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Abstract. We fix d ≥ 2 and denote S the semi-group of d × d matrices with non
negative entries. We consider a sequence (An, Bn)n≥1 of i.i.d. random variables
with values in S × Rd+ and study the asymptotic behavior of the Markov chain
(Xn)n≥0 on Rd+ defined by:

∀n ≥ 0, Xn+1 = An+1Xn +Bn+1,

where X0 is a fixed random variable. We assume that the Lyapunov exponent of
the matrices An equals 0 and prove, under quite general hypotheses, that there
exists up to a multiplicative constant a unique Radon measure m on (R+)d which
is invariant for the chain (Xn)n≥0; furthermore, this measure m is infinite. The
existence of m relies on a recent work by T.D.C. Pham about fluctuations of the
norm of product of random matrices (Pham, 2018). Its unicity is a consequence
of a general property, called “local contractivity”, highlighted about 20 years ago
by M. Babillot, Ph. Bougerol et L. Elie in the case of the one dimensional affine
recursion (Babillot et al., 1997).

1. Introduction

The Kesten’s stochastic recurrence equation

Xn+1 = an+1Xn + bn+1
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on R, where the (an, bn)n≥1 are independent and identically distributed (i.i.d.)
random variables with values in R∗+×R, has been extensively studied, with special
attention given to the existence of a solution in law and its properties, especially
the tails of the solution.

This process, called sometimes “random coefficients autoregressive models” oc-
curs in different domains, in particular in economics; it has been studied intensively
for several decades by many authors in various context. We refer to the book by
D. Buraczewski, E. Damek & T. Mikosch (Buraczewski et al., 2016) for a general
survey of the topic, a concentrate of recent results with comments and references.

Before the end of the 1990s, most of the authors studied the case when E[ln a1] <
0; this condition ensures that this model has a unique stationary solution when
E[ln+ |b1|] < +∞.

Babillot et al. (1997), then Brofferio (2003), focus on the “critical case” E[ln a1] =
0; they showed, under minimal assumptions on the distribution of the (an, bn),
that (Xn)n has a unique invariant Radon measure m, which is unbounded, and
is recurrent on open sets of positive m-measure. The unicity is a consequence of
a general property of stability of the trajectories at finite distance, called “local
contractivity”. This property is of interest for general iterated function systems
(Peigné and Woess, 2011).

Simultaneously, the affine recursion (Xn)n≥0 has been considered in dimension
d ≥ 2, the random variables an and bn are replaced respectively by d × d random
matrices An with real entries and random vectors Bn in Rd. In this setting, the
contractive case corresponds to the case when the Lyapunov exponent γ associated
with the random matrices An is negative; various properties of the unique invariant
probability have been obtained in this case, based on results of product of random
matrices (see for instance Buraczewski et al., 2016, chap. 4 and references therein).
As far as we know, the existence and unicity of an invariant Radon measure in the
“critical case” γ = 0, is still an open question; the present paper proposes a partial
answer to this problem, under some restrictive conditions on the matrices An and
vectors Bn.

Let us introduce some notations. We fix d ≥ 2 and endow Rd with the norm | · |

defined by |x| :=
d∑
i=1

|xi| for any column vector x = (xi)1≤i≤d. We denote (ei)1≤i≤d

the canonical basis of Rd and set R+ = [0,+∞[ and R∗+ =]0,+∞[.
Let S be the set of d×d matrices with nonnegative entries such that each column

contains at least one positive entry. For any A = (A(i, j))1≤i,j≤d ∈ S, let

v(A) := min
1≤j≤d

( d∑
i=1

A(i, j)
)

and ‖A‖ := max
1≤j≤d

( d∑
i=1

A(i, j)
)
.

The quantity ‖ · ‖ is a norm on S and ‖AB‖ ≤ ‖A‖ × ‖B‖ for any A,B ∈ S;
furthermore, for any A ∈ S and x ∈ Rd+,

0 < v(A) |x| ≤ |Ax| ≤ ‖A‖ |x|. (1.1)

Set n(A) := max
(

1
v(A) , ‖A‖

)
and notice that n(A) ≥ 1.

For any 0 < δ ≤ 1, let Sδ be the subset of matrices A in S such that, for any
1 ≤ i, j, k ≤ d,

A(i, j) ≥ δA(i, k). (1.2)
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Let (Ω, T ,P) be a probability space and (An, Bn)n≥1 be a sequence of i.i.d.
random variables defined on (Ω, T ,P) with distribution µ on S × Rd+. We are
interested in the recurrence properties of the Markov chain (Xn)n≥0 on Rd+ defined
inductively by Xn+1 = An+1Xn + Bn+1 for any n ≥ 0. By an easy induction, we
may write, for any n ≥ 1

Xn = An,1X0 +Bn,1

with An,1 = An · · ·A1 and Bn,1 = Bn +

n−1∑
k=1

An · · ·Ak+1Bk.

When X0 = x for some fixed x ∈ Rd+, we set Xn = Xx
n . The conditional proba-

bility with respect to the event (X0 = x) is denoted by Px; more generally, for any
probability measure m on Rd+, we set Pm(·) =

∫
Rd+

Px(·)m(dx).
For short, we introduce the following notations: An,m := An · · ·Am for any

n ≥ m ≥ 1, with the convention An,m =I when m > n.
Firstly, we introduce some hypotheses on the distribution µ of (An, Bn); we

denote µ̄ the distribution of the matrices An and fix δ ∈]0, 1].

Hypotheses A(δ)
A1- E

[
(ln n(A1))2+δ

]
< +∞.

A2- There exists no affine subspaces A of Rd such that A ∩ Rd+ is non-empty,
bounded and invariant under the action of all elements of the support of µ̄.
A3- µ̄(Sδ) = 1.

A4- The upper Lyapunov exponent γµ̄ = lim
n→+∞

1

n
E[ln ‖A1 · · ·An‖] of µ̄ equals 0.

A5- µ̄{A ∈ S/v(A) ≥ 1 + δ} > 0.

Hypotheses B(δ) The random variables Bk are Rd+-valued, P[|B1| > 0] > 0 and

E[(ln+ |B1|)2+δ] < +∞.
A Radon measure m on Rd+ is said to be invariant for the process (Xn)n≥0 if and
only if ∫

B

P[Xx
1 ∈ B]m(dx) = m(B)

for any Borel set B ⊂ Rd+ such that m(B) < +∞.
Now, let us state the main result of this paper.

Theorem 1.1. Assume hypothesesA(δ) and B(δ) hold. Then, the process (Xn)n≥0

is conservative: for any x ∈ Rd+,
lim inf
n→+∞

|Xx
n | < +∞ P-a.s.

Furthermore,
(1) there exists on Rd+ a unique Radon measure m which is invariant for

(Xn)n≥0;
(2) this measure has an infinite mass;
(3) there exist a positive slowly varying function1 L on R+ and positive con-

stants a, b, c such that for any t ≥ 1,

L(t) ≤ m{x ∈ Rd+/ta ≤ |x| ≤ tb} ≤ cL(t).

