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Abstract. We consider a nearest neighbour random walk on the integers with absorption at 0 and
constant jump probabilities to the left and right of zero. The associated spectral radius is ρ and
the spatial ρ-Martin exit boundary comprises two extremal points and associated minimal excessive
functions h−∞ and h+∞ associated with sequences xn converging to −∞ and +∞ respectively. We
construct a space-time sequence (xn, n) with xn → −∞ converging to a point in the space-time
ρ-Martin exit boundary whose associated space time harmonic function h(x, t) is minimal and of
the form ρ−th+∞(x) not ρ−th−∞(x) as might have been hoped.

1. Introduction

Let K be a substochastic, irreducible matrix with elements K(x, y) where x and y are elements
of a countably infinite state space S. We assume that there is at least one x ∈ S with K(x, S) < 1.
We think of K as the part of the transition matrix of a Markov chain of X = {X0, X1, . . . } that
describes the evolution of X among the states in S. Since we will not be interested in X after exiting
S, we can simply append an additional state δ that is absorbing. The probability 1−K(x, S) can be
thought of as the probability of jumping from x to the absorbing state δ. Let ζ = max{n : Xn ∈ S}
denote the terminal time in S. Clearly, Kn(x, S) = Px(ζ ≥ n) where the subscript x denotes that
we are also conditioning on X0 = x.

The positive θ-harmonic functions h satisfying
∑

zK(x, z)h(z) = θh(x), normalized so h(x0) = 1
for some x0, form a convex set C of considerable practical interest in potential theory. Martin
boundary theory (see Dynkin, 1969) was developed to describe C. If the chain is R-transient we
may construct a Green’s function or potential by

Gx,y(T ) ≡
∑
n≥0

Kn(x, y)Tn (1.1)
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and T ≤ R = 1/ρ where R ≥ 1 is the common radius of convergence of the potential; i.e. in-
dependent of x, y. Martin’s observation was k(x, y;T ) = Gx,y(T )/Gx0,y(T ) as a function of x
satisfies

∑
zK(x, z)k(z, y;T ) = θk(x, y) + δy(x)/(TGx0,y(T )) where θ = 1/T ; that is k(x, y;T ) is

θ-harmonic except at x = y. We can now pick a subsequence yn which leaves any compact set so
that δ(x, yn) = 0 for n large enough (depending on x) and such that k(x, yn;T ) → s(x) for each
x. By Fatou’s Lemma

∑
zK(x, z)s(z) ≤ θs(x); i.e. s is θ-superharmonic and even θ-harmonic if K

has finite range.
We can compactify the space S to S∗ by adding boundary points σ ∈ ∂S in the T -Martin

boundary so that yn → σ where σ is associated with a θ-superharmonic function such that
k(·, yn;T ) → s(·). See Dynkin (1969) for the associated metric on the compacification. Now
consider an extremal point σ in the boundary ∂S associated with a minimal θ-harmonic function h.

The space-time chain (Xn, Tn) where Tn = t+n is a transient Markov chain on S×Z with kernel
K(x, t; y, t + 1) = K(x, y). The associated Martin kernel is k(x, t; y,m) = Km−t(x, y)/Km(x0, y)
and as above we may compactify space-time by adding the Martin boundary. Nonterminating
trajectories of (Xn, Tn) will converge to points in the space-time exit boundary corresponding to
minimal space-time harmonic functions. Under the uniform aperiodicity condition given below,
Proposition 1.1 implies a point σ̃ in the space-time exit boundary corresponds to h̃ of the form
h̃(x, t) = h′(x)θ−t where h′ is a minimal, θ-harmonic function. Suppose (ym,m) → σ̃ and ym → σ
in the spatial T -Martin boundary. Suppose k(x, ym;T )→ h(x). It is reasonable to conjecture that
h′ = h but the point of this paper is to show that this is not true in general.

1.1. Consequences of uniform aperiodicity. We use the uniform aperiodicity condition introduced
in Kesten (1995)

There exist constants δ1 > 0 and N <∞, and for each i ∈ S,
there exist integers 1 ≤ k1, · · · , kr ≤ N , with kj = kj(i) and
r = r(i) such that Kks(i, i) ≥ δ1 for 1 ≤ s ≤ r, and
g.c.d.(k1, . . . , kr) = 1.

(Condition [1])

As remarked in Kesten (1995), uniformly in x, there exist some N <∞ and δ(d) > 0 independent
of x such that Kd(x, x) ≥ δ(d) for d ≥ N .

Proposition 1.1. IfK is uniformly aperiodic then a positive, minimal space-time harmonic function
h̃ is of the form h(x)T t where h is a minimal θ-harmonic function θ = 1/T .

The following proof follows Theorem 3.1 in Lamperti and Snell (1963).

Proof : From the definition of uniform aperiodicity Kd(x, x) ≥ δ(d) > 0 for d ≥ N . Now, g(x, t) =

h̃(x, t+d) is space-time harmonic and since h̃(x, t) =
∑

yK
d(x, y)h̃(y, t+d) ≥ Kd(x, x)h̃(x, t+d) ≥

δ(d)g(x, t) we conclude, using minimality, that δ(d)g(x, t) is proportional to h(x, t); i.e. h̃(x, t+d) =

cdh̃(x, t) for d ≥ N .
Hence h̃(x,Nd) = cNd h̃(x, 0) = cdN h̃(x, 0) so cd = c

d/N
N = T d where T = c

1/N
N . Hence, h̃(x, t+d) =

T dh̃(x, t) for all t and d ≥ N . For 0 ≤ d′ < N ,

h̃(x, t+ d′) = h̃(x, t−N + d′ +N) = T d
′+N h̃(x, t−N)

= T d
′+NT−N h̃(x, t) = T d

′
h̃(x, t).

Hence, h̃(x, `) = T `h̃(x, 0) for all `..
Since h̃ is space-time harmonic it follows that

h(x) := h̃(x, 0) =
∑
y

K(x, y)h̃(y, 1) = T
∑
y

K(x, y)h(y);
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i.e. h is θ-harmonic where θ = 1/T . h is also minimal for if g ≤ h is θ-harmonic then g(x, t) = T tg(x)

is space-time harmonic and g(x, t) ≤ h̃(x, t). By minimality g(x, t) is proportional to h̃(x, t) so g(x)
is proportional to h(x) and it follows that h(x) is minimal. �

Lemma 1.2. Let K be an irreducible, kernel K on a countable state space S with spectral radius ρ.
Assuming Condition [1] then for all x, y ∈ S

lim
n→∞

Kn+1(x, y)

Kn(x, y)
= ρ, (1.2)

which in turn implies that limn→∞K
n(x, y)1/n = ρ.

