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Abstract. We consider a continuum percolation model on Rd, where d ≥ 4. The
occupied set is given by the union of independent Wiener sausages with radius r
running up to time t and whose initial points are distributed according to a ho-
mogeneous Poisson point process. It was established in a previous work by Erhard
et al. (2016) that (1) if r is small enough there is a non-trivial percolation transi-
tion in t occurring at a critical time tc(r) and (2) in the supercritical regime the
unbounded cluster is unique. In this paper we investigate the asymptotic behaviour
of the critical time when the radius r converges to 0. The latter does not seem to
be deducible from simple scaling arguments. We prove that for d ≥ 4, there is a
positive constant c such that c−1

√
log(1/r) ≤ tc(r) ≤ c

√
log(1/r) when d = 4 and

c−1r(4−d)/2 ≤ tc(r) ≤ c r(4−d)/2 when d ≥ 5, as r converges to 0. We derive along
the way moment and large deviation estimates on the capacity of Wiener sausages,
which may be of independent interest.

1. Introduction

Notation. For every d ≥ 1, we denote by Lebd the Lebesgue measure on Rd. The
symbol || · || stands for the Euclidean norm on Rd and the symbols | · |1 and | · |∞
stand for the `1 and `∞ norms on Zd, respectively. The open ball with center z,
radius r and with respect to the Euclidean norm is denoted by B(z, r), the closed
ball by B(z, r), and cvol = Lebd(B(0, 1)). For A ⊆ Rd and x ∈ Rd, we denote by
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d(x,A) the Euclidean distance between x and A, i.e. d(x, a) = infy∈A{||x − y||}.
The complement of a set A is denoted by Ac and its closure by Ā (the topology
will depend on the context). For two sets A1, A2 ⊆ Rd, we denote by A1 ⊕ A2

their Minkowski sum, defined by {x1 + x2, x1 ∈ A1, x2 ∈ A2}. For a ∈ R, we
denote by dae its upper integer part. The symbol | · | stands for the cardinality
of a set or the absolute value of a real number, depending on the context. We
denote by 1l the infinite column vector with all entries equal to one. We denote by
G : Rd ×Rd → [0,∞) the Green function of the standard Brownian motion. Given
f and g two positive functions we write f . g if there is a constant c ∈ (0,∞) so
that f ≤ cg.

Throughout the paper the letter c is used to denote a constant whose precise
value is irrelevant (possibly depending on the dimension) and which may change
from line to line.

1.1. Introduction to the model. Let E be a Poisson point process with intensity
λ Lebd, where λ > 0. Conditionally on E , we define a collection of indepen-
dent Brownian motions {(Bxt )t≥0, x ∈ E} such that for each x ∈ E , Bx0 = x
and (Bxt − x)t≥0 is independent of E . We refer the reader to Section 1.4 in Er-
hard et al. (2016) for a rigorous construction. Let P and E be the probabil-
ity measure and expectation of Brownian motion, respectively. We denote by
W x,r

[0,t] =
⋃

0≤s≤t B(Bxs , r) = Bx[0,t]⊕B(0, r) the Wiener sausage with radius r, started

at x and running up to time t. When it is more convenient, we shall use Px for a
Brownian motion started at x, and we remove the superscript x from B or W . Also,

we will use the symbol P̃ to refer to an independent copy of a Brownian motion. If A
is an event, then E( · ;A) stands for E( · 1lA). Finally, we use the letter P for the law
of the whole process that is formed by the Poisson points and the Brownian motions.

The object of interest is the occupied set defined by

Ot,r :=
⋃
x∈E

W x,r
[0,t], Ot :=

⋃
x∈E

Bx[0,t], t ≥ 0, r > 0. (1.1)

The rigorous construction found in Erhard et al. (2016) yields ergodicity of Ot,r
with respect to shifts in space. For d ≥ 4, Černý et al. (2008) used this model to de-
scribe the target detection area of a network of mobile sensors initially distributed
at random and moving according to Brownian motions. In a similar spirit Kesidis
et al. (2003) study the detection time of a particle that is placed at the origin. Note
that at time t = 0, the occupied set reduces to a collection of balls with randomly
located centers: this goes under the name of Boolean percolation model and was
first introduced by Gilbert (1961) to study infinite communication networks. We
refer to Meester and Roy (1996) for an introductory overview of this model.

Two points x and y of Rd are said to be connected in Ot,r if and only if there
exists a continuous function γ : [0, 1] 7→ Ot,r such that γ(0) = x and γ(1) = y. A
subset of Ot,r is connected if and only if all of its points are pairwise connected,
and a connected subset of Ot,r is called a component. A component C is bounded
if there exists R > 0 such that C ⊆ B(0, R). Otherwise, the component is said to be
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unbounded. A cluster is a connected component which is maximal for the inclusion.
Denote by C(x) the set of points in E which are connected to x through Ot,r.

A set is said to percolate if it contains an unbounded connected component. In
Erhard et al. (2016) it was shown that Ot,r undergoes a non-trivial percolation
phase transition for all d ≥ 2. More precisely it was shown that if d ∈ {2, 3},
then for all λ > 0 there exists tc(λ) ∈ (0,∞) such that for all t < tc(λ) the set
Ot only contains bounded connected components, whereas for t > tc(λ), the set
Ot percolates with a unique unbounded cluster. What happens at criticality is
still unknown. In essence the same result holds for d ≥ 4. However, due to the
fact that the paths of two independent Brownian motions do not intersect (except
at a possibly common starting point), the set Ot,0 almost surely (a.s.) does not
percolate for all t ≥ 0. Therefore, the radius r needs to be chosen positive. In this
case, denote by λc(r) the critical value such that the set O0,r a.s. percolates for all
λ > λc(r), and a.s. does not for λ < λc(r), see Section 3.3 in Meester and Roy
(1996). Theorem 1.3 in Erhard et al. (2016) states that when r > 0 and λ < λc(r),
then there is a critical time tc(λ, r) ∈ (0,∞) which separates a percolation regime
(t > tc(λ, r)) from a non-percolation regime (t < tc(λ, r)). Equivalently, a phase
transition occurs when λ is fixed and the radius is chosen smaller than a critical
radius rc(λ). We choose the last formulation, which is more relevant for the rest of
the paper.

1.2. Main Result. In this paper we study the behaviour of the critical time as the
radius converges to 0 and the intensity is kept fixed to λ = 1. For this reason,
we shall now write tc(r) instead of tc(1, r). Let us mention that no simple scaling
argument seems to immediately yield bounds on tc(r). Indeed, since for each d
there are three parameters (λ, t and r), it is not possible to scale two parame-
ters independently of the third one. We expect that tc(r) goes to ∞ as r → 0,
since tc(0) = ∞. Note that this is not an immediate consequence of continuity
since the event {Ot does not percolate} is not the increasing union of the events
{Ot,r does not percolate} for r > 0. The following theorem however confirms our
intuition and determines at which speed the convergence takes place.

Theorem 1.1. Let d ≥ 4. There is a constant c and an r0 ∈ (0, 1) such that for
all r ≤ r0,  c−1

√
log(1/r) ≤ tc(r) ≤ c

√
log(1/r), if d = 4,

c−1r(4−d)/2 ≤ tc(r) ≤ c r(4−d)/2, if d ≥ 5.

(1.2)

1.3. Discussion. Items (1)–(3) below contain comments about the result. Items
(4)–(5) are general comments about the model.

(1) For completeness, we state that r 7→ tc(r) stays bounded as r → 0 when
d ∈ {2, 3}, since, by monotonicity, lim supr→0 tc(r) ≤ tc(0) <∞. This follows from
Erhard et al. (2016, Theorem 2). Continuity at r = 0 is not immediate, but we
expect that this follows from a finite-box criterion of percolation. Theorem 1.1
shows in particular that when d ≥ 4 the critical time is continuous at r = 0, since
tc(0) =∞.

(2) One motivation to study the small radius asymptotics of the critical time is to
gain a better understanding of the percolation mechanisms when d ≥ 4. Indeed,
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when d ∈ {2, 3} percolation can occur because two independent Brownian motions
that start close to each other eventually intersect, see Erhard et al. (2016, Lemma
5.1). This argument however breaks down when d ≥ 4. The proof of Theorem 1.1
gives some insight on how percolation occurs in that case.

(3) The proof of our result makes use of moment and large deviation estimates
on the capacity of a Wiener sausage, that we derive in Section 5. When d = 4,
these are more subtle and therefore require a more careful analysis than in the high
dimensional case d ≥ 5. This is due to the logarithmic correction in the increase of
the mutual intersection local time in four dimensions. For similar moment estimates
in the case of simple random walk, we refer to Ráth and Sapozhnikov (2012) (d ≥
5) and Chang and Sapozhnikov (2016, Equation (4)) (d = 4). Let us mention
that while preparing this manuscript we were getting aware of a work in progress
by van den Berg et al. (2016) who developed simultaneously to us capacity estimates
that are similar in spirit.

(4) Random interlacement is a Poisson point process on infinite random walk paths
obtained when looking at the trace of a simple random walk on the torus (Z/NZ)d

started from the uniform distribution, running up to time uNd and letting N ↗∞,
see Sznitman (2010). We expect that, as t ↗ ∞ , λ ↘ 0 and λt stays constant,
while r is fixed, our model shares features with a continuous version of random
interlacements, see Sznitman (2013). Indeed, in the regime described above, the
number of Brownian trajectories entering a set A is a Poisson random variable with
intensity proportional to λt cap(A), which is a key feature of random interlacements.
Moreover, the product of λt serves as an intensity parameter. This limiting regime
exhibits long-range dependence, in the sense that if A1 and A2 are two bounded
sets, then

Cov(1l{A1∩Ot 6=∅}, 1l{A2∩Ot 6=∅}) ∼ c dist(A1, A2)2−d, (1.3)

as dist(A1, A2) ↗ ∞, t ↗ ∞ and λt stays constant. Indeed, the left-hand side
becomes asymptotically equivalent to the difference between cap(A1 ∪ A2) and
cap(A1) + cap(A2), which has the desired order.