1the function L : R+ → R+ is slowly varying if lim
t→+∞

L(tx)

L(t)
= 1 for any x > 0.
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By Peigné and Woess (2011), this statement implies that the chain (Xn)n≥0

is m-topologically null recurrent: in other words, for any open set U ⊂ Rd+ such
that 0 < m(U) < +∞, the stopping time τU := inf{n ≥ 1/Xn ∈ U} is PmU -a.s.
finite and has infinite expectation with respect to PmU , where mU is the probability

measure defined by mU (·) =
m(· ∩ U)

m(U)
.

Assertion 3 gives some general description on the tail of the mesure m. In
dimension 1, a similar statement does exist in Babillot et al. (1997) and has been
improved by Brofferio and Buraczewski (2015) (see also their previous work with E.
Damek, Brofferio et al., 2012): when the distribution of the real random variables
lnAn is “aperiodic”2, the measure m is in fact equivalent at infinity to the Lebesgue
measure; in other words, the slowly varying function L which appears above is
constant in this case. Such a result when d ≥ 2 is out of the scope of the present
paper and would require a detailed understanding of renewal theory for centered
Markov walks.

2. Random iterations and product of random matrices

2.1. On stochastic dynamical systems. The Markov chain Xn, n ≥ 0, is a central
example of the so-called “stochastic dynamical systems” Zn = Zxn on Rd, or a closed
subset C of Rd, defined inductively by

Zx0 = x and Zxn+1 = fn+1(Zxn) for all n ≥ 0,

where x is a fixed point in C and (fn)n≥1 is a sequence of independent and iden-
tically distributed random variables with values in the set of continuous functions
from Rd to Rd (or from C to C).

The contraction properties of the maps fn have a great influence on the recur-
rence/transience properties of the chain (Zn)n≥0. In Peigné and Woess (2011), one
can find a quite general criteria which yields to the existence and uniqueness of an
invariant Radon measure for the sequence (Zn)n≥0.

Firstly, we introduce the following “weak contraction property”: a sequence
(Fn)n≥1 of continuous functions on Rd is said to be locally contractive when, for
any x, y ∈ E and any compact set K ⊂ E,

lim
n→+∞

|Fn(x)− Fn(y)| 1K(Fn(x)) = 0.

This weak “contraction property” is of interest and yields to deep consequences in
the context of stochastic dynamical systems. Let us recall the main result of Peigné
and Woess (2011) and assume that, P-a.s., the sequence (Fn)n≥1 = (fn◦ · · · ◦f1)n≥1

is locally contractive on C ⊂ Rd. Then

(i) either |Zxn| → +∞ P-a.s. (in this case we say that (Zn)n≥0 is transient);
(ii) or lim infn→+∞ |Zxn| < +∞ P-a.s. (in this case we say that (Zn)n≥0 is

conservative).

Furthermore, in the conservative case, there exists on C a unique invariant Radon
measure m for (Zn)n≥0.

If m is infinite, for any open set U ⊂ E such that 0 < m(U) < +∞, the stopping
time τU := inf{n ≥ 1/Zn ∈ U} is PmU -a.s. finite and has infinite expectation with

2a probability distribution on R is aperiodic when its support is not contained in some aZ, a > 0.
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respect to PmU , where mU denotes the probability measure m(· ∩ U)/m(U). This
last property corresponds to the null recurrence behavior of the Markov chain in
the context of denumerable state space.

Let us emphasize that we do not require here any hypothesis of irreducibility on
Rd, as for instance in Élie (1982) where it is assumed that the measure µ is spread
out, which implies that the chain (Xn)n≥0 is Harris recurrent.

Application to the affine recursion on Rd+
Recall that (An, Bn)n≥1 is a sequence of i.i.d. random variables defined on

(Ω, T ,P) with distribution µ on S × Rd+. For any n ≥ 1, we denote gn the random
map on Rd+ defined by:

∀x ∈ Rd+ gn(x) = Anx+Bn.

Notice that, for any x ∈ Rd+ and n ≥ 1,

Xx
n = gn ◦ · · · ◦ g1(x).

We prove in section 3 that the stochastic dynamical system (Xn)n≥0 is conservative
and that, P-a.s., the sequence (gn ◦ · · · ◦ g1)n≥1 is locally contractive on Rd+. By the
general results stated above, this yields the first assertion of Theorem 1.1.

2.2. On the semi-group of positive random matrices. Let X be the standard simplex
in Rd+ defined by

X := {x ∈ Rd+/|x| = 1}
and let X̊ be its interior: X̊ = {x = (xi)1≤i≤d/xi > 0 and |x| = 1}.

Endowed with the standard multiplication of matrices, the set S is a semigroup;
we consider the two following actions of S:

• the left linear action on Rd+ defined by (A, x) 7→ Ax for any A ∈ S and
x ∈ Rd+,

• the left projective action on X defined by (A, x) 7→ A · x :=
Ax

|Ax|
for any

A ∈ S and x ∈ X.
Notice that, for any A ∈ S and x ∈ X, it holds

Ax = |Ax| Ax
|Ax|

= exp(ρ(A, x)) A · x,

with ρ(A, x) = ln |Ax|. The function ρ : S × X→ R satisfies the following “cocycle
property”:

∀A,A′ ∈ S,∀x ∈ X ρ(AA′, x) = ρ(A,A′ · x) + ρ(A′, x).

Hence, for any n ≥ 1, any A1, . . . , An ∈ S and any x ∈ X,

An,1x = exp(Sn(x)) ξn

with ξk := Ak · · ·A1 · x, 1 ≤ k ≤ n, and
Sn(x) = ρ(An, ξn−1) + ρ(An−1, ξn−2) + · · ·+ ρ(A1, x).

This decomposition is of interest in order to control the linear action of product
of random matrices, the behavior of the process (|An,1x|)n≥1 and in particular its
fluctuations.

Now we focus on some important properties of the set Sδ.
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Lemma 2.1. The set Sδ is a semi-group. Furthermore, for any A,B ∈ Sδ and any
x ∈ Rd+,
δ‖A‖ |x| ≤ |Ax| ≤ ‖A‖ |x| and δ‖A‖ ‖B‖ ≤ ‖AB‖ ≤ ‖A‖ ‖B‖. (2.1)

This type of property was first introduced by Furstenberg and Kesten (1960).
They consider another subset of S, namely the set S ′∆ of matrices A satisfying the
stronger condition:

∀1 ≤ i, j, k, l ≤ p 1

∆
A(i, j) ≤ A(k, l) ≤ ∆A(i, j).

The main difference between Sδ and S ′∆ is that, for A ∈ Sδ, inequality (1.2) holds
only for entries in the same line. In particular, elements in S ′∆ have only positive
entries while a matrix A ∈ Sδ can have null coefficients: more precisely, if one entry
of A equals 0, the same holds for all entries in the same line.

The set S ′∆ is a proper subset of Sδ for δ = 1/∆ but is not a semi-group.
Nevertheless the closed semi-group TS′∆ it generates satisfies the following property:
for any A ∈ TS′∆ and 1 ≤ i, j, k, l ≤ p,

1

∆2
A(i, j) ≤ A(k, l) ≤ ∆2A(i, j).

In other words, TS′∆ ⊂ S
′
∆2 .

