
ALEA, Lat. Am. J. Probab. Math. Stat. 19, 1071–1101 (2022)
DOI: 10.30757/ALEA.v19-44

Decay of harmonic functions for discrete time Feynman–
Kac operators with confining potentials

Wojciech Cygan, Kamil Kaleta and Mateusz Śliwiński
Technische Universität Dresden, Faculty of Mathematics, Institute of Mathematical Stochastics, Zellescher
Weg 25, 01069 Dresden, Germany & University of Wrocław, Faculty of Mathematics and Computer Science,
Institute of Mathematics, pl. Grunwaldzki 2/4, 50–384 Wrocław, Poland
E-mail address: wojciech.cygan@uwr.edu.pl
URL: http://www.math.uni.wroc.pl/∼cygan

Wrocław University of Science and Technology, Faculty of Pure and Applied Mathematics, Wybrzeże Stanisława
Wyspiańskiego 27, 50-370 Wrocław, Poland
E-mail address: kamil.kaleta@pwr.edu.pl
URL: http://prac.im.pwr.wroc.pl/∼kaleta

Wrocław University of Science and Technology, Faculty of Pure and Applied Mathematics, Wybrzeże Stanisława
Wyspiańskiego 27, 50-370 Wrocław, Poland
E-mail address: mateusz.sliwinski@pwr.edu.pl
URL: http://prac.im.pwr.edu.pl/∼sliwinski

Abstract. We propose and study a certain discrete time counterpart of the classical Feynman–Kac
semigroup with a confining potential in a countably infinite space. For a class of long range Markov
chains which satisfy the direct step property we prove sharp estimates for functions which are (sub-,
super-)harmonic in infinite sets with respect to the discrete Feynman–Kac operators. These results
are compared with respective estimates for the case of a nearest-neighbour random walk which
evolves on a graph of finite geometry. We also discuss applications to the decay rates of solutions to
equations involving graph Laplacians and to eigenfunctions of the discrete Feynman–Kac operators.
We include such examples as non-local discrete Schrödinger operators based on fractional powers
of the nearest-neighbour Laplacians and related quasi-relativistic operators. Finally, we analyse
various classes of Markov chains which enjoy the direct step property and illustrate the obtained
results by examples.

1. Introduction

The main goal of this paper is to develop the theory of discrete time Feynman–Kac semigroups
with general confining potentials which we define for Markov chains with values in infinite discrete
spaces. We focus on chains which exhibit a certain long range distributional property – the direct
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step property (DSP in short). It means that the two-step transition probability of the chain is
dominated (up to a multiplicative constant) by the one-step transition probability. The first part of
the paper is concerned with the decay properties of functions that are harmonic (resp. subharmonic,
superharmonic) in an infinite subset of the space with respect to the Feynman–Kac operator related
to a Markov chain satisfying the DSP. We then compare our results with the case of nearest-
neighbor random walks evolving in graphs of finite geometry. In the second part we focus on the
DSP property itself. We discuss various methods which allow us to construct Markov chains with
the DSP, putting special emphasis on the technique of the discrete subordination. We illustrate
this by numerous examples, showing that in fact the DSP class includes many important chains
that were already studied in the literature. Results obtained here are fundamental for our ongoing
project where we analyse further analytic properties of the discrete time Feynman–Kac semigroups.

Motivation. Our motivations for this project are two-fold. The first one originates from the theory
of non-local Schrödinger operators in L2(Rd), while the second comes from the theory of discrete-
time Markov chains evolving in countable infinite spaces. We now briefly describe each of these two
paths and we point out some connections between them.

Let L be an L2-generator of a symmetric Lévy process (Xt)t>0 in Rd (Lévy operator) Böttcher
et al. (2013); Jacob (2001–2005) and let V : Rd → R be a locally bounded function such that
V (x)→∞ as |x| → ∞ (confining potential). The Schrödinger operator is then defined as

H = −L+ V, acting in L2(Rd).

Prominent examples include the following operators L (and the corresponding stochastic processes):
a) classical Laplacian: L = ∆ (Brownian motion running at twice the speed);
b) fractional Laplacian: L = −(−∆)α/2, α ∈ (0, 2) (isotropic α-stable Lévy process);
c) quasi-relativistic operator : L = −(−∆ + m2/α)α/2 + m, α ∈ (0, 2), m > 0 (isotropic relativistic
α-stable Lévy process).
We recall that these and many other examples of L’s can be constructed via spectral theory, that is
the operator L can be written as L = −φ(−∆), where φ is a Bernstein function such that φ(+0) = 0,
see Schilling et al. (2012) for a comprehensive discussion on Bernstein functions. Note that with this
approach we can obtain local as well as non-local operators. For instance, L in a) is local as it is a
second order differential operator, while both L’s in b) and c) are non-local – this is because of the
jumping nature of the corresponding Lévy processes. It is remarkable that such operators and the
related processes have numerous applications in physical sciences Woyczyński (2001); in view of the
confinement assumption the corresponding Schrödinger operators H usually serve as Hamiltonians
in various mathematical models of oscillators in non-relativistic and (quasi-)relativistic quantum
mechanics (see, e.g. Durugo and Lőrinczi (2018); Garbaczewski and Stephanovich (2009); Gatland
(1991); Li et al. (2005); Mohazzabi (2004) and references in these papers).

The Schrödinger semigroup
{
e−tH : t > 0

}
admits the following stochastic representation which

is given in terms of the Lévy process generated by L

e−tHf(x) = Ex
[
e−

∫ t
0 V (Xs)dsf(Xt)

]
, f ∈ L2(Rd), t > 0. (1.1)