This is Lemma 4 in Kesten (1995) and the last statement holds since the ratio test is a corollary
of the root test.

We will need the following extension. The argument is similar to that in Lemma 2 in Foley and
McDonald (2017).

Lemma 1.3. Let K be an irreducible kernel on a countable state space S with spectral radius ρ.
Suppose that the sequence yn converges to a point in the spatial T -Martin boundary; i.e. for some
index state x0 and T = 1/θ,

lim
n→∞

Gz,yn(T )

Gx0,yn(T )
= h(z). (Condition [2])

Moreover, let K̃(x, y) = θ−1K(x, y)h(y)/h(x) and assume

lim inf
yn→∞

(
K̃n(x, yn)

)1/n
= 1, (Condition [3])

for some x (and hence all x).
Then, the following condition holds

lim
n→∞

Kn+t(x, yn)

Kn(x, yn)
= θt, (Condition [4])

for some x (and hence all x).

Proof : First, if Condition [3] holds for x then for any z

Kn(z, yn) ≥ Km(z, x)Kn−m(x, yn)

for some m so
lim inf
n→∞

(Kn(z, yn)h(yn))1/n ≥ lim inf
n→∞

(Kn(x, yn)h(yn))1/n ≥ θ.

Hence, Condition [3] holds for all x.
We combine elements of the proof of (5) in Theorem 1.1 in Kingman and Orey (1964) or Theo-

rem 2.1 in Orey (1971). First note h is θ-super harmonic; i.e. Kh ≤ θh. Let K̃ be the associated
h-transform; i.e. K̃(x, y) = K(x, y)h(y)/(θh(x)). We remark that K̃ is uniformly aperiodic so there
exists a N such that K̃d(x, x) > 2δ(d) > 0 for d ≥ N uniformly in x. We point out that K̃ may be
substochastic.

We prove the analogue of (2.14) in Kesten (1995) by showing:

Kn+t(x, yn)

θtKn(x, yn)
=
K̃n+t(x, yn)

K̃n(x, yn)
→ 1.

As in Kesten (1995) take d ≥ N and define δ(d) = δ and Q̂ ≡ Q̂d = (K̃d − δ)/(1 − δ) so K̃d =

δI + (1− δ)Q̂. Note that Q̂ is still irreducible and uniformly aperiodic.
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For n = rd+s, 0 ≤ s < d, define ρ(n;x, yn) =
∑

z(Q̂)r(x, z)K̃s(z, yn) ≤ 1. As in (2.15) in Kesten
(1995),

K̃n(x, yn) =
r∑
`=0

(
r
`

)
δ`(1− δ)r−`

∑
z

(Q̂)r−`(x, z)K̃s(z, yn)

=
r∑
`=0

B(r, `)ρ((r − `)d+ s;x, yn) (1.3)

where B(r, `) =

(
r
`

)
δ`(1− δ)r−` and

K̃n+d(x, yn) =
r+1∑
`=0

B(r + 1, `)ρ((r + 1− `)d+ s;x, yn)

=
r∑

`=−1

B(r + 1, `+ 1)ρ((r − `)d+ s;x, yn). (1.4)

K̃n(x, yn) decays slowly by hypothesis. This allows us to follow (2.2) in Orey (1971). We split
the sums in (1.4) and (1.3) into a part close to the mean and a part a large deviation away from
the mean, we throw away the large deviation part and then show the ratio of the central part of
(1.4) divided by the central part of (1.3) tends to one.

More specifically following Orey (1971) let
∑′ denote summation over ` satisfying |` − δr| ≤ εr

while
∑′′ denotes summation over ` satisfying |`− δr| > εr. Therefore

K̃n+d(x, yn)

K̃n(x, yn)
=

∑′B(r + 1, `+ 1)ρ((r − `)d+ s;x, yn)∑r
`=0B(r, `)ρ((r − `)d+ s;x, yn)

+

∑′′B(r + 1, `+ 1)ρ((r − `)d+ s;x, yn)

K̃n(x, yn)
.

The numerator of the last term approaches zero at an exponential rate while the denominator decays
slower than exp(−an) where a > 0 is arbitrarily small so the last term is negligible.

Now split the denominator of the first term into sums
∑′ and ∑′′. For the same reason we may

throw away the sum
∑′′. We conclude

K̃n+d(x, yn)

K̃n(x, yn)
∼

∑′B(r + 1, `+ 1)ρ((r − `)d+ s;x, yn)∑′B(r, `)ρ((r − `)d+ s;x, yn)
.

Now for |`− δr| ≤ εr, B(r + 1, `+ 1)/B(r, `) = δ(r + 1)/(`+ 1) is between δ
δ+ε(1 +O(1/r)) and

δ
δ−ε . Since ε is arbitrarily small it follows that K̃n+d(x, yn)/K̃n(x, yn)→ 1 as n→∞ for d ≥ N .
The same argument with r + 1 replaced by r − 1 implies K̃n−d(x, yn)/K̃n(x, yn)→ 1 as n→∞

for d ≥ N so for instance K̃n−N (x, yn)/K̃n(x, yn)→ 1.
Next for 0 ≤ k < N ,

K̃n+k(x, yn)

K̃n(x, yn)
∼ K̃n+k(x, yn)

K̃n−N (x, yn)
=
K̃n−N+d(x, yn)

K̃n−N (x, yn)
(1.5)

where d = N +k. Now repeat the above argument by representing n−N = rd+s where 0 ≤ s < d.
It works because K̃n−N (x, yn) ∼ K̃n(x, yn) is not negligible. A similar argument for −N < k < 0
gives, for all k as n→∞

K̃n+k(x, yn)

K̃n(x, yn)
→ 1.
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1.2. Spatial Martin exit boundaries. As in Dynkin (1969), the space of θ-harmonic functions is
described by the space of exits E inside the θ-Martin exit boundary; i.e. points in the completion
corresponding to limits he(x) = limz→e k(x, z;T ) where k(x, z;T ) = Gx,z(T )/Gx0,z(T ) (T = 1/θ)
and where he is θ-harmonic and minimal and x0 is some reference point.

The h-transform with respect to a θ-harmonic function h gives a chain X̃h having a probability
transition kernel K̃(x, y) ≡ K̃h(x, y) = K(x, y)h(y)/(θh(x)) and associated probability measure
P̃x0 . The associated potential is given by

G̃hx,y(1) =
∞∑
n=0

K̃n(x, y) =
h(y)

h(x)

∞∑
n=0

Kn(x, y)Tn =
h(y)

h(x)
Gx,y(T ).

