) ν(dx), q ≥ 0. (1.6)

None of them extends Schweinsberg’s criterion. Note that γ(q) ∼ ψ(q) as q → ∞
(Lemma 3.3) and therefore

∑∞
n=2 1/γ(n) < ∞ if and only if

∑∞
n=2 1/ψ(n) < ∞.

Furthermore, ψ is the characteristic exponent of a spectrally positive Lévy process
which is as well a martingale (Proposition 3.4).

The speed of coming down from infinity for Λ-coalescents is studied in Beresty-
cki et al. (2010). Furthermore, Limic (2010, 2012) studies the speed of coming
down from infinity for so-called regular coalescents satisfying the regularity con-
dition

∫

∆
|x|2 ν(dx) < ∞. Note that all Λ-coalescents are regular and all regular

coalescents are non-critical (Proposition 2.1).
There exists a Markov process Y = (Yt)t≥0 with state space [0, 1], which is dual

to the block counting process N = (Nt)t≥0.
It is known (see, for example, Birkner et al., 2009, Remark 5.3) that, under the

restriction that Ξ(∆f ) = 0, the Ξ-coalescent comes down from infinity if and only
if Y hits its boundary {0, 1} in finite time almost surely. The coming down from
infinity property is therefore essentially equivalent to the almost sure finiteness of
the boundary hitting time T := inf{t > 0 : Yt ∈ {0, 1}} of Y , a problem of its own
complexity, since Y has jumps. Relations of this form between the coming down
from infinity property of the Ξ-coalescent and the finiteness of the boundary hitting
times of certain jump processes further emphasize the importance of the coming
down from infinity problem.

The paper is organized as follows. Our main results are presented in Section 2.
Section 3 deals with the analysis of the functions γ and ψ defined in (1.4) and (1.6).
Section 4 analyzes the functions δ and φ defined in (2.1) and (2.2). We consider
this analysis to be important for further studies concerning the problems presented
in Section 2. The proofs of the main results are provided in Section 5. The proofs
make heavily use of the representation of the rates (1.1) in terms of an infinite
multinomial distribution. Several new examples of critical coalescents are defined
and analyzed in Section 6.
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2. Results

We start with a proposition on properties of critical coalescents. For k ∈ N let
∆k denote the set of all points x = (x1, x2, . . .) ∈ ∆ satisfying xi = 0 for all i > k.

Proposition 2.1. Let Ξ be a finite measure on ∆ and let Π be a critical standard
Ξ-coalescent. Then

∫

∆
|x|k ν(dx) = ∞ for all k ∈ N. Moreover, Ξ(∆ \∆k) > 0 for

all k ∈ N, i.e. Π allows with positive probability for an arbitrary large number of
multiple collisions at the same time.

Remark 2.2. There exist non-critical Ξ-coalescents satisfying
∫

∆ |x|kν(dx) = ∞ for

all k ∈ N, for example, if Ξ assigns for each m ∈ N mass 2−m to the point x(m) ∈ ∆
whose first 2m−1 coordinates are all equal to 2−m and all other coordinates are
equal to 0.

Our second result sheds some light on the asymptotics of E(Tn) as n → ∞. It
also provides an upper bound of general order logn for the expected absorption
time.

Theorem 2.3. Let Π be a standard Ξ-coalescent with Ξ({0}) = 0. Then

lim
n→∞

logn

E(Tn)
=

∫

∆

− log(1− |x|) ν(dx) ∈ (0,∞].

In particular, for any standard Ξ-coalescent, there exists a constant C = C(Ξ) ∈
(0,∞) such that E(Tn) ≤ C logn for all n ∈ N. Clearly, there exist coalescents
for which E(Tn) grows much slower than logn. The sequence (E(Tn))n∈N can
even be bounded, as for example for all coalescents with Ξ({0}) > 0. However, in
general the order logn of the upper bound cannot be improved since there obviously
exist measures Ξ with

∫

∆
− log(1 − |x|) ν(dx) < ∞. Note that critical coalescents

satisfy
∫

∆
− log(1 − |x|) ν(dx) = ∑∞

n=1(1/n)
∫

∆
|x|n ν(dx) = ∞. Theorem 2.3 may

also be interpreted in the sense that the height of n-coalescent trees grows at most
logarithmically in n. Note that trees of (at most) logarithmic height are particulary
studied in graph theory.

We now turn to the problem of coming down from infinity. Our main idea is to
replace the function γ in (1.4) by a properly modified larger function. Instead of
using γ and ψ we work with the modified functions δ : (0,∞) → R defined via

δ(q) := δΞ(q) := a

(

q

2

)

−q
∫

∆

log

(

1− 1

q

∞
∑

i=1

((1−xi)q−1+qxi)

)

ν(dx), q > 0,

(2.1)
and its slightly larger modification φ : (0,∞) → [0,∞), defined via

φ(q) := φΞ(q) := a
q2

2
− q

∫

∆

log

(

1− 1

q

∞
∑

i=1

(e−qxi − 1 + qxi)

)

ν(dx), q > 0.

(2.2)
Note that δ and φ are well defined (Lemma 4.1) and differentiable (Lemma 4.4).
We have not been able to show that δ(q) ∼ φ(q), q → ∞. Under the constraint that
∫

∆
1/(1−|x|) Ξ(dx) <∞, the asymptotics δ(q) ∼ φ(q) as q → ∞ holds (Proposition

4.5). The functions δ and φ are more involved than γ and ψ. However, these func-
tions turn out to be helpful to decide whether a coalescent comes down from infinity
or not. Note that, by (1.2), for n ∈ N, δ(n) = a

(

n
2

)

− n
∫

∆
log E(Y (n, x)/n) ν(dx).

This relation between δ and Y (n, x) is crucial for our analysis.
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Theorem 2.4. Let Π be a standard Ξ-coalescent. If

∫ ∞

2

dq

δ(q)
< ∞, (2.3)

then E(T∞) <∞, so the Ξ-coalescent comes down from infinity.

The proof of Theorem 2.4 is closely related to the proof of the previous Theorem
2.3 and exploits the fact that the map q 7→ δ(q)/q is non-decreasing on [1,∞) (see
Corollary 4.2). By definition it is readily checked that γ(q) ≤ δ(q) for all q > 0.
From this fact and from the monotonicity it follows that

∫ ∞

2

dq

δ(q)
≤

∞
∑

n=2

1

γ(n)
. (2.4)

Therefore (2.3) is at least as good as Schweinsberg’s criterion. However, it turns
out that (2.3) is even stronger than (1.5). For example, in Schweinsberg’s example
mentioned in Section 1 we have

∫∞
2
dq/δ(q) < ∞ =

∑∞
n=2 1/γ(n). For a whole

class of critical coalescents, in which (2.3) is applicable and (1.5) is not, we refer
the reader to Example 6.1 b) in Section 6. Schweinsberg’s example will be covered
there as well. The proof of Theorem 2.4 gives a bit more information. It shows
that, for any Ξ-coalescent (no matter whether it comes down from infinity or not),

E(Tn) ≤
n
∑

k=2

1

δ(k)

k

k − 1
≤ 2

n
∑

k=2

1

δ(k)
, n ∈ {2, 3, . . .}.

The first inequality implies that lim supn→∞ E(Tn)/
∑n
k=2 1/δ(k) ≤ 1, provided

that
∑∞

k=2 1/δ(k) = ∞. Let us now consider the converse implication, ensuring
that the coalescent stays infinite. By (2.4) the following proposition is a direct
consequence of Theorem 1.3 b) and Theorem 2.4.

Proposition 2.5. Let Π be a non-critical standard Ξ-coalescent with Ξ(∆f ) = 0.
Then Π comes down from infinity if and only if (2.3) holds.

This all leads to the following problem that we present the coalescent community.
So far the authors have not been able to solve this problem.

Problem 2.6. Show that Proposition 2.5 holds without the restriction that the
coalescent is non-critical. If this is not possible, find weaker/other conditions, under
which Proposition 2.5 still holds.

Remark 2.7. If the coalescent Π has a Kingman part (a = Ξ({0}) > 0), then
(see, for example, Limic, 2010, Remark 2) Π comes down from infinity and δ(k) ≥
ak(k − 1)/2, k ∈ N, which means that (2.3) is satisfied. Proposition 2.5 thus holds
for a > 0, whether the coalescent is critical or not.

At the end of this section we present an interesting variant of (2.3). For n ∈ N

define

δ̃(n) := n

n−1
∑

k=1

(logn− log k)gnk = n lim
tց0

1

t
E

(

− log
N

(n)
t

n

)

, (2.5)
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where the last equality follows from (1.1). Note that δ̃(1) = 0 and that δ̃(2) =
2(log 2)Ξ(∆) > 0, and, by (1.1),

δ̃(n)

n
=

(

− log
n− 1

n

)

a

(

n

2

)

+

∫

∆

E

(

− log
Y (n, x)

n

)

ν(dx), n ∈ {2, 3, . . .}.
(2.6)

We believe that, for arbitrary but fixed x ∈ ∆, the map

n 7→ E

(

− log
Y (n, x)

n

)

=

∞
∑

k=1

1

k
E

((

1− Y (n, x)

n

)k)

(2.7)

is non-decreasing in n ∈ N, which would imply that the map n 7→ δ̃(n)/n is non-
decreasing in n ∈ N. However, we have not been able to verify this monotonicity
property rigorously. In the following result, which is much in the spirit of Theorem
2.4 and verified in the same manner (see end of Section 5), the monotonicity of the

map n 7→ δ̃(n)/n is therefore assumed.

Proposition 2.8. Let Π be a standard Ξ-coalescent and suppose that the map
n 7→ δ̃(n)/n is non-decreasing in n ∈ N. If

∑∞
n=2 1/δ̃(n) <∞, then Π comes down

from infinity.

Since Jensen’s inequality implies δ̃(n) ≥ δ(n) for all n ∈ N, we conclude that
∑∞
n=2 1/δ̃(n) ≤ ∑∞

n=2 1/δ(n). Therefore, if the map in (2.7) is non-decreasing,
Proposition 2.8 would be at least as good as Theorem 2.4.

Problem 2.9. Show that (2.7) is non-decreasing in n ∈ N.

3. Analysis of the functions γ and ψ

The study of the functions γ and ψ, defined in (1.4) and (1.6) respectively, was at
the core of previous works on coming down from infinity. Most of the results in this
section are already known from the literature (see, for example, the works of Foucart
(2011, 2012) and Limic (2010, 2012)), however, we provide them for completeness
and add a few more details. We start with an analysis of the functions below the
integrals in (1.4) and (1.6).