Proof of Lemma 2.1: Let A,B ∈ Sδ; for any 1 ≤ i, j, k ≤ d,

(AB)(i, j) =

d∑
l=1

A(i, l)B(l, j) ≥ δ
d∑
l

A(i, l)B(l, k) = δ(AB)(i, k),

hence AB ∈ Sδ.
Let us prove (2.1). Inequalities |Ax| ≤ ‖A‖ |x| and ‖AB‖ ≤ ‖A‖ ‖B‖ are

obvious. Furthermore,

|Ax| =
d∑

i,j=1

A(i, j)xj ≥ δ
d∑
j=1

xj

(
d∑
i=1

A(i, k)

)
for any 1 ≤ k ≤ d, which readily yields |Ax| ≥ δ‖A‖ |x|. At last,

‖AB‖ = max
1≤k≤d

d∑
i=1

AB(i, k) = max
1≤k≤d

d∑
i,j=1

A(i, j)B(j, k)

≥ δ max
1≤k,l≤d

d∑
i,j=1

A(i, l)B(j, k)

= δ max
1≤l≤d

d∑
i=1

A(i, l) max
1≤k≤d

d∑
j=1

B(j, k) = δ‖A‖ ‖B‖.

�

Let us highlight an interesting property of the action on the cone Rd+ of elements
of the semi-group Sδ. For any A ∈ S, denote tA its transpose matrix; if A ∈ Sδ,
then, for 1 ≤ i, j ≤ d,

〈ei,tAej〉 = A(j, i) while |tAej | =
d∑
k=1

A(j, k) ≤ d

δ
A(j, i).
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Hence, 〈ei,tAej〉 ≥
δ

d
|tAej |. In other words,

tA(Rd+) ⊂ C δ
d
,

where Cc, c > 0, denotes the proper sub-cone of Rd+ defined by

Cc =
{
x ∈ Rd+/〈ei, x〉 ≥ c|x| for i = 1, . . . , d

}
.

Following Hennion (1997), we endow X with a bounded distance d such that any
A ∈ S acts on X as a contraction with respect to d. In the following lemma, we
just recall some fundamental properties of this distance.

Lemma 2.2. There exists a distance d on X compatible with the standard topology
of X satisfying the following properties:

(1) sup{d(x, y)/x, y ∈ X} = 1.
(2) |x− y| ≤ 2d(x, y) for any x, y ∈ X.
(3) For any A ∈ S, set [A] := sup{d(A · x,A · y)/x, y ∈ X}; then,

(a) d(A · x,A · y) ≤ [A]d(x, y) for any x, y ∈ X;
(b) [AA′] ≤ [A][A′] for any A,A′ ∈ S;

(4) There exists ρδ ∈]0, 1[ such that [A] ≤ ρδ for any A ∈ Sδ.

Proof : The reader can find in Hennion (1997) a precise description of the properties
of the distance d, that is defined as follows: for any x, y ∈ Rd+ \ {0}, we write

d(x, y) :=
1−m(x, y)m(y, x)

1 +m(x, y)m(y, x)

where m(x, y) = min
1≤i≤d

{
xi
yi
|yi > 0

}
. Notice that d(x, y) = d(λx, µy) for any x, y ∈

Rd+ \ {0} and λ, µ > 0.
Properties 1 and 2 correspond to Lemma 10.2 and 10.4 in Hennion (1997). Prop-

erty 3 is proved in Hennion (1997) Lemma 10.6 for matrices A with nonnegative
entries such that each column and each line contains at least a positive entry. This
property still holds for matrices in S that have some zero lines: heuristically, we
can just restrict at the sub-simplex of X where it acts with positive entries. More
formally, let A ∈ S, fix i0 such that A(i0, k) > 0 for some 1 ≤ k ≤ d and denote
BA the element of S defined by:

BA(i, j) =

{
A(i, j) if

∑d
k=1A(i, k) > 0;

A(i0, j) if
∑d
k=1A(i, k) = 0.

Each column and each line of BA contains a positive entry.
Notice that, for any x, y in Rd+ and A ∈ S,

d(A · x,A · y) = d(Ax,Ay).

By a straightforward calculation,

m(Ax,Ay) = min
1≤i≤d

{∑d
k=1 xkA(i, k)∑d
k=1 ykA(i, k)

|
d∑
k=1

ykA(i, k) > 0

}
= m(BAx,BAy),

thus d(Ax,Ay) = d(BAx,BAy), [A] = [BA] and

d(A · x,A · y) = d(BA · x,BA · y) ≤ [BA]d(x, y) = [A]d(x, y).
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This proves Property 3.a, then Property 3.b as in Hennion (1997). Let us now
prove Property 4; for any A ∈ Sδ,∑d

k=1 xkBA(i, k)∑d
k=1 ykBA(i, k)

≥ δ2BA(i, 1)|x|
BA(i, 1)|y|

= δ2 |x|
|y|
.

Thus m(Ax,Ay) ≥ δ2|x|/|y|. The fact that the function s 7→ 1−s
1+s is decreasing on

[0, 1] yields [A] ≤ 1−δ4

1+δ4 < 1. �

Property (4) of Lemma 2.2 readily implies that, for any x, y ∈ X and any n ≥ 0,

E [d (An,1 · x,An,1 · y)] ≤ ρnδ . (2.2)

As a direct consequence, the transition operator of the Markov chain (An,1 · x)n≥0

on X, restricted to the space of Lipschitz functions on (X, d), is quasi-compact; we
refer to Pham (2018) for a detailed proof.

2.3. On fluctuations of the norm of product of random matrices. In this subsection,
we recall some recent result on fluctuations of the norm of product of random
matrices. We consider a sequence of independent random matrices (An)n≥0 with
nonnegative coefficients, defined on the probability space (Ω, T ,P) and with the
same distribution µ̄ on S. For any n ≥ 1, denote Tn the σ-algebra generated by the
random variables A1, . . . , An and set T0 = {∅,Ω}.

We study here the left products of these random matrices defined as follows:
An,m = AnAn−1 · · ·Am for any 1 ≤ m ≤ n; by convention An,m = I when m > n.

Fix x ∈ X and a ≥ 1; the random variables

τx,a := min{n ≥ 1 : a|An,1x| ≤ 1} and τa := min{n ≥ 1 : a‖An,1‖ ≤ 1}

are stopping times with respect to the canonical filtration (Tn)n≥0 associated with
the sequence (An)n≥1, with values in N ∪ {+∞}. Furthermore τx,a ≤ τa P-a.s.

Under hypotheses A(δ), the sequence (ln ‖An,1‖/
√
n)n≥0 converges in distri-

bution to a non degenerated and centered Gaussian distribution (with variance
σ2 > 0); by a standard argument in probability theory, it yields

lim inf
n→+∞

‖An,1‖ = 0 and lim sup
n→+∞

‖An,1‖ = +∞ P-a.s. (2.3)

Indeed, for any c > 0,

P
[
lim sup
n→+∞

ln ‖An,1‖
σ
√
n

> c

]
≥ P

(
lim sup
n→+∞

[
ln ‖An,1‖
σ
√
n

> c

])
≥ lim sup

n→+∞
P
[

ln ‖An,1‖
σ
√
n

> c

]
=

1√
2π

∫ +∞

c

e−t
2/2dt > 0.