This equality is called the Feynman–Kac formula Demuth and van Casteren (2000). It is known to
be a powerful tool which allows one to study various analytic properties of these operators by means
of probabilistic methods. Recent contributions include estimates of the heat kernel, heat content
and trace Acuña Valverde (2020); Acuña Valverde and Bañuelos (2015); Bañuelos and Yolcu (2013);
Jakubowski andWang (2020); Kaleta and Schilling (2020); Wang (2018), harmonic functions, ground
states, eigenfunctions and eigenvalues, and spectral bounds Jacob and Wang (2018); Kaleta (2012);
Kaleta and Lőrinczi (2020); Kulczycki (2013); Takeda (2011), intrinsic hyper- and ultracontractivity
Chen and Wang (2016); Kaleta et al. (2018); Kulczycki and Siudeja (2006), to mention just a few
of them.
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In this paper we study semigroups which are given by a pure discrete counterpart of the right-
hand side of (1.1), i.e. when the underlying processes are discrete-time Markov chains taking values
in a countably infinite state space X. Generators of such semigroups are certain normalizations of
discrete Schrödinger operators (they act on function spaces over X) and they are defined through
the generators of the Markov chains – this can be understood as a discrete-time Feynman–Kac
formula. This correspondence provides direct access to various properties of objects related to
non-local discrete Schrödinger operators which are exploited via elementary methods based on
discrete time evolution semigroups and processes. In this paper we apply this approach to study
the decay properties of harmonic functions, but in fact it has more far-reaching consequences. Our
investigations concentrate on the class of Markov chains with the DSP. This framework covers many
interesting examples of discrete counterparts of non-local Schrödinger operators that were studied in
the Euclidean case. In particular, we include Schrödinger operators of the form H = φ(I −P ) + V ,
where P is a transition operator of any finite range Markov chain in X, φ is a fairly general Bernstein
function such that φ(0+) = 0 and V is a confining potential over X, cf. the discussion in Subsection
4.2 following Lemma 4.5.

One can also look at our investigations from a different perspective. The discrete-time Feynman–
Kac semigroups with confining potentials serve as transition semigroups of discrete-time Markov
chains evolving in countable infinite spaces, whose paths are killed with random intensity given
by the potential. This killing effect intensifies at infinity, leading to a variety of interesting long-
range and limiting phenomena, especially for the underlying discrete-time processes that satisfy
the DSP. One of the main goals of this project is to understand the long-time asymptotic and
ergodic properties of such Feynman–Kac semigroups and the corresponding processes evolving in the
presence of the killing Schrödinger potentials. In this context, we want to mention here a recent work
by Diaconis et al. (2020) which gave us some new insight and motivation. The two aforementioned
motivations are strongly connected to each other – this is manifested via the probabilistic background
lying behind the analytic approach which we undertake in this article.

Below we briefly display the setting and our main results, together with the references to the
corresponding theorems in the remaining part of the text.

Discrete time Feynman–Kac semigroups. LetX be a countably infinite set and let P : X×X → [0, 1]
be a (sub-)probability kernel, that is∑

y∈X
P (x, y) 6 1, for every x ∈ X. (1.2)

Equivalently, there is a time-homogeneous Markov chain
{
Yn : n ∈ N0

}
, defined on a given proba-

bility space (Ω,F ,P), with values in X and one-step transition probabilities given by

P(Yn+1 = y | Yn = x) = P (x, y).

Throughout we use the standard notation for the measure of the process starting at x ∈ X, that is
Px(Yn = y) := P(Yn = y | Y0 = x). The corresponding expected value is denoted by Ex. When the
sum in (1.2) is equal to 1 for every x ∈ X, the process

{
Yn : n ∈ N0

}
is conservative in the sense

that it has a full probability measure Px for every x ∈ X. Otherwise, it can be interpreted as a killed
process. We can complete its law to a full probability measure by the standard procedure which
is based on adding an extra cemetary point ∂ to the state space X and extending P to X∂ ×X∂ ,
where X∂ = X ∪ ∂. In this paper, however, we do not follow this path – we allow the kernel P to
be strictly sub-probabilistic. Let us remark that we do not assume any symmetry of P .

Let V : X → R be a function such that infx∈X V (x) > 0 and let us introduce a semigroup of
operators {Un : n ∈ N0} defined as

U0f = f, Unf(x) = Ex
[ n−1∏
k=0

1

V (Yk)
f(Yn)

]
, n > 1, (1.3)
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for any admissible function f . Observe that Unf = Unf, n > 1, where Un denotes the nth power of
the operator

Uf(x) =
1

V (x)

∑
y∈X

P (x, y)f(y), x ∈ X. (1.4)

The formula (1.3) can be seen as a discrete time and space counterpart of (1.1). We therefore call
{Un : n ∈ N0} the discrete time Feynman–Kac semigroup with potential V associated with the
chain {Yn : n ∈ N0}. Observe that the discrete time multiplicative functional under the expectation
in (1.3) could also be alternatively defined as

∏n
k=1

1
V (Yk) which would lead to a different semigroup.

This results in the duality structure and this issue is discussed in more detail in Section 3.3.
The study of multiplicative functionals such as appearing in (1.3), for processes with discrete

time parameter, has a long history. This is mainly related to the famous observation by Mark
Kac that various Wiener functionals can be effectively approximated by their certain discretizations
Kac (1949, 1951). Such techniques turned out to be powerful tools in the study of boundary value
problems for classical Schrödinger operators on bounded domains of Rd for which the solutions are
given by the classical Feynman–Kac formula. Similar questions have been raised for the simple
random walk evolving in Zd, equipped with its natural Cayley graph structure, by Csáki (1993)
for the one-dimensional case, and by Anastassiou and Bendikov (1997) for the multidimensional
(parabolic) case.

The operator U − I is the central object in the present paper. We call it the Feynman–Kac
operator. It can be directly checked that if f is a function on X such that Un|f |(x) < ∞, for any
x ∈ X and n ∈ N0 (e.g. if f is bounded), then u(n, x) = Unf(x) is the unique solution to the
following Cauchy problem {

∂nu(n, x) = (U − I)xu(n, x)

u(0, x) = f(x),

where ∂nu(n, x) = u(n+ 1, x)− u(n, x) is the first-difference operator.
An important link to the classical theory is the observation that the operators U − I can be seen

as certain normalizations of the discrete Schrödinger operators. More precisely, if

Hf(x) =
∑
y∈X

P (x, y)
(
f(x)− f(y)

)
+ V (x)f(x),

where V : X → R is a potential such that infx∈X(V (x) +
∑

y∈X P (x, y)) > 0, then

1

V (x) +
∑

y∈X P (x, y)
Hf(x) = (I − U)f(x),

where the operator U is defined with the shifted potential V (x) +
∑

y∈X P (x, y). It is therefore
evident that the operators H and I − U share many analytic properties. In the present paper we
exploit the fact that they have joint harmonic functions, see Section 3.1. This idea has been used
very recently by Fischer and Keller (2021) in the study of the Riesz decomposition for superharmonic
functions of graph Laplacians.