The associated Martin kernel is

k̃h(x, y; 1) =
G̃hx,y(T )

G̃hx0,y(T )
=
h(x0)

h(x)

Gx,y(T )

Gx0,y(T )
=
h(x0)

h(x)
k(x, y;T ).

Moreover there exists a random variable X̃∞ taking values in E such that P̃x0(X̃n → X̃∞) = 1 (see
Theorem 4 in Dynkin, 1969 applied to X̃h and the remarks around (46) in Dynkin, 1969).

Now suppose h = he is a minimal θ-harmonic and for the rest of this section we mean he-transform
when we use a tilde. Then, X̃n converges a.s. to e, in the Martin topology because e is in the exit
boundary (see Theorem 5 in Dynkin (1969)). This means the tail field is trivial and k̃h(x, X̃n; 1)→ 1
a.s.

1.3. Space-time Martin boundaries. The following result is a slightly modification of Theorem 1.4
in Chapter 3 of Orey (1971).

Theorem 1.4. Consider a Markov chain Zm defined on (Ω,F , Pα) taking values in a countable state
space S with kernel Q and initial probability distribution α whose support is S. Further suppose Zm
has trivial tail field. Define

hm(z) =
βQm+d(z)

αQm(z)
,m ≥ max{0,−d}

where β is any probability on S, then hm(Zm) converges almost surely to 1 with respect Pα.

Proof : We repeat the proof found in Foley and McDonald (2017).

Eα

[
βQm+d(Zm)

αQm(Zm)
|Zm+1 = y

]
=

∑
x∈S

[
αQm(x)βQm+d(x)Q(x, y)

αQm(x) · αQm+1(y)

]

=
βQm+d+1(y)

αQm+1(y)
= hm+1(y).

Hence, hm(Zm) is a positive backward martingale with respect to σ(Zm, Zm+1, . . .). Moreover,

Eα [hm(Zm)] =
∑
x∈S

αQm(x)
βQm+d(x)

αQm(x)

=
∑
x∈S

βQm+d(x) = 1.

By the backward martingale theorem (hm(Zm))m is uniformly integrable, and converges in L1(Pα)
and almost surely to H where EH = Eαhm(Zm) = 1. Moreover, since H is measurable with respect
to the tail field it is constant and therefore H = 1. �
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Consider the h-transformed kernel K̃ of K with respect to he, the minimal θ-harmonic associated
with a point e in the θ-Martin exit boundary. We normalize he so he(x0) = 1. We denote by
X̃he ≡ X̃ the associated chain, and P̃x0 the associated probability measure with starting point x0.
Then, by the results in Dynkin (1969), we have X̃n → e a.s. P̃x0 , that is,

k̃he(x, e) = lim
n→∞

G̃he
x,X̃n

(1)

G̃he
x0,X̃n

(1)
= 1 a.s. P̃x0 ,

or equivalently

lim
n→∞

Gx,X̃n(T )

Gx0,X̃n(T )
=

he(x)

he(x0)
= he(x) holds a.s. P̃x0 .

Now apply Theorem 1.4 to K̃ taking α = δx0 , β = δx. The tail field of X̃ is trivial w.r.t. Px0 , so
by Theorem 1.4, as n→∞

K̃n−t(x, X̃n)

K̃n(x0, X̃n)
→ 1 a.s. P̃x0 , (1.6)

or equivalently

Kn−t(x, X̃n)

Kn(x0, X̃n)
→ θ−t

he(x)

he(x0)
a.s. P̃x0 . (1.7)

We can reinterpret (1.6) as a description of the space-time exit boundary. Define the space-time
Martin kernel k((x, t); (y, n)) = Kn−t(x,y)

Kn(x0,y) , so the above result shows

k((x, t); (X̃n, n))→ θ−the(x) a.s. P̃x0 ,

that is, (X̃n, n)→ ẽ a.s.-P̃x0 , where ẽ is an extremal in the space-time Martin exit boundary. Note
moreover than X̃he satisfies the hypotheses in Proposition 1.5 below.

Given the above result it is natural to wonder if other (possibly nonrandom) sequences yn → e
in the spatial θ-Martin exit boundary also converge as space-time sequences; i.e. if (yn, n)→ ẽ.

Proposition 1.5. Assume Condition [1] and along a sequence (yn, n) such that yn → e ∈ E
Condition [4] holds. Also suppose that for all x the support {y : K(x, y) > 0} is finite. Then there
exists a subsequence ni such that

k(x, t; yni , ni) = Kni−t(x, yni)/K
ni(x0, yni)

converges to a space-time harmonic function θ−tg(x) where g is θ-harmonic.

Proof : Take a subsequence ni such that (yni , ni) converges to a point ẽ in the space-time entrance
boundary; i.e.

k(x, t; yni , ni) =
Kni−t(x, yni)

Kni(x0, yni)
→ g(x, t) for all x and t.

By Condition [4]

lim
n→∞

Kn+m(x, yn)

Kn(x, yn)
= θm for all m, x.

It follows that Kn+m−1(x, yn)/Kn+m(x, yn)→ θ−1. Hence
g(x, t+ 1)

g(x, t)
= lim

ni→∞

k(x, t+ 1; yni , ni)

k(x, t; yni , ni)

= lim
ni→∞

Kni−(t+1)(x, yni)

Kni−t(x, yni)
= θ−1.

Therefore, g(x, t+ 1) = θ−1g(x, t) so g(x, t) = θ−tg(x, 0) ≡ θ−tg(x).
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Finally, remark that k(x, t; yn, n) is harmonic on space-time for t ≤ n. Thus, g(x, t) is subhar-
monic but by hypothesis the support {y : K(x, y) > 0} is finite, so in fact g(x, t) is harmonic on
space-time. Therefore

θ−tg(x) = g(x, t) =
∑
y

K(x, y)g(y, t+ 1) =
∑
y

K(x, y)θ−(t+1)g(y).

Then, we conclude that
∑

yK(x, y)g(y) = θg(x) and g is θ-harmonic as we wanted to prove. �

1.4. A conjecture. X̃n → e and satisfies the hypotheses in Proposition 1.5 and in fact k(x, t; X̃n, n)

→ θ−the(x)a.s− P̃x0 ; i.e. (X̃n, n)→ ẽ. So it is natural to conjecture that if the sequence yn → e in
the spatial θ-Martin exit boundary topology and if the Conditions of Proposition 1.5 are satisfied
then g above satisfies g = he. Then all subsequences k(x, t; yni , ni) above would converge to the
same limit so (yn, n)→ ẽ associated with θ−the(x).