Now, observe that
[
lim sup
n→+∞

ln ‖An,1‖
σ
√
n

> c

]
is a tail event relative to the sequence

(An)n≥1; thus, by Kolmogorov’s zero-one law, its probability equals 1. Hence

P
[
lim sup
n→+∞

ln ‖An,1‖
σ
√
n

= +∞
]

= P
(
∩c∈N

[
lim sup
n→+∞

ln ‖An,1‖
σ
√
n

> c

])
= 1.
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Similarly,

P
[
lim inf
n→+∞

ln ‖An,1‖
σ
√
n

< −c
]
≥ P

(
lim sup
n→+∞

[
ln ‖An,1‖
σ
√
n

< −c
])

≥ 1√
2π

∫ +∞

c

e−t
2/2dt > 0,

so that P
[
lim inf
n→+∞

ln ‖An,1‖
σ
√
n

= −∞
]

= P
(
∩c∈N

[
lim inf
n→+∞

ln ‖An,1‖
σ
√
n

< −c
])

= 1.

Property (2.3) follows immediately and implies that the stopping times τx,a and τa
are P-a.s. finite.

In Pham (2018), a precise estimate of the tail of the distribution of τx,a is ob-
tained under a little bit different assumptions (Proposition 1.1 and Theorem 1.2);
let us state the partial result we need in our context and explain briefly the amend-
ments to the proofs given in Pham (2018).

Proposition 2.3. Assume hypotheses A(δ). Then, there exists a positive constant
κ such that, for any x ∈ X, a ≥ 1 and n ≥ 1,

P[τx,a > n] = P[a|A1x| > 1, . . . , a|An,1x| > 1] ≤ κ1 + ln a√
n

.

Our hypotheses A2 and A4 correspond exactly to P2 and P4 in Pham (2018);
hypothesis A5 is a little bit stronger than P5, it is more natural in our context.

Hypotheses A3 and P3 both imply the contraction property (2.2); this yields
to the good spectral properties of the transition operator of the Markov chain
(An,1 · x)n≥0 on X.

At last, existence of moments of order 2 + δ (our hypothesis A1) is sufficient
instead of exponential moments P1. This ensures firstly that the function t 7→ Pt
in Pham (2018), Proposition 2.3 is C2, which is sufficient for this Proposition to
hold. Secondly the martingale (Mn)n≥0 which approximates the process (Sn(x))n≥0

belongs to Lp for p = 2 + δ (and not for any p > 2 as stated in Pham (2018)
Proposition 2.6). This last property was useful in Pham (2018) to achieve the
proof of Lemma 4.5, choosing p great enough in such a way (p − 1)δ − 1

2 > 2ε for
some fixed constant ε > 0. Recently, following the same strategy as C. Pham, M.
Peigné and W. Woess have improved this part of the proof, by allowing various
parameters (see Peigné and Woess, 2021+, Proof of Theorem 1.6 (d)).

As a direct consequence, a similar statement holds for the tail of the distribution
of the stopping times τa; this is of interest in the sequel since the overestimations
obtained do not depend on the starting point x ∈ X of the chain (Xn)n≥0.

Corollary 2.4. Assume hypotheses A(δ). Then, for any a ≥ 1 and n ≥ 1,

P[τa > n] = P[a‖A1‖ > 1, . . . , a‖An,1‖ > 1] ≤ κ(1 + | ln δ|)1 + ln a√
n

where κ is the constant given by Proposition 2.3.

Proof : By Lemma 2.1, for any k ≥ 1 and x ∈ X,

δ‖Ak,1‖ ≤ |Ak,1x| ≤ ‖Ak,1‖ P-a.s.

Proposition 2.3 yields
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P[τa > n] ≤ P[τx,a/δ > n] ≤ κ1 + ln a+ | ln δ|√
n

≤ κ(1 + | ln δ|)1 + ln a√
n

.

�

3. Existence and uniqueness of an invariant Radon measure for (Xn)n≥0

The Markov chain (Xn)n≥1 is a stochastic dynamical system generated by the
random maps Fn : x 7→ Anx+Bn on Rd. By section 2.1, in order to get the existence
and the uniqueness of an invariant Radon measure for this process, it suffices to
check that, under hypotheses A(δ) and B(δ), this process is conservative and the
sequence (Fn ◦ · · · ◦ F1)n≥1 is P-a.s. locally contractive. This is the matter of the
two following subsections.

3.1. On the conservativity of the process (Xn)n≥0. Under hypotheses A(δ), the
sequences (|An,1x|)n≥1 and (‖An,1‖)n≥1 fluctuate P-a.s. between 0 and +∞; hence,
the stopping times τx,a and τa are finite P-a.s.

From now on, we fix a > 1 and set τ0 = 0, then for any k ≥ 1, we denote

τk := inf{n > τk−1/a‖An,τk−1+1‖ ≤ 1}.
Notice that τ1 = τa and for k ≥ 0, the random variables τk are P-a.s. finite stopping
times with respect to the filtration (Tn)n≥0.

The process (Xn)n≥0 is conservative if and only if for any x ∈ Rd+,

P
[
lim inf
n→+∞

|Xx
n | < +∞

]
= 1.

This property holds in particular when

P
[
lim inf
k→+∞

|Xx
τk
| < +∞

]
= 1. (3.1)

Notice that Xx
τk

= Aτk,1x+Bτk,1 with

• Aτk,1 =

k∏
`=1

Aτ`,τ`−1+1 = Ãk · · · Ã1,

• Bτk,1 =

k∑
`=1

Aτk · · ·Aτ`+1

 τ∑̀
j=τ`−1+1

Aτ`,j+1Bj

 =

k∑
`=1

Ãk · · · Ã`+1B̃`.

The random variables Ã` := Aτ`,τ`−1+1, ` ≥ 1, are i.i.d. with the same distribu-
tion as Ã1; in other words, the sequence (Aτn,1)n≥0 is a random walk on S with
distribution L(Ã1) and for any k ≥ 1,

‖Aτk,1‖ = ‖Ãk · · · Ã1‖ ≤
1

ak
P-a.s. (3.2)

Similarly, the random variables B̃` :=

τ∑̀
j=τ`−1+1

Aτ`,j+1Bj ,` ≥ 1, are i.i.d. with the

same distribution as B̃1 =

τ1∑
j=1

Aτ1,j+1Bj .

In order to prove (3.1), we first need to check that the B̃` have logarithm mo-
ments. This is the aim of the following statement.
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Lemma 3.1. Under hypotheses A and B(δ),

E
[
ln(1 + |B̃1|)

]
< +∞. (3.3)

The proof of (3.3) relies on the following classical result (see Élie, 1982 for a
detailed argument):

Let (U`)`≥1 be a sequence of i.i.d. non negative random variables such that
P[U1 6= 0] > 0.

Then,

lim sup
`→+∞

U
1/`
` < +∞ P-a.s. =⇒ E

[
ln(1 + U1)

]
< +∞ (3.4)

and

E
[
ln(1 + U1)

]
< +∞ =⇒ lim sup

`→+∞
U

1/`
` = 1 P-a.s. (3.5)

Before to detail the proof of the lemma, let us explain how it yields (3.1). By
combining (3.3) and (3.5), it holds lim sup

`→+∞
|B̃`|1/` = 1, so that

lim sup
`→+∞

|Ã1 · · · Ã`−1B̃`|1/` ≤ lim sup
`→+∞

|Ã1 · · · Ã`−1|1/`× lim sup
`→+∞

|B̃`|1/` ≤
1

a
< 1 P-a.s.