Results for Markov chains with the DSP and confining potentials. We obtain results for a class of
Markov chains with a certain long range distributional property. Recall that the probability to
move from x to y in n steps is inductively defined as

Pn(x, y) =
∑
z∈X

P (x, z)Pn−1(z, y), n > 1.

We assume that the kernel P (x, y) satisfies the following regularity condition:
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(A) We have P (x, y) > 0, for all x, y ∈ X, and there exists a constant C∗ > 0 such that

P2(x, y) 6 C∗P (x, y), x, y ∈ X. (1.5)

Condition (1.5) has an interesting heuristic interpretation: the probability to move from x to y in two
consecutive steps is asymptotically smaller than the probability to move in the one direct step. For
this reason we call this condition the direct step property (DSP in short). It should be emphasized
that the rate of domination in the DSP does not depend on x and y (recall that X is infinite).
Clearly, this property extends to the n-step transition probability, that is Pn(x, y) 6 Cn−1

∗ P (x, y),
x, y ∈ X. Observe that under (1.5) the positivity of the kernel P in assumption (A) is in fact
equivalent to a weaker condition that the Markov chain associated with P is irreducible, i.e. for
every x, y ∈ X there exists n ∈ N such that Pn(x, y) > 0. We remark in passing that the DSP
can be seen as a discrete counterpart of the direct jump property (DJP) – the condition on a Lévy
measure which is a useful tool in the study of jump Lévy processes in Rd (see Kaleta and Schilling
(2020) and references therein). The condition of this type has been first proposed by Klüppelberg
(1990) for distributions on the half-line.

In the paper we consider the class of confining potentials V , that is satisfying the following
condition

(B) For every M > 0 there exists a finite set BM ⊂ X such that V (x) >M for x ∈ Bc
M .

An admissible function f is called (U − I)-harmonic in a set D ⊂ X ((U − I)-subharmonic, (U − I)-
superharmonic, respectively) if (U − I)f(x) = 0 for x ∈ D (> 0, 6 0, resp.). The estimates for
harmonic functions which we prove in the DSP case in Section 2.1 can be summarized as follows.

(1) Upper bound for subharmonic functions: Under the DSP, assumption (B) forces that there
exists a finite set B0 ⊂ X such that for any finite set B ⊂ X with B ⊇ B0 and for any non-negative
and bounded function f which is (U − I)-subharmonic in Bc we have

f(x) 6 C
P (x, x0)

V (x)

∑
y∈B

f(y), x ∈ Bc, x0 ∈ B,

with a constant C = C(P,B) which is independent of V and f , see Theorem 2.2. The proof of this
result is transparent and quite elementary. It is based on a tricky self-improving estimate which
combines the DSP with assumption (B). We remark that in many cases the set B0 and the constant
C can be given explicitly.

The matching lower bound for superharmonic functions is obtained in a slightly more general
setting and it also indicates that the upper bound in (1) is sharp.

(2) Lower bound for superharmonic functions: Under assumption (A), for any set D ⊂ X and any
nonnegative function f which is (U − I)-superharmonic in D, we have for any finite set B ⊂ X,

f(x) > C̃
P (x, x0)

V (x)

∑
y∈B

f(y), x ∈ D ∩Bc, x0 ∈ B,

with a constant C̃ = C̃(P,B) which is independent of V , f and D, see Proposition 2.4. In this
case the finite set B is arbitrary. Similarly as for the upper bound, in many cases the value of the
constant C̃ can be given explicitly.

A combination of our results from Theorem 2.2 and Proposition 2.4 (presented in (1)–(2) above)
gives the two-sided sharp estimates for harmonic functions.

(3) Two-sided estimate for harmonic functions: Under assumptions (A) and (B), there exists a finite
set B0 ⊂ X such that for any finite set B ⊂ X with B ⊇ B0, any set D ⊂ X and any non-negative
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non-zero and bounded function f which is (U − I)-harmonic in D ∩Bc and such that f(x) = 0 for
x ∈ Dc ∩Bc we have

C̃ 6
f(x)

P (x,x0)
V (x)

∑
y∈B f(y)

6 C, x ∈ D ∩Bc, x0 ∈ B. (1.6)

This can be seen as a discrete counterpart of the estimates proved in Kaleta and Lőrinczi (2015,
Theorem 2.2) in the case of Lévy processes. As a direct consequence of (1.6) we obtain the following
result.

(4) Uniform Boundary Harnack Inequality at infinity : if f and g are two nonzero (U − I)-harmonic
functions as in (3), then (

C̃

C

)2

6
f(x)g(y)

g(x)f(y)
6

(
C

C̃

)2

, x, y ∈ D ∩Bc. (1.7)

Result from (3) and (4) are given in Corollary 2.5. The inequality in (1.7) is a discrete version of
the uniform Boundary Harnack Inequality (uBHI) at infinity which is a fundamental theorem in
the potential theory of continuous time Markov processes and their generators. The word “uniform”
refers to the fact that the constants appearing in the estimates do not depend on D and V , and
the finite set B0 depends on V only through its rate of growth at infinity (this means that if B0 is
appropriate for a given V , then it is also appropriate for any Ṽ such that Ṽ > V ). BHI has been
widely studied for both local and non-local operators and the corresponding processes on bounded
domains of Rd. We refer the reader to the paper by Bogdan et al. (2015) for general results on
jump Feller processes, an excellent overview of the history, references and discussion on applications
of BHI. Our present estimate (1.6) can be understood as a discrete time and space variant of the
inequality stated by Kwaśnicki for jump isotropic α-stable processes in Rd and V ≡ 0 Kwaśnicki
(2009, Corollary 3). It was derived from the general result proven by Bogdan et al. (2008). Recently,
Kim et al. (2017) obtained a version of BHI at infinity for jump Feller processes on metric measure
spaces.

We remark that all of our results presented in (1)–(4) can be extended beyond the setting of
(sub-)probability kernels (for details see Remark 2.6).

Related estimates for nearest-neighbor walks with confining potentials. It is instructive to compare
our results obtained for Markov chains with the DSP with corresponding estimates for nearest-
neighbor random walks evolving in connected graphs of finite geometry. The necessary set-up is
precisely described at the beginning of Section 2.2.