(5) Peres et al. (2013a,b) also study a system of points randomly distributed in
space and moving according to Brownian motions. However, instead of only looking
at Ot,r, they also look at Σt,r = ∪x∈EB(Bxt , r) at each fixed time t. Nevertheless,
in contrast to our setting, they choose r large enough such that Σt,r contains an
unbounded cluster for all t ≥ 0. In these papers the focus is on three aspects:

(i) detection (the first time that a target point is contained in Σt,r);
(ii) coverage (the first time that all points inside a finite box are contained in
Ot,r);

(iii) detection by the unbounded cluster (the time it takes until a target point
belongs to the unbounded cluster of Σt,r).

1.4. Open questions. (1) Do the upper and lower bounds in Theorem 1.1 match?
More precisely, is there a c∗ ∈ (0,∞) such that

lim
r→0

tc(r)/f(r) = c∗, with f(r) =

{
r(4−d)/2, d ≥ 5,√

log(1/r), d = 4?
(1.4)
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(2) Is there a way to define a limiting random subset of Rd as we set time to
t(r) = cf(r) (see (1.4)) and intensity to λ = 1 in our model, and let r ↘ 0? Would
this limiting object have a percolation phase transition in c and if so, would the
critical value of c coincide with the constant c∗ in (1.4)? Note that one should
beforehand perform a change of parameters. Indeed, for any couple of points x
and y in Rd, the intersection of W x,r

[0,∞) and W y,r
[0,∞) becomes eventually empty as

d ≥ 4 and r ↘ 0, meaning that percolation occurs out of arbitrarily large windows
and is thus not visible in the limit. To fix this issue, one may set time t = 1
such that intersections of Wiener sausages occur in a space window that remains
bounded, and in order to be consistent with the previous scaling, let the intensity

parameter be λ(t) = td/2 and the radius parameter be r(t) = ct
d

2(4−d) if d ≥ 5 and

r(t) = t−1/2e−t
2/c if d = 4, with a different c.

1.5. Outline. In Section 2, we recall facts about the Green function and the New-
tonian capacity. Section 3 contains the proof of the lower bound, which is guided
by the following idea: suppose that the origin is contained in the occupied set, then
perform a tree-like exploration of the cluster containing the origin and dominate
it by a sub-critical Galton-Watson branching process. Extinction of the Galton-
Watson process implies non-percolation of the cluster. Section 4 contains the proof
of the upper bound, which consists in the following coarse-graining procedure: (i)
we split space in an infinite collection of balls all having a radius of the order

√
t, (ii)

each ball is shown to contain with high probability the starting point of a Wiener
sausage whose Newtonian capacity is large enough, and (iii) provided t is large
enough, these Wiener sausages form an unbounded connected component. Finally,
Section 5 contains the proof of several capacity estimates that we use along Sections
3 and 4.

2. Preliminaries on Green function and capacity

In this section we introduce the notion of capacity. We refer the reader to Mörters
and Peres (2010) as well as Port and Stone (1978) for more detailed surveys on this
subject. Let d ≥ 3 and denote by Γ the Gamma function. The Green function
associated with Brownian motion on Rd is defined as

G(x, y) =
Γ(d/2− 1)

2πd/2||x− y||d−2
, x, y ∈ Rd. (2.1)

Definition 2.1. Let A ⊆ Rd be a Borel set. The energy of a finite Borel measure
ν on A is defined as

I(ν) =

∫
A

∫
A

G(x, y)ν(dx)ν(dy) (2.2)

and the Newtonian capacity of A is defined as

cap(A) = [inf
ν
I(ν)]−1, (2.3)

where the infimum is over all probability measures on A.

Let A,A′ be bounded Borel sets. The function A 7→ cap(A) is non-decreasing in A,
satisfies the scaling relation

cap(aA) = ad−2cap(A), a > 0, (2.4)
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and is a submodular set function:

cap(A ∪A′) + cap(A ∩A′) ≤ cap(A) + cap(A′). (2.5)

Given a bounded set A ⊆ Rd, let τA be the last exit time of A (with the convention
that τA = 0 if the Brownian motion does not visit the set A). There exists a finite
measure eA on A, the equilibrium measure of A, such that for any Borel set Λ ⊆ A
and every x ∈ Rd (see Chapter 3, Theorem 2.1 in Port and Stone, 1978),

Px(BτA ∈ Λ, τA > 0) =

∫
Λ

G(x, y)eA(dy) (2.6)

and such that

cap(A) = eA(A). (2.7)

It moreover has an interpretation in terms of hitting probabilities:

lim
||x||→∞

||x||d−2P(Bx[0,∞) ∩A 6= ∅) =
cap(A)

κd
, A ⊆ Rd bounded Borel set, (2.8)

where κd = 2πd/2/Γ(d/2−1) is the capacity of the unit ball (see Chapter 3, Theorem
1.10 in Port and Stone, 1978). Finally, the Poincar-Faber-Szegö inequality (Pólya
and Szegö, 1951) states that for any bounded, open set A ⊆ Rd

Lebd(A) . cap(A)d/(d−2). (2.9)

Here, the proportionality constants only depends on the dimension.

3. Proof of the lower bound

In this section we prove the lower bound of Theorem 1.1. The proof for the case
d ≥ 5 is given in Section 3.1 and the proof for the case d = 4 is given in Section 3.2.
Throughout this section we use the abbreviations

x ∼ y ⇐⇒ W x,r
[0,t] ∩W

y,r
[0,t] 6= ∅, N (x) = {y ∈ E \ {x} : x ∼ y}, x, y ∈ E

(3.1)
and for a set A ⊆ Rd we write

M(A) = sup
x∈A
||x|| (3.2)

for the outradius of A. Let us stress that N (x) also depends on t, so that one may
also use the notation Nt(x) instead. For ease of readability however we abstain
from using t in the notation.

3.1. Case d ≥ 5. We use a technique that has been used in the context of Boolean
percolation, which consists of exploring the cluster containing the origin and com-
paring it to a (multitype) Galton-Watson branching process, see for instance Section
3.3 of Meester and Roy (1996). For simplicity, we assume that there is a Poisson
point at the origin, which is justified in the proof of Lemma 3.1 below. For that
purpose we introduce P0 the law of our process after addition of a Brownian motion
at the origin. The Wiener sausages intersecting the Wiener sausage starting at the
origin are called first generation sausages, all other sausages intersecting the first
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generation sausages constitute the second generation sausages, and so on. This
leads to the following decomposition of C(0):

E0 = {0}, En+1 =

{⋃
y∈En N (y) \

⋃n
k=0 Ek if En 6= ∅

∅ if En = ∅
, n ∈ N0. (3.3)

Here En is interpreted as the set of elements in C(0) at generation n. The idea
is to dominate the process {|En|}n∈N0

by a branching process which eventually
becomes extinct, thus proving that C(0) contains finitely many Poisson points,
which in turn proves non-percolation. If this branching process would be close (in
some reasonable sense) to a Galton Watson process, then it would be enough to
control the mean number of offsprings of the Wiener sausage started at the origin.
However, the Wiener sausages of the first generation are not distributed as Wiener
sausages but as Wiener sausages conditioned to intersect W 0,r

[0,t]. These are subject

to a size biasing effect meaning that their capacities have a bias towards larger
values, compared to the unconditioned Wiener sausage. To overcome this difficulty
we employ a multitype branching argument. More precisely, we partition the set
of Poisson points according to the capacities of their associated Wiener sausages:

Cj =
{
x ∈ E : cap(W x,3r

[0,t] ) ∈ [j, j + 1)trd−4
}
, j ∈ N0. (3.4)

The term trd−4 above is due to the fact that E[cap(W 0,r
[0,t])] is bounded from above

and from below by a constant times trd−4, which can be deduced from the argu-
ments used in Sections 5.2–5.3. The reason to consider Wiener sausages with radius
3r instead of r is of technical nature and does not hide anything deep.

We now introduce the auxiliary multitype branching process, see Athreya and
Ney (1972) for the necessary theory (in the case of a finite number of types). First,
define

N(i, j) = esssupE0
[∣∣Cj ∩N (0)

∣∣ ∣∣∣ B0
]
1l{0 ∈ Ci}, i, j ∈ N0, (3.5)

which will be a parameter of the offspring distribution. Note that the supremum
is taken over the realisations of B0. Let ζ be a N0-valued random variable with

P(ζ = j) = P0(0 ∈ Cj) for j ∈ N0 and independently from that, {ζ(i,j)
k,` }i,j,k,`

be independent Poisson random variables with parameter N(i, j). Let (Z
(j)
n )j,∈N0

,
where n stands for the generation number and j the type, be defined by

Z
(j)
0 =

{
1 if j = ζ

0 else
, j ∈ N0, (3.6)

and conditionally on (Z
(i)
k )0≤k≤n,i∈N0 ,

Z
(j)
n+1 =

∑
i∈N0

1l{Z(i)
n ≥ 1}

Z(i)
n∑
`=1

ζ
(i,j)
n+1,`. (3.7)

In particular, conditionally on (Z
(i)
k )0≤k≤n,i∈N0 , the random variables Z

(j)
n+1 with j ∈

N0 are Poisson distributed with parameter
∑
i∈N0

Z
(i)
n N(i, j). Set Zn =

∑
i∈N0

Z
(i)
n

for n ∈ N0 and note that if Zn = 0, then Zn+m = 0 for all m ∈ N0. We finally
define the extinction time τext = inf{n ≥ 1: Zn = 0}.
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The rest of the section is organized as follows: first we justify with Lemma 3.1
why we can add a Poisson point at the origin (even though this can be considered
standard, we have not found a rigorous argument in the literature). Lemma 3.2
makes the link between C(0) and the auxiliary multitype branching process. Then,
in Lemma 3.3, we give a sufficient criterion on the kernel N(i, j) defined in (3.5) for
the multitype branching process to become extinct. Lemma 3.4 provides an upper
bound on the N(i, j)’s. Finally, we combine all four lemmas to prove the lower
bound in Theorem 1.1.