Unfortunately as we see in the next section this conjecture is false and g may be the θ-harmonic
function associated with a different point on the spatial ρ-Martin boundary. This leaves the inter-
esting question: what are the properties of the sequences X̃n that force (X̃n, n)→ ẽ?

2. Random walk on the integers

In this section we show the conjecture proposed above is false. The first example is a case where
things work out as we hope. The spatial ρ-Martin exit boundary exactly matches trajectories to
the space-time boundary corresponding to the space-time paths of the h-transform by a ρ-harmonic
function h in the spatial ρ-Martin exit boundary. The second example gives a counterexample to
the conjecture.

2.1. Homogeneous, nearest neighbor random walk. We begin with an example given in Example 2,
Chapter 10, Section 13 in Kemeny et al. (1976) where everything can be calculated. Consider a
transient random walk on the integers with transition kernel K(x, x + 1) = p and K(x, x− 1) = q
with p+ q = 1 and p > q. To avoid periodicity issues we restrict n, x, t and yn to be even.

Kn(0, 0) =

(
n
n
2

)
(pq)n/2 ∼ 2n√

nπ/2
(pq)n/2.

Since (Kn(0, 0))1/n → 2
√
pq it follows that the spectral radius is ρ = 2

√
pq, and the chain is R-

recurrent for R = 1/ρ. Moreover, for T < R the chain is T -transient. In what follows we denote by
θ = 1/T .

The space-time Martin exit boundary is given by limits along sequences (yn, n)→ ẽ of

k(x, t; yn, n) =
Kn−t(x, yn)

Kn(0, yn)
.

In particular, we have

k(x, 0; yn, n) =
Kn(x, yn)

Kn(0, yn)
=

(
n

n+yn−x
2

)
p(n+yn−x)/2q(n−yn+x)/2(

n
n+yn

2

)
p(n+yn)/2q(n−yn)/2

=

(yn+n
2

)
!
(n−yn

2

)
!(n+yn−x

2

)
!
(n−yn+x

2

)
!
p−x/2qx/2

=
((yn + n)/2) ((yn + n)/2− 1) · · · ((yn + n− x)/2 + 1)

((n− yn + x)/2) ((n− yn + x)/2− 1) · · · ((n− yn)/2 + 1)

(
q

p

)x/2
.
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Now if yn/n→ α for −1 < α < 1 then dividing the above top and bottom through by n|x|/2 we
see that

k(x, 0; yn, n) =
Kn(x, yn)

Kn(0, yn)
→ hθ(x, 0) = hθ(x) =

(
1 + α

1− α

)x/2(q
p

)x/2
.

Note that hθ is an eigenvector for K (on the integers) with eigenvalue

θ =
√
pq

((
1 + α

1− α

)1/2

+

(
1− α
1 + α

)1/2
)

=
2
√
pq

(1− α)1/2(1 + α)1/2
;

i.e. hθ is θ-harmonic. Hence hθ(x, t) = θ−thθ(x) is space-time harmonic for K and k(x, t; yn, n)→
hθ(x, t).

We can also obtain the extremals in the spatial θ-Martin boundary. Take T = 1/θ and define

h+
θ (x) = lim

y→+∞

Gx,y(T )

G0,y(T )
and h−θ (x) = lim

y→−∞

Gx,y(T )

G0,y(T )
.

For x > 0 and α > 0,

lim
y→+∞

Gx,y(T )

G0,y(T )
=

1

F0,x(T )
=

1

F0,1(T )x
.

However, F0,1(z) =
1−
√

1−4pqz2

2zq is the z-transform of the first passage time from 0 to 1, and a bit
of calculation shows

√
1− 4pqT 2 = |α| so

1

F0,1(T )
=

1 + α

2pT
=

(
1 + α

1− α

)1/2(q
p

)1/2

,

that is, h+
θ (x) = hθ(x), when α > 0. The same result holds for x ≤ 0.

Now take x > 0 and α < 0

lim
y→−∞

Gx,y(T )

G0,y(T )
= Fx,0(T ) = F1,0(T )x.

However, this time F1,0(z) =
1−
√

1−4pqz2

2pz is the z-transform of the first passage time from 1 to 0, so

F1,0(T ) =
1− |α|

2pT
=

1 + α

2p
θ =

(
1 + α

1− α

)1/2(q
p

)1/2

,

that is, h−θ (x) = hθ(x), when α < 0. The same holds true for x ≤ 0.
It is interesting to note that the drift of the hθ-transform is

1
θ

(
p
(

1+α
1−α

)1/2 (
q
p

)1/2
− q

(
1+α
1−α

)−1/2 (
q
p

)−1/2
)

= 2αpq
(1−α)1/2(1+α)1/2

= α.

Consequently the associated hθ-transformed process X̃hθ
n satisfies X̃hθ

n /n→ α so k(x, 0; X̃hθ
n , n)→

hθ(x) but we already knew this from (1.7). We now see that for α 6= 0, the spatial θ-Martin
boundary has the same geometry as the space-time θ-Martin boundary. Moreover, in this example,
the spatial θ-Martin boundary is the same as the geometric boundary.

Note also that if yn = αn; i.e. yn drifts like a trajectory of X̃hθ
n , then

Kn(x, yn) ∼ Kn(0, αn) =

(
n

(n+ αn)/2

)
p(n+αn)/2q(n−αn)/2.
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Using Stirling’s formula and a bit of calculation

(Kn(0, yn))1/n ∼
2
√
pq

(1 + α)1/2(1− α)1/2

(
p

q

)α/2(1− α
1 + α

)α/2
=

θ

hθ(yn)1/n
.

Hence, Condition [3] holds and by Proposition 1.5 there exists a subsequence ni such that

k(x, t; yni , ni) = Kni−t(x, yni)/K
ni(x0, yni)

converges to a space-time harmonic function θ−tg(x) where g is θ-harmonic. But here g = hθ since
the spatial and space-time boundaries coincide and everything works as expected.

The above discussion is a bit different when α = 0. In this situation, θ = ρ = 2
√
pq is the spectral

radius. But even though the chain is ρ-recurrent the ρ-Martin kernel Fx,y(R)/F0,y(R) still exists
where Fx,y is the transform of the first passage time from x to y. In this case Fx,y(R)/F0,y(R) =

h+
θ (x) = h−θ (x) =

(
q
p

)x/2
which is the unique ρ-harmonic function. Consequently the spatial ρ-

Martin boundary has only one point. This point corresponds to the one point in the space-time
boundary associated with the sequence (0, n). In this sense the spatial and space-time boundaries
have the same geometry. We note that hρ-transform X̃

hρ
n is a random walk with kernel K̃(x, x+1) =

K̃(x, x− 1) = 1/2. So, while X̃hρ
n converges almost surely in the Martin topology to a single point

in the ρ-Martin boundary, it doesn’t converge to the geometric boundary {+∞,−∞}. In this case,
the Martin boundary does not match with the geometric boundary.