Asymptotic properties of long-range random walks usually differ substantially from those of
nearest-neighbor walks. This is also the case in the present situation – under the killing effect
(coming from the confining potential) on the paths of the underlying stochastic process the discrep-
ancy between the decay rates is particularly evident. As we could not find the result of this type
in the literature, we provide the respective estimates under the assumption that the potential is
isotropic and increasing with respect to the graph (geodesic) metric d in X which we equip with
the graph structure. Our results can be summarized as follows.

(1) Upper bound for subharmonic functions. We obtain an upper estimate for bounded non-negative
functions that are (U − I)-subharmonic in the complement of a geodesic ball. The decay rate of
such a function f(x) is governed by the expression of the form

∏d(x,x0)
i=0 (1/V (xi)) which is evaluated

along the shortest path x0 → x1 → · · · → x connecting a given fixed point x0 with x in the graph
over X, see Theorem 2.7.

(2) Lower estimate for superharmonic functions and related two-sided bound. In Theorem 2.9 we
obtain a lower bound for non-negative functions which are (U −I)-superharmonic in an unbounded,
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connected and geodesic convex subset of X. This estimate differs from that in (1) by an extra
multiplicative constant under the product.

In the case when the potential V grows regularly enough at infinity then the decay of a bounded
and nonnegative (U − I)-harmonic function is governed by the expression of the form

e−c d(x,x0) log V (x)(1+o(1)), as d(x, x0)→∞. (1.8)

For a precise statement see Corollary 2.11. Observe that the results obtained for Markov chains
with the DSP are in sharp contrast to the decay rate obtained in (1.8). We refer the reader to
Section 4.4 for some explicit examples.

Direct applications. We now discuss two specific applications of the presented estimates.

(1) Applications to equations involving the graph Laplacians. Our results can be effectively applied
to study the decay properties of solutions to the equation Hf(x) = 0, x ∈ D, where H is the graph
Laplacian in the graph over X and the set D ⊂ X is infinite. More precisely, if {b(x, y)}x,y∈X is a
family of weights over edges in X, as explained in Section 3.1, and if m is a positive measure on X
and V : X → R is a potential satisfying assumption (B) then the operator defined as

Hf(x) =
1

m(x)

∑
y∈X

b(x, y)
(
f(x)− f(y)

)
+ V (x)f(x),

for f such that
∑

y b(x, y)|f(y)| <∞ for every x ∈ X, is called the graph Laplacian. Such operators
can be seen as discrete anologues of Schrödinger operators with confining potentials. For an excellent
account of the theory and an overview of recent contributions in the area of operators on infinite
graphs we refer the reader to the monograph by Keller et al. (2021).

The action of H on functions that are supported in the complement of a bounded set A can be
reduced to a certain normalization of the operator I−U , which is constructed via the sub-probability
kernel P (x, y) = b(x, y)/ supx∈X

∑
z b(x, z) and the potential Ṽ determined by the initial data V ,

b and m. In consequence, these two operators share functions which are harmonic in subsets of A
(see Proposition 3.1 and the discussion following it). Therefore, under some mild assumptions on
b and m, our results can be applied to obtain estimates for functions harmonic with respect to H
in infinite subsets of X in two cases: for weights b(x, y) which lead to the DSP probability kernels
P (x, y) (Corollary 3.2) and for b(x, y) of the nearest-neighbor type (Corollary 3.3). Moreover, in
the first case the BHI at infinity holds. This seems to be of special interests in the `2-setting, since
the operator H has a specific meaning in quantum physics. For detailed statements and further
discussion we refer to Section 3.1.

(2) Estimates for eigenfunctions of discrete time Feynman–Kac semigroups. Suppose there is a
positive measure µ on X. Under some natural assumptions on the kernel P (x, y), the discrete time
Feynman–Kac semigroup {Un : n ∈ N0} consists of operators that are bounded in `2(X,µ) and act
as bounded operators from `2(X,µ) to `∞(X,µ) (it means they are ultracontractive). Moreover,
under condition (B), the operators Un are compact in `2(X,µ) (Lemma 3.7). In particular, they have
purely discrete spectra and the ground state of the operator I −U exists. As we already know that
(due to ultracontractivity) any `2-eigenfunction is bounded, our pointwise estimates from Section 2
apply directly. This is discussed in more detail in Section 3.2.

Our results lead to sharp two-sided estimates for the ground state eigenfunction outside of a
finite subset of X. These bounds have many far-reaching consequences. In particular, they are
fundamental for further developments in the theory of discrete time Feynman–Kac semigroups with
confining potentials. In our ongoing work we apply them to find sharp two-sided estimates for the
kernel of the operator Un and to characterize the intrinsic contractivity properties. These results
can in turn be used to analyse further long-time properties of the corresponding semigroups. It is
rather a general rule that a sufficiently detailed knowledge of the ground state enables us to give
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a precise description of the large-time behaviour of the corresponding semigroup, see e.g. Kaleta
and Schilling (2020) for a recent development in the theory of Schrödinger semigroups for Lévy
operators and Diaconis et al. (2020, Sections 7.1-7.2) for recent results in the case of discrete-time
Markov chains with finite state spaces (see also Remark 7.19 and Examples 7.20–7.22 in Diaconis
et al. (2020)).

Markov chains with the DSP and discrete subordination. We are finally concerned with the question:
is the class of Markov chains with the DSP rich enough? This is partially answered in Section 4. We
show that if we equip the space X with a metric d and if the sub-probability kernel P depends on
the distance and it is comparable with a doubling function J , that is P (x, y) � J(d(x, y)), then such
kernel P satisfies the DSP, see Proposition 4.1. This condition includes many important examples of
long-range random walks, for instance stable-like random walks in the integer lattice, see e.g. Bass
and Levin (2002), as well as random walks in measure metric spaces studied recently by Murugan
and Saloff-Coste (2015, 2019). In Corollary 4.2 we also extend this observation to kernels with much
lighter tails.