Lemma 3.1. The functions g : (0,∞) ×∆ → R and h : (0,∞)×∆ → R, defined
via

g(q, x) :=
1

q

∞
∑

i=1

((1− xi)
q − 1 + qxi) =

∞
∑

i=1

(

(1− xi)
q

q
− 1

q
+ xi

)

and

h(q, x) :=
1

q

∞
∑

i=1

(e−qxi − 1 + qxi) =

∞
∑

i=1

(

e−qxi

q
− 1

q
+ xi

)

,

are both twice differentiable with respect to q, non-decreasing in q ∈ (0,∞) and
concave. Furthermore, limq→∞ g(q, x) = |x| and limq→∞ h(q, x) = |x|, where |x| :=
∑∞
i=1 xi. Moreover, limq→0 h(q, x) = 0, whereas limq→0 g(q, x) =

∑∞
i=1(xi+log(1−

xi)) ≤ 0 (:= −∞ if x = (1, 0, 0, . . .)).

Remark 3.2. The functions g and h are even infinitely often differentiable with
respect to q ∈ (0,∞). However, we do not need this property in our further
considerations.
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Proof : For x = (1, 0, 0, . . .) ∈ ∆, g(q, x) = 1− 1/q is obviously twice differentiable,
non-decreasing in q ∈ (0,∞) and concave. Assume now that x 6= (1, 0, 0, . . .).
Then, xi < 1 for all i ∈ N, so we can take the logarithm of 1 − xi. Note that
∑∞
i=1(− log(1−xi)) <∞, since, − log(1−t) = ∑∞

k=1 t
k/k ≤ t

∑∞
k=0 t

k = t/(1−t) ≤
2t for all t ∈ [0, 12 ]. For k ∈ N define gk : (0,∞)×∆ → R via

gk(q, x) :=
k

∑

i=1

(

(1− xi)
q

q
− 1

q
+ xi

)

, q ∈ (0,∞), x = (x1, x2, . . .) ∈ ∆.

Applying the inequality t ≤ − log(1 − t), t ∈ [0, 1), with t := 1 − (1 − xi)
q ∈ [0, 1)

it follows that (1 − (1 − xi)
q)/q ≤ − log(1 − xi), i ∈ N, q ∈ (0,∞). Therefore, for

all q ∈ (0,∞),

|g(q, x)− gk(q, x)| =

∣

∣

∣

∣

∞
∑

i=k+1

(1 − xi)
q − 1

q
+ xi

∣

∣

∣

∣

≤
∞
∑

i=k+1

1− (1− xi)
q

q
+

∞
∑

i=k+1

xi

≤
∞
∑

i=k+1

(− log(1− xi)) +

∞
∑

i=k+1

xi → 0

as k → ∞, so g(., x) → gk(., x) uniformly on (0,∞). Furthermore, each gk is

differentiable with respect to q with continuous derivative g′k(q, x) = q−2
∑k
i=1(1−

(1 − xi)
q + (1 − xi)

q log((1 − xi)
q)). We have pointwise convergence g′k(q, x) →

q−2
∑∞
i=1(1−(1−xi)q+(1−xi)q log((1−xi)q)) as k → ∞. Applying the inequalities

0 ≤ (1 − tq + tq log tq)/q2 ≤ (log t)2/2, t ∈ (0, 1], q ∈ (0,∞), with t := 1 −
xi it is readily checked that this pointwise convergence holds even uniformly on
(0,∞). Therefore, g(., x) is differentiable with respect to q with derivative g′(q, x) =
limk→∞ g′k(q, x) = q−2

∑∞
i=1(1− (1− xi)

q + (1− xi)
q log((1− xi)

q)), which is non-
negative, since 1 − t + t log t ≥ 0 for all t ∈ (0, 1]. Analogously, h is differentiable
with respect to q with derivative h′(q, x) = q−2

∑∞
i=1(1− e−qxi − qxie

−qxi), which
is non-negative, since 1− e−y − ye−y ≥ 0 for all y ∈ [0,∞).

Similarly it follows that g has second derivative g′′(q, x) = q−3
∑∞
i=1

(

2(1−xi)q+
(1−xi)q(log((1−xi)q))2−2−2(1−xi)q log((1−xi)q)

)

, which is non-positive, since

2t+ t log2 t− 2 − 2t log t ≤ 0 for t ∈ (0, 1]. Thus g(., x) is concave. Analogously, h
has second derivative h′′(q, x) = q−3

∑∞
i=1(2e

−qxi + (qxi)
2e−qxi − 2 + 2qxie

−qxi),
which is non-positive, since 2e−y + y2e−y − 2 + 2ye−y ≤ 0 for all y ∈ [0,∞). Thus
h(., x) is concave.

Fix x = (x1, x2, . . .) ∈ ∆. For q ∈ (0,∞) and i ∈ N define fq(i) := ((1 − xi)
q −

1 + qxi)/q and f(i) := xi. Clearly, for arbitrary but fixed i ∈ N, fq(i) → f(i) as
q → ∞. Moreover, 0 ≤ fq(i) ≤ f(i) for all i ∈ N and all q ≥ 1. Note that f is
integrable with respect to the counting measure εN on N, since

∫

f dεN = |x| ≤ 1.
By dominated convergence, g(q, x) :=

∫

fq dεN →
∫

f dεN = |x| as q → ∞. The

same arguments work with fq(i) replaced by f̃q(i) := (e−qxi − 1 + qxi)/q showing
that h(q, x) → |x| as q → ∞. The limits as q → 0 are obtained similarly. �

The next lemma in particular shows that the functions γ and ψ in (1.4) and
(1.6) are well defined in the sense that they cannot take the value ∞. Moreover,
the equivalence of γ and ψ is established. Previous works Foucart (2011, 2012);
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Limic (2010, 2012) on coming down from infinity for Ξ-coalescents used inequalities
of the form cγ ≤ ψ ≤ Cγ for some constants c, C ∈ (0,∞).

Lemma 3.3. For all q ≥ 0, 0 ≤ ψ(q) ≤ (q2/2)Ξ(∆) and γ(q) ≤ ψ(q). Moreover,
ψ(q)− γ(q) ≤ (q/2)Ξ(∆) for all q ≥ 1, ψ(q) ≤ 2γ(q) for all q ≥ 2 and ψ(q) ∼ γ(q)
as q → ∞. In particular, the series

∑∞
n=2 1/γ(n) converges if and only if the series

∑∞
n=2 1/ψ(n) converges.

Proof : Note that 0 ≤ e−t − 1 + t ≤ t2/2 for t ∈ [0,∞). Hence, 0 ≤ ψ(q) ≤
(q2/2)Ξ(∆), q ≥ 0. Clearly (1 − x)q ≤ e−qx for x ∈ [0, 1] and q ≥ 0, which implies
that γ(q) ≤ ψ(q) for all q ≥ 0. Assume now that q ≥ 1. By the mean value theorem,
(e−x)q − (1 − x)q ≤ q(e−x − (1 − x)) ≤ qx2/2 for x ∈ [0, 1] and q ∈ [1,∞) and,
therefore,

ψ(q)− γ(q) = a
q

2
+

∫

∆

∞
∑

i=1

(e−qxi − (1− xi)
q) ν(dx)

≤ a
q

2
+
q

2

∫

∆

∞
∑

i=1

x2i ν(dx) =
q

2
Ξ(∆), q ≥ 1.

We now verify that ψ(q) ≤ 2γ(q) for q ≥ 2. For Ξ = 0 this is obvious. Assume
now that Ξ is not the zero measure. By Corollary 4.2 the map q 7→ γ(q)/q is
non-decreasing on [1,∞). For q ≥ 2 it follows that γ(q)/q ≥ γ(2)/2 = Ξ(∆)/2, or,
equivalently, q ≤ Dγ(q) for q ≥ 2 with 0 < D := 2/Ξ(∆) <∞. For q ≥ 2 it follows
that

ψ(q) = ψ(q)− γ(q) + γ(q) ≤ q

2
Ξ(∆) + γ(q) ≤ Dγ(q)

2
Ξ(∆) + γ(q) = 2γ(q).

It remains to verify that ψ(q) ∼ γ(q) as q → ∞. If a = 0 and
∫

∆ |x| ν(dx) <
∞, then, see (4.1), limq→∞ γ(q)/q = limq→∞ ψ(q)/q =

∫

∆
|x| ν(dx) < ∞ and,

therefore, limq→∞ ψ(q)/γ(q) = 1.
Suppose now that a > 0 or

∫

∆
|x| ν(dx) = ∞. If a > 0 then obviously γ(q)/q ≥

a(q − 1)/2 → ∞. Otherwise we have a = 0 and, see (4.1), γ(q)/q →
∫

∆ |x| ν(dx) =
∞. Therefore, q/γ(q) → 0 as q → ∞, so for each ε > 0 there exists q0 = q0(ε) > 1
such that q/γ(q) < 2ε/Ξ(∆) for all q > q0. For all q > q0 it follows that γ(q) ≤
ψ(q) = ψ(q) − γ(q) + γ(q) ≤ (q/2)Ξ(∆) + γ(q) < εγ(q) + γ(q), or, equivalently,
1 ≤ ψ(q)/γ(q) < 1 + ε for all q > q0. Thus, ψ(q) ∼ γ(q) as q → ∞. �

For monotonicity properties of the maps q 7→ γ(q)/q and q 7→ ψ(q)/q, q ≥ 0, we
refer the reader to Corollary 4.2 and the remark thereafter.

The remaining part of this section concerns the relation of the function ψ with
Lévy processes in the spirit of Bertoin and Le Gall (2006). We do not use these
relations in our further considerations. However, we think that relations to Lévy
processes are worth to mention, since they could turn out to be important for future
work.

Proposition 3.4. The function ψ in (1.6) is the characteristic exponent of a Lévy
process X = (Xt)t≥0, i.e. E(e−qXt) = etψ(q), q, t ∈ [0,∞). Moreover, X is spec-
trally positive and a martingale.