Lemma 3.1. Let t, r > 0 be such that C(0) is a.s. finite under P0. Then, Ot,r does
not percolate, P-a.s.

Proof : Since E is a Poisson point process, P0 coincides with the Palm version of P,
see Proposition 13.1.VII in Daley and Vere-Jones (2008). By definition of the Palm
measure, for all bounded Borel sets A ⊆ Rd

P0(|C(0)| <∞) =
1

Lebd(A)
E

{ ∑
x∈E∩A

1{|C(x)| <∞}

}
. (3.8)

Therefore, if P0(|C(0)| < ∞) = 1 then by choosing a sequence of Borel sets
(An)n∈N increasing to Rd, we get that P-a.s. all clusters are finite, which proves
non-percolation. �

Lemma 3.2. If τext is a.s. finite then C(0) is P0-a.s. finite.

Proof : Let us define for j ∈ N0 and n ∈ N0, E(j)
n = En ∩ Cj , Y

(j)
n = |E(j)

n | and

Yn =
∑
j∈N0

Y
(j)
n = |En|. Note that C(0) is finite if and only if there exists a

(random) n0 such that Yn = 0 for n ≥ n0, or equivalently,
∑
n∈N0

Yn converges.

The idea is to dominate the process (Yn)n∈N0
by the multitype branching process

(Zn)n∈N0 defined in (3.6) and (3.7). Let us first explain how this domination works
for n = 1. Define

Ẽn =

{
x ∈ E : x /∈

⋃
m≤n

Em
}
, n ∈ N0. (3.9)

Conditionally on B0, {E(j)
1 }j∈N0

and Ẽ1 are independent Poisson point processes on
Rd with respective intensity measures {P0(x ∈ N (0) ∩ Cj |B0)dx}j∈N0

and P0(x /∈
N (0)|B0)dx. Recall (3.5). Conditionally on B0, and on the event {0 ∈ Ci}, Y (j)

1 is
therefore a Poisson random variable with a parameter smaller than N(i, j), hence

Y
(j)
1 is stochastically dominated by Z

(j)
1 , as defined in (3.6)–(3.7), for all j ∈ N0.

Consequently, Y1 is dominated by Z1.
We now explain the iteration procedure. Let Gn be the σ-field generated by

(Ek)k≤n and (Bx, x ∈ ∪k≤nEk) and let the properties (Hn1 ) and (Hn2 ) be defined
by:

— (Hn1 ) Conditionally on Gn−1, on the event {En−1 6= ∅}, the random sets {E(j)
n }j∈N0

and Ẽn are independent Poisson point processes with respective intensity measures
{P0(x ∈ ∪y∈En−1N (y) ∩ Cj \ ∪n−1

i=0 Ei|Gn−1)dx}j∈N0 and P0(x /∈ ∪y∈En−1N (y) ∪n−1
i=0

Ei|Gn−1)dx;

— (Hn2 ) Conditionally on Gn−1, on the event {En−1 6= ∅}, Y (j)
n is stochastically

dominated by Z
(j)
n for all j ∈ N0.

We now suppose that (Hn1 ) and (Hn2 ) are true and sketch how to conclude that
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(Hn+1
1 ) and (Hn+1

2 ) are also true, see Procaccia and Tykesson (2011, Lemmas

7.1–7.2) for details in a similar context. The sets {E(j)
n+1}j∈N0 and Ẽn+1 are clearly

disjoint and contained in Ẽn, which, by induction hypothesis, is independent from

En. Therefore, conditionnally on En, {E(j)
n+1}j∈N0

and Ẽn+1 are independent Poisson

processes with the desired intensity measures, which proves (Hn+1
1 ). We now turn

to the proof of (Hn+1
2 ). Let j ∈ N0. By removing the restriction x /∈ ∪ni=0Ei and

using the decomposition En = ∪∞i=0E
(i)
n , we get the upper bound

P0(x ∈ ∪y∈EnN (y)∩Cj\∪ni=0Ei|Gn, x ∈ E)≤
∑
i∈N0

P0(x ∈ ∪
y∈E(i)n

N (y)∩Cj |Gn, x ∈ E).

(3.10)

By using translation invariance, conditionally on Gn, the parameter of Y
(j)
n+1 is

bounded from above by
∑
i∈N0

Y
(i)
n N(i, j). Using (Hn2 ), (3.7) and the remark

following it, we see that Y
(j)
n+1 is stochastically dominated by Z

(j)
n+1. This settles

(Hn+1
2 ). One may now show by iteration that the total number of particles in the

branching process defined above dominates |C(0)|, which completes the proof. �

In the lemma below, (Nk1l)(i) is the i-th term of the sequence Nk1l, Nk being
the k-th power of the (infinite) matrix N and 1l being the (infinite) vector whose
entries are all equal to one. In other terms, (Nk1l)(i) =

∑
j∈N0

Nk(i, j).

Lemma 3.3. If the series
∑
k∈N0

(Nk1l)(i) converges for all i ∈ N0, then τext is
a.s. finite.

Proof : Note that
∑
k∈N0

(Nk1l)(i) = E(
∑
k∈N0

Zk|Z0 = i). If the latter is finite for

all i ∈ N0 then P (
∑
k∈N0

Zk < ∞|Z0 = i) = 1 for all i ∈ N0, which implies that∑
k∈N0

Zk is finite a.s. Thus, τext is a.s. finite. �

The lemma stated below provides an upper bound on N(i, j). Its proof is quite
technical and is therefore deferred to the end of the section.

Lemma 3.4. Let d ≥ 5. Fix ε > 0 and choose t = εr(4−d)/2. There exists j0 ∈ N,
α > 1 and r0 > 0 such that

N(i, j) . ε2i21l{j≤j0} + iαe−jt/21l{j>j0}, i, j ∈ N0, for all r ≤ r0. (3.11)

We may now prove the lower bound in Theorem 1.1.

Proof of the lower bound in Theorem 1.1: Let t = εr(4−d)/2. We want to prove
that there exists ε small enough such that, for all r small enough, Ot,r does not
percolate. Fix i ∈ N0. By Lemmas 3.1–3.3, it is enough to prove that for this choice
of t and r, the series

∑
k≥1(Nk1l)(i) converges when r is chosen small enough. Note

that there exists r0 = r0(ε) small enough such that∑
j>j0

j2∨αe−jt/2 ≤ (j0 + 1)1+2∨αε2, r ≤ r0. (3.12)

We are now going to prove that there exists r̃0 = r̃0(ε) > 0 such that

(Nk1l)(i) ≤ 2i2∨α(2c(j0 + 1)1+2∨αε2)k, r ≤ r̃0, k ∈ N0, (3.13)
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where c denotes the proportionality constant from Lemma 3.4. To see that (3.13)
is true, note that by Lemma 3.4,

∞∑
j=0

N(i, j) ≤ c(j0 + 1)ε2i2 + c
iα

1− e−t/2
e−j0t/2 (3.14)

By the choice of t there is r = r1(ε) > 0 such that the second term on the right
hand side of (3.14) is at most c(j0 + 1)iαε2 for all r ≤ r1. Thus, (3.13) holds for
k = 1. Assume now that (3.13) has been proven for some k ∈ N. Then, for all
r ≤ r̃0 := r0 ∧ r1,

(Nk+11l)(i) =

∞∑
j=0

N(i, j)(Nk1l)(j)

≤ (2c(j0 + 1)1+2∨αε2)k
∞∑
j=0

2j2∨αN(i, j)

:= I + II,

(3.15)

where I and II equal the middle term in (3.15) with the sum restricted to j ≤ j0 and
j > j0 respectively. An application of Lemma 3.4 and Equation (3.12) shows the
validity of (3.13) with r̃0 = r0∧r1. Choosing ε > 0 such that 2c(j0 +1)1+2∨αε2 < 1
yields the claim. �

We are left with proving Lemma 3.4. We shall makes use of the following lemma,
whose proof is deferred to Section 5.4.

Lemma 3.5. Let d ≥ 5 and r > 0. There exists j0 large enough such that:

P(cap(W 0,r
[0,t]) ≥ jtr

d−4) ≤ e−cjt, j ≥ j0. (3.16)

Proof of Lemma 3.4: We divide the proof in two parts: (1) is the estimate for
j ≤ j0 (which actually holds for all j), and (2) is the estimate for j > j0.
(1) Let A be a compact set. Define

N(A) = E0
[
|{x ∈ E : Bx[0,t] ∩A 6= ∅}|

∣∣∣ B0
]
. (3.17)

The reason why we condition on B0 is that we later choose A = W 0,2r
[0,t] . We first

prove a general upper bound of the form

N(A) . tcap(A) + cap(A)2. (3.18)

Campbell’s formula yields

N(A) =

∫
Rd

P(Bx[0,t] ∩A 6= ∅) dx

= Lebd(A) +

∫
Rd\A

P(Bx[0,t] ∩A 6= ∅) dx.
(3.19)

Following Spitzer (1964, Eq. (2.8)), we obtain∫
Rd\A

P(Bx[0,t] ∩A 6= ∅) dx ≤ tcap(A) + J(A),

where J(A) =

∫
Rd\A

P(Bx[0,∞) ∩A 6= ∅)
2 dx.

(3.20)
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We are left with giving an upper bound on J(A). To that end we write

J(A) =

∫
d(x,A)≤r

P(Bx[0,∞) ∩A 6= ∅)
2 dx+

∫
d(x,A)>r

P(Bx[0,∞) ∩A 6= ∅)
2 dx

= J1(A) + J2(A).

(3.21)

We first derive an estimate on J2(A). By (2.6) and (2.1),

P(Bx[0,∞) ∩A 6= ∅) = κ−1
d

∫
y∈A
||x− y||2−deA(dy), (3.22)

where eA is the equilibrium measure of A. By (2.7), the measure eA(dy)/cap(A) is
a probability measure. Therefore, by Jensen’s inequality,

J2(A) = κ−2
d

∫
d(x,A)>r

(∫
y∈A
||x− y||2−d eA(dy)

cap(A)

)2

cap(A)2 dx

.
∫
y∈A

∫
d(x,A)>r

||x− y||4−2d dx eA(dy) cap(A).