2.2. Two point Martin boundary. We now consider the two-sided example which provides our coun-
terexample. Consider a nearest neighbour random walk on the integers where, for x > 0,

K(x, x+ 1) = p,K(x, x− 1) = q,

K(−x,−x+ 1) = a,K(−x,−x− 1) = b

and K(0, 1) = p, K(0,−1) = b. We assume p+ q = 1, p < q and a+ b = 1, b < a, that is, there is
killing at 0. We also assume ρ = 2

√
pq > 2

√
ab which implies b < p < 1/2. Set Γ =

√
1− ab

pq < 1

and for |z| < pq
ab set Γ(z) =

√
1− ab

pqz.

The z-transform of the recurrence time from x > 0 to 0 is
(

1−
√

1−4pqz2

2zp

)x
while the recurrence

time from −x < 0 to 0 is
(

1−
√

1−4abz2

2zb

)x
. The z-transform of the recurrence time to 0 for the K

kernel is

F0,0(z) = zpF1,0(z) + zbF−1,0(z)

= zp
(1−

√
1− 4pqz2)

2zp
+ zb

(1−
√

1− 4abz2)

2zb

as in Seneta and Vere-Jones (1966). Since F0,0(z) becomes singular at z = R = (2
√
pq)−1 and takes

the value 1/2 + (1 −
√

1− ab/pq)/2 < 1 there, we conclude the spectral radius of K is ρ = 2
√
pq

and K is R-transient. Moreover

G0,0(z) =
1

1− F0,0(z)
=

√
1− 4abz2 −

√
1− 4pqz2

2(pq − ab)z2
.

Consider f(s) = bs2 − 2
√
pqs+ a = 0. The roots of f(s) = 0 are

t0 =
√
pq(1−

√
1− ab/pq)/b and t1 =

√
pq(1 +

√
1− ab/pq)/b.
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Both roots are real since ab < pq. The mid point between the roots is √pq/b >
√
pq/ab > 1. Since

f(0) = a, f ′(0) < 0 and f(1) = 1−2
√
pq > 0 it follows that both roots are greater than one. Notice

that for either root t: at−1 + bt = (a+ bt2)/t = 2
√
pq = ρ; i.e. t−x is ρ-harmonic on x < 0 if t = t0

or t = t1.

Consider positive ρ-harmonic functions of the form

h(x) =


(1 + cx)

√
q
p

x
if x > 0

f0t
−x
0 + f1t

−x
1 where f1 ≥ 0 and f0 + f1 = 1 if x < 0

1 if x = 0

where to be positive ρ-harmonic at x = 0 requires

ρ = p(1 + c)
√
q/p+ b(f0t0 + f1t1),

that is, c = (f0 − f1)Γ ≥ 0.
Setting f0 = 1, and therefore f1 = 0, gives the ρ-harmonic function

h+∞(x) =


(1 + Γx)

√
q
p

x
where if x > 0

t−x0 if x < 0

1 if x = 0.

In fact h+∞ is the associated extremal positive ρ-harmonic function for sequences zn → +∞
associated with the Martin boundary point {+∞}:

lim
zn→+∞

Gx,zn(R)

G0,zn(R)
=


limzn→+∞

Gx,zn (R)
F0,x(R)Gx,zn (R) = 1

F0,x(R) if x > 0

limzn→+∞
Fx,0(R)G0,zn (R)

G0,zn (R) = Fx,0(R) if x < 0

1 if x = 0.

For x < 0, we have Fx,0(R) =
(

1−
√

1−4abR2

2Rb

)−x
= t−x0 , so for x < 0

lim
zn→+∞

Gx,zn(R)

G0,zn(R)
= t−x0 .

Now, t−x0 on x < 0 extends uniquely to h+∞ on x ≥ 0 and since the Martin kernel converges to a
positive ρ-harmonic function, we conclude that

lim
zn→+∞

Gx,zn(R)

G0,zn(R)
= h+∞(x) for all x.

Thus, h+∞ is indeed an extremal, positive ρ-harmonic function associated with {+∞} in the Martin
boundary. Another consequence of this convergence is that for x > 0

1

F0,x(R)
= (1 + Γx)

√
q

p

x

.

The other extremal positive ρ-harmonic function h−∞ occurs when c = 0, in which case f0 = f1 = 1
2 .

Hence,

h−∞(x) =


√

q
p

x
if x > 0

1
2 t
−x
0 + 1

2 t
−x
1 if x < 0

1 if x = 0.
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Indeed, for sequences zn → −∞ associated with the Martin boundary point {−∞} the associated
extremal positive ρ-harmonic function is h−∞:

lim
zn→−∞

Gx,zn(R)

G0,zn(R)
=


limzn→−∞

Fx,0(R)G0,zn (R)
G0,zn (R) = Fx,0(R) if x > 0

limzn→−∞
Gx,zn (R)

F0,x(R)Gx,zn (R) = 1
F0,x(R) if x < 0

1 if x = 0.

For x > 0, we have Fx,0(R) =

(
1−
√

1−4pqR2

2Rp

)x
=
√

q
p

x
, and so for x > 0 it holds

lim
zn→−∞

Gx,zn(R)

G0,zn(R)
=

√
q

p

x

.

Now,
√

q
p

x
on x > 0 extends uniquely to h−∞ on x ≤ 0 and since the Martin kernel converges to a

positive ρ-harmonic function then

lim
zn→−∞

Gx,zn(R)

G0,zn(R)
= h−∞(x),

holds for all x and h−∞ is indeed an extremal, positive ρ-harmonic function associated with {−∞}
in the Martin boundary. Another consequence of this convergence is that for x < 0

1

F0,x(R)
=

1

2
t−x0 +

1

2
t−x1 .

2.3. The counterexample. We now come to the main result. We have seen above that

lim
zn→−∞

Gx,zn(R)

G0,zn(R)
= h−∞(x) for all x.

The following theorem therefore comes as surprise because taking zn = −yn we see the space-time
limit associated with sequences (zn, 2n) is h+∞ not h−∞ as we would hope!