Remark 3.5. The map q 7→ ψ(q)/q is (see also Foucart, 2012, Lemma 9) the Laplace
exponent of a subordinator.
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Proof : Define the measure ̺ on ((0, 1],B∩ (0, 1]) via ̺(B) :=
∫

∆

∑∞
i=1 1B(xi) ν(dx)

for all Borel sets B ⊆ (0, 1]. Let us verify that
∫

(0,1]

f(u)̺(du) =

∫

∆

∞
∑

i=1

f(xi) ν(dx) (3.1)

for all measurable non-negative or integrable functions f : [0, 1] → R satisfying
f(0) = 0. For indicator functions f = 1B with B any Borel set in (0, 1], (3.1)
holds by the definition of ̺. It is then straightforward to extend (3.1) stepwise
to elementary functions, non-negative functions and finally to integrable functions.
Choosing f(u) := u2 is follows that

∫

(0,1]
u2 ̺(du) =

∫

(x, x) ν(dx) = Ξ0(∆) < ∞.

For arbitrary but fixed q ∈ [0,∞) we can also choose f(u) := e−qu − 1 + qu, and
it follows that ψ(q) = (a/2)q2 +

∫

(0,1]
(e−qu − 1 + qu) ̺(du) for all q ≥ 0. By

the Lévy-Khintchine representation (see, for example, Bertoin, 1992, p. 307), ψ
is the characteristic exponent of a spectrally positive Lévy process X = (Xt)t≥0,
i.e. X has independent homogeneous increments, no negative jumps and satisfies
E(e−qXt) = etψ(q) for all q, t ≥ 0. Note that the associated Lévy measure ̺ is
concentrated on (0, 1]. It is readily checked that ψ′(q) = aq+

∫

(0,1] u(1−e−qu) ̺(du)
for all q > 0, from which it follows that ψ′(0+) = 0 and E(Xt) = −tψ′(0+) = 0 for
all t ≥ 0. It remains to note that a Lévy process X = (Xt)t≥0 satisfying E(Xt) = 0
for all t ≥ 0 is a martingale. �

Remark 3.6. Note that ψ′(q) = aq +
∫

(0,1]
u(1 − e−qu) ̺(du) and that ψ′′(q) =

a +
∫

(0,1]
u2e−qu ̺(du) as well as ψ(k)(q) = (−1)k

∫

(0,1]
uke−qu ̺(du), k ≥ 3, q ∈

(0,∞). In particular, ψ′(0+) = 0, ψ′′(0+) = a +
∫

(0,1]
u2 ̺(du) = Ξ(∆) < ∞

and ψ(k)(0+) = (−1)k
∫

(0,1]
uk ̺(du) < ∞, k ≥ 3. These derivatives are useful to

compute the moments of Xt. For example, Var(Xt) = E(X2
t ) = tψ′′(0+) = tΞ(∆)

and E(X3
t ) = −tψ′′′(0+) = t

∫

(0,1] u
3 ̺(du) =

∫

∆

∑∞
i=1 x

3
i ν(dx).

Example 3.7. 1. Assume that ν = δx for some x = (x1, x2, . . .) ∈ ∆ \ {0}. Then
ψ(q) =

∑∞
i=1(e

−qxi − 1+ qxi), q ≥ 0. The Lévy measure ̺ is the counting measure
on {xi : i ∈ N, xi > 0} which assigns mass 1 to each xi > 0. The Lévy process
(Xt)t≥0 has the form Xt =

∑∞
i=1 xi(Ni(t)− t), t ≥ 0, where Ni = (Ni(t))t≥0, i ∈ N,

are i.i.d. homogeneous Poisson processes all with parameter 1.
2. Assume that Π does not have proper frequencies, or, equivalently that

Ξ({0}) = 0 and
∫

∆ |x| ν(dx) <∞ (see Schweinsberg, 2000a, Proposition 30). Then

Xt =
∫

∆

∑∞
i=1 xi(Ni,x(t)− t) ν(dx), t ≥ 0, where Ni,x = (Ni,x(t))t≥0, i ∈ N, x ∈ ∆,

are i.i.d. homogeneous Poisson processes with parameter 1.

Problem 3.8. The representations of the Lévy process X in the last examples lead
to the conjecture that X can be constructed as well pathwise directly from (the Pois-
son process construction of) the coalescent. How does this pathwise construction
work?

4. Analysis of the functions δ and φ

We now turn to the functions δ and φ defined in (2.1) and (2.2). Recall that
δ is at the core of this article (see, for example, Theorem 2.4). The function δ
replaces the function γ used in previous studies on coming down from infinity for
Ξ-coalescents.
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The function φ is formally related to δ in the same way as the function ψ is
related to γ. However, in contrast to ψ, φ does not seem to be the characteristic
exponent of a Lévy process anymore. A probabilistic interpretation of the function
φ remains unclear (may be there is none). Thus, φ is not in the focus of the
article and only introduced since it is sometimes a bit simpler to do calculus with
exponentials e−qx rather than with powers (1 − x)q. The analysis of the function
φ may also serve as a basis for future work.

Lemma 4.1. For all q ∈ (0,∞), δ(q) ≤ φ(q) <∞.

Proof : The inequality δ(q) ≤ φ(q) is clear, since (1− x)q ≤ e−qx for all q ∈ (0,∞)
and all x ∈ [0, 1]. In order to show that δ(q) < ∞ and φ(q) < ∞ we can assume
(without loss of generality) that a := Ξ({0}) = 0. By (1.2), for n ∈ N, δ(n)/n =
∫

∆− log E(Y/n) ν(dx), where we write Y instead of Y (n, x) for convenience. Since
the map x 7→ − logx is convex, Jensen’s inequality yields

δ(n)

n
≤

∫

∆

E

(

− log
Y

n

)

ν(dx) =

∫

∆

n−1
∑

k=1

(

− log
k

n

)

P (Y = k) ν(dx)

=

n−1
∑

k=1

(

− log
k

n

)
∫

∆

P (Y = k) ν(dx) =

n−1
∑

k=1

(

− log
k

n

)

gnk < ∞.

The finiteness of δ(q) for arbitrary q ∈ (0,∞) follows from the fact that, since a = 0,
δ(q) (even δ(q)/q) is non-decreasing in q ∈ (0,∞) by Lemma 3.1 (see also Corollary
4.2).

We now verify that φ(q) <∞. For x ∈ ∆ let (X̃−1(n, x), X̃0(n, x), X̃1(n, x), . . .)
be random variables having a multinomial distribution with parameters n ∈ N

and p = (p−1, p0, p1, p2, . . .) with p−1 := |x| − ∑∞
i=1(1 − e−xi) =

∑∞
i=1(xi − 1 +

e−xi), p0 := 1 − |x| and pi := 1 − e−xi for i ∈ N. The random variable Ỹ :=

Ỹ (n, x) := X̃0(n, x) +
∑∞

i=1 1{X̃i(n,x)≥1} has expectation E(Ỹ ) = np0 +
∑∞

i=1(1−
(1 − pi)

n) = n(1 − |x|) + ∑∞
i=1(1 − e−nxi), so we can rewrite φ(n) in the form

φ(n)/n =
∫

∆− log(1− 1
n

∑∞
i=1(e

−nxi−1+nxi)) ν(dx) =
∫

∆ − logE(Ỹ /n) ν(dx). We

therefore obtain (φ(n) − δ(n))/n =
∫

∆(log E(Y/n) − log E(Ỹ /n)) ν(dx). Applying

the formula log b − log a ≤ (b − a)/a, 0 < a ≤ b < ∞, with a := E(Ỹ /n) and
b := E(Y/n) yields

φ(n)− δ(n)

n
≤

∫

∆

E(Y − Ỹ )

E(Ỹ )
ν(dx).

Note that p−1 =
∑∞

i=1(e
−xi − 1 + xi) ≤

∑∞
i=1 x

2
i /2 ≤

∑∞
i=1 xi/2 ≤ 1/2, and,

therefore, E(Ỹ ) =
∫

{Ỹ≥1} Ỹ dP ≥ 1 − P (Ỹ = 0) = 1 − P (X̃−1(n, x) = n) =

1− pn−1 ≥ 1− (1/2)n. Thus,

φ(n)− δ(n)

n
≤ 1

1− (1/2)n

∫

∆

E(Y − Ỹ ) ν(dx) =
1

1− (1/2)n
(ψ(n)−γ(n)) < ∞

and, hence, φ(n) <∞ for all n ∈ N. The finiteness of φ(q) for arbitrary q ∈ (0,∞)
follows from the fact that φ(q) (even φ(q)/q) is non-decreasing in q ∈ (0,∞). �

The following corollary concerns monotonicity properties of the four maps q 7→
f(q)/q, f ∈ {γ, δ, ψ, φ}. Note that the monotonicity of the map q 7→ δ(q)/q on
[1,∞) is crucial for the proof of Theorem 2.4.
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Corollary 4.2. The maps q 7→ γ(q)/q and q 7→ δ(q)/q, with γ(q) and δ(q) defined
in (1.4) and (2.1), are both non-decreasing on [1,∞). The maps q 7→ ψ(q)/q and
q 7→ φ(q)/q, with ψ(q) and φ(q) defined in (1.6) and (2.2), are both non-decreasing
on (0,∞).

Proof : This is an immediate consequence of Lemma 3.1, since γ(q) = a
(

q
2

)

+

q
∫

∆ g(q, x) ν(dx), δ(q) = a
(

q
2

)

+ q
∫

∆(− log(1 − g(q, x))) ν(dx), ψ(q) = aq2/2 +

q
∫

∆ h(q, x) ν(dx) and φ(q) = aq2/2 + q
∫

∆(− log(1− h(q, x))) ν(dx). �

Remark 4.3. Suppose that a = 0. Then γ(q)/q =
∫

∆ g(q, x) ν(dx) and ψ(q)/q =
∫

∆
h(q, x) ν(dx). By Lemma 3.1, g(q, x) ր |x| and h(q, x) ր |x| as q → ∞. By

monotone convergence it follows that

lim
q→∞

γ(q)

q
= lim

q→∞
ψ(q)

q
=

∫

∆

|x| ν(dx) ∈ (0,∞]. (4.1)

Similarly, since we have δ(q)/q =
∫

∆
(− log(1 − g(q, x))) ν(dx) as well as φ(q)/q =

∫

∆(− log(1 − h(q, x))) ν(dx), it follows from Lemma 3.1 that − log(1 − g(q, x)) ր
− log(1− |x|) and − log(1− h(q, x)) ր − log(1− |x|) as q → ∞. Monotone conver-
gence yields

lim
q→∞

δ(q)

q
= lim

q→∞
φ(q)

q
=

∫

∆

− log(1− |x|) ν(dx) ∈ (0,∞]. (4.2)

Note that there exist Ξ-coalescents (even Λ-coalescents) such that (4.1) is finite
but (4.2) is infinite. For example, if Λ assigns for each m ∈ N mass m−2 to xm :=
1−e−m, then

∫

x−1Λ(dx) =
∑∞
m=1(1−e−m)−1m−2 ≤ (1−e−1)−1

∑∞
m=1m

−2 <∞
but

∫

− log(1− x)x−2Λ(dx) =
∑∞
m=1m(1 − e−m)−2m−2 ≥ ∑∞

m=1m
−1 = ∞.