Hence, the series
+∞∑
`=1

Ã1 · · · Ã`−1B̃` converges P a.s. to some random variable B̃∞;

this implies that (Bτk,1)k≥1 converges in distribution towards B̃∞, since Bτk,1 has

the same distribution as
k∑
`=1

Ã1 · · · Ã`−1B̃`. By (3.2), the same property holds for

the sequence (Xτk)k≥0 for any x ∈ Rd+. Consequently,

P[lim inf
k→+∞

|Xx
τk
| < +∞] = P[|B̃∞| < +∞] = 1.

�

Proof of Lemma 3.1: By (3.4), it is sufficient to check that

lim sup
`→+∞

|B̃`|1/` < +∞ P-a.s.

For any ` ≥ 1, it holds

|B̃`| ≤
τ∑̀

j=τ`−1+1

‖Aτ`,j+1‖ |Bj |

≤ 1

δ
‖Aτ`,τ`−1+1‖

τ∑̀
j=τ`−1+1

|Bj |
‖Aj,τ`−1+1‖

≤ 1

δ

τ∑̀
j=τ`−1+1

|Bj |

since ‖Aτ`,τ`−1+1‖ ≤ 1
a < ‖Aj,τ`−1+1‖ P-a.s. for τ`−1 < j < τ`.
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It remains to check that

lim sup
`→+∞

( τ∑̀
j=τ`−1+1

|Bj |
)1/`

< +∞ P-a.s.

Indeed, we prove the stronger convergence

lim sup
`→+∞

( τ∑̀
j=1

|Bj |
)1/`

< +∞ P-a.s. (3.6)

Notice that, for any α > 0,

ln

 τ∑̀
j=1

|Bj |

1/`

≤ 1

`
ln
(

1 +

τ∑̀
j=1

|Bj |
)

=
τα`
`

 1

τα`
ln
(

1 +

τ∑̀
j=1

|Bj |
)

Recall that the random variables τj+1 − τj are i.i.d. with distribution L(τ1); fur-
thermore, by Corollary 2.4, there exists c(a) > 0 s.t.

P[τ1 > n] = P[τa > n] ∼ c(a)√
n

as n→ +∞.

Hence,
- on the one hand, for any α < 1/2, it holds E(τα1 ) < +∞, so that lim sup

`→+∞
τα` /` <

+∞ P-a.s.;

- on the other hand, the inequality ln
(

1 +

τ∑̀
j=1

|Bj |
)
≤ ln τ` + max

1≤j≤τ`
ln(1 + |Bj |)

yields

lim sup
`→+∞

1

τα`
ln

1 +

τ∑̀
j=1

|Bj |

 ≤ lim sup
`→+∞

1

τα`
max

1≤j≤τ`
ln(1 + |Bj |)

= lim sup
`→+∞

( 1

τ`
max

1≤j≤τ`

(
ln(1 + |Bj |)

)1/α)α
≤ lim sup

`→+∞

( 1

τ`

τ∑̀
j=1

(
ln(1 + |Bj |)

)1/α)α
.

By hypotheses A1 and B(δ), if α ≥ 1
2+δ , the random variable ln(1 + |B1|)1/α is

integrable and the strong law of large numbers implies

lim sup
`→+∞

1

τα`
ln
(

1 +

τ∑̀
j=1

|Bj |
)
≤
(
E
[(

ln(1 + |B1|)
)1/α])α

< +∞.

The proof of (3.6) arrives choosing 1
2+δ ≤ α < 1

2 , which achieves the proof of
Lemma 3.1. �
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3.2. On the local contractivity of the process (Xn)n≥0 on Rd+. Local contractivity
is a direct consequence of the following Lemma.

Lemma 3.2. Assume that

•
+∞∑
n=0

1[‖An,1‖≤1] = +∞ P-a.s.

• the Bk are Rd+-valued and P[B1 6= 0] > 0.
Then, P-a.s., for any x, y ∈ Rd+ and any K > 0,

lim
n→+∞

|Xx
n −Xy

n|1[|Xxn|≤K] = 0.

Proof : We use here the argument developed in Brofferio and Buraczewski (2015),
Theorem 1.2. Observe that

|Xx
n −Xy

n|1[|Xxn|≤K] ≤ ‖An,1‖|x− y|1[|Xxn|≤K] ≤
K
|Xxn|
‖An,1‖

|x− y|

(with the convention 1
0 = +∞). Fix ε > 0 such that pε := P

[
|B1|
‖A1‖

≥ ε
]
> 0. We

consider the sequences (εk)k≥1 and (ηk)k≥1 of Bernoulli random variables defined
by: for any k ≥ 1,

εk = 1[|Bk|/‖Ak‖≥ε] and ηk = 1[‖Ak−1,1‖≤1].

For any k ≥ 1, the random variable εk is independent on (η1, . . . , ηk) and P[εk =
1] = pε > 0. Lemma 2.1 readily implies: for any x ∈ Rd+,

|Xx
n |

‖An,1‖
≥ |Bn,1|
‖An,1‖

=

n∑
k=1

|An,k+1Bk|
‖An,1‖

≥ δ
n∑
k=1

‖An,k+1‖|Bk|
‖An,1‖

≥ δ
n∑
k=1

|Bk|
‖Ak,1‖

with
n∑
k=1

|Bk|
‖Ak,1‖

≥
n∑
k=1

|Bk|
‖Ak‖

1

‖Ak−1,1‖
≥ ε

n∑
k=1

εkηk.

By hypothesis, it holds
+∞∑
k=1

ηk = +∞ P-a.s.; consequently
n∑
k=1

εkηk → +∞ P-a.s.,

by the following statement.

Lemma 3.3. Let (εk)k≥1 and (ηk)k≥1 be two sequences of Bernoulli random vari-
ables defined on (Ω, T ,P) such that

(1)
+∞∑
k=1

ηk = +∞ P-a.s.;

(2) the εk are i.i.d. Bernoulli random variables with parameter 0 < p ≤ 1;
(3) for any k ≥ 1, the random variable εk is independent on η1, . . . , ηk.

Then
+∞∑
k=1

εkηk = +∞ P-a.s.

�

Proof of Lemma 3.3: Let us introduce the sequence (tk)k≥1 of stopping times with
respect to the filtration (σ(η1, . . . , ηk))k≥1 defined by

t0 = 1, t1 := inf{n ≥ 1/ηn = 1} and tk+1 := inf{n > tk/ηn = 1}.
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By hypothesis 1. the stopping times tk for k ≥ 1 are P-a.s. finite. Furthermore, by
the strong Markov’s property, hypotheses 2. and 3. yield: for any i, j ≥ 1,

P[εti = 0, . . . , εti+j = 0]

= E
[
E[1[εti=0,...,εti+j=0]/η1, . . . , ηti+j , ε1, . . . , εti+j−1]

]
= E

[
1[εti=0,...,εti+j−1

=0]P[εti+j = 0/η1, . . . , ηti+j , ε1, . . . , εti+j−1]
]

= (1− p) P[εti = 0, . . . , εti+j−1 = 0] = . . . = (1− p)j .