On the other hand, we establish a useful result which states that the DSP is stable under random
change of time. Let {τn : n ∈ N0} be an increasing random walk with values in N0, that is
τn+1 − τn, n = 0, 1, . . . are i.i.d. positive integer-valued random variables. If {τn : n ∈ N0} satisfies
the DSP and if {Zn : n ∈ N0} is an independent of τn homogeneous Markov chain in X then
the time-changed Markov chain {Zτn : n ∈ N0} enjoys the DSP as well, see Lemma 4.3. This is a
powerful method which allows one to construct a number of examples of Markov chains satisfying our
assumption (A), see Corollary 4.4 (in Lemma 4.5 we also give an easy-to-check sufficient condition
for the walk {τn : n ∈ N0} to satisfy the DSP). We exploit this construction with the aid of the
discrete subordination which was developed by Bendikov and Saloff-Coste (2012) for random walks
on groups. As admissible random time-change processes they admit a specific class of random walks
τn whose one-step distributions are uniquely determined (through their Laplace transforms) by a
Bernstein function φ such that φ(0+) = 0 and φ(1) = 1. If {Zn : n ∈ N0} is the standard nearest
neighbour walk in X equipped with a graph structure, then the generator of the subordinate Markov
chain {Zτn : n ∈ N0} is of the form −φ(−∆), where ∆ stands for the classical discrete (graph)
Laplacian. This enables us to study various important non-local discrete counterparts of operators
known from the L2(Rd)-theory, such as fractional Laplacians and quasi-relativistic operators.

In particular, we investigate the class of Markov chains associated with Bernstein functions φ(λ) =

λα, for α ∈ (0, 1) – it results in an α-stable subordinator, and φ(λ) = (λ+m1/α)α−m, for α ∈ (0, 1)
and m > 0 – this gives a relativistic α-stable subordinator (see Propositions 4.6–4.7). These specific
examples of long range Markov chains may be of special interest in mathematical physics and
modelling.

Finally, we discuss a handy method of constructing Markov chains with the DSP on product
spaces, including integer lattices and products of more general graphs, see Section 4.3.

To illustrate our estimates of harmonic functions for discrete Feynman–Kac operators we collect
in Section 4.4 some explicit examples of the decay rates which are derived for various Markov chains
and confining potentials.

2. Estimates for functions harmonic in infinite sets

In this section we present estimates for functions which are subharmonic and superharmonic
with respect to the discrete Feynman-Kac operators. We also study the decay of functions that are
harmonic outside of a finite set.

Recall that a function f is called (U −I)-harmonic ((U −I)-superharmonic, (U −I)-subharmonic,
resp.) in a non-empty set D ⊂ X if (U − I)f(x) = 0 (6 0, > 0, resp.) for x ∈ D.



Harmonic functions for discrete Feynman–Kac operators 1079

2.1. Estimates for Markov chains with the DSP. In this section we find estimates of harmonic
functions for the class of Markov chains satisfying our assumption (A): P (x, y) > 0 for all x, y ∈ X
and there is a constant C∗ > 0 such that

P2(x, y) 6 C∗P (x, y), x, y ∈ X.
We first show that the kernel P (x, y) can be uniformly localized in the second variable. For every

finite set B ⊂ X we define

KB := inf

{
P (x, y)

P (x, z)
: x ∈ X; y, z ∈ B

}
and KB := sup

{
P (x, y)

P (x, z)
: x ∈ X; y, z ∈ B

}
.

Lemma 2.1. Under assumption (A), for every finite set B ⊂ X we have 0 < KB 6 KB <∞.

Proof : It follows from (A) that for every x ∈ X and y, z ∈ B we have

0 < P (x, z)P (z, y) 6
∑
w∈X

P (x,w)P (w, y) 6 C∗P (x, y),

0 < P (x, y)P (y, z) 6
∑
w∈X

P (x,w)P (w, z) 6 C∗P (x, z).

This immediately implies

KB >
infy,z∈B P (z, y)

C∗
> 0 and KB 6

C∗
infy,z∈B P (y, z)

<∞

which completes the proof. �

In the remaining part of this section, we fix a finite set B0 ⊂ X such that

C1 := sup

{
1

V (x)
: x ∈ Bc

0

}
< 1 ∧ 1

C∗
. (2.1)

The existence of such a set is secured by assumption (B). Note that B0 depends on V and P .
Our first main result is the following upper bound for functions that are (U − I)-subharmonic in

infinite sets.

Theorem 2.2. Under assumptions (A) and (B), there exists a constant C2 > 0 such that for any
finite set B ⊂ X with B ⊇ B0, and for any non-negative bounded function f which is subharmonic
in Bc we have

f(x) 6 C2
1

V (x)

∑
y∈B

P (x, y)f(y), x ∈ Bc. (2.2)

In particular,

f(x) 6 C2KB
P (x, x0)

V (x)

∑
y∈B

f(y), x ∈ Bc, x0 ∈ B.

Remark 2.3. The constant C2 depends neither on f , V , nor on the set B.

Proof of Theorem 2.2: The second assertion follows directly from the first one combined with Lemma
2.1. We are left to show (2.2).

For any fixed B ⊇ B0 we have

f(x) 6
1

V (x)

∑
y∈B

P (x, y)f(y) +
1

V (x)

∑
y∈Bc

P (x, y)f(y), x ∈ Bc. (2.3)

Observe that (2.1) implies C1C∗ < 1. Hence

f(x) 6 c2

∑
y∈B

P (x, y)f(y) + C1 ‖f‖∞ , x ∈ Bc,
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where we set c2 = C1(1 ∨ C∗) < 1. This estimate may be iterated with the aid of (2.3) and the
DSP. We claim that for any n ∈ N

f(x) 6 (c2 + c2
2 . . .+ cn2 )

∑
y∈B

P (x, y)f(y) + Cn1 ‖f‖∞ , x ∈ Bc. (2.4)

It suffices to prove the inductive step and for this we assume that (2.4) holds for any fixed n ∈ N
and we show it for n+ 1. By using (2.4) to estimate f(y) under the second sum in (2.3), we obtain

f(x) 6 c2

∑
y∈B

P (x, y)f(y)

+ C1(c2 + . . .+ cn2 )
∑
y∈Bc

P (x, y)
∑
z∈B

P (y, z)f(z) + Cn+1
1 ‖f‖∞ , x ∈ Bc.