Lemma 4.4. The maps q 7→ δ(q)/q and q 7→ φ(q)/q are both differentiable with
derivatives

d

dq

δ(q)

q
=

a

2
+

∫

∆

g′(q, x)

1− g(q, x)
ν(dx), q ∈ (0,∞)

and
d

dq

φ(q)

q
=

a

2
+

∫

∆

h′(q, x)

1− h(q, x)
ν(dx), q ∈ (0,∞),

with g(q, x) and h(q, x) defined in Lemma 3.1.

Proof : Without loss of generality assume that a = 0. Let us verify the result for δ.
It suffices to verify that it is allowed to differentiate

δ(q)

q
=

∫

∆

(− log(1 − g(q, x))) ν(dx)

below the integral. The result then follows immediately since

d

dq
(− log(1− g(q, x))) =

g′(q, x)

1− g(q, x)
.

By the well known differentiation lemma, taking the derivative below the integral
is allowed if, for arbitrary but fixed 0 < a ≤ b < ∞, there exists a ν-integrable
function d : ∆ → [0,∞) such that

g′(q, x)

1− g(q, x)
≤ d(x) (4.3)
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for all x ∈ ∆ and all q ∈ [a, b]. Note that the dominating function d is allowed to
depend on a and b. Let us now verify that we can choose d(x) := (x, x)max(1/a2, b).
Note that

∫

∆
d(x) ν(dx) = max(1/a2, b)Ξ(∆) <∞. By Lemma 3.1,

g′(q, x) =
1

q2

∞
∑

i=1

(

1− (1 − xi)
q + (1− xi)

q log((1 − xi)
q)
)

.

For t ∈ [0, 1] and q ≥ 1 we have

1− (1 − t)q + (1− t)q log((1 − t)q) = 1− (1− t)q(1− q log(1 − t))

≤ 1− (1 + qt)(1 + qt) = q2t2.

Moreover, the expression on the left hand side is non-decreasing in q ∈ (0,∞), so
for q ∈ (0, 1] we obtain the bound

1− (1 − t)q + (1− t)q log((1 − t)q) ≤ 1− (1− x) + (1− x) log(1− x) ≤ x2.

Thus, 1 − (1 − t)q + (1 − t)q log((1 − t)q) ≤ t2 max(1, q2), q ∈ [0,∞), t ∈ [0, 1].
Applying this inequality with t = xi it follows that g′(q, x) ≤ (x, x)max(1/q2, 1).
For q ∈ (0, 1] we have g(q, x) ≤ 0 and hence 1/(1− g(q, x)) ≤ 1. Assume now that
q ≥ 1. Then, 1− (1− xi)

q ≥ xi, and, therefore,

q(1 − g(q, x)) = q − q|x|+
∞
∑

i=1

(1− (1− xi)
q) ≥ q(1− |x|) +

∞
∑

i=1

xi ≥ 1,

or, equivalently, 1/(1 − g(q, x)) ≤ q. Thus, 1/(1 − g(q, x)) ≤ max(1, q) for all
q ∈ (0,∞) and all x ∈ ∆. Thus,

g′(q, x)

1− g(q, x)
≤ (x, x)max(1/q2, 1)max(1, q) = (x, x)max(1/q2, q)

for all q ∈ (0,∞) and all x ∈ ∆, so (4.3) holds with d(x) := (x, x)max(1/a2, b).
The proof for φ works similar. We now have to find a dominating function

for h′(q, x)/(1 − h(q, x)). It is readily checked that 1 − e−t − te−t ≤ t2/2 for all
t ∈ [0,∞). Applying this inequality with t := qxi it follows that

h′(q, x) =
1

q2

∞
∑

i=1

(1− e−qxi − qxie
−qxi)

≤ 1

q2

∞
∑

i=1

(qxi)
2

2
=

(x, x)

2
, q ∈ (0,∞), x ∈ ∆.

Moreover, for q ∈ [1,∞),

q(1− h(q, x)) = q(1− |x|) +
∞
∑

i=1

(1 − e−qxi) ≥ 1− |x|+
∞
∑

i=1

(1− e−xi)

≥ 1− |x|+
∞
∑

i=1

(

xi −
x2i
2

)

= 1− (x, x)

2
≥ 1

2
,

or, equivalently, 1/(1 − h(q, x)) ≤ 2q. For q ∈ (0, 1], 1/(1 − h(q, x)) ≤ 1/(1 −
h(1, x)) ≤ 2. Thus, 1/(1−h(q, x)) ≤ max(2, 2q) for all q ∈ (0,∞) and, consequently

h′(q, x)

1− h(q, x)
≤ (x, x)

2
max(2, 2q) = (x, x)max(1, q), x ∈ ∆, q ∈ (0,∞).
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For arbitrary but fixed 0 < a ≤ b < ∞, it follows that h′(q, x)/(1 − h(q, x)) ≤
(x, x)max(1, b) for all x ∈ ∆ and all q ∈ [a, b]. So we can work with the dominating
function x 7→ (x, x)max(1, b) and all other arguments work the same as in the first
part of the proof concerning the function δ. �

In general it seems to be not straightforward to verify that φ(q) ∼ δ(q) as q → ∞.
Let ∆∗ denote the set of all x ∈ ∆ satisfying |x| = 1. We verify the following result.

Proposition 4.5. If Ξ(∆∗) = 0 and if
∫

∆ 1/(1− |x|) Ξ(dx) <∞, then φ(q) ∼ δ(q)
as q → ∞.

Remark 4.6. Example 6.2 in Section 6 shows that there exist critical coalescents
satisfying

∫

∆
1/(1 − |x|) Ξ(dx) = ∞ and critical coalescents satisfying

∫

∆
1/(1 −

|x|) Ξ(dx) <∞.

Proof : Define C :=
∫

∆
1/(1−|x|) Ξ(dx). Let us first verify that φ(q)−δ(q) ≤ (C/2)q

for all q ∈ (0,∞). We have

φ(q) − δ(q)

q
=

a

2
+

∫

∆

(

log(1 − g(q, x))− log(1− h(q, x))
)

ν(dx),

where the functions g and h are defined in Lemma 3.1. Note that 0 ≤ g(q, x) ≤
h(q, x) < |x| for all q ∈ (0,∞) and all x ∈ ∆\{0}. Expanding the logarithms yields

log(1 − g(q, x))− log(1− h(q, x)) =

∞
∑

k=1

(h(q, x))k − (g(q, x))k

k
.

Applying the inequality bk − ak ≤ kbk−1(b − a), 0 ≤ a ≤ b, with a := g(q, x) and
b := h(q, x) yields

log(1− g(q, x)) − log(1− h(q, x)) ≤ (h(q, x)− g(q, x))
∞
∑

k=1

(h(q, x))k−1

=
h(q, x)− g(q, x)

1− h(q, x)
≤ (x, x)

2(1− |x|) ,

since 1− h(q, x) ≥ 1− |x| and since

h(q, x)− g(q, x) =

∞
∑

i=1

e−qxi − (1 − xi)
q

q

≤
∞
∑

i=1

(e−xi − (1 − xi)) ≤ 1

2

∞
∑

i=1

x2i =
(x, x)

2
.

Thus,

φ(q) − δ(q)

q
≤ a

2
+

∫

∆

(x, x)

2(1− |x|) ν(dx) =
1

2

∫

∆

1

1− |x|Ξ(dx) =
C

2
.

Let us now verify that φ(q) ∼ δ(q) as q → ∞. We proceed similar as in the
proof of Lemma 3.3. If a = 0 and

∫

∆
− log(1 − |x|) ν(dx) < ∞, then, by (4.2),

limq→∞ δ(q)/q = limq→∞ φ(q)/q =
∫

∆
− log(1 − |x|) ν(dx) < ∞ and, therefore,

limq→∞ φ(q)/δ(q) = 1. Suppose now that a > 0 or
∫

∆− log(1 − |x|) ν(dx) = ∞. If
a = 0, then obviously, δ(q)/q ≥ a(q − 1)/2 → ∞. Otherwise, we have a = 0 and,
by (4.2), δ(q)/q →

∫

∆
− log(1 − |x|) ν(dx) = ∞. Therefore, q/δ(q) → 0 as q → ∞,
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so for each ε > 0 there exists q0 = q0(ε) > 0 such that q/δ(q) < 2ε/C for all q > q0.
For all q > q0 it follows that

δ(q) ≤ φ(q) = φ(q) − δ(q) + δ(q) ≤ C

2
q + δ(q) < εδ(q) + δ(q),

or, equivalently, 1 ≤ φ(q)/δ(q) < 1 + ε for all q > q0. Thus, φ(q) ∼ δ(q) as
q → ∞. �

5. Proofs

Proof : (of Proposition 2.1) The first statement is clear, since for all k ∈ N and all
ε ∈ (0, 1)

∫

∆

|x|k ν(dx) ≥
∫

∆\∆ε

|x|k ν(dx) ≥ (1− ε)kν(∆ \∆ε). (5.1)

In order to verify the second assertion fix k ∈ N and suppose that Ξ(∆\∆k) = 0. Fix

ε ∈ (0, 1). Applying the inequality (x1+· · ·+xk)2 ≤ k
∑k
i=1 x

2
i to x = (x1, x2, . . .) ∈

∆k satisfying |x| > 1 − ε, it follows that (x, x) =
∑k

i=1 x
2
i ≥ (x1 + · · · + xk)

2/k =
|x|2/k ≥ (1 − ε)2/k. Thus,

ν(∆ \∆ε) =

∫

{|x|>1−ε}

Ξ(dx)

(x, x)
≤ k

(1− ε)2
Ξ(∆) < ∞,

which contradicts our assumption that the coalescent is critical. �

Proof : (of Theorem 2.3) Since log(n+1)/ logn→ 1, we can work with log(n+1) in
the following. We want the sequence (an)n∈N := (log(n+1))n∈N to be the solution
of a recursion of the type

an = bn +

n−1
∑

k=1

pnkak, n ∈ {2, 3, . . .}, (5.2)

with pnk := gnk/gn for n ≥ 2 and 1 ≤ k < n. Therefore we define bn :=
∑n−1
k=1 pnk(an − ak). Plugging in the representation (1.1) of the infinitesimal rates

gnk =
∫

∆ P (Y (n, x) = k) ν(dx) we get

gnbn =
n−1
∑

k=1

(an − ak)gnk =

∫

∆

E

(

− log
Y (n, x) + 1

n+ 1

)

ν(dx).