Hence P[lim inf
i→+∞

[εti = 0]] = 0 so that
+∞∑
k=1

εkηk =

+∞∑
i=1

εtiηti = +∞ P-a.s. �

3.3. Proof of Theorem 1.1 (1) and (2).
1. We use the properties stated in subsection 2.1 about stochastic dynamical

systems.
The existence of an invariant Radon measure m, follows from the conservativity

of the process (Xn)n≥0 proved in subsection 3.1.
The uniqueness of m is a consequence of the local contractivity of (Xn)n≥0

established in subsection 3.2.
2. The fact that m is infinite is a direct consequence of Theorem 3.2-A in

Bougerol and Picard (1992): indeed, if m was finite, then the Lyapunov exponent
γµ̄ would be negative, contradiction.

4. Estimation on the tail of the invariant measure m

In this section, we prove the second assertion of Theorem 1.1; this is a direct
consequence of the following statement, where the slowly varying function L is
explicit. Firstly, we introduce some notation: for any t > 0 and any compact set
K ⊂ Rd+;

tK = {tx ∈ Rd+/x ∈ K}.

Proposition 4.1. Assume hypotheses A(δ) and B(δ) hold and let m be the unique
(up to a multiplicative constant) invariant Radon measure for the process (Xn)n≥0.

Then, there exists a compact set K◦ ⊂ Rd+ \ {0} such that
(1) the function L : t 7→ m(tK◦) is positive and slowly varying on R+,
(2) the family (mt)t≥1 of normalized measures on Rd+ \ {0} defined by

mt(K) :=
m(tK)

L(t)
(4.1)

is vaguely relatively compact. In particular, there exist 0 < a < b and c > 1
such that for any t ≥ 1,

L(t) ≤ m
{
x ∈ Rd+/ta ≤ |x| ≤ tb

}
≤ cL(t).

4.1. Preliminary results. First, we prove the following statement.

Lemma 4.2. Under hypotheses A(δ) and B(δ), there exists a compact set K◦ ⊂
Rd+ \ {0} such that

(1) the quantity m(tK◦) is positive for any t ≥ 1;
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(2) for every compact set K ⊂ Rd+ \ {0}, there exists a positive constant κK
such that

∀t > 1, m(tK) ≤ κKm(tK◦). (4.2)

In other words, setting L(t) := m(tK◦), inequality (4.2) states that the family
(mt)t≥1 is vaguely relatively compact.

Proof of Lemma 4.2: We consider the family (AR)R>0 of closed “annuli” (in the
sense of the norm | · |) defined by: for any R > 0,

AR =

{
x ∈ Rd+ \ {0}/

1

R
≤ |x| ≤ R

}
.

For a, b > 0, we denote by V(a, b) the subset of elements g = (A,B) ∈ Sδ×Rd+ \{0}
such that

‖A‖+ |B| < ab and ‖A‖ > 1

δ

b

a
.

The set V(a, b) is trivially empty when ab ≤ 1
δ
b
a i.e a ≤ 1√

δ
; hence, since 0 < δ ≤ 1,

we assume from now on a > 1, so that V(a, b) is not empty.
From now on, we fix two radii r < R in (1,+∞).

Recall also that, to simplify the notations, we denote by g both the couple
(A,B) ∈ S ×Rd+ \ {0} and the map x 7→ Ax+B on Rd+; the “linear” component of
g is A = A(g) and its “translation component” is B = B(g).
The proof of the Lemma is decomposed in 4 steps.
Step 1. For any t > 0, s > 1/r and g ∈ V

(
R
r ,

t
s

)
, it holds g(sAr) ⊂ tAR.

Indeed, g = (A,B), we get the following inequalities for x ∈ sAr :

|g(x)| ≤ ‖A‖ × |x|+ |B| ≤ (‖A‖+ |B|)sr < tR

and

|g(x)| ≥ |Ax| ≥ δ‖A‖ × |x| ≥ δ‖A‖s
r
>

t

R
.

Step 2. m(tAR) > 0 for R > 0 great enough and any t > 1.
By hypotheses A2 and A4, there exists N ≥ 1 and an element g = (A,B) in

supp(µ∗N ) such that the spectral radius ρ(A) of A is greater than 1.
Notice that, for any n ≥ 1 and x ∈ Rd+,

gn(x) = A(gn)x+B(gn)

with A(gn) = An and B(gn) :=
∑n−1
k=0 A

kB.
First, there exists a constant β > 0 such that |B(gn)| ≤ β‖An‖. Indeed, by

Lemma 2.1,

|B(gn)|
‖A(gn)‖

=

∣∣∣∑n−1
k=0 A

kB
∣∣∣

‖An‖
≤ 1

δ
|B|

n−1∑
k=0

1

‖An−k‖
≤ 1

δ
|B|

+∞∑
i=1

1

‖Ai‖
=: β,

with β < +∞ since ρ(A) > 1.
Second, for any t > 1, set nt := inf{n ≥ 1/t ≤ ‖An‖}. Notice that nt < +∞

since ‖An‖ → +∞. By the inequality ‖Ant−1‖ < t ≤ ‖Ant‖, for k > max{(1 +
β)‖A‖, 1

δ },

‖A(gnt)‖+ |B(gnt)| ≤ (1 + β)‖Ant‖ ≤ (1 + β)‖A‖ × ‖Ant−1‖ ≤ (1 + β)‖A‖t < kt
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and
‖A(gnt)‖ = ‖Ant‖ ≥ 1

δ
δt >

1

δ

t

k
.

Hence, for T > max{1 + β, 1
δ },
gnt ∈ V(T, t) ∀t > 1. (4.3)

Last, we fix r0 > 1 such that m(Ar0) > 0. For R > max{1 +β, 1
δ }r0 and any t > 1,

it holds

m(tAR) = (µNnt ∗m)(tAR)

≥
∫

1V( Rr0
,t)(g)1tAR(g(x))dµNnt(g)dm(x)

≥
∫

1V( Rr0
,t)(g)1g(Ar0 )(g(x))dµNnt(g)dm(x) (by Step 1, with s = 1)

≥ µNnt
(
V
(R
r0
, t
))

m(Ar0)

with µNnt
(
V
(R
r0
, t
))

> 0 since gnt ∈ supp(µNnt) ∩ V( Rr0 , t) and V( Rr0 , t) is open.

The proof of Step 2 is complete.
Step 3. For any r > 1, there exists Rr > 0 such that, for R ≥ Rr and s > 0,

∀t > 1 m(tsAr) ≤ κsm(tAR), (4.4)

for some constant κs = κs(r,R) > 0.
Case s < 1.

Assume R > max{1 +β, 1
δ }r, so that gn1/s ∈ V(Rr ,

1
s ) by (4.3). Consequently, as

above,

m(tAR) = (µNn1/s ∗m)(tAR)

≥
∫

1V(Rr ,
1
s )(g)1tAR(g(x))dµNn1/s(g)dm(x)

≥
∫

1V(Rr ,
1
s )(g)1g(tsAr)(g(x))dµNn1/s(g)dm(x) (by Step 1)

≥ µNn1/s

(
V
(R
r
,

1

s

))
m(tsAr).

Inequality (4.4) holds with κs = 1

µ
Nn1/s (V(Rr ,

1
s ))
.

Case s ≥ 1.
As in Step 2, by hypotheses A2 and A4, there exist N ≥ 1 and g− = (A−, B−)

in supp(µ∗N ) such that the spectral radius ρ(A−) of A− is less than 1. First, as

above, for any n ≥ 1, the norm |B(gn−)| is smaller than β− :=

+∞∑
k=0

‖Ak−‖ × |B−|.