(3.23)

Since d(x,A) > r implies ||x− y|| > r for all y ∈ A, we get

J2(A) . cap(A)2 ×
∫
||x||≥r

||x||4−2d dx . cap(A)2 r4−d. (3.24)

As for J1(A) we use the simple estimate J1(A) ≤ Lebd(A ⊕ B(0, r)). We now

replace A by W 0,2r
[0,t] . Using that W 0,2r

[0,t] ⊕ B(0, r) = W 0,3r
[0,t] and the Poincar-Faber-

Szegö inequality (2.9), we obtain

J1

(
W 0,2r

[0,t]

)
. cap(W 0,3r

[0,t] )d/(d−2) . r4−dcap(W 0,3r
[0,t] )2. (3.25)

To obtain the last inequality above, note that if 0 ∈ Ci and for r small enough

cap(W 0,3r
[0,t] )d/(d−2)−2 . (itrd−4)(4−d)/(d−2) . (r4−d)(d−4)/(d−2) ≤ r4−d. (3.26)

Adding up the upper bounds for J1 and J2, and using that 0 ∈ Ci, we may conclude
this part of the proof.

(2) Let A be a measurable set and define

Nj(A) = E
[
| {x ∈ Cj : Bx[0,t] ∩A 6= ∅} |

]
. (3.27)

By using first Campbell’s formula and Cauchy-Schwarz in the probability inside
the integral below, and noting that P(x ∈ Cj) does not depend on x,

Nj(A) =

∫
Rd

P(x ∈ Cj , B
x
[0,t]∩A 6= ∅) dx ≤ P(0 ∈ Cj)

1/2

∫
Rd

P(Bx[0,t]∩A 6= ∅)
1/2 dx.

(3.28)
In (a) and (b) below we give an upper bound on P(0 ∈ Cj) and

∫
Rd P(Bx[0,t] ∩A 6=

∅)1/2 dx, respectively. (a) By (3.4) and Lemma 3.5,

P(0 ∈ Cj) ≤ P(cap(W 0,3r
[0,t] ) ≥ jtrd−4) ≤ e−2jt. (3.29)

(b) Recall the definition in (3.2). We write the integral in (3.28) as I1 + I2, where

I1 =

∫
||x||≤3M(A)

P(Bx[0,t] ∩A 6= ∅)
1/2 dx and

I2 =

∫
||x||>3M(A)

P(Bx[0,t] ∩A 6= ∅)
1/2 dx.

(3.30)
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Then, I1 .M(A)d. We now replace A by W 0,2r
[0,t] . Note that

Lebd(W
0,2r
[0,t] ) & rd−1M(B0

[0,t]), thus M(W 0,2r
[0,t] )d . r(1−d)dLebd(W

0,2r
[0,t] )d + rd.

(3.31)
To see that the left hand inequality in (3.31) is true assume for simplicity that
M(B0

[0,t]) = 4kr for some k ∈ N. The extension to all other values of M(B0
[0,t])

is straightforward. By continuity of Brownian motion in time, we may choose a
sequence of points xi ∈ B0

[0,t], 1 ≤ i ≤ k, such that ||xi|| = 4ir. It readily follows

that Lebd(
⋃k
i=1 B(xi, 2r)) & rd−1M(B0

[0,t]) from which we may deduce the desired

inequality with ease. We now apply the Poincar-Faber-Szegö inequality (2.9) to the
right hand side of (3.31) and obtain

I1 . r
(1−d)dcap(W 0,2r

[0,t] )d
2/(d−2) + rd. (3.32)

We now consider I2. Note that Bx[0,t]∩A 6= ∅ and ||x|| > 3M(A) imply that Bx has

travelled at least a distance ||x||/2 before time t. Therefore,

I2 ≤
∫
||x||>3M(A)

P
(

sup
s∈[0,t]

||B0
s || ≥ ||x||/2

)1/2

dx

.
∫
||x||>3M(A)

e−||x||
2/(8dt) dx, by Doob’s inequality,

. td/2.

(3.33)

The last inequality follows by substituting x = x/
√
t. Finally, (3.32)–(3.33) yield

I1 + I2 . r
(1−d)dcap(W 0,2r

[0,t] )d
2/(d−2) + rd + td/2. (3.34)

Thus, using 0 ∈ Ci, t = εr(4−d)/2, (3.34) and (3.28)–(3.30) we see that there exists
an exponent α > 0 and a constant cε such that

N(i, j) ≤ cε(t(i+ 1))αe−jt. (3.35)

However, we choose r small enough such that cεe
−jt/4 ≤ 1 and tαe−jt/4 ≤ 1. Hence,

for this choice of r, we may write

N(i, j) . iαe−jt/2, j ≥ j0, (3.36)

where the proportionality constant does not depend anymore on ε. This concludes
the proof. �

3.2. Case d = 4. We now turn to the case d = 4. The idea of the proof is similar to
the one in Section 3.1. However, the estimates in (3.31)–(3.32) are not sufficiently
sharp anymore. To overcome this difficulty, we choose a finer partition of E , namely

Ci1,i2 =
{
x ∈ E : cap(W x,3r

[0,t] ) ∈ [i1, i1 + 1)t/| log r|, M(W x,2r
[0,t] ) ∈ [i2, i2 + 1)t

}
,

i1, i2 ∈ N0,

(3.37)
and define

N(i1, i2; j1, j2) = esssup E0
[∣∣Cj1,j2∩N (0)

∣∣ | B0
]
1l{0 ∈ Ci1,i2}, i1, i2, j1, j2 ∈ N0.

(3.38)
The construction of the auxiliary branching process from (3.37) and (3.38) and the
corresponding domination argument works along similar lines as in Section 3.1. We
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omit the details. The main difference to the proof in Section 3.1 is that Lemma 3.4
needs to be replaced by Lemma 3.6 below.

Lemma 3.6. Let d = 4. Fix ε > 0 and t = ε
√
| log r|. There exists j0 ∈ N and

α > 1 such that for r small enough

N(i1, i2; j1, j2) . ε2i21 log(i1 + 1)1l{j1∨j2≤j0}

+ i42t
4(t−cj11l{j2≤j0<j1} + e−j

2
2t/21l{j1≤j0<j2} + t−cj1/2e−j

2
2t/41l{j1∧j2>j0})

(3.39)

The proof of Lemma 3.6 is deferred to the end of this section. We first show how
to deduce the lower bound in Theorem 1.1 from it.

Proof of the lower bound in Theorem 1.1: Suppose t = ε
√
| log r|. We show that

there exists ε small enough such that, for all r small enough and for all i1, i2 ∈ N0,
the series

∑
k≥1(Nk1l)(i1, i2) converges. The proof idea is the same as for d ≥ 5. We

only need to prove how to get from the estimate in Lemma 3.6 to the convergence
of the series

∑
k≥1(Nk1l)(i1, i2). We assume that t > 1. Throughout this proof we

fix j0 such that Lemma 3.6 is satisfied and such that for r small enough

max
(∑
j>j0

(j4 + j4
0)t4−cj/2, t4

∑
j>j0

(j4 + j4
0)e−j

2t/4
)
<

1

3
(j0 + 1)4ε2. (3.40)

For these values of r and all ε > 0 such that 4(j0 + 1)6ε2 < 1 we prove by iteration
that for all k ∈ N,

(Nk1l)(i1, i2) ≤ (4(j0 + 1)6ε2)k(i41 + i42), (3.41)

which immediately yields the claim. For k = 1 this is a simple consequence of
Lemma 3.6. Assume that we have proven (3.41) for some k ∈ N. Then,

(Nk+11l)(i1, i2) =

∞∑
j1,j2=0

N(i1, i2; j1, j2)Nk(j1, j2)

≤
∞∑

j1,j2=0

N(i1, i2; j1, j2)(4(j0 + 1)6ε2)k(j4
1 + j4

2)

:= I + II + III + IV,

(3.42)

where the terms I− IV equal the term in the second line with the sum restricted
to {j1, j2 ≤ j0}, {j2 ≤ j0 < j1}, {j1 ≤ j0 < j2} and {j1 ∧ j2 > j0} respectively.
An application of Lemma 3.6 and Equation (3.40) shows that (3.41) holds for k+ 1
and hence yields the claim. �

For the proof of Lemma 3.6 we make use of the following lemma whose proof is
given in Section 5.4.

Lemma 3.7. Let d = 4. There exists j0 ∈ (0,∞) and r0 > 0 such that for j ≥ j0
and r ≤ r0,

P
(

cap(W 0,r
[0,t]) ≥ j

t

| log r|

)
≤ t−cj . (3.43)

Proof of Lemma 3.6: The proof is similar to the one of Lemma 3.4. Therefore we
only sketch the proof and point out the main differences. The proof is divided into
four parts: (1) j1, j2 ≤ j0, (2) j2 ≤ j0 < j1, (3) j1 ≤ j0 < j2, and (4) j1, j2 > j0.
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(1) Let A be a compact set. We define N(A) in analogy to (3.17). Thereafter we
use Campbell’s formula as in (3.19) and Spitzer (1964, Eq. (2.8)) to obtain,

N(A) ≤ Lebd(A) + tcap(A) +

∫
R4\A

P(Bx[0,t] ∩A 6= ∅)P(Bx[0,∞) ∩A 6= ∅) dx. (3.44)

We decompose the domain of integration of the integral on the right hand side
of (3.44) into three disjoints sets, which are given by,

{x ∈ R4 : d(x,A) ≤ r}, {x ∈ R4 : r < d(x,A) ≤ 3(1 +M(A))t},
and {x ∈ R4 : d(x,A) > 3(1 +M(A))t},

(3.45)

and we denote the corresponding integrals by J1(A), J2(A) and J3(A). To bound
the first of these three terms we use the trivial estimate J1(A) ≤ Lebd(A⊕B(0, r))4.
As for J2, using similar estimates as in (3.23), we obtain

J2(A) . cap(A)2(log(M(A)+1)+ | log r|+log t) . cap(A)2(log(M(A)+1)+ | log r|)
(3.46)

Here, the second inequality follows from the fact that log t ∼ log | log r|. For the
third part, we get using Doob’s inequality

J3(A) ≤
∫
||x||>t

P
(

sup
0≤s≤t

||B0
s || > ||x||/2

)
dx

.
∫
%>t

%3e−%
2/(8dt)d% . e−t/64.