We are going to show that limn→∞ gnbn =
∫

∆− log(1 − |x|) ν(dx). Then applying
Marynych (2010, Theorem 5.1) proves Theorem 2.3, since (a′n)n∈N := (E(Tn))n∈N

satisfies the recursion

a′n =
1

gn
+

n−1
∑

k=1

pnka
′
k, n ∈ {2, 3, . . .}. (5.3)

First, Jensen’s inequality, the concavity of the function log and X0(n, x) ≤ Y (n, x)
yield

E

(

− log
Y (n, x) + 1

n+ 1

)

≤ E

(

log
n+ 1

X0(n, x) + 1

)

≤ log E

(

n+ 1

X0(n, x) + 1

)

= log
1− |x|n+1

1− |x| ≤ − log(1 − |x|)
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for all x ∈ ∆ with |x| < 1. Note that the last equality can be calculated fairly easy,
sinceX0(n, x) is binomially distributed with parameters n and 1−|x|. Furthermore,
note that the inequality above actually holds for all x ∈ ∆. Therefore we get

lim sup
n→∞

∫

∆

E

(

− log
Y (n, x) + 1

n+ 1

)

ν(dx) ≤
∫

∆

− log(1 − |x|) ν(dx).

On the other hand, we have

lim inf
n→∞

∫

∆

E

(

− log
Y (n, x) + 1

n+ 1

)

ν(dx)

≥ lim inf
n→∞

∫

∆

− log E

(

Y (n, x) + 1

n+ 1

)

ν(dx)

≥
∫

∆

lim inf
n→∞

(

− log E

(

Y (n, x) + 1

n+ 1

))

ν(dx),

where the first inequality holds again by Jensen’s inequality and the second inequal-
ity follows from Fatou’s lemma. Since limn→∞ E((Y (n, x) + 1)/(n+ 1)) = 1 − |x|
by Lemma 3.1 and by (1.2), we conclude

lim inf
n→∞

∫

∆

E

(

− log
Y (n, x) + 1

n+ 1

)

ν(dx) ≥
∫

∆

− log(1 − |x|) ν(dx),

resulting in limn→∞ gnbn =
∫

∆
− log(1− |x|) ν(dx). �

The following proof of Theorem 2.4 has much in common with the previous
proof of Theorem 2.3. The main difference is that the ‘global’ sequence (an)n∈N =
(log(n + 1))n∈N is carefully replaced by a more involved sequence, which depends
on the measure Ξ of the coalescent.

Proof : (of Theorem 2.4) Define the auxiliary map h : {2, 3, . . .} → (0,∞) via
h(n) := n/δ(n) for all integers n ≥ 2. Note that h cannot be defined for n = 1,
since δ(1) = 0. Define the sequence (an)n∈N via

an :=

∫

(1,n]

h(⌈q⌉)
q

λ(dq) =

∫

(0,logn]

h(⌈et⌉)λ(dt), n ∈ N,

where ⌈x⌉ := inf{z | z ∈ Z, z ≥ x}, x ∈ R, denotes the (left-continuous) upper

Gauss bracket. Defining again bn :=
∑n−1

k=1 pnk(an − ak) and pnk := gnk/gn for
n ≥ 2, the sequence (an)n∈N satisfies the recursion (5.2). Note furthermore that,
for all n ≥ 2,

n(an − an−1) = n

∫

(log(n−1),logn]

h(⌈et⌉)λ(dt)

= nh(n)(log n− log(n− 1)) ≥ h(n).

By Corollary 4.2, the auxiliary map h is non-increasing. Thus, for all n ∈ {2, 3, . . .}
and all x ∈ ∆, writing Y instead of Y (n, x) for convenience, we obtain

an − aY =

∫

(log Y,logn]

h(⌈et⌉)λ(dt)

≥ h(n)

∫

(log Y,logn]

1λ(dt) = h(n)

(

− log

(

Y

n

))

.
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Plugging in the representation (1.1), as in the previous proof, it follows for all n ≥ 2
that

gnbn = (an − an−1)a

(

n

2

)

+

∫

∆

E(an − aY ) ν(dx)

≥ h(n)a
n− 1

2
+

∫

∆

E

(

h(n)

(

− log

(

Y

n

)))

ν(dx)

= h(n)

(

a
n− 1

2
+

∫

∆

E

(

− log

(

Y

n

))

ν(dx)

)

≥ h(n)

(

a
n− 1

2
−
∫

∆

log E

(

Y

n

)

ν(dx)

)

= h(n)
δ(n)

n
= 1,

where the last inequality follows by Jensen’s inequality, since the map x 7→ − log x
is convex. Thus, 1/gn ≤ bn for all n ≥ 2. Comparing the recursion (5.2), which
the sequence (an)n∈N satisfies, with the recursion (5.3) of the sequence (E(Tn))n∈N

it therefore follows inductively on n that E(Tn) ≤ an for all n ∈ N. Note that
E(T1) = 0 and that a1 = 0. Thus, for all n ∈ N

E(Tn) ≤ an =

∫

(1,n]

h(⌈q⌉)
q

λ(dq) =
n
∑

k=2

∫ k

k−1

h(k)

q
dq

=

n
∑

k=2

1

δ(k)

∫ k

k−1

k

q
dq ≤

n
∑

k=2

1

δ(k)

k

k − 1
≤ 2

n
∑

k=2

1

δ(k)
.

In particular, if
∑∞
k=2 1/δ(k) < ∞, or, equivalently, if

∫∞
2
dq/δ(q) < ∞, then the

sequence (E(Tn))n∈N is bounded, which implies that E(T∞) <∞, so the coalescent
comes down from infinity. �

Remark 5.1. In this remark it is explained that our proof differs significantly from
related proofs (see Limic, 2010 and Foucart, 2011, 2012) in the literature. Fix
n ∈ N and let Gn denote the generator of the block counting process N (n) =

(N
(n)
t )t≥0, i.e. Gnf(i) =

∑i−1
j=1(f(j) − f(i))gij for all f : {1, . . . , n} → R and all

i ∈ {1, . . . , n}. For the particular function f(i) := (sup1≤j≤n aj)−ai, i ∈ {1, . . . , n},
with the sequence (ai)i∈N as defined in the previous proof, we have just verified

that Gnf(i) =
∑i−1
j=1(ai − aj)gij = gibi ≥ 1 for all i ∈ {1, . . . , n}. The process

(X
(n)
t )t≥0, defined via X

(n)
t := f(N

(n)
t ) −

∫ t

0 (Gnf)(N
(n)
s ) ds for all t ≥ 0, is a

martingale. Applying for arbitrary but fixed k ∈ N the optional stopping theorem
to the bounded stopping time Tn ∧ k yields

f(n) = E(X
(n)
0 ) = E(X

(n)
Tn∧k)

= E(f(N
(n)
Tn∧k))− E

(
∫ Tn∧k

0

(Gnf)(N
(n)
s ) ds

)

≤ E(f(N
(n)
Tn∧k))− E(Tn ∧ k),

since Gnf ≥ 1. For k → ∞ it follows by monotone convergence and dominated

convergence that f(n) ≤ E(f(N
(n)
Tn

)) − E(Tn) = f(1) − E(Tn), or, equivalently,

E(Tn) ≤ f(1) − f(n) = an. This alternative method to verify that E(Tn) ≤ an
for all n ∈ N, is essentially a slight modification of related proofs of Limic (2010)
and Foucart (2011, 2012). Instead of using a martingale argument and the optional
stopping theorem, our proof is based on an elementary comparison analysis of the
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recursion (1.3). Our proof also differs from that of Schweinsberg (see Schweinsberg,
2000b, Lemma 6 and Schweinsberg, 2000a, Proposition 32). He uses the monotonic-
ity of the function γ, whereas we have managed to exploit the monotonicity of the
map q 7→ q/δ(q) leading to an improved criterion involving δ instead of γ. More-
over we make direct use of the recursion (1.3) whereas in Schweinsberg’s proof of
Lemma 6 in Schweinsberg (2000b) the recursive structure is used rather implicitly
and hidden in calculations involving conditional expectations.

Remark 5.2. In the proof of Theorem 2.4 only two inequalities are used. The first
inequality is based on the fact that the auxiliary function h is non-increasing. The
examples studied in Section 6 indicate that the function h is smoothly decreasing
(usually regular varying and often even slowly varying at infinity). This leads to the
intuition that, for large n, this first inequality should be quite sharp. The second
estimation is based on Jensen’s inequality. It is known (see, for example, Möhle,
2010) that Y (n, x)/n → 1 − |x| in probability and in L2 as n → ∞. Thus, for
large n the random variable Y (n, x)/n behaves nearly like a constant. The Jensen
inequality used in the last proof should hence be as well pretty sharp, at least for
large n. These arguments lead to the intuition that both inequalities should be
‘nearly’ an equality for sufficiently large n. This indicates that Proposition 2.5
could hold without the restriction that the coalescent is non-critical (see Problem
2.6).

Proof : (of Proposition 2.8) Follow the proof of Theorem 2.4, but with h(n) =

n/δ(n) replaced by h̃(n) := n/δ̃(n). It turns out that the proof works the same
except for the following two minor changes. (i) Instead of using Corollary 4.2 it is

now assumed that the function h̃ is non-increasing. (ii) Jensen’s inequality is not
needed anymore. �

6. Examples

Since the problem of coming down from infinity is solved for all non-critical
coalescents, we focus on examples which are critical.

Example 6.1. Let (pm)m∈N be a sequence of real numbers satisfying 0 < pm ≤ 1/2
for all m ∈ N and

∑∞
m=1 pm < ∞. Suppose that Ξ assigns for each m ∈ N

mass pm to the point x(m) ∈ ∆ whose first ⌊(1 − pm)/pm⌋ coordinates are all
equal to pm and all other coordinates are equal to 0. Schweinsberg’s example
Schweinsberg (2000a, p. 42, Example 34) corresponds to pm := 2−m, m ∈ N. Note
that Ξ(∆) =

∑∞
m=1 pm < ∞. Moreover, |x(m)| = ⌊(1 − pm)/pm⌋pm ≤ 1 − pm < 1

for all m ∈ N and, hence, Ξ(∆f ) = 0 and Ξ(∆∗) = 0. Recall the definition of
∆∗ before Proposition 4.5. The assumption pm ≤ 1/2 for all m ∈ N ensures that
Ξ({0}) = 0, so excludes a Kingman part.