Theorem 2.1. If x and yn are even, where yn → ∞ but sufficiently slowly such that yn =
log(o(n))/α where α = log(1/(1− Γ)) > 0 then

lim
n→∞

(
K2n(x,−yn)

)1/(2n)
= 2
√
pq and

lim
n→∞

K(x, 0;−yn, 2n)

K(0, 0;−yn, 2n)
= lim

n→∞

K2n(x,−yn)

K2n(0,−yn)
= h+∞(x).

For an intuitive explanation of this paradox, we remark that

µ−∞(x) = h−∞(x)γ(x)/γ(0)

is ρ-invariant (ρ = 2
√
pq), where γ is a reversibility measure for the chain (see (2.1) below). We

can then check that the conditions of Lemma 2 in Foley and McDonald (2017) hold along the
sequence −yn. First K2n(−yn, x) = γ(x)

γ(−yn)K
2n(x,−yn) so

(
K2n(−yn, x)

)1/(2n) ∼ 2
√
pq. Similarly

(µ−∞(−yn))1/(2n) → 1.
Hence by the cited Lemma 2 in Foley and McDonald (2017), we haveK2n+1(−yn, S)/K2n(−yn, S)

→ 2
√
pq. Next, K2n+1(−yn, S) = K2n(−yn, S)−K2n(−yn, 0)κ where κ = 1− (p+ b) is the killing

probability at zero. Dividing through by K2n(−yn, S) we get

K2n(−yn, 0)

K2n(−yn, S)
→ 1− ρ

κ
.
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Consequently,
K2n(−yn, x)

K2n(−yn, S)
∼ 1− ρ

κ

K2n(−yn, x)

K2n(−yn, 0)

=
1− ρ
κ

γ(x)

γ(0)

K2n(x,−yn)

K2n(0,−yn)

∼ 1− ρ
κ

γ(x)

γ(0)
h+∞(x) =

1− ρ
κ

µ+∞(x)

where µ+∞(x) = γ(x)
γ(0)h+∞(x).

Therefore, the ratio limit theorem K2n(x,−yn)/K2n(0,−yn) → h+∞(x) is equivalent to the
Yaglom limit K2n(−yn, x)/K2n(−yn, S)→ κ

1−ρµ+∞(x). Now as explained in Foley and McDonald
(2017) the trajectories contributing to this Yaglom limit start out like the ĥ-transform where ĥ(x) =

limn→∞K
n(x, S)/Kn(0, S) but as is seen in Example 2 in Foley and McDonald (2017) ĥ is precisely

h+∞. Thus the trajectories of the rare event of starting from −yn and surviving until time 2n are
the trajectories of the h+∞-transform. For y > 0,

K̃(y, y + 1) = p
1 + Γ(y + 1)

1 + Γy

√
q/p/ρ =

1

2

1 + Γ(y + 1)

1 + Γy

while K̃(y, y−1) = 1
2

1+Γ(y−1)
1+Γy . We note this is the kernel of a transient Markov chain drifting slower

and slower to infinity. Thus to survive to be at x at time 2n the trajectories drift slowly out to +∞
away from the killing at zero and then rapidly return to x at the end.

This is possible because yn is so small compared to n. For yn bigger something must break. For
trajectories given by the h−∞-transform for y < 0 large

K̃(y, y − 1) ∼ b

2
√
pq
t1 =

1

2
(1 +

√
1− ab/(pq))

while
K̃(y, y + 1) ∼ a

2
√
pq

1

t1
=

1

2
(1−

√
1− ab/(pq)).

We conclude that the h−∞-transform trajectories X̃n drift linearly to −∞. Moreover, by Theorem
1.4 if −yn = X̃2n is such a trajectory then

K2n(x,−yn)

K2n(0,−yn)
→ h−∞(x)

h−∞(0)
;

i.e. a completely different ratio limit theorem holds and it is reasonable to conjecture that the above
Yaglom limit fails as well. It seems likely that to be at x at time 2n starting from from −yn the
trajectories stay negative away from 0 and then return to x at the end.

Proof of theorem 2.1: One advantage of nearest neighbour walks is that starting from a mass γ(0) at
0 we can construct a reversibility measure γ(x) which satisfies γ(x)K(x, x+1) = γ(x+1)K(x+1, x).
Calculation gives

γ(x) =


γ(0)(p/q)x if x > 0

γ(0)(a/b)x if x < 0

γ(0) if x = 0

(2.1)

and γ(x)Kn(x, y) = γ(y)Kn(y, x) holds for all x, y. It also follows that γ(x)Gx,y(z) = γ(y)Gy,x(z).
Also recall the fact that, for |x| ≤ 1

√
1 + x =

∞∑
n=0

(
1/2
n

)
xn,
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where
(

1/2
n

)
= (−1)n−1An and

An :=
(2n− 3)!

22n−2n!(n− 2)!
∼ 1

2
√
π n3/2

by Stirling’s formula. Note that this means

√
1− x = 1−

∞∑
n=1

Anx
n. (2.2)

We will need the following estimates, where we assume u is a complex number

|u| < pq/ab, (Condition [a])
|u− 1| < (pq − ab)/(ab). (Condition [b])

Note that pq/ab > 1 and 0 < Γ = Γ(1) < 1.

Lemma 2.2. (1) If Condition [a] holds, then

|Γ(u)| ≤
√

2,

|1− Γ(u)| < 1.

(2) If Condition [a], Condition [b] hold, then∣∣∣∣1− Γ(u)

1− Γ
− 1

∣∣∣∣ ≤ Γ

1− Γ

ab

pq − ab
|u− 1|∣∣∣∣(1− Γ(u)

1− Γ

)y
− 1

∣∣∣∣ ≤ ab

pq − ab
|u− 1|

(
1

1− Γ

)y
,

where y is a positive integer.