(3.47)

Choosing A = W 0,2r
[0,t] , using that 0 ∈ Ci1,i2 , and similar estimates as in (3.31) as

well as the Poincar-Faber-Szegö inequality (2.9) to estimate the right-hand side
of (3.46) we get the claim.

For the next estimates (2), (3), (4), we start from the upper bound

Nj(A) ≤ P(0 ∈ Cj1;j2)1/2

∫
Rd

P(Bx[0,t] ∩A 6= ∅)
1/2 dx, (3.48)

where Nj(A) is defined in a similar way as in (3.27). Using similar estimates as in
(3.33), we obtain ∫

R4

P(Bx[0,t] ∩A 6= ∅)
1/2 dx .M(A)4 + t2. (3.49)

Note that the latter term is bounded by 2i42t
4 if A = W 0,2r

[0,t] . Moreover, by Cauchy-

Schwarz,

P(0 ∈ Cj1;j2) ≤ P
(

cap(W 0,3r
[0,t] ) ≥ j1

t

| log r|

)1/2

P(M(W 0,r
[0,t]) ≥ j2t)

1/2. (3.50)

We may bound P(cap(W 0,3r
[0,t] ) ≥ j1

t
| log r| ) with the help of Lemma 3.7. As for

P(M(W 0,r
[0,t]) ≥ j2t), we get by Doob’s inequality

P
(
M(W 0,r

[0,t]) ≥ j2t
)
≤ P

(
sup
s∈[0,t]

||Bs|| ≥ j2t− r
)
≤ e−j

2
2t/2. (3.51)

Hence, (3.48)–(3.51) and Lemma 3.7 finish parts (2), (3) and (4) of the proof and
thus complete the proof. �



Critical time in Wiener sausage percolation 431

4. Proof of the upper bound

In this section we prove the upper bound in Theorem 1.1, that is if we set

t = c∗ ×
{
r(4−d)/2 if d ≥ 5√

log(1/r) if d = 4
, r ∈ (0, 1), (4.1)

then there exists c∗ large enough such that for r small enough, Ot,r percolates.

The proof is organized as follows. In Section 4.1, we use a coarse-graining proce-
dure to prove the existence of an unbounded component with a positive probability.
More precisely, we divide space into boxes indexed by Zd and we define a notion of
good boxes, as well as a way to connect good boxes. Provided the box at the origin
is good, we explore the cluster of good boxes connected to the origin and prove that
with positive probability, this cluster is unbounded. This implies percolation. The
procedure relies on two estimates, one on the probability for the box at the origin
to be good (Lemma 4.1), the other one on the probability of two neighbouring good
boxes to be connected to each other (Lemma 4.2). These estimates are proven in
Section 4.2.

4.1. Coarse-graining procedure. Parameters are now chosen as in (4.1). Let cB > 0
be a small constant to be determined later. Let us consider the collection of disjoint
balls Bz = B(2zcB

√
t, cB
√
t), z ∈ Zd. In the following we identify Z2×{0}d−2 with

Z2. We are going to prove that there is a choice of cB > 0 such that one may
choose c∗ large enough and r small enough such that percolation occurs by using
only Wiener sausages from ∪z∈Z2Bz.

We denote by Fz the σ-algebra generated by the Poisson points in Bz and their
corresponding Brownian motions, and for Λ ⊆ Z2, FΛ =

∨
z∈Λ Fz.

Definitions. Recall (3.1). We define a set of good Poisson points by

Egood =
{
x ∈ At/2(cB , r) : cap(W x,r

[0,t/2]) ≥
1
2E
[
cap(W 0,r

[0,t/2]); 0 ∈ At/2(cB , r)
]}
,

(4.2)
where

At(c, r) =
{
x ∈ E : W x,r

[0,t] ⊆ B
(
x, c
√
t
)}
. (4.3)

Construction of the cluster. We now describe the algorithm we use to build a coarse-
grained cluster. Before we start the construction of the cluster, we introduce the
following order: (1, 0) ≺ (0, 1) ≺ (−1, 0) ≺ (0,−1). We also use the convention
that C−1 = ∅.
Initialisation: If Egood∩B0 = ∅, then set C0 = ∅.Otherwise, setD0 = ∅, c0 = 0 and
C0 = {c0}, and choose e0 ∈ Egood∩B0 such that ||e0|| = min{||x|| : x ∈ Egood∩B0}.
Iteration: Let n ∈ N0 and suppose Cn, Dn ⊆ Z2 with Cn = {ci, 0 ≤ i ≤ n} as
well as ei ∈ Egood ∩Bci for 0 ≤ i ≤ n are already constructed. The sets Cn and Dn

represent the boxes already added to the cluster, respectively dismissed, at step n.
We aim at defining Dn+1, Cn+1 and en+1. We distinguish between two cases.
Case 1. If Cn = Cn−1, then stop the iteration procedure.
Case 2. If Cn 6= Cn−1, define for all 0 ≤ i ≤ n,

Vi = {z ∈ Z2 : |ci−z|1 = 1: Egood∩Bz∩N (ei) 6= ∅} and V(n)
i = Vi∩(Cn∪Dn)c.

(4.4)
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Case 2a) If ∪0≤i≤nV(n)
i = ∅, then set Cn+1 = Cn (consequently, the algorithm

stops in the next step).

Case 2b) If ∪0≤i≤nV(n)
i 6= ∅, let i(n) = max{0 ≤ i ≤ n : V(n)

i 6= ∅} and pick

cn+1 ∈ V(n)
i(n) such that cn+1− ci(n) = min

{
z− ci(n) : z ∈ V(n)

i(n)

}
. Additionally, pick

en+1 ∈ Egood ∩ Bcn+1 ∩ N (ei(n)) such that ||en+1 − ei(n)|| = min{||z − ei(n)|| : z ∈
Egood ∩ Bcn+1

∩N (ei(n))}. We set

V̂(n)
i(n) = {z ∈ Z2 : |ci(n)−z|1 = 1, Egood∩Bz ∩N (ei(n)) = ∅, z−ci(n) ≺ cn+1−ci(n)}.

(4.5)
Finally, Cn+1 := {ci, 0 ≤ i ≤ n+ 1} and

Dn+1 := Dn ∪ V̂(n)
i(n) ∪{ci + z : i(n) < i ≤ n, |z|1 = 1, ci + z ∈ (Cn ∪Dn)c}. (4.6)

This finishes the description of the algorithm.
If the algorithm does not stop, it means that Ot,r contains an unbounded compo-

nent. If it stops at step n, we denote by C the set of connected boxes Cn obtained
in this way. Therefore, we are going to prove that the algorithm stops with proba-
bility strictly less than one.

For the rest of the proof we rely on the following two key lemmas, which will be
proven in Section 4.2. For convenience, we say that z ∈ Z2 is good if Bz contains a
point in Egood.

Lemma 4.1. Let d ≥ 4 and fix cB > 0. The probability that 0 is good converges to
1 as t goes to ∞.

Also, we say that z′ ∈ Z2 is connected to z ∈ Z2 if there exist x′ ∈ Bz′∩Egood and
x ∈ Bz ∩Egood such that x ∼ x′ (recall (3.1)). For a set Λ ⊆ Z2 we say that z′ ∈ Z2

is connected to Λ, if there is z ∈ Λ with |z− z′|1 = 1 such that z is connected to z′.

Lemma 4.2. Let d ≥ 4, fix cB > 0, let z, z′ ∈ Z2 such that |z − z′|1 = 1. On the
event {z is good}, we have for t large enough,

P(z′ is not connected to z|Fz) ≤ exp{−c2∗θ(cB)}, with lim inf
cB→0

θ(cB) > 0. (4.7)

Proof of the upper bound in Theorem 1.1: We now explain how to conclude the
proof with these two lemmas at hand. For this, we use the so-called standard Peierls
contour argument, see Grimmett (1999, Proof of Theorem 1.10). In what follows,
a ∗-path of length N ≥ 2 is a vector (xi)1≤i≤N ∈ (Z2)N such that |xi+1−xi|∞ = 1
for all 1 ≤ i < N . If xN = x1 and for all 1 ≤ i, j < N with i 6= j, xi 6= xj , then the
∗-path is said to be a ∗-contour. This contour contains x ∈ Z2 if x belongs to the
bounded component delimited by the contour, but not to the contour itself. We
denote the set of all contours containing x ∈ Z2 by Z2

con(x). Denote by ∂extC the
exterior boundary of C, that is the set of vertices in the boundary which are the
starting points of an infinite non-intersecting nearest neighbor path with no vertex
in C. By Grimmett (1999, page 17) (see also the reference to Kesten, 1982 therein
for more details) we see that if |C| <∞, then ∂extC is a ∗-contour. We may write

P(|C| <∞) ≤ P(0 is not good) +
∑
N≥4

P(|∂extC| = N). (4.8)
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Let us give an upper bound on P(|∂extC| = N). We have

P(|∂extC| = N) =
∑

Λ∈Z2
con(0),
|Λ|=N

P(∂extC = Λ), (4.9)

and for each such ∗-contour Λ,

P(∂extC = Λ) ≤ P(∀z ∈ Λ, z not connected to ∂intΛ)

= E[P(∀z ∈ Λ, z not connected to ∂intΛ|F∂intΛ)],
(4.10)

where ∂intΛ = ∂Λ \ ∂extΛ and ∂Λ = {z /∈ Λ: ∃z′ ∈ Λ/|z − z′|1 = 1}. Since the
events {z not connected to ∂intΛ}z∈Λ are independent conditionally on F∂intΛ, we
get