In order to verify that the Ξ-coalescent is critical fix ε ∈ (0, 1). Since |x(m)| =
⌊(1− pm)/pm⌋pm ≥ ((1− pm)/pm− 1)pm = 1− 2pm → 1 as m→ ∞, there exists a
constantm0 = m0(ε) ∈ N (which may depend on (pm)m∈N) such that |x(m)| > 1−ε
for all m > m0. Thus,

ν(∆\∆ε) ≥
∑

m>m0

ν({x(m)}) =
∑

m>m0

pm
⌊(1− pm)/pm⌋p2m

≥
∑

m>m0

1

1− pm
= ∞,
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so the coalescent is critical. By (5.1),
∫

|x|k ν(dx) = ∞ for all k ∈ N. The coalescent

is in particular not regular. Note that 1 − |x(m)| ≤ 2pm for all m ∈ N and, hence,
∫

∆
1/(1− |x|) Ξ(dx) = ∑∞

m=1 pm/(1− |x(m)|) ≥ ∑∞
m=1 1/2 = ∞. Clearly,

ψ(q) =

∫

∆

∞
∑

i=1

(e−qxi − 1 + qxi)ν(dx)

=

∞
∑

m=1

⌊(1−pm)/pm⌋
∑

i=1

(e−qpm − 1 + qpm)
pm

⌊(1− pm)/pm⌋p2m

=
∞
∑

m=1

e−qpm − 1 + qpm
pm

, q ≥ 0. (6.1)

Assume now that pm is non-increasing in m ∈ N. Let f : [0,∞) → (0,∞) be
a non-increasing function such that f(m) = pm for all m ∈ N. Since the map
x 7→ (e−qf(x) − 1 + qf(x))/f(x) is non-increasing in x ∈ [0,∞) it follows that
∫

[1,∞)

e−qf(x) − 1 + qf(x)

f(x)
λ(dx) ≤ ψ(q) ≤

∫

[0,∞)

e−qf(x) − 1 + qf(x)

f(x)
λ(dx).

Since for any constant a ∈ [0,∞) we have
∫

[0,a]
(e−qf(x) − 1 + qf(x))/f(x) dx ≤

∫

[0,a]
q λ(dx) = aq and since, by (4.1), limq→∞ ψ(q)/q =

∫

∆
|x| ν(dx) = ∞, it

follows that

ψ(q) ∼
∫

(a,∞)

e−qf(x) − 1 + qf(x)

f(x)
λ(dx), q → ∞, (6.2)

no matter how a ∈ [0,∞) is chosen. In the following it is assumed that pm is even
strictly decreasing in m ∈ N. Moreover, we assume that the interpolating function
f can be chosen such that it is strictly decreasing on [0,∞) and differentiable
on (0,∞). If v := f−1 : (0, f(0)] → [0,∞) denotes the inverse of f , then the
substitution u = qf(x) leads to

ψ(q) ∼
∫

(0,qf(a))

e−u − 1 + u

u

(

− v′
(u

q

))

λ(du), q → ∞, (6.3)

no matter how a ∈ [0,∞) is chosen. Eq. (6.3) will be used in the following concrete
examples to determine the asymptotics of ψ(q) as q → ∞. Note that, by Lemma 3.3,
γ(q) ∼ ψ(q) as q → ∞. The analysis of φ(q) and δ(q) as q → ∞ is more involved.
In order to get rid of the disturbing logarithm in (2.2) it turns out to be useful
to consider the derivative of φ(q)/q. By Lemma 4.4 it is allowed to differentiate
φ(q)/q = −

∫

∆ log(1 − h(q, x)) ν(dx) below the integral, so we have

d

dq

φ(q)

q
=

∫

∆

h′(q, x)

1− h(q, x)
ν(dx) =

∞
∑

m=1

h′(q, x(m))

1− h(q, x(m))
ν({x(m)}).

Plugging in

h(q, x(m)) =

⌊

1− pm
pm

⌋

e−qpm − 1 + qpm
q

,

h′(q, x(m)) =

⌊

1− pm
pm

⌋

1− e−qpm − qpme
−qpm

q2
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and

ν({x(m)}) =
Ξ({x(m)})
(x(m), x(m))

=
pm

⌊ 1−pm
pm

⌋p2m
=

1

⌊ 1−pm
pm

⌋pm
it follows that

d

dq

φ(q)

q
=

∞
∑

m=1

1−e−qpm−qpme−qpm

q2pm

1− ⌊ 1−pm
pm

⌋ e−qpm−1+qpm
q

.

Since the Gauss bracket in the denominator is bounded above and below via (1 −
2pm)/pm = (1−pm)/pm−1 ≤ ⌊(1−pm)/pm⌋ ≤ (1−pm)/pm, we obtain the bounds

b2(q) ≤ d

dq

φ(q)

q
≤ b1(q), (6.4)

where, for c ∈ {1, 2},

bc(q) :=
∞
∑

m=1

1−e−qpm−qpme−qpm

q2pm

1− (1− cpm) e
−qpm−1+qpm

qpm

, q ≥ 0.

Note that bc(q) is even defined for real parameter c ∈ [0, 2], however, we only
need the two particular bounds b1(q) and b2(q). In general, the bound bc(q) is
not so simple to analyze further. For many choices of the sequence (pm)m∈N (see
the following concrete examples), the asymptotics of bc(q) as q → ∞ does not
depend on the constant c which yields the asymptotics of (d/dq)(φ(q)/q) and, by
an application of de l’Hospital’s rule, the asymptotics of φ(q) as q → ∞. We now
study three insightful examples of sequences (pm)m∈N. A summarizing table is
provided after Example 6.1 c).

Example 6.1 a) Fix α ∈ (1,∞) and assume that pm := (m+1)−α for allm ∈ N.
Note that Ξ(∆) =

∑∞
m=1(m+ 1)−α = ζ(α) − 1 <∞. In order to verify that

ψ(q) ∼ cα q
1+ 1

α , q → ∞, (6.5)

with cα := α−1
∫

(0,∞)
(e−u− 1+u)/u2+1/αλ(du) ∈ (0,∞), define f(x) := (x+1)−α

for all x ∈ [0,∞). Note that the inverse v := f−1 : (0, 1] → R of f is given by
v(t) = t−1/α − 1, t ∈ (0, 1], and that v′(t) = −α−1t−1/α−1, t ∈ (0, 1). By (6.3)
(applied with a := 0) it follows that

ψ(q) ∼
∫

(0,q)

e−u − 1 + u

u

1

α

(u

q

)− 1
α
−1

λ(du) =
q1+

1
α

α

∫

(0,q)

e−u − 1 + u

u2+
1
α

λ(du)

∼ q1+
1
α

α

∫

(0,∞)

e−u − 1 + u

u2+
1
α

λ(du) = cαq
1+ 1

α ,

and (6.5) is established. In particular,
∑∞

n=2 1/ψ(n) < ∞. Since, by Lemma
3.3, γ(q) ∼ ψ(q) as q → ∞, it follows that

∑∞
n=2 1/γ(n) < ∞, which implies

(Theorem 1.3) that the coalescent comes down from infinity. Clearly, from γ(q) ≤
δ(q) and ψ(q) ≤ φ(q) it follows that

∑∞
n=2 1/δ(n) <∞ and that

∑∞
n=2 1/φ(n) <∞.

Thus, alternatively, Theorem 2.4 yields as well that the coalescent comes down from
infinity.

Note that, for this example, an analysis of the function γ (or ψ) is sufficient in
order to conclude that the coalescent comes down from infinity. The more com-
plicated functions φ and δ are not needed to determine that the coalescent comes
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down from infinity. For completeness we now derive as well the asymptotics of φ(q)
and δ(q) as q → ∞. By (6.4), b2(q) ≤ (d/dq)(φ(q)/q) ≤ b1(q), where

bc(q) :=
∞
∑

m=1

1−e−qpm−qpme−qpm

q2pm

1− (1− cpm) e
−qpm−1+qpm

qpm

∼
∫

(0,∞)

1−e−qf(x)−qf(x)e−qf(x)

q2f(x)

1− (1− cf(x)) e
−qf(x)−1+qf(x)

qf(x)

λ(dx)

=

∫

(0,q)

1−e−u−ue−u

qu

1− (1− cuq )
e−u−1+u

u

(

− v′
(u

q

))

λ(du)

=
q

1
α
−1

α

∫

(0,q)

1−e−u−ue−u

u2+ 1
α

1− (1− cuq )
e−u−1+u

u

λ(du) ∼ q
1
α
−1

α
dα, q → ∞,

with dα :=
∫

(0,∞)
(1− e−u − ue−u)/(u1+1/α(1 − e−u))λ(du) ∈ (0,∞). Thus,

d

dq

φ(q)

q
∼ dα

α
q

1
α
−1, q → ∞.

An application of de l’Hospital’s rule yields

φ(q) ∼ dαq
1+ 1

α , q → ∞. (6.6)

The calculations for δ(q) are essentially the same. The only difference is that many
terms of the form (1−u/q)q instead of e−u occur. Since (1−u/q)q → e−u as q → ∞,
one obtains the same asymptotics δ(q) ∼ dαq

1+1/α as q → ∞. It is remarkable that,
for this example, the four quantities ψ(q), γ(q), φ(q), and δ(q) are all of the same
order q1+1/α as q → ∞. All four functions ψ, γ, φ, and δ are regularly varying at
infinity of index 1 + 1/α.

In the following Example 6.1 b), Schweinsberg’s criterion (1.5) does not work,
whereas Theorem 2.4 is applicable.