Proof : For the first bound just recall the definition of Γ and Γ(u), which gives

|Γ(u)|2 =

∣∣∣∣1− ab

pq
u

∣∣∣∣ ≤ 2,

so |Γ(u)| ≤
√

2.
For the second bound, by hypothesis |u| ≤ (1− ε)pqab , where 0 < ε < 1/2, so

|1− Γ(u)| =

∣∣∣∣∣1−
√

1− ab

pq
u

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=1

Kk

(
ab

pq
u

)k∣∣∣∣∣
≤

∞∑
k=1

Ak

(
ab

pq
|u|
)k
≤
∞∑
k=1

Ak (1− ε)k

= 1−
√

1− (1− ε) < 1.
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For the third bound, we have∣∣∣∣(1− Γ(u)

1− Γ

)
− 1

∣∣∣∣ =

∣∣∣∣∣∣
1−

√
1− ab

pqu

1−
√

1− ab
pq

− 1

∣∣∣∣∣∣
≤ 1

1− Γ

∣∣∣∣∣Γ−
√

1− ab

pq
+
ab

pq
(1− u)

∣∣∣∣∣
=

Γ

1− Γ

∣∣∣∣∣1−
√

1− ab

pq

(u− 1)

1− ab
pq

∣∣∣∣∣
=

Γ

1− Γ

∣∣∣∣∣∣
∞∑
k=1

Ak

(
ab

pq

(u− 1)

1− ab
pq

)k∣∣∣∣∣∣
≤ Γ

1− Γ

∞∑
k=1

Ak

(
ab

pq

|u− 1|
1− ab

pq

)k

=
Γ

1− Γ

(
1−

√
1− ab

pq − ab
|u− 1|

)

≤ Γ

1− Γ

(
1−

(
1− ab

pq − ab
|u− 1|

))
=

Γ

1− Γ

ab

pq − ab
|u− 1|,

which gives the third bound.
Finally, for the fourth bound we use∣∣∣∣(1− Γ(u)

1− Γ

)y
− 1

∣∣∣∣ =

∣∣∣∣(1− Γ(u)

1− Γ

)
− 1

∣∣∣∣
∣∣∣∣∣
y−1∑
k=0

(
1− Γ(u)

1− Γ

)k∣∣∣∣∣
≤ Γ

1− Γ

(
ab

pq − ab

)
|u− 1|

y−1∑
k=0

(
1

1− Γ

)k
≤

(
ab

pq − ab

)
|u− 1|

(
1

1− Γ

)y
.

�

For x ≥ 0, K2n(x,−yn) = [z2n]Gx,−yn(z), that is, the coefficient of the z2n term in the power
series expansion of Gx,−yn(z). Next

Gx,−yn(z) = Fx,0(z)G0,−yn(z)

= Fx,0(z)
γ(−yn)

γ(0)
G−yn,0(z)

= Fx,0(z)
γ(−yn)

γ(0)
F−yn,0(z)G0,0(z),

where γ is the reversibility measure. Therefore

K2n(x,−yn)

K2n(0,−yn)
=

[z2n] (Fx,0(z)F−yn,0(z)G0,0(z))

[z2n] (F−yn,0(z)G0,0(z))
(2.3)
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since F0,0(z) = 1.
Next

[z2n](Fx,0(z)F−yn,0(z)G0,0(z)) = [z2n]C(z) = [z2n+2+x+yn ]B(z)

where

C(z) =

((
1−

√
1− 4pqz2

2zp

)x(
1−
√

1− 4abz2

2zb

)yn √
1− 4abz2 −

√
1− 4pqz2

2(pq − ab)z2

)
and

B(z) =

((
1−

√
1− 4pqz2

2p

)x(
1−
√

1− 4abz2

2b

)yn √
1− 4abz2 −

√
1− 4pqz2

2(pq − ab)

)
.

Setting w = 4pqz2 we note the above is (4pq)n+1+x/2+yn/2An where

An = [wn+1+x/2+yn/2]

((
1−
√

1− w
2p

)x(
1− Γ(w)

2b

)yn Γ(w)−
√

1− w
2(pq − ab)

)
. (2.4)

Hence (2.3) can be rewritten

(4pq)x/2

(2p)x
[wn+1+x/2+yn/2]

(
(1−

√
1− w )x(1− Γ(w))yn(Γ(w)−

√
1− w)

)
[wn+1+yn/2]

(
(1− Γ(w))yn(Γ(w)−

√
1− w)

) . (2.5)

We now analyse the asymptotics of the numerator and denominator of the above ratio. To
evaluate the numerator remark that(

(1−
√

1− w)x(1− Γ(w))yn(Γ(w)−
√

1− w)
)

= A(w) +B(w)

where

A(w) = (1− Γ(w))ynΓ(w)
x∑
k=0

(−1)k
(
x
k

)
(1− w)k/2

and

B(w) = −(1− Γ(w))yn
x∑
k=0

(−1)k
(
x
k

)
(1− w)(k+1)/2.

We show below that

[wn+1+x/2+yn/2] (B(w))

∼ −[wn+1+x/2+yn/2](1− Γ)yn
x∑
k=0

(−1)k
(
x
k

)
(1− w)(k+1)/2 (2.6)

∼ −[wn+1+x/2+yn/2](1− Γ)yn(1− w)1/2

∼ (1− Γ)yn
1

2
√
π(n+ 1 + x/2 + yn/2)3/2

. (2.7)

Moreover, we show below that

[wn+1+x/2+yn/2] (A(w))

∼ [wn+1+x/2+yn/2]

(
(1− Γ)ynΓ

x∑
k=1

(−1)k
(
x
k

)
(1− w)k/2

)
(2.8)

∼ −[wn+1+x/2+yn/2]
(

(1− Γ)ynΓx(1− w)1/2
)

∼ (1− Γ)ynΓx
1

2
√
π(n+ 1 + x/2 + yn/2)3/2

.
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We conclude that

[wn+1+x/2+yn/2]
(
(1−

√
1− w)x(1− Γ(w))yn(Γ(w)−

√
1− w)

)
∼ (1 + Γx)(1− Γ)yn

1

2
√
π(n+ 1 + x/2 + yn/2)3/2

. (2.9)

Similarly, we have

[wn+1+yn/2]
(
(1− Γ(w))yn(Γ(w)−

√
1− w)

)
∼ (1− Γ)yn(−1)n+1+yn/2 1

2
√
π(n+ 1 + yn/2)3/2

.

We conclude that (2.5) is asymptotically the same as

(4pq)x/2

(2p)x
(1 + Γx)

(n+ 1 + yn/2)3/2

(n+ 1 + x/2 + yn/2)3/2

→

(
1 +

√
1− ab

pq
x

)
(q/p)x/2 = h+∞(x).

The result extends to negative x.
We now check (2.6) and (2.8). To check (2.6) it suffices to show

fn = [wn+1+x/2+yn/2](f(w)) = o(n−3/2)

where

f(w) =

((
1− Γ(w)

1− Γ

)yn
− 1

) x∑
k=0

(−1)k
(
x
k

)
(1− w)(k+1)/2.