P(∀z ∈ Λ, z not connected to ∂intΛ|F∂intΛ)=
∏
z∈Λ

P(z not connected to ∂intΛ|F∂intΛ)

(4.11)
Let us fix z ∈ Λ and denote by z′ an `1-neighbour of z which is also in ∂intΛ. No
matter how we choose z′, we get

P(z not connected to ∂intΛ|F∂intΛ) ≤ P(z not connected to z′|F∂intΛ)

= P(z not connected to z′|Fz′),
(4.12)

which is smaller than e−c
2
∗θ(cB), by Lemma 4.2. Therefore, we get

P(|C| <∞) ≤ P(0 is not good) +
∑
N≥4

e−c
2
∗θ(cB)NCN , (4.13)

where CN is the number of ∗-contours of length N containing the origin. By a
standard counting argument (see Grimmett, 1999, Proof of Theorem 1.10) it can
be seen that CN ≤ N 7N . We obtain

P(|C| <∞) ≤ P(0 is not good) + c
∑
N≥4

N
(

7e−c
2
∗θ(cB)

)N
. (4.14)

We conclude as follows. First, fix cB small enough such that θ(cB) is positive, see
(4.7). Then, choose c∗ so large that the sum in the r.h.s of (4.14) is smaller than
1/(4c). Finally, choose r small enough (therefore t large enough) such that, by
Lemma 4.1, P(0 is not good) ≤ 1/4. This finally yields P(|C| = ∞) ≥ 1/2, which
finishes the proof. �

4.2. Proof of Lemmas 4.2 and 4.1. Throughout this section we shall make use
of the capacity estimates provided by Lemmas 4.3–4.4 below. Lemma 4.3 gives
an estimate on the second moment of the capacity of a Wiener sausage, whereas
Lemma 4.4 estimates the mean capacity of a Wiener sausage confined to a ball with
radius of order

√
t. Their proofs are deferred to Section 5.

Lemma 4.3. Let d ≥ 4, t0 > 1 and r0 ∈ (0, 1). For all t ≥ t0 and all r ∈ (0, r0),

E
[
cap
(
W 0,r

[0,t]

)2]
.

{
t2 r2(d−4) if d ≥ 5(

t
log(tr−2)

)2

if d = 4.
(4.15)
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Lemma 4.4. Recall (4.3). For all d ≥ 4, t ≥ 1 and r ∈ (0, 1),

E
[
cap
(
W 0,r

[0,t]

)
; 0 ∈ At(cB , r)

]
& P(0 ∈ At(cB , r))2 ×

{
t rd−4 if d ≥ 5

t
log(tr−2) if d = 4.

(4.16)

We start with Lemmas 4.5 and 4.6, which are preparatory lemmas. Lemma 4.5
gives a lower bound on the probability that a Wiener sausage has a capacity larger
than a fraction of its mean capacity, when it is confined to a ball of order

√
t.

Lemma 4.6 gives a lower bound on the probability that a Wiener sausage intersects
a set that is at a distance of order

√
t from its starting point.

Lemma 4.5. Let d ≥ 4. Abbreviate by A the event {0 ∈ At(cB , r)}, see (4.3).
Then,

P
({

cap
(
W 0,r

[0,t]

)
≥ 1

2 E
(

cap
(
W 0,r

[0,t]

)
;A
)}
∩ A

)
& Φ(cB)4(1 + o(1)), (4.17)

where Φ(cB) = P
(

sups∈[0,1] ||B0
s || ≤ cB

)
and the o(1) term tends to zero as t tends

to infinity.

Proof : By (a slight generalization of) the Paley-Zigmund inequality,

P
({

cap
(
W 0,r

[0,t]

)
≥ 1

2 E
(

cap
(
W 0,r

[0,t]

)
;A
)}
∩ A

)
≥ 1

4

E
[
cap
(
W 0,r

[0,t]

)
;A
]2

E
[
cap
(
W 0,r

[0,t]

)2] . (4.18)

Using Lemma 4.3 and Lemma 4.4, and since by invariance of Brownian motion,

P(A) = P
(
W

0,r/
√
t

[0,1] ⊆ B(0, cB)
)

= P
(

sup
s∈[0,1]

||B0
s || ≤ cB −

r√
t

)
= Φ(cB)(1 + o(1)),

(4.19)
we get the claim. �

Given a measurable set A ⊆ Rd we write

Ar = A⊕ B(0, r). (4.20)

Lemma 4.6. There is a constant c ∈ (0,∞) such that the following estimate holds
uniformly for all r ∈ (0, 1) and all measurable sets A such that A ⊆ B(0, 6cB

√
t),

P
(
W 0,r

[0,t] ∩A 6= ∅
)
≥ t1−d/2cap(Ar)

(
c

cd−2
B

− 1

(2π)d/2

)
. (4.21)

Proof : Note that

P
(
W 0,r

[0,t] ∩A 6= ∅
)

= P
(
W 0,r

[0,∞) ∩A 6= ∅
)
− P

(
inf
{
s > 0: W 0,r

[0,s] ∩A 6= ∅
}
∈ (t,∞)

)
,

(4.22)

so that it is enough to find a lower bound for the first term on the right hand side
of (4.22) and an upper bound for the second term on the right hand side of (4.22).
Let eAr be the equilibrium measure of Ar. The identity in (2.6) yields

P
(
W 0,r

[0,∞) ∩A 6= ∅
)

= P
(
B0

[0,∞) ∩A
r 6= ∅

)
=

∫
Ar

G(0, y)eAr (dy). (4.23)
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Hence, using that G(0, y) = c ||y||2−d and eAr (Ar) = cap(Ar), (4.23) may be
bounded from below by

c inf
y∈Ar

||y||2−dcap(Ar). (4.24)

Since Ar ⊆ B(0, 6cB
√
t+ r), we see that there is a constant c > 0 such that (4.24)

is at least

c t1−d/2c2−dB cap(Ar), r ≤ 1. (4.25)

This is the desired lower bound for the first term on the right hand side of (4.22).

Recall that B̃ is a Brownian motion independent of B0. By the Markov property
and (2.6), the second term on the right hand side of (4.22) may be written as

E

[
1l
{
B0

[0,t] ∩A
r = ∅

}
P̃B0

t

(
B̃[0,∞) ∩Ar 6= ∅

)]
= E

[
1l
{
B0

[0,t] ∩A
r = ∅

}∫
Ar

G(B0
t , y) eAr (dy)

]
.

(4.26)

Hence,

(4.26) ≤
∫
Ar

E[G(B0
t , y)] eAr (dy). (4.27)

We obtain by the Markov property applied to B0 at time t,

E(G(B0
t , y)) =

∫ ∞
t

P(B0
s ∈ dy) ds =

∫ ∞
t

1

(2πs)d/2
e−‖y‖

2/2s ds. (4.28)

Using the change of variable w = ||y||2/2s, we see that

(4.28) =

∫ ‖y‖2/2t
0

wd/2−2e−w dw × ‖y‖
2−d

2πd/2
, (4.29)

which is bounded from above by (2π)−d/2t1−d/2 (by bounding the exponential factor
by 1). Therefore,

r.h.s.(4.27) ≤ cap(Ar)t1−d/2(2π)−d/2. (4.30)

Combining (4.22) with (4.25) and (4.30) yields the claim. �

Proof of Lemma 4.2: Let z, z′ ∈ Z2 with |z − z′|1 = 1. Let us abbreviate P̄(·) =
P(· | Fz) and note that we are on the event Egood ∩ Bz 6= ∅. Let x ∈ E ∩ Bz′ . We
first give a lower bound on the probability that x is good and connected to a point
in Egood ∩ Bz, that is

p0 := inf
y∈Egood∩Bz

P̄(x ∈ Egood, x ∼ y). (4.31)

Using the Markov property on Bx at time t/2 and that Bxt/2 ∈ B(y, 5cB
√
t) this

probability can be bounded from below by

P
(
x ∈ Egood

)
× inf
x0∈B(y,5cB

√
t)

y∈Egood∩Bz

P̄
(
W x0,r

[0,t/2]

⋂
W y,r

[0,t/2] 6= ∅
)
. (4.32)

Using Lemma 4.5 on the first factor and Lemma 4.6 on the second factor and
noticing that for all x0 ∈ B(y, 5cB

√
t) and y ∈ Egood ∩ Bz, W y,r

[0,t/2] ⊆ B(x0, 6cB
√
t),

we get that this probability is larger than

ϕ(cB)t−d/2+1 inf
y∈Egood∩Bz

cap
(
W y,r

[0,t/2]

)
. (4.33)
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Here, ϕ(cB) := c Φ(cB)4

(
c

cd−2
B

− 1
(2π)d/2

)
(1 + o(1)) is positive provided cB is small

enough. By definition, we know that for all y ∈ Egood ∩ Bz

cap
(
W y,r

[0,t/2]

)
≥ 1

2E
[
cap
(
W 0,r

[0,t/2]

)
; 0 ∈ At/2(cB , r)

]
. (4.34)

Recalling (4.1), (4.19) and Lemma 4.4, we obtain

p0 ≥ c c2∗ϕ(cB)Φ(cB)2t−d/2(1 + o(1)). (4.35)

Therefore, for all y ∈ Egood ∩ Bz, the number of points in Egood ∩ Bz′ connected to
y is a Poisson random variable with parameter bounded from below by:

p0 × Leb(Bz′) ≥ c2∗ θ(cB), with θ(cB) = c cdBϕ(cB)Φ(cB)2, (4.36)

which is uniform in y and concludes the proof. �

Proof of Lemma 4.1: If x ∈ E∩B0 then the probability that x is good is larger than
c Φ(cB)4(1+o(1)), by Lemma 4.5. Therefore, the number of such points is a Poisson
random variable with parameter bounded from below by c cdB Φ(cB)4 td/2(1+o(1)),
which goes to ∞ as t→∞. This concludes the proof. �

5. Capacity estimates

5.1. Green function estimates.

Lemma 5.1. Let d ≥ 4 and t0 > 1. For all t ≥ t0,

E

[∫
[0,t]2

∫
B(0,1)2

G(B0
u + z,B0

v + z′) dz dz′ dudv

]
.