By applying Tonelli’s theorem and the DSP to the double sum above, we get for x ∈ Bc

f(x) 6 c2

∑
y∈B

P (x, y)f(y) + C1C∗(c2 + . . .+ cn2 )
∑
y∈B

P (x, y)f(y) + Cn+1
1 ‖f‖∞ ,

and the claim follows as C1C∗ 6 c2. We next let n to infinity in (2.4) and as the constants C1 and
c2 were chosen to be smaller than one we arrive at

f(x) 6
c2

1− c2

∑
y∈B

P (x, y)f(y), x ∈ Bc.

Finally, by applying this inequality to estimate f(y) under the second sum in (2.3) and using the
DSP we conclude (2.2) with the constant C2 := 1 + (C∗c2)/(1− c2). The proof is finished. �

Next we show that the upper bound obtained in Theorem 2.2 is sharp in the sense that for all
non-negative (U−I)-superharmonic functions we always have the matching lower bound. Note that
for the lower bound we do not need assumption (B).

Proposition 2.4. For any D ⊂ X, any non-negative function f which is superharmonic in D, and
for any finite set B ⊂ X we have

f(x) >
1

V (x)

∑
y∈B

P (x, y)f(y), x ∈ D.

In particular, under assumption (A),

f(x) > KB

P (x, x0)

V (x)

∑
y∈B

f(y), x ∈ D, x0 ∈ B.

Proof : The first estimate follows directly from the inequality (U − I)f(x) 6 0, x ∈ D. Indeed,

f(x) >
1

V (x)

∑
y∈X

P (x, y)f(y) >
1

V (x)

∑
y∈B

P (x, y)f(y), x ∈ D.

The second assertion is implied by Lemma 2.1. �

The following important result is a consequence of Theorem 2.2 and Proposition 2.4.

Corollary 2.5. Under assumptions (A) and (B), for any finite set B ⊂ X with B ⊇ B0, for any
set D ⊂ X, and for any non-negative, non-zero and bounded function f which is harmonic in D
and such that f(x) = 0 for x ∈ Dc ∩Bc we have

KB 6
f(x)

P (x,x0)
V (x)

∑
y∈B f(y)

6 C2KB, x ∈ D ∩Bc, x0 ∈ B,

where C2 is the constant of Theorem 2.2.
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In particular, the uniform Boundary Harnack Inequality at infinity holds: if f and g are
two such non-zero harmonic functions, then(

KB

C2KB

)2

6
f(x)g(y)

g(x)f(y)
6

(
C2KB

KB

)2

, x, y ∈ D ∩Bc.

Finally, we remark that all the results proved in this section extend easily beyond the set-up of
(sub-)probabilistic kernels.

Remark 2.6. Theorem 2.2, Proposition 2.4 and Corollary 2.5 hold true for more general kernels
P : X ×X → (0,∞) which satisfy

M1 := sup
x∈X

∑
y∈X

P (x, y) <∞

and

M2 := sup
x,y∈X

∑
z∈X P (x, z)P (z, y)

P (x, y)
<∞.

Indeed, given such a kernel P and a confining potential V we can define P̃ (x, y) := P (x, y)/M1

and Ṽ = V/M1 and observe that the sub-probability kernel P̃ (x, y) satisfies assumption (A) with
the constant C∗ = M1M2. Since P (x, y)/V (x) = P̃ (x, y)/Ṽ (x) and P̃ , Ṽ satisfy the assumptions
of Theorem 2.2, Proposition 2.4 and Corollary 2.5, all of these results apply to P and V , and the
dependence of a finite B0 and all of the constants in the presented estimates remain unchanged.

2.2. Estimates for nearest-neighbor random walks. In this paragraph we present a counterpart of
the estimates obtained in Theorem 2.2 and Proposition 2.4 for the nearest-neighbor walk evolving
in a graph.

We start by imposing a graph structure in X. The graph G = (X,E) over X (points in X form
the set of vertices) is defined by specifying E ⊂

{
{x, y} : x, y ∈ X

}
, the set of edges. Two vertices

x, y ∈ X are connected by an edge in G if and only if {x, y} ∈ E. In this case we call x and
y neighbours and write x ∼ y (note that {x, y} = {y, x}). We say that the graph G is of finite
geometry if # {y ∈ X : x ∼ y} < ∞, for all x ∈ X (i.e. the number of neighbours of an arbitrary
vertex x ∈ X is finite). Some authors call such a graph locally finite. Moreover, G is connected if
for every x, y ∈ X, x 6= y, there exists a sequence

{
xi
}n
i=0
⊂ X with x0 = x, xn = y such that

xi−1 ∼ xi, for i = 1, . . . , n (i.e. every two different vertices x and y are connected by a path in G).
Every shortest path (the length of the path is counted as the number of edges belonging to that
path) connecting two different vertices x and y is called a geodesic path between x and y. For the
rest of this section we assume that

(C) G is a connected graph of finite geometry.
The assumption that G is a connected graph allows us to define the natural graph (geodesic) distance
d in X. More precisely, d(x, y) is defined as the length of the geodesic path connecting x and y. As
G is of finite geometry, every open geodesic ball Br(x) =

{
y ∈ X : d(x, y) < r

}
is finite and since

X is infinite, the metric space (X, d) is unbounded.
We consider a (sub-)probability kernel P : X × X → [0,∞) such that for every two vertices

x, y ∈ X,

P (x, y) > 0 ⇐⇒ x ∼ y. (2.5)

We do not assume that P (x, y) is symmetric. Let {Sn : n > 0} be a time-homogeneous Markov
chain associated to P , which is called a nearest-neighbor random walk on a graph G. Due to the
assumption of finite geometry the range of Sn is a finite subset of X for every n. This means that
such a process can be understood as a discrete time counterpart of a diffusion in X.
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The corresponding Feynman–Kac operator U − I is given by

(U − I)f(x) =
1

V (x)

∑
y∈X

P (x, y)f(y)− f(x), x ∈ X,

for all admissible functions f on X. To find satisfactory estimates of harmonic functions, we restrict
our attention to the class of isotropic and increasing functions V . More precisely, we assume that
there exists x0 ∈ X such that

V (x) = V (y), if d(x, x0) = d(y, x0), and V (x) > V (y), if d(x, x0) > d(y, x0).

This can be equivalently stated as follows.
(D) There exist x0 ∈ X and an increasing profile function W : N0 → (0,∞) such that V (x) =

W (d(x0, x)), for any x ∈ X.
Our results apply well to the subclass of confining potentials that are isotropic and increasing, but
formally we do not require assumption (B) in this paragraph. We first give the upper bound for
(U − I)-subharmonic functions.