We follow the steps in Flajolet and Odlyzko (1990). Starting with Cauchy’s formula

[wn+1+x/2+yn/2](f(w)) =
1

2iπ

∫
C
f(w)

dw

wn+2+x/2+yn/2

where C = γ1 ∪ γ2 ∪ γ3 ∪ γ4 and

γ1 =

{
w : |w − 1| = 1

n
,Arg(1− w) ∈ [−π + φ, π − φ]

}
γ2 =

{
w :

1

n
≤ |w − 1|, |w| ≤ 1 + ν,Arg(1− w) = −π + φ

}
γ3 =

{
w : |w| = 1 + ν,Arg(1− w) ∈ [−π + φ, π − φ]

}
γ4 =

{
w :

1

n
≤ |w − 1|, |w| ≤ 1 + ν,Arg(1− w) = π − φ

}
,

where φ is a fixed angle in (0, π/2]. Also we assume that r = (1 + ν)ab/pq < 1, which is possible for
all small positive ν. Here we use the principal branch of

√
1− w, so if w ∈ C we have Arg(1−w) ∈

[−π + φ, π − φ].

We proceed by evaluating

f (j)
n =

1

2π

∫
γj

|f(w)| |dw|
|w|n+2+x/2+yn/2

,

and we have |fn| ≤ f (1)
n + f

(2)
n + f

(3)
n + f

(4)
n .
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1

x

y

Figure 2.1. Integration path.

Smaller circle (γ1): On the circle w = 1 + 1
ne

iθ, Condition [a], Condition [b] are satisfied, if n is
large enough, so

∣∣∣∣(1− Γ(w)

1− Γ

)yn
− 1

∣∣∣∣ ≤ ab

pq − ab
|w − 1|

(
1

1− Γ

)yn
=

ab

pq − ab
1

n

(
1

1− Γ

)yn
.

However by hypothesis yn = log(o(n))/α which implies

1

n

(
1

1− Γ

)yn
=

1

n
exp(αyn) =

1

n
exp(log(o(n))) = o(1).

Hence

f (1)
n ≤ 1

2π
o(1)

x∑
k=0

(
x
k

)(
1

n

)(k+1)/2(
1− 1

n

)−(n+2+yn/2+x) 2π

n

= o(n−3/2).

Rectilinear part (γ2 and γ4): Set u = eiφ and perform the change of variable w = 1 + (ut/n),
with 1 ≤ t ≤ n(pq/ab− 1). On the Rectilinear part Condition [a], Condition [b] of Lemma 2.2 are
satisfied, so

∣∣∣∣(1− Γ(w)

1− Γ

)yn
− 1

∣∣∣∣ ≤ ab

pq − ab
|w − 1|

(
1

1− Γ

)yn
≤ ab

pq − ab
t

n

(
1

1− Γ

)yn
.
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From the above fact, we have

f (2)
n ≤ ab

pq − ab

(
1

1− Γ

)yn
· 1

2π

x∑
k=0

(
x
k

) ∞∫
1

(
t

n

)(k+3)/2(
1 +

t

n

)−(n+2+yn/2+x) dt

n

∼ ab

pq − ab

(
1

1− Γ

)yn 1

2π

∞∫
1

t3/2
(

1 +
t

n

)−(n+2+yn/2+x)

dt

(
1

n

)5/2

∼ ab

2π(pq − ab)

∫ ∞
1

t3/2e−tdt

(
1

1− Γ

)yn ( 1

n

)(5/2)

.

However
(

1
1−Γ

)yn
= o(n) so f (2)

n = o(n−3/2).

Larger circle (γ3): On the large circle w = (1 + ν)eiθ so Condition [a] holds. Recall that r =
(1 + ν)ab/pq < 1.

∣∣∣∣∣∣
1−

√
1− (1 + ν)abpqe

iθ

1−
√

1− ab
pq

∣∣∣∣∣∣ =
|1− (1−

∑∞
n=1

(2n−3)!
22n−2n!(n−2)!

rneiθn)|

1−
√

1− ab
pq

≤
∑∞

n=1
(2n−3)!

22n−2n!(n−2)!
rn

1−
√

1− ab
pq

=
1−
√

1− r

1−
√

1− ab
pq

≤ 1− (1− r)
1− (1− ab

2pq )
= 2(1 + ν).

Therefore on the big circle

f (3)
n ≤ (1 + ν)

(
(2(1 + ν)

)yn + 1
)
(3 + ν)x(1 + ν)−(n+2+x/2+yn/2)

= O
(

exp
(
yn log(2(1 + ν)1/2)− n log(1 + ν)

))
and this decays exponentially fast since yn/n = o(1).

To check (2.8) it suffices to show

[wn+1+x/2+yn/2]

(((
1− Γ(w)

1− Γ

)yn (Γ(w)

Γ

)
− 1

)
· D(w)

)
= o(n−3/2),

where D(w) =
∑x

k=0(−1)k
(
x
k

)
(1− w)k/2.

We do the k = 0 term above first since this term has no singularity at 1 so

f(w) =

((
1− Γ(w)

1− Γ

)yn (Γ(w)

Γ

)
− 1

)
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is analytic on the entire circle C = {z = (1 + ν)eiθ} where 0 ≤ θ < 2π. Moreover Condition [a]
holds on C. From Step 3 above∣∣∣∣[wn+1+x/2+yn/2]

((
1− Γ(w)

1− Γ

)yn (Γ(w)

Γ

)
− 1

)∣∣∣∣
=

1

2π

∣∣∣∣∫
C
f(w)

dw

wn+2+x/2+yn/2

∣∣∣∣
≤ 1

2π

(
2

Γ
(2(1 + ν))yn + 1

)
1

(1 + ν)n+2+x/2+yn/2
2π(1 + ν)

which converges exponentially fast to zero since yn/n = o(1).
For the remaining terms we again follow the steps in Flajolet and Odlyzko (1990). First note((

1− Γ(w)

1− Γ

)yn (Γ(w)

Γ

)
− 1

)
=

((
1− Γ(w)

1− Γ

)yn
− 1

)
1

Γ
−

((
Γ(w)

1− Γ

)yn+1

− 1

)
1− Γ

Γ
.

In this form we can use all the estimates developed in the first part.
Finally, by (2.4) and (2.9), we get(

K2n(x,−yn)
)1/(2n)

=
(

(4pq)n+1+x/2+yn/2An
)1/(2n)

∼ 2
√
pq. (2.10)

�

Note that Condition [3] is satisfied in this example because of (2.10) and since h−∞(−yn) =
(tyn0 + tyn1 )/2 so

(h−∞(−yn))1/(2n) ∼ tyn/(2n)
1 → 1.

By Lemma 1.3, it follows that Condition [4] holds as do the conditions of Proposition 1.5. By Propo-
sition 1.5 then K2n(x,−yn)/K2n(0,−yn) has a limiting ρ-harmonic function along a subsequence.
However we showed this limit is h+∞(x) not h−∞(x) as expected.
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