Example 6.1 b) Fix p ∈ (0, 1/2] and suppose that pm := pm for all m ∈ N. For
p = 1/2 this is Schweinsberg’s example Schweinsberg (2000a, p. 42, Example 34),
where the measure Ξ assigns for each m ∈ N mass 2−m to the point in ∆ whose
first 2m− 1 coordinates are all equal to 2−m and all other coordinates are equal to
0. Note that Ξ(∆) =

∑∞
m=1 p

m = p/(1− p) <∞. Let us verify that

ψ(q) ∼ κp q log q, q → ∞, (6.7)

where κp := −1/ log p. The function x 7→ px, x ∈ [0,∞), has inverse v(t) :=
(log t)/(log p), t ∈ (0, 1], with derivative v′(t) = 1/(t log p), t ∈ (0, 1). By (6.3)
(applied with a := 0) it follows that

ψ(q) ∼
∫

(0,q)

e−u − 1 + u

u

(

− q

u log p

)

λ(du) = κpq

∫

(0,q)

e−u − 1 + u

u2
λ(du)

∼ κpq

∫ q

1

e−u − 1 + u

u2
du ∼ κpq

∫ q

1

1

u
du = κpq log q, q → ∞,

and (6.7) is established. By Lemma 3.3, γ(q) ∼ ψ(q) ∼ κpq log q as q → ∞. In
particular,

∑∞
n=2 1/γ(n) = ∞, a result known for p = 1/2 already by Schweinsberg

Schweinsberg (2000a). Note that both maps q 7→ ψ(q)/q and q 7→ γ(q)/q are slowly
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varying at infinity. Let us now turn to the functions δ and φ. In order to verify
that

δ(q) ∼ κp
4
q(log q)2, q → ∞, (6.8)

it is sufficient (by de l’Hospital’s rule) to verify that

d

dq

δ(q)

q
∼ κp

2

log q

q
, q → ∞. (6.9)

By (6.4), b2(q) ≤ (d/dq)(δ(q)/q) ≤ b1(q), where, for c ∈ {1, 2},

bc(q) :=
∞
∑

m=1

1− (1− pm)q + (1− pm)q log((1− pm)q)

1− (1− cpm) (1−p
m)q−1+qpm

qpm

∼ κp
q

∫ q

0

fq(u) du,

with

fq(u) :=

1−(1−u
q
)q+(1−u

q
)q log((1−u

q
)q)

u2

1− (1− cuq )
(1−u

q
)q−1+u

u

, q ∈ (0,∞), u ∈ (0, q).

It is readily checked that 0 ≤ fq(u) ≤ q/u3 for q ∈ (0,∞) and u ∈ (0, q). Thus,
∫ q√

q fq(u) du ≤ 1
2 , so it suffices to verify that

∫

√
q

0 fq(u) du ∼ 1
2 log q as q → ∞. We

have

fq(u) ≤
1−(1−u

q
)q+(1−u

q
)q log((1−u

q
)q)

u2

1− (1−u
q
)q−1+u

u

=
1− (1− u

q )
q + (1− u

q )
q log((1 − u

q )
q)

u(1− (1 − u
q )
q)

=
1

u
+

(1− u
q )
q log((1 − u

q )
q)

u(1− (1− u
q )
q)

≤ 1

u
,

which yields the upper bound
∫

√
q

0 fq(u) du ∼
∫

√
q

1 fq(u) du ≤
∫

√
q

1
1
u du = 1

2 log q.
In order to derive a lower bound note that for q ∈ (0,∞) and u ∈ (0,

√
q]

fq(u) =

1−(1−u
q
)q+(1−u

q
)q log((1−u

q
)q)

u2

1−(1−u
q
)q

u + c
(1−u

q
)q−1+u

q

≥
1−(1−u

q
)q+(1−u

q
)q log((1−u

q
)q)

u2

1−(1−u
q
)q

u + c√
q

≥
1− (1 − u

q )
q + (1− u

q )
q log((1− u

q )
q)

u(1− (1− u
q )
q + c u√

q )

=
1

u
−

− log((1−u
q
)q)

u (1− u
q )
q + c√

q

1− (1− u
q )
q + c u√

q

≥ 1

u
−

(1− u
q )
q−1 + c√

q

1− (1− u
q )
q + c u√

q

,

since (1 − u
q )(− log(1 − u

q )) ≤ u
q . Plugging in this lower bound and integration

yields
∫

√
q

0

fq(u) du ≥
∫

√
q

0

(

1

u
−

(1− u
q )
q−1 + c√

q

1− (1− u
q )
q + c u√

q

)

du

=

[

log u− log

(

1−
(

1− u

q

)q

+ c
u√
q

)]

√
q

0

= log
√
q − log

(

1 + c−
(

1− 1√
q

)q
)

+ log(1 + c/
√
q)

∼ 1

2
log q.
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Thus, (6.9) and, therefore, (6.8) holds. Similarly it follows that

φ(q) ∼ κp
4
q(log q)2, q → ∞. (6.10)

In particular, both maps q 7→ δ(q)/q and q 7→ φ(q)/q are slowly varying at infinity.
Moreover,

∑∞
n=2 1/δ(n) < ∞. By Theorem 2.4, the coalescent comes down from

infinity, For p = 1/2, Schweinsberg (2000a) verified that the coalescent comes down
from infinity by showing with different direct methods that the sequence (E(Tn))n∈N

of the mean absorption times is bounded.

In the following Example 6.1 c) the sequence (pm)m∈N tends extremely quickly
to 0 as m→ ∞.

Example 6.1 c) Fix p > 0 sufficiently small such that pe ≤ 1/2 and assume
that pm := pe

m

for all m ∈ N. In order to verify that

ψ(q) ∼ q log log q, q → ∞, (6.11)

note that the map x 7→ f(x) := pe
x

, x ∈ [0,∞), has inverse v(t) = log(log t/ log p) =
log(− log t)− log(− log p), t ∈ (0, p] and that v′(t) = 1/(t log t), t ∈ (0, p). By (6.3)
(with a := 0) it follows that

ψ(q) ∼
∫

(0,pq)

e−u − 1 + u

u

(

− 1
u
q log

u
q

)

λ(du) = q

∫

(0,pq)

e−u − 1 + u

u2(− log u
q )

λ(du).

Since, for all q ≥ 2 and all u ∈ (0, 1], − log(u/q) = log q− logu ≥ log q ≥ log 2, and,
therefore,

∫

(0,1]

e−u − 1 + u

u2(− log uq )
λ(du) ≤ 1

log 2

∫

(0,1]

e−u − 1 + u

u2
λ(du) < ∞

for all q ≥ 2, it suffices to verify that
∫ pq

1

e−u − 1 + u

u2(− log u
q )

du ∼ log log q, q → ∞.

Since e−u − 1 ≤ 0, we obtain the upper bound
∫ pq

1

e−u − 1 + u

u2(− log uq )
du ≤

∫ pq

1

1

u(− log uq )
du = [− log(− log u

q )]
pq
1 ∼ log log q

and the lower estimation
∫ pq

1

e−u − 1 + u

u2(− log u
q )

du ≥
∫ pq

√
q

e−u − 1 + u

u2(− log u
q )

du ∼
∫ pq

√
q

1

u(− log uq )
du

= [− log(− log u
q )]

pq√
q

= log log
√
q − log(− log p) ∼ log log q,

and (6.11) is established. In the following the notation a(q) = Θ(b(q)) as q → ∞
means that there exists q0 ∈ (0,∞) and constants c, d ∈ (0,∞) such that cb(q) ≤
a(q) ≤ db(q) for all q > q0.

In order to prove that φ(q) = Θ(q log q) as q → ∞ it is sufficient to verify that
(d/dq)(φ(q)/q) = Θ(1/q) as q → ∞. By (6.4), b2(q) ≤ (d/dq)(φ(q)/q) ≤ b1(q),
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where, for c ∈ {1, 2},

bc(q) :=

∞
∑

m=1

1−e−qpm−qpme−qpm

q2pm

1− (1− cpm) e
−qpm−1+qpm

qpm

∼
∫

(0,∞)

1−e−qf(x)−qf(x)e−qf(x)

q2f(x)

1− (1 − cf(x)) e
−qf(x)−1+qf(x)

qf(x)

λ(dx).

Substituting t = f(x) and noting that dx/dt = 1/(t log t) it follows that

bc(q) ∼ −
∫

(0,p)

1−e−qt−qte−qt

q2t

1− (1− ct) e
−qt−1+qt

qt

1

t log t
λ(dt)

=
1

q

∫

(0,pq)

1−e−u−ue−u

u2

1− (1− cuq )
e−u−1+u

u

1

− log u
q

λ(du)

=:
1

q

∫

(0,pq)

fq(u)
1

− log u
q

λ(du).

In the following it is verified that the last integral is bounded above and below. For
all q ≥ 1/p2, the last integral is obviously larger than

∫

√
q

1

fq(u)
1

− log uq
du ≥ 1

log q

∫

√
q

1

fq(u) du ∼ 1

2
, q → ∞,

where the last asymptotics was already verified in Example 6.1 b). In order to

obtain an upper bound we decompose the integral into three integrals
∫ 1

0 ... du,
∫

√
q

1
... du, and

∫ pq√
q
... du. To handle the first part it suffices to use the crude bound

fq(u) ≤ 1/2 and we obtain
∫ 1

0

fq(u)
1

− log u
q

du ≤ 1

log q

∫ 1

0

fq(u) du ≤ 1

2 log q
→ 0, q → ∞.

Using the bound fq(u) ≤ 1/u we obtain for the second integral part the upper
bound

∫

√
q

1

fq(u)
1

− log uq
du ≤ 1

log
√
q

∫

√
q

1

fq(u) du ≤ 1

log
√
q

∫

√
q

1

1

u
du = 1.

For the third and last part we use the bound fq(u) ≤ q/u3 and obtain, with
κp := 1/(− logp), the upper bound
∫ pq

√
q

fq(u)
1

− log uq
du ≤ κp

∫ pq

√
q

fq(u) du ≤ κp

∫ pq

√
q

q

u3
du = κp

[

− q

2u2

]pq

√
q
≤ κp

2
.

Thus, we have shown that bc(q) = Θ(1/q) as q → ∞, and, hence (d/dq)(φ(q)/q) =
Θ(1/q) as q → ∞. This implies that φ(q) = Θ(q log q) as q → ∞. Similarly it can
be verified that δ(q) = Θ(q log q) as q → ∞. In particular,

∫∞
2
dq/δ(q) = ∞ and

∫∞
2
dq/φ(q) = ∞, so condition (2.3) is not satisfied.

Intuitively, E(Tn) should behave as
∑n

k=2 1/δ(k) which (up to a constant) should

behave as
∫ n

2 1/(q log q) dq ∼ log log n as n → ∞. We therefore conjecture that
E(Tn) ∼ c log logn as n→ ∞ for some constant c > 0, which would imply that the
coalescent stays infinite.
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The following table summarizes the results of the examples considered so far.