Theorem 2.7. Let assumptions (C) and (D) hold with a fixed x0 ∈ X and a profile function W .
Let U − I be the Feynman–Kac operator corresponding to the kernel P (x, y) satisfying (2.5). Then
for any r ∈ N and for any non-negative and bounded function f which is (U − I)-subharmonic in
Br(x0)c we have

f(x) 6 ‖f‖∞
d(x,x0)∏
i=r

1

W (i)
, x ∈ Br(x0)c.

Proof : Since f is bounded and (U − I)-subharmonic in Br(x0)c,

f(x) 6
1

V (x)

∑
y∼x

P (x, y)f(y) 6
1

V (x)
‖f‖∞ , x ∈ Br(x0)c. (2.6)

We next show that for any j > 1 and all x ∈ X such that d(x, x0) > r + j, and for any geodesic
path x0 → . . .→ xn = x (clearly, n = d(x, x0)) it holds that

f(x) 6 ‖f‖∞
(
V (xn)V (xn−1) . . . V (xn−j)

)−1
. (2.7)

We use induction with respect to the parameter j > 1. If j = 1 then for any x with d(x, x0) > r+ 1
and for any geodesic path x0 → . . .→ xn = x we apply the first inequality in (2.6) and we arrive at

f(x) 6
1

V (x)
‖f‖∞

∑
y∼x

P (x, y)
1

V (y)
.

Since x = xn and xn−1 is one of its neighbours lying on a geodesic path connecting x with x0, we
have d(xn−1, x0) 6 d(y, x0), for every y ∼ x. By (D) this implies that V (xn−1) 6 V (y), for y ∼ x.
Consequently,

f(x) 6 ‖f‖∞ (V (xn) · V (xn−1))−1,

which proves (2.7) for j = 1.
We proceed to the proof of the inductive step which will imply the desired estimate. We assume

that (2.7) is valid for some j > 1 and we aim to show that for any x ∈ X with d(x, x0) > r + j + 1
and for any geodesic path x0 → . . .→ xn = x the following estimate is valid

f(x) 6 ‖f‖∞
(
V (xn)V (xn−1) . . . V (xn−(j+1))

)−1
.
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We fix x with d(x, x0) > r + j + 1 and a geodesic path x0 → . . . → xn = x. By the (U − I)-
subharmonicity, we have

f(x) 6
1

V (x)

∑
z∼x

P (x, z)f(z)

=
1

V (x)

( ∑
z∼x,

d(z,x0)=n−1

+
∑
z∼x,

d(z,x0)=n

+
∑
z∼x,

d(z,x0)=n+1

)
P (x, z)f(z). (2.8)

Since V is isotropic,

V (zn−1)V (zn−2) . . . V (zn−1−j) = V (xn−1)V (xn−2) . . . V (xn−1−j),

for every z ∼ x such that d(z, x0) = n − 1, where x0 → z1 → . . . → zn−1 = z is the geodesic path
connecting x0 with z. In view of (2.7) it follows that∑

z∼x,
d(z,x0)=n−1

P (x, z)f(z) 6 ‖f‖∞
(
V (xn−1) . . . V (xn−(j+1))

)−1
∑
z∼x,

d(z,x0)=n−1

P (x, z),

We next consider the second sum in (2.8). Since V is isotropic, for every z ∼ x such that d(z, x0) = n,
we have

V (zn)V (zn−1) . . . V (zn−j) = V (xn)V (xn−1) . . . V (xn−j),

where x0 → z1 → . . .→ zn = z is the geodesic path connecting x0 with z. Therefore,∑
z∼x,

d(z,x0)=n

P (x, z)f(z) 6 ‖f‖∞
(
V (xn)V (xn−1) . . . V (xn−j)

)−1
∑
z∼x,

d(z,x0)=n

P (x, z).

Since V is increasing, we also have

V (xn)V (xn−1) . . . V (xn−j) > V (xn−1) . . . V (xn−(j+1)).

By proceeding in a similar manner we find an analogous upper bound for the third sum in (2.8),
that is ∑

z∼x,
d(z,x0)=n+1

P (x, z)f(z) 6 ‖f‖∞
(
V (xn−1) . . . V (xn−(j+1))

)−1
∑
z∼x,

d(z,x0)=n+1

P (x, z).

Now, by inserting all these bounds into (2.8), we conclude that

f(x) 6 ‖f‖∞
(
V (xn)V (xn−1) . . . V (xn−(j+1))

)−1
,

which finishes the proof of the inductive step.
Finally, for any x with d(x, x0) > r,

f(x) 6 ‖f‖∞
(
V (xn)V (xn−1) . . . V (xr)

)−1
= ‖f‖∞

d(x,x0)∏
i=r

1

W (i)
,

which completes the proof. �

Remark 2.8. Theorem 2.7 can also be easily extended to a more general setting by considering
P̃ (x, y) := P (x, y)/M1 in the case when

M1 := sup
x∈X

∑
y∈X

P (x, y) ∈ (1,∞).

This would lead to the upper bound of the form

f(x) 6 ‖f‖∞
d(x,x0)∏
i=r+1

M1

W (i)
, x ∈ Br(x0)c.
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To obtain the lower bound for (U−I)-superharmonic functions we consider connected and geodesi-
cally convex subsets of X. The set D ⊂ X is called geodesically convex in a graph G = (X,E) if
D contains each vertex on any geodesic path connecting vertices in D. We also need an additional
regularity assumption on the kernel P (x, y), which coincides with the so-called p0-condition imposed
in Grigor′yan and Telcs (2001) (cf. Kumagai (2014, Definition 2.1.1)), that is

M := inf
{
P (x, y) : x, y ∈ X, x ∼ y

}
> 0. (2.9)

Theorem 2.9. Let assumptions (C) and (D) hold with some x0 ∈ X and a profile function W . Let
U − I be the Feynman–Kac operator corresponding to the kernel P (x, y) satisfying (2.5) and (2.9).
Then, for any connected geodesically convex set D ⊂ X, for any non-negative function f which is
(U − I)-superharmonic in D, for any x ∈ D, and for any xr ∈ D which lies on the geodesic path
connecting x with x0 and is such that d(xr, x0) = r < d(x, x0), we have

f(x) > f(xr)

d(x,x0)∏
i=r+1

M

W (i)
. (2.10)

Proof : We fix x ∈ D, a path x0 → . . .→ xn = x and xr ∈ D. By our assumptions, we have

f(x) >
1

V (x)

∑
y∈X

P (x, y)f(y)

and xr+1, . . . , xn−1 ∈ D. Since f is non-negative, we can write

f(x) >
1

V (xn)
P (xn, xn−1)f(xn−1) >

M

V (xn)
f(xn−1).