{
t, if d ≥ 5,
t log t, if d = 4.

(5.1)

Proof : Case d ≥ 5.
We start with two estimates. First, let 0 ≤ u ≤ 1. We claim that

E(G(B0
u, z)) ≤ G(0, z) for all z ∈ Rd. (5.2)

Indeed, an application of the Markov property in the second equality below shows
that

E(G(B0
u, z)) =

∫ ∞
0

E[P̃B0
u
(B̃s ∈ dz)] ds =

∫ ∞
0

P(B0
u+s ∈ dz) ds

=

∫ ∞
u

P(B0
s ∈ dz) ds.

(5.3)

Since the right hand side is bounded from above by G(0, z) we obtain (5.2). Now,
let u > 1. In this case we claim that

E(G(B0
u, z)) ≤ c u1−d/2 z ∈ Rd. (5.4)
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This is a direct consequence of (4.28)–(4.29). To make use of the inequalities (5.2)
and (5.4) we write the left hand side in (5.1) as a sum of three terms:

(1) = E

[∫ t

0

∫ (v−1)∨0

0

∫
B(0,1)2

G(B0
u + z,B0

v + z′) dz dz′ dudv

]
,

(2) = E

[∫ t

0

∫ t

(v+1)∧t

∫
B(0,1)2

G(B0
u + z,B0

v + z′) dz dz′ dudv

]
,

(3) = E

[∫ t

0

∫ (v+1)∧t

(v−1)∨0

∫
B(0,1)2

G(B0
u + z,B0

v + z′) dz dz′ dudv

]
.

(5.5)

We first estimate the third term. Note that for all x, y ∈ Rd the relation G(x, y) =
G(0, y−x) holds. Hence, a change in the order of integration together with equation
(5.2) and the fact that B0

v −B0
u has the same distribution as B0

|v−u| show that

(3) ≤
∫
B(0,1)2

∫ t

0

∫ v+1

v−1

G(0, z − z′) dudv dz dz′ ≤ 2t

∫
B(0,1)2

G(0, z − z′) dz dz′.

(5.6)
Hence, it suffices to show that the integral on the right-hand side of (5.6) converges.
By (2.1), the right hand of (5.6) is at most

2ct

∫
B(0,1)

∫
B(z′,1)

‖z − z′‖2−ddz dz′ = 2ct

∫
B(0,1)2

‖z‖2−d dz dz′, (5.7)

where we made the substitution ζ = z − z′ to obtain the last equality. Since the
integral on the right-hand side of (5.7) is finite, (3) ≤ ct. It remains to show that
the first and second terms in (5.5) give the correct contribution. Equation (5.4)
yields

(1) ≤ c
∫
B(0,1)2

∫ t

0

∫ (v−1)∨0

0

|v − u|1−d/2 dudv dz dz′. (5.8)

A simple computation now shows that there is indeed a constant c > 0 such that
for all t ≥ 0 the bound (1) ≤ ct holds. The argument for (2) in (5.5) is similar and
will therefore be omitted. This finishes the proof in this case.
Case d = 4. The proof works almost verbatim as in the previous case. The only
difference is that (5.8) becomes∫

B(0,1)2

∫ t

0

∫ (v−1)∨0

0

|v − u|−1 dudv dz dz′, (5.9)

which is upper bounded by ct log t. We omit the details. �

5.2. Lower bounds. Proof of Lemma 4.4. The proof of Lemma 4.4 makes use of
the variational representation in (2.3), according to which it suffices to construct
a measure which is close to the ”true” minimizer in (2.3). It will turn out that
it is enough to choose a measure of the local time of the Brownian motion in a
neighborhood of a given set. In this way the Green function estimates of Lemma
5.1 enter naturally into the picture.

Proof of Lemma 4.4: We start with the case d ≥ 5.
1st Step: Let r = 1 and ν be the probability measure supported on W 0,1

[0,t] and
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defined by

ν(A) =
1

cvolt

∫ t

0

∫
B(0,1)

1l{B0
s + z ∈ A}dsdz, A Borel-measurable. (5.10)

Note that by the variational formula in (2.3),

E
[
cap
(
W 0,1

[0,t]

)
; 0 ∈ At(cB , 1)

]
≥ E[I(ν)−1; 0 ∈ At(cB , 1)], (5.11)

where

I(ν) =
1

c2volt
2

∫
[0,t]2

∫
B(0,1)2

G(B0
u + z,B0

v + z′) dz dz′dudv. (5.12)

By the Cauchy-Schwarz inequality,

E[I(ν)−1; 0 ∈ At(cB , 1)] ≥ E[I(ν)]−1P(0 ∈ At(cB , 1))2. (5.13)

Finally, by Equation (5.1), the right hand side of (5.13) is bounded from below by
ctP(At(cB , 1))2. This yields the claim in the case r = 1.
2nd Step: Let now r > 0 be chosen arbitrarily. By Brownian scaling and the
capacity scaling relation (2.4),

E
[
cap
(
W 0,r

[0,t]

)
; 0 ∈ At(cB , r)

]
= E

[
cap
(r
r
W 0,r

[0,t]

)
; 0 ∈ At(cB , r)

]
= rd−2E

[
cap
(
W 0,1

[0,t/r2]

)
; 0 ∈ Atr−2(cBr

−1, 1)
]
.

(5.14)
Using the result for the case r = 1 and noting that P(0 ∈ Atr−2(cBr

−1, 1)) = P(0 ∈
At(cB , r)) finishes the proof for d ≥ 5.

The proof in the case d = 4 works along similar lines, the only difference being
that the application of Lemma 5.1 is adapted. �

5.3. Second moment estimates. Proof of Lemma 4.3.

5.3.1. Case d ≥ 5.

Proof : 1st Step: In this step we prove Lemma 4.3 under the assumption r = 1.
First note that by Equation (2.5)

cap
(
W 0,1

[0,t]

)
≤ cap

( dte⋃
i=1

W 0,1
[(i−1),i]

)
≤
dte∑
i=1

cap
(
W 0,1

[(i−1),i]

)
, (5.15)

so that by the independence ofB0
i−B0

i−1 andB0
j−B0

j−1 for all i 6= j in {1, 2, . . . , dte},

E
[
cap
(
W 0,1

[0,t]

)2]
≤
dte∑
i,j=1
i6=j

E
[
cap
(
W 0,1

[(i−1),i]

)]
× E

[
cap
(
W 0,1

[(j−1),j]

)]
+

dte∑
i=1

E
[
cap
(
W 0,1

[(i−1),i]

)2]
.

(5.16)
Consequently, by the stationarity in time of Brownian motion and by the Cauchy-
Schwarz inequality, the right hand side of (5.16) is bounded from above by

dte2 × E
[
cap
(
W 0,1

[0,1]

)2]
. (5.17)
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To see that the expectation on the right hand side of (5.17) is finite, note that
by the scaling relation (2.4), cap(B(0, R)) = Rd−2cap(B(0, 1)) for any R > 0.
Since E(sups∈(0,1) ‖Bs‖d−2) <∞, the desired finiteness readily follows. This proves
Lemma 4.3 in the case r = 1.
2nd Step: We now treat the general case. To that end, note that by Brownian
scaling and by the scaling relation (2.4),

cap
(
W 0,r

[0,t]

)
= cap

(r
r
W 0,r

[0,t]

) (law)
= rd−2cap

(
W 0,1

[0,tr−2]

)
. (5.18)

The claim follows from equation (5.18) in combination with the first step. �

5.3.2. Case d = 4. The proof is based on methods presented in Lawler and Limic
(2010, Chapter 10). Fix t > 0, let B be the Brownian motion driving W 0,1

[0,t].

Proof : We give the proof for the case r = 1. A scaling argument as in (5.18) yields
the general case. First, note that

cap
(
W 0,1

[0,t]

)
.

t

Zt
, where Zt = inf

y∈W 0,1
[0,t]

∫ t

0

∫
B(0,1)

G(y,Bu + z) dz du.

(5.19)

Let us define f(y) =
∫ t

0
1l{y ∈ B(Bu, 1)}du for y ∈ Rd, and notice that f(y) > 0 if

and only if y ∈ W 0,1
[0,t]. Henceforth, we abbreviate W = W 0,1

[0,t]. By (2.6), we have

one the one hand∫
W

∫
W

G(x, y)f(y)eW (dx)dy =

∫
W

f(y)dy = cvol t, (5.20)

and on the other hand,∫
W

∫
W

G(x, y)f(y)eW (dx)dy ≥
∫
W

ZteW (dx) = Ztcap(W ), (5.21)

from which we get (5.19). For a constant c0 > 0 to be determined later,

E

[
cap
(
W 0,1

[0,t]

)2
]

= E

[
1l{Zt ≤ c0 log t} cap

(
W 0,1

[0,t]

)2
]

+ E

[
1l{Zt > c0 log t} cap

(
W 0,1

[0,t]

)2
]

. E

[
1l{Zt ≤ c0 log t} cap

(
W 0,1

[0,t]

)2
]

+
( t

c0 log t

)2

, by (5.19).