Example 6.1 a) Example 6.1 b) Example 6.1 c)
parameter α ∈ (1,∞) p ∈ (0, 12 ] p > 0 with pe ≤ 1

2

pm (m+ 1)−α pm pe
m

γ(q), ψ(q) ∼ cαq
1+ 1

α ∼ κpq log q ∼ q log log q

δ(q), φ(q) ∼ dαq
1+ 1

α ∼ κpq(log q)
2 Θ(q log q)

coming down yes yes Conjecture: no

Table 1: Summary of Examples 6.1 a), b) and c)

Constants in the table:

cα :=
1

α

∫ ∞

0

e−u − 1 + u

u2+1/α
du, dα :=

∫ ∞

0

1− e−u − ue−u

u1+1/α(1− e−u)
du, κp :=

1

− log p
.

All the coalescents in the following more general Example 6.2 are again critical,
however the more general construction allows for coalescents which, in contrast to
those studied in Example 6.1, satisfy

∫

∆ 1/(1− |x|) Ξ(dx) <∞.

Example 6.2. As in Example 6.1, let (pm)m∈N be a sequence of real numbers sat-
isfying 0 < pm ≤ 1/2 for all m ∈ N and

∑∞
m=1 pm < ∞. Furthermore, let

f : N → [1/2, 1) be a function such that limm→∞ f(m) = 1. Assume that Ξ
assigns for each m ∈ N mass pm to the point x(m) ∈ ∆ whose first ⌊f(m)/pm⌋
coordinates are all equal to pm and all other coordinates are equal to 0. Example
6.1 corresponds to f(m) := 1− pm. Schweinsberg’s example Schweinsberg (2000a,
p. 42, Example 34) corresponds to pm := 2−m and f(m) := 1− 2−m, m ∈ N. Limic
Limic (2010, p. 231) considers the situation pm := (1/2)m, m ∈ N, with general f .
Note that Ξ(∆) =

∑∞
m=1 pm < ∞. Moreover, |x(m)| = ⌊f(m)/pm⌋pm ≤ f(m) < 1

for all m ∈ N and, hence, Ξ(∆f ) = 0 and Ξ(∆∗) = 0. The assumptions pm ≤ 1/2
and f(m) ≥ 1/2 for all m ∈ N ensure that f(m)/pm ≥ 1, i.e. that Ξ({0}) = 0,
so excludes a Kingman part. In order to verify that the coalescents is critical fix
ε ∈ (0, 1). Since |x(m)| = ⌊f(m)/pm⌋pm ≥ (f(m)/pm − 1)pm = f(m)− pm → 1 as
m → ∞, there exists a constant m0 = m0(ε) (which may depend on (pm)m∈N and
f) such that |x(m)| > 1− ε for all m > m0. Thus,

ν(∆ \∆ε) ≥
∑

m>m0

ν({x(m)}) =
∑

m>m0

pm
⌊f(m)/pm⌋p2m

≥
∑

m>m0

1

f(m)
= ∞,

so the coalescent is critical and, in particular, not regular. Note that the integral
∫

∆

1

1− |x| Ξ(dx) =

∞
∑

m=1

pm
1− |x(m)| =

∞
∑

m=1

pm
1− ⌊f(m)/pm⌋pm

(6.12)

can be finite or infinite depending on the choice of the sequence (pm)m∈N and the
function f . In Example 6.1, where f(m) := 1−pm, the integral (6.12) is infinite, as
already shown in Example 6.1. In contrast, if f(m) grows sufficiently slowly to 1 as
m→ ∞, for example f(m) := 1−√

pm, then the integral (6.12) is bounded above by
∑∞
m=1 pm/(1−f(m)) =

∑∞
m=1

√
pm, which is finite whenever the series

∑∞
m=1

√
pm

converges. Because of the complexity of this example, we do not analyze it further
here.

Let us finally provide an example which, in contrast to the previous examples,
satisfies ν(∆∗) = ∞.
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Example 6.3. Let (pm)m∈N be a sequence of real numbers satisfying 0 < pm < 1
for all m ∈ N and

∑∞
m=1(1 − pm) < ∞, for example pm := 1 − 1/(m(m + 1)) or

pm := 1− (m+1)−α for some constant α ∈ (1,∞). Assume that Ξ assigns for each
m ∈ N mass 1 − pm to the point x(m) := (1 − pm)(1, pm, p

2
m, . . .) ∈ ∆. Note that

Ξ(∆) =
∑∞

m=1(1 − pm) < ∞ by assumption, so the measure Ξ is finite. Clearly,

Ξ(∆f ) = 0. Each point x(m), m ∈ N, satisfies |x(m)| = (1 − pm)
∑∞

i=1 p
i−1
m = 1, so

the measure Ξ (and hence also ν) is concentrated on ∆∗. Moreover, for all m ∈ N,

(x(m), x(m)) = (1− pm)2
∞
∑

i=1

p2(i−1)
m =

(1− pm)
2

1− p2m
=

1− pm
1 + pm

.

Thus,

ν(∆∗) =

∞
∑

m=1

ν({x(m)}) =

∞
∑

m=1

Ξ({x(m)})
(x(m), x(m))

=

∞
∑

m=1

(1 + pm) = ∞,

in contrast to the previously studied examples. In particular, ν(∆\∆ε) = ν(∆∗) =
∞ for all ε ∈ (0, 1), so the coalescent is critical. Note that

ψ(q) =

∫

∆

∞
∑

i=1

(e−qxi − 1 + qxi) ν(dx)

=

∞
∑

m=1

ν({x(m)})
∞
∑

i=1

(

e−q(1−pm)pi−1
m − 1 + q(1− pm)pi−1

m

)

=

∞
∑

m=1

(1 + pm)

∞
∑

i=0

(

e−q(1−pm)pim − 1 + q(1− pm)pim
)

=

∞
∑

m=1

(1 + pm)

∞
∑

i=0

∞
∑

k=2

(−q(1− pm)pim)k

k!

=

∞
∑

m=1

(1 + pm)

∞
∑

k=2

(−q)k
k!

(1 − pm)
k

∞
∑

i=0

pikm

=

∞
∑

m=1

(1 + pm)

∞
∑

k=2

(−q)k
k!

(1− pm)k

1− pkm
, q ≥ 0.

It seems to be not straightforward to determine the asymptotics of ψ(q) as q → ∞.
Concerning the coming down from infinity problem, coalescents satisfying ν(∆∗) =
∞, as constructed in this Example 6.3, belong probably to the more complicated
ones.

7. Appendix

For x = (x1, x2, . . .) ∈ ∆ let X := (X0, X1, . . .) := (X0(m,x), X1(m,x), . . .) have
an infinite multinomial distribution with parameters m ∈ N and (x0, x1, x2, . . .),
where x0 := 1 − |x|. Recall that P (

⋂∞
i=0{Xi = mi}) = m!

∏∞
i=0 x

mi

i /mi! for all
m0,m1, . . . ∈ N0 with

∑∞
i=0mi = m. In this appendix we provide formulas for the

distribution of the random variable Y := Y (m,x) := X0(m,x)+
∑∞
i=1 1{Xi(m,x)≥1}.

The results extent those in the appendix of Berestycki et al. (2010) to the infinite
multinomial case. In the following δmk denotes the Kronecker symbol.
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Lemma 7.1. The random variable Y := Y (m,x), m ∈ N, x = (x1, x2, . . .) ∈ ∆,
takes the value k ∈ {1, . . . ,m} with probability

P (Y = k)

= δmkx
m
0 +

k
∑

l=1

(

m

k − l

)

xk−l0

∑

i1,...,il∈N

i1<···<il

∑

n1,...,nl∈N

n1+···+nl=m−k+l

(m− k + l)!

n1! · · ·nl!
xn1

i1
· · ·xnl

il
(7.1)

= δmkx
m
0 +

k
∑

l=1

(

m

k − l

)

xk−l0

∑

i1,...,il∈N

i1<···<il

l
∑

j=1

(−1)l−j
∑

A⊆{1,...,l}
|A|=j

(

∑

a∈A
xia

)m−k+l
. (7.2)

Remark 7.2. 1. The expression on the right hand side in (7.2) is well defined even
for all real parameters m ∈ [0,∞) and all integers k satisfying 0 ≤ k ≤ m + 1,
which formally allows to extend the definition of P (Y (m,x) = k) in a natural way
to real parameter m ∈ [0,∞).

2. If x1 = · · · = xL =: p for some constant L ∈ N and xi = 0 for all i > L, then
the distribution of Y (m,x) simplifies to

P (Y (m,x) = k)

= δmkx
m
0 +

k
∑

l=1

(

m

k − l

)

xk−l0

∑

i1,...,il∈{1,...,L}
i1<···<il

pm−k+l
∑

n1,...,nl∈N

n1+···+nl=m−k+l

(m− k + l)!

n1! · · ·nl!

= δmkx
m
0 +

k
∑

l=1

(

m

k − l

)

xk−l0

(

L

l

)

pm−k+l l!S(m− k + l, l), k ∈ {1, . . . ,m},

where x0 = 1− Lp and S(., .) denote the Stirling numbers of the second kind. For
L = 1 (Λ-coalescent) the distribution of Y (m,x) simplifies considerably to

P (Y (m,x) = k) = δmkx
m
0 +

(

m

k − 1

)

xk−1
0 x

m−(k−1)
1 , k ∈ {1, . . . ,m}.

Proof : (of Lemma 7.1) Fix m ∈ N and x ∈ ∆. For all k ∈ {1, . . . ,m},
P (Y = k)

=

k
∑

l=0

P (X0 = k − l,

∞
∑

i=1

1{Xi≥1} = l)

= P (X0 = k,Xi = 0 ∀ i ∈ N) +
k

∑

l=1

∑

i1,...,il∈N

i1<···<il

P (X0 = k − l, Xi1 ≥ 1, . . . , Xil ≥ 1, Xi = 0 ∀ i ∈ N \ {i1, . . . , il})

= δmkx
m
0 +

k
∑

l=1

(

m

k − l

)

xk−l0

∑

i1,...,il∈N

i1<···<il

∑

n1,...,nl∈N

n1+···+nl=m−k+l

(m− k + l)!

n1! · · ·nl!
xn1

i1
· · ·xnl

il
,

which is (7.1). Applying the sieve formula

∑

n1,...,nl∈N

n1+···+nl=n

n!

n1! · · ·nl!
pn1
1 · · · pnl

l =

l
∑

j=1

(−1)l−j
∑

A⊆{1,...,l}
|A|=j

(

∑

a∈A
pa

)n

, n, l ∈ N,
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with p1 := xi1 , . . . , pl := xil and n := m − k + l to the last sum in (7.1) yields
(7.2). �
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