Similarly,

f(x) >
M

V (xn)
f(xn−1) >

M2

V (xn)V (xn−1)
f(xn−2).

By iterating this (n− r)–times, we arrive at

f(x) >Mn−r(V (xn)V (xn−1 . . . V (xr+1

)−1
f(xr).

Since V (x) = W (d(x0, x)) and n = d(x, x0), this leads to the desired bound. �

To find the rate of decay at infinity of (U − I)-harmonic functions we impose an additional
assumption on the profile function W , namely it is assumed that logW is regularly varying at
infinity of index ρ > 0, see Bingham et al. (1987). We use the equality

d(x,x0)∏
i=r

1

W (i)
= exp

− d(x,x0)∑
i=r

logW (i)


and apply the following lemma to get a necessary estimate for the sum in the exponent.

Lemma 2.10. [Nagaev (2012, Lemma 2.4)] Let g be regularly varying at infinity of index ρ > 0.
Then

n∑
k=1

g(k) ∼ ng(n)

1 + ρ
, as n→∞.

The notation an ∼ bn means that limn→∞
an
bn

= 1.
To simplify the statement we formulate the following corollary for the complement of a ball only.

It, however, extends directly to more general unbounded sets D ⊂ X, cf. Theorem 2.9.
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Corollary 2.11. Let assumptions (C) and (D) hold with a fixed x0 ∈ X and an increasing profile
function W such that logW is regularly varying at infinity of index ρ > 0. Let U − I be the
Feynman–Kac operator corresponding to the kernel P (x, y) satisfying (2.5) and (2.9). Then for
any non-negative, non-zero and bounded function f which is (U − I)-harmonic in Br(x0)c there are
constants C > 1 and C̃ > 0 such that

1

C
exp

(
− 1

1 + ρ
d(x, x0) logW (d(x, x0))− C̃d(x, x0)

)
6 f(x)

6 C exp

(
− 1

1 + ρ
d(x, x0) logW (d(x, x0))

)
, x ∈ Br(x0)c.

In particular,

lim
d(x,x0)→∞

log f(x)

d(x, x0) logW (d(x, x0))
= − 1

1 + ρ
.

3. Applications

We provide a few applications of the presented estimates of functions which are harmonic with
respect to the Feynman-Kac operators.

3.1. Decay of solutions to equations involving the graph Laplacians. By following the series of works
dealing with graph Laplacians (see, e.g. Keller and Lenz (2012) and further references in the mono-
graph Keller et al. (2021)), we impose the structure of a weighted graph on a given countably infinite
space X by considering a kernel b : X ×X → [0,∞] such that

(i) b(x, y) = b(y, x), for every x, y ∈ X;
(ii)

∑
y∈X b(x, y) > 0, for every x ∈ X, and supx∈X

∑
y∈X b(x, y) <∞.

Note that we do not assume that b(x, x) = 0. Let m : X → (0,∞) be a (strictly positive) measure
on X. We additionally consider a function V : X → R such that infx∈X V (x) > −∞. The graph
Laplacian H is defined by

Hf(x) =
1

m(x)

∑
y∈X

b(x, y)
(
f(x)− f(y)

)
+ V (x)f(x),

for all functions f ∈ F := {f : X → R :
∑

y b(x, y)|f(y)| < ∞, for every x ∈ X}. The triple
(X, b, V ) can be seen as a weighted graph over X (two points x, y ∈ X form an edge if and only if
b(x, y) > 0).

We first establish the relation between the operator H and the discrete Feynman–Kac operator
U − I. We set

b(x) =
∑
y∈X

b(x, y), b∗ := sup
x∈X

b(x), P (x, y) =
b(x, y)

b∗
, (3.1)

and

A =
{
x ∈ X : m(x)V (x) + b(x) 6 b∗

}
, Ṽ (x) =

{
m(x)V (x)+b(x)

b∗ , x ∈ Ac,
1, x ∈ A.

(3.2)

We further assume that the operator U is defined as in (1.4) with a sub-probability kernel P (x, y)

and the potential Ṽ (x) defined at (3.1) and (3.2).

Proposition 3.1. For every f ∈ F and x ∈ Ac we have

Hf(x) = −
(
V (x) +

b(x)

m(x)

)
(U − I)f(x). (3.3)
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In particular, if D ⊂ Ac and f ∈ F , then

Hf(x) > 0, x ∈ D ⇐⇒ (U − I)f(x) 6 0, x ∈ D.

Proof : The proof of the first equality is based on a direct rearrangement. Indeed, for x ∈ Ac,

Hf(x) =
1

m(x)

∑
y∈X

b(x, y)
(
f(x)− f(y)

)
+ V (x)f(x)

=

(
V (x) +

b(x)

m(x)

)
f(x)− b∗

m(x)

∑
y∈X

b(x, y)

b∗
f(y)

=

(
V (x) +

b(x)

m(x)

)f(x)− b∗

m(x)V (x) + b(x)

∑
y∈X

b(x, y)

b∗
f(y)

 .

This is exactly (3.3). The second assertion follows directly from (3.3) and the definition of the set
A. �

It follows that Theorem 2.2 and Theorem 2.7 can be effectively used to get an upper bound for
subsolutions to the equation Hf = 0 (i.e. for f such that Hf 6 0) outside of a finite set. Moreover,
Proposition 3.1 implies that H and U have the same harmonic functions in subsets of Ac (to see this
we apply Proposition 3.1 to f and −f). This simple observation allows one to reduce the study of
properties of functions harmonic with respect to H to those which are harmonic with respect to the
Feynman–Kac operators. By combining this fact with results of Section 2, we obtain the following
estimates for the solutions to the equation Hf = 0 in infinite sebsets of Ac.

We