Second, for any s ≥ 1, set ms := inf{m ≥ 1/ 1
s ≥ ‖A

m
−‖}. Notice that ms < +∞

(since ‖Am−‖ → 0) and

‖Ams−1
− ‖ > 1

s
≥ ‖Ams− ‖ ≥ δ‖A−‖ × ‖A

ms−1
− ‖ > δ‖A−‖

1

s

so that gms− belongs to the set

U(s) := {g = (A,B)/δ‖A−‖
1

s
< ‖A‖ ≤ 1

s
and |B| ≤ β−},
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and µNms(U(s)) > 0.
Let us choose R > max{ r

δ2‖A−‖ , r + β−}. For g ∈ U(s) and x ∈ tsAr,

|g(x)| ≤ ‖A‖tsr + |B| ≤ tr + β− < t(r + β−) < tR (since t > 1)

and

|g(x)| ≥ δ‖A‖ ts
r
≥ δ2‖A−‖

t

r
>

t

R

that is g(tsAr) ⊂ tAR. This yields, reasoning as in step 2,

∀t > 1,∀s ≥ 1,
m(tsAr)
m(tAR)

≤ 1

µNms(U(s))
< +∞.

Step 4. By (4.4), Lemma 4.2 holds for K◦ := AR and any compact set K ⊂
Rd+ \{0} of the form sAr with s > 0. To extend this result to a generic compact set
K ⊂ Rd+ \{0}, we just observe that such a compact set satisfies K ⊂

⋃k
`=1 s`Ar, for

some nonnegative reals s1, . . . , sk (depending on K); we take κK =
∑k
n=1 κsn . �

Before concluding this section, we state some general result about harmonic
functions for random walks on topological semigroups; it will be useful to achieve the
proof of Theorem 1.1 (iii). It relies on standard arguments in potential theory but
we did not find any precise reference in the literature; for the sake of completeness,
we detail the proof in the Appendix.

Lemma 4.3. Let T be a locally compact Hausdorff topological semi-group (with
identity e) and µ◦ be a Borel probability on S. Let

Tµ◦ =
⋃
n=0

supp(µn◦ )

be the closed sub-semigroup of T generated by the support of µ◦. The“conservative
part” Rµ◦ of Tµ◦ is defined by

Rµ◦ :=

{
s ∈ Tµ◦/

+∞∑
n=1

µn◦ (Vs) = +∞ for all open neighborhood Vs of s

}
.

Then
(1) Rµ◦ is a closed ideal of Tµ◦ , i.e. Rµ◦Tµ◦ ⊆ Rµ◦
(2) Let h be a continuous superharmonic function for the right random walk

with law µ◦ on T , that is a function h : Tµ◦ → [0,+∞) such that Ph(s0) :=∫
h(s0s)dµ◦(s) ≤ h(s0) for all s0 ∈ T .

Then h(rs) = h(r) for all r ∈ Rµ◦ and s ∈ Tµ◦ .

Let us emphasize that, in this general setting, the ideal Rµ◦ may be empty;
furthermore, when Rµ◦ 6= ∅, it may not coincide with the semigroup Tµ◦ . For
instance, in the context of product of elements in Sδ, the conservative part Rµ◦ is
included in the set of rank 1 matrices, which is a proper subset of Tµ◦ .

4.2. Proof of Theorem 1.1 (iii). We follow the strategy developed in Babillot et al.
(1997) and Brofferio et al. (2012). The proof is decomposed into 3 steps. Recall
that µ denotes the law of the random variable A1 and that its support is included
in Sδ. In the sequel, we apply Lemma 4.3 with T = Sδ.
Step 1. There exists A0 ∈ Rµ such that
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• rankA0 = 1;
• ImA0 = Rv0 and A0v0 = λ0v0, for some v0 ∈ X and λ0 > 1.
The Markov chain (An,1 · x, |An,1x|)n≥0 being recurrent on X×R+, it holds, for

M ≥ 1 great enough,
+∞∑
n=0

P
(

1

δ2
≤ ‖An,1‖ ≤M

)
= +∞. (4.5)

Since D :=
{
A ∈ Sδ/ 1

δ2 ≤ ‖A‖ ≤M
}
is compact in Sδ \ {0}, the set Rµ ∩D is non

empty. Otherwise, D is included in Sδ \Rµ and there exists a finite cover V1, . . . , Vk

of D with open sets Vi such that
k∑
i=1

µn(Vi) < +∞ for i = 1, . . . , k. Contradiction

with (4.5).
From now on, we fix some element A0 ∈ Rµ ∩ D. First, let us check that

rank(A0)=1.
By definition of Rµ, for any open set O ⊂ Sδ which contains A0, it holds

+∞∑
n=0

P(An,1 ∈ O) = +∞.

For any x, y ∈ X and ε > 0, the open set Ox,y,ε := {A ∈ Sδ/d(A · x,A · y) > ε}
does not contain A0; indeed, by (2.2),

+∞∑
n=0

P(d(An,1 · x,An,1 · y) > ε) ≤ 1

ε

+∞∑
n=0

E(d(An,1 · x,An,1 · y)) < +∞.

Hence, for any x, y ∈ X and ε > 0, it holds A0 /∈ Ox,y,ε, thus d(A0 · x,A0 · y) ≤ ε.
Letting ε→ 0 yields d(A0·x,A0·y) = 0 for any x, y ∈ X; in other words, rankA0 = 1.

Let v0 ∈ Rd, v0 6= 0, such that Im A0 = Rv0. By the Perron-Frobenius’s theorem,
the matrix A0 has a dominant and simple eigenvalue λ0 with eigenvector v0 ∈ X;
furthermore, since A0 ∈ D,

λ0 = |A0v0| ≥ δ‖A0‖ ≥
1

δ
> 1.

�
Now, we introduce the function L. For any compact set J ⊆ R+, set KJ :=

Jv0 + KerA0; the set KJ ∩ Rd+ is compact in Rd+ \ {0}.
We consider the intervals IN := [λ−N0 , λN0 ] for N ≥ 1; by Lemma 4.2, for N great

enough, the family of measure

K 7→ mt(K) :=
m(tK)

m(tKIN )

is vaguely relatively compact. We fix such an integer N and set L(t) := m(tKIN ).
We claim that the function L is slowly varying. First, we need to state some

properties of cluster points of the family (mt)t>0, this is the purpose of the following
step.
Step 2. Any weak cluster point η = limi→+∞mti of the family (mt)t>0 satisfies∫

Rd+
φ(AA′x)dη(x) =

∫
Rd+
φ(Ax)dη(x) (4.6)
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for any A ∈ Rµ, A′ ∈ Sµ and any Lipschitz, compactly supported function φ on
Rd+ \ {0}.

We fix a Lipschitz, compactly supported function φ : Rd+\{0} → R; we denote by
[φ] its Lipschitz coefficient and chose M > 0 such that the support of φ is included
in AM ∩ Rd+.

Set hφ(A) :=
∫
φ(Ax)dη(x) for any A ∈ Rµ. The fact that A ∈ S ensures that

A−1AM ∩ Rd+ ⊂ ANM ∩ Rd+
with N = n(A) ≥ 1; hence |hφ(A)| ≤ |φ|∞η(ANM ) < +∞, which proves that hφ is
bounded on Rµ.