(5.22)

Note that by an application of the Cauchy-Schwarz inequality,

E

[
1l{Zt ≤ c0 log t} cap

(
W 0,1

[0,t]

)2
]
≤ P(Zt ≤ c0 log t)1/2E

[
cap
(
W 0,1

[0,t]

)4]1/2
. (5.23)

To estimate the right hand side in (5.23) we use the a priori estimate

E
[
cap
(
W 0,1

[0,t]

)4]
≤ c t4, (5.24)

which may be proven as the corresponding second moment estimate in (5.16) or via
a scaling argument using Brownian scaling and the capacity scaling relation (2.4).
Using Lemma 5.2 below to handle the probability appearing on the right hand side
of (5.23) and choosing c0 small enough such that 4 − c/c0 ≤ 2, we may conclude
the proof. �
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Lemma 5.2. There is t0 > 0 such that for all ε small enough,

P(Zt ≤ ε log t) ≤ t−c/ε, t ≥ t0. (5.25)

Proof of Lemma 5.2: Let

G∗(x, y) =

∫
z∈B(0,1)

G(x, y + z)dz. (5.26)

and G∗(x) = G∗(x, 0). We claim that there are t0 > 0 and c0 > 0 such that for all
ε small enough, for all t ≥ t0,

P
(∫ t

0

G∗(Bu) du ≤ ε log 2t
)
. t−c0/ε. (5.27)

We first show how one deduces Lemma 5.2 from this claim. To that end, we choose
ε small enough such that (5.27) holds. Recall (5.19) and note that

Zt = inf
y∈W 0,1

[0,t]

∫ t

0

G∗(y,Bu)du, (5.28)

and that there exists C∗ such that

1

C∗
≤ G∗(x)

G∗(y)
≤ C∗, ||x− y|| ≤ 1. (5.29)

To show the existence of such a C∗ we use that G∗(0) <∞ and that G∗(x) ≤ G∗(0),
where both properties follow from the finiteness and monotonicity of G. We deduce
that with C∗ = G∗(0)/ inf{G∗(y) : ||y|| ≤ 3} we have the inequality G∗(x) ≤
C∗G∗(y) for all ||x − y|| ≤ 1 such that min{||x||, ||y||} ≤ 2. If min{||x||, ||y||} > 2,
then we note that for all z ∈ R4 with ||z|| ≤ 1,

||x− z|| ≤ ||x− y||+ ||y − z|| ≤ 2||y + z||. (5.30)

Hence, after a possible increase of C∗ we may conclude the proof of (5.29). Then,

Zt ≥
Z ′t
C∗

, with Z ′t = inf
y∈B[0,t]

∫ t

0

G∗(y,Bu)du. (5.31)

To proceed, let n ∈ N such that

ε ∈
(c0 log t

C∗nt
,

c0 log t

C∗(n− 1)t

]
, with

1

0
=∞. (5.32)

Let s > 0 and define

Z ′s,t,i = inf
(i−1)/(2ns)≤v≤i/(2ns)

∫ t

0

G∗(Bv, Bu)du, 1 ≤ i ≤ d2nste. (5.33)

Then, for i ≤ d2nt2e/2,

P(Z ′t,t,i ≤ ε log t) ≤ P
(

inf
(i−1)/(2nt)≤v≤i/(2nt)

∫ (i−1)/(2nt)+t/2

(i−1)/(2nt)

G∗(Bv, Bu)du ≤ ε log t
)

= P(Z ′t,t/2,1 ≤ ε log t),

(5.34)
and with a similar argument for i > d2nt2e/2,

P(Z ′t ≤ ε log t) ≤ d2nt2eP(Z ′t,t/2,1 ≤ ε log t). (5.35)
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Note that P(sup0≤v≤1/(2nt) ||Bv|| > 1) = P(sup0≤v≤1 ||Bv|| >
√

2nt) ≤ e−cnt, by

Brownian scaling and Doob’s inequality. Thus, using (5.29),

P(Z ′t,t/2,1 ≤ ε log t) ≤ e−nt + P
(
Z ′t,t/2,1 ≤ ε log t, sup

0≤s≤1/(2nt)

||Bs|| ≤ 1
)

≤ e−nt + P
(∫ t/2

0

G∗(Bu)du ≤ C∗ε log t
)

. t−c0/(C
∗ε),

(5.36)

where the last estimate makes use of (5.27) and the relation (5.32). Using (5.32),
one may conclude the proof. We are left with showing (5.27).

Since G∗ is radial, harmonic outside B(0, 1), continuous on B̄(0, 1), and since
lim||x||↗∞G∗(x) = 0,

G∗(x) = c||x||−2, ||x|| ≥ 1, (5.37)

see for instance Exercise 3.7 in Mörters and Peres (2010). Define the sequence of
stopping times τ0 = 0 and τi = inf{s ≥ τi−1 : ||Bs|| ≥ 2i}, for i ∈ N. From (5.37),
we know that

G∗(Bu) ≥ min
(
c2−2i, inf

x∈B(0,1)
G∗(x)

)
, τi−1 ≤ u ≤ τi. (5.38)

Moreover, combining (5.26) and (2.1) we see that

G∗(Bu) ≥ c2−2i, τi−1 ≤ u ≤ τi, i ∈ N. (5.39)

We obtain that ∫ τN

0

G∗(Bu)du ≥ c
N∑
i=1

2−2i(τi − τi−1). (5.40)

We now set Ik = 1l{τk − τk−1 < ε22k}, where ε ∈ (0, 1). Using the strong Markov
property and Brownian scaling we see that,

P(Ik = 1) ≤ P
(

sup
0≤s≤4ε

||Bs|| > 1/2
)
≤ e−c/ε, k ∈ N. (5.41)

Thus, the strong Markov property yields that the random variable
∑

1≤k≤N Ik is
stochastically dominated by a binomial random variable with parameters N and
e−c/ε. Therefore, well known tail estimates for the Binomial distribution show that

P
( ∑

1≤k≤N

Ik ≥ N/2
)
. e−cN/ε, (5.42)

where c and the proportionality constant are independent of ε. Moreover, if we
have

∑
1≤k≤N Ik < N/2, then as a consequence of (5.40),

∫ τN
0

G∗(Bu) ≥ εN/2.

From this observation and (5.42), we deduce that

P
(∫ τN

0

G∗(Bu) ≤ εN/2
)
. e−cN/ε. (5.43)

It remains to replace τN in (5.43) by t. For that we distinguish two cases.
(1) ε > (log 2t)/t. In this case we may write

P
(∫ t

0

G∗(Bu)du ≤ ε log 2t
)
≤ P

(∫ τN

0

G∗(Bu)du ≤ ε log 2t
)

+ P(τN ≥ t), (5.44)
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with N = d 1
4

log 2t
log 2 e. Indeed, for the first term we use (5.43) with ε replaced by

(8 log 2)ε and for the second term, we have

P(τN ≥ t) ≤ e−ct
1/2

, (5.45)

for t large enough, thanks to a standard small ball estimate, see Li and Shao (2001).
(2) ε ≤ (log 2t)/t. Note that if∫ t

0

G∗(Bu) du ≤ (log t)2/t, (5.46)

then there is ū ∈ [0, t] such that G∗(Bū) ≤ (log 2t)2/t2. Thus, by the definition of

G∗ and (5.37) we see that ||Bū|| ≥ t/ log 2t. Let N = d 1
4

log 2t
log 2 e. We conclude that

in particular the intersection of the event in (5.46) and {τN ≥ t} is empty. We may
now conclude in a similar fashion as in (1).

�

5.4. Large deviations estimates. Proofs of Lemmas 3.5 and 3.7.

Proof of Lemma 3.5: We prove Lemma 3.5 just for the case r = 1. The extension
to general r can be done via a scaling argument as in Section 5.3. For simplicity, we
assume that t ∈ N, the extension to t ∈ (0,∞) \ N being straightforward. Assume
for the moment that

E
[

exp
(
λ cap(W 0,1

[0,1])
)]
<∞, λ > 0. (5.47)

Then, using (5.15), for λ > 0

P
(

cap
(
W 0,1

[0,t]

)
≥ jt

)
≤ P

( ∑
1≤i≤t

cap
(
W 0,1

(i−1,i]

)
≥ jt

)
≤ e−λjtE

[
exp

(
λ
∑

1≤i≤t

cap(W 0,1
(i−1,i])

)]
≤ exp

{
− λjt+ t log E

(
e
λcap(W 0,1

[0,1]
)
)}
,

(5.48)

by the Markov property. By setting

λ > 2 and j0 =
1

λ− 2
log E

[
e
λcap(W 0,1

[0,1]
)
]
, (5.49)

we obtain the desired result. We now prove (5.47). The proof is inspired from Sznit-
man (1987, Section 5). Define the sequence of stopping times

T0 = 0, Tn+1 = inf{s ≥ Tn : |Bs+Tn
−BTn

| ≥ 1}, n ∈ N0. (5.50)

If N = sup{n ∈ N0 : Tn ≤ 1}, then W 0,1
[0,1] ⊆

⋃N
k=1 B(BTk

, 2), so cap(W 0,1
[0,1]) ≤ cN ,

by (2.5). Therefore,

E
[

exp
(
λ cap(W 0,1

[0,1])
)]
≤ E

[
exp(cλN)

]
. (5.51)

By the Markov property, the increments (Ti−Ti−1)i∈N are iid. Thus, we may write

P(N ≥ n) ≤ P(Tn ≤ 1) = P
( n∑
i=1

(Ti − Ti−1) ≤ 1
)
≤ eγE(e−γT1)n, γ > 0. (5.52)
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From Sznitman (1987, Lemma 5.1), we may choose γ large enough such that
E(e−γT1) < e−cλ, which, in combination with (5.51) and (5.52), concludes the
proof. �

Proof of Lemma 3.7: Recall (5.19). Thus, there is c0 > 0 such that

P
(

cap(W 0,1
[0,t]) ≥ j

t

log t

)
≤ P

(
Zt ≤

c0
j

log t
)
. (5.53)

By Lemma 5.2, there exists j0 ∈ (0,∞) such that for j ≥ j0,

P
(
Zt ≤

c0
j

log t
)
≤ t−cj , (5.54)

from which we get

P
(

cap(W 0,1
[0,t]) ≥ j

t

log t

)
≤ t−cj . (5.55)

We now generalise the estimate to arbitrary radius r > 0. Since

cap(W 0,r
[0,t]) = r2cap(

1

r
W 0,r

[0,t])
(law)

= r2capW 0,1
[0,tr−2], (5.56)

which is of the order

r2 × tr−2

log(tr−2)
=

t

log t+ 2| log r|
∼ t

| log r|
, since t = ε

√
| log r|. (5.57)

Therefore,

P
(

cap(W 0,r
[0,t]) ≥ j

t

| log r|

)
≤ t−cj , j > j0, (5.58)

which holds after a possible increase of j0. �
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