A similar argument shows that hφ is continuous on Rµ. Indeed, if An → A, then
A−1
n AM ∩ Rd+ ⊂ AN ′M ∩ Rd+ for some N ′ ≥ 1 and all n ≥ 1. Thus, |φ(Anx)| ≤
|φ|∞1AN′M (x) and φ(Anx) → φ(Ax) as n → +∞, for all x ∈ Rd+. One concludes
using the dominated convergence theorem.

Now, observe that for all (A,B) ∈ S × Rd+ and any t > 0,∣∣∣|t−1(Ax+B)| − |t−1(Ax)|
∣∣∣ ≤ t−1|B|.

Then, for all t > 2M |B| and x ∈ Rd+,

|φ(t−1(Ax+B))− φ(t−1(Ax))| ≤ [φ]t−1|B|1A2M
(t−1(Ax)).

This yields

lim sup
i→+∞

∣∣∫ φ(t−1
i (Ax+B))dm(x)−

∫
φ(t−1

i (Ax))dm(x)
∣∣

L(ti)

≤ [φ]η(A2N(A)M ) lim sup
i→+∞

t−1
i |B| = 0.

Consequently, the function hφ is superharmonic: indeed,∫
S
hφ(AA′)dµ(A′)

=

∫
S

lim
i→+∞

∫
Rd+
φ(t−1

i AA′x)dm(x)

L(ti)
dµ(A′)

=

∫
S×Rd+

lim
i→+∞

∫
Rd+
φ
(
t−1
i A(A′x+B′)

)
dm(x)

L(ti)
dµ(A′, B′)

≤ lim inf
i→+∞

∫
S

∫
Rd+

φ
(
t−1
i A(A′x+B′)

)
L(ti)

dm(x)dµ(A′, B′) by Fatou’s Lemma

≤ lim inf
i→+∞

∫
Rd+
φ
(
t−1
i Ax

)
dm(x)

L(ti)
= hφ(A) since m is µ-invariant.

Thus, by Lemma 4.3, equality hφ(AA′) = hφ(A) holds for all A ∈ Rµ and A′ ∈ §µ.
�

Step 3. The function L : t 7→ L(t) = m(tKIN ) is slowly varying
We must demonstrate that, for all s > 0,

lim
t→+∞

L(ts)

L(t)
= lim
t→+∞

m(tsKIN )

m(tKIN )
= 1.



1026 S. Brofferio, M. Peigné and T. D. C. Pham

Let (ti)i be a sequence in R which tends to +∞; by Lemma 4.2, there exists a
subsequence (tij )j such that (mtij

)j converges weakly to some limit measure η 3.
It is sufficient to check that

η(sKIN )

η(KIN )
= lim
j→+∞

m(tijsKIN )

m(tijKIN )
= 1.

First, since A0v0 = λ0v0, for any J ⊆ R∗+ it holds

A0(KJ) = A0(Jv0 + KerA0) = λ0Jv0 and A−1
0 (KJ) =

1

λ0
KJ = K 1

λ0
J .

Since A0 ∈ Rµ, Lemma 4.3 yields Ak0 ∈ Rµ for any k ≥ 1. Hence

η(λ−k0 KJ) = η(A−k0 A−1
0 (Kg0J)) = η(A−1

0 (KJ)) = η(KJ).

The same relation holds also for negative k ∈ Z, noticing

η(λ−k0 KJ) = η(Kλ−k0 J) = η(λ
−(−k)
0 Kλ−k0 J) = η(KJ). (4.7)

In other words η(sKJ) = η(KJ) for any interval J and s ∈ {λ`0/` ∈ Z}. Now,
if we specify the interval J , this property holds for generic s in R∗+; namely, set
J = IN = [λ−N0 , λN0 [, choose some integer ks such that λks0 belongs to [sλ−N0 , sλN0 [
and write

η(sKJ) = η(K[sλ−N0 ,sλN0 [) = η
(
K[sλ−N0 ,λks0 [

)
+ η

(
K[λks0 ,sλN0 [

)
= η

(
K[sλ−N+2N

0 ,λks+2N
0 [

)
+ η

(
K[λks0 ,sλN0 [

)
by (4.7)

= η
(
K[λks0 ,sλks+2N

0 [

)
= η

(
K

[λ
ks−(ks+2N)
0 ,sλ

ks+2N−(ks+2N)
0 [

)
again by (4.7)

= η(KJ).

This achieves the proof of Step 3. Proposition 4.1 follows.
�

4.3. Appendix: proof of Lemma 4.3. 1. Obviously, Rµ◦ is closed and Rµ◦ ⊆ Tµ◦ .
To check it is an ideal of Tµ◦ , let us fix r ∈ Rµ◦ , s ∈ Tµ◦ and let Vrs be an open
neighborhood of rs ∈ T . By continuity of the map p : (s1, s2) 7→ s1s2 on T × T ,
there exist open neighborhoods Vr of r and Vs of s such that Vr × Vs ⊂ p−1(Vrs)
(in other words VrVs ⊆ Vrs.) Fix N ≥ 1 such that µN◦ (Vs) > 0. Then

+∞∑
n=1

µn◦ (Vrs) ≥
+∞∑
n=1

µn+N
◦ (Vrs) ≥

+∞∑
n=1

µn◦ (Vr)µ
N
◦ (Vs) = +∞

which proves that rs ∈ Rµ◦ .
2. First, notice that the restriction to Rµ◦ of any positive superharmonic function

on T is harmonic on Rµ◦ ; in other words, if Ph(s0) :=
∫
h(s0s)dµ◦(s) ≤ h(s0) for

any s0 ∈ T then Ph(r) = h(r) for any r ∈ Rµ◦ .

3We do not know if the whole sequence does converge to η, the argument developed here does
not reach to this property.
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We fix r ∈ Rµ◦ , set ar := h(r) − Ph(r) ≥ 0 and suppose that ar > 0. Then,
since h and Ph are continuous, there exists an open neighborhood V of r such that
h− Ph ≥ a

21V . Hence, for every N ∈ Z+,

a

2

N∑
n=0

µn◦ (V ) =
a

2

N∑
n=0

Pn1V (e)

≤
N∑
n=0

Pn(h− Ph)(e) = h(e)− PN+1h(e) ≤ h(e) < +∞.

This yields a = 0 since
N∑
n=0

µn◦ (V )→ +∞ as N → +∞.

Second, let us consider the function h′ defined by h′(s0) = min{h(s0), h(r)} for
any s0 ∈ T . We claim that h′ is superharmonic. Indeed, for any s0 ∈ T ,

Ph′(s0) ≤ min{Ph(s0), h(r)} ≤ min{h(s0), h(r)} = h′(s0).

Thus, for every n ∈ Z+, it holds

h(r) = h′(r) = Pnh′(r) =

∫
min{h(rs), h(r)}dµn◦ (s)

and h(rs) ≥ h(r) for µn◦ almost all s and the equality h(r)=Pnh(r)=
∫
h(rs)dµn◦ (s)

readily implies h(rs) = h(s) for µn◦ -almost all s. By continuity of h, the equality
holds for all s ∈ Tµ◦ .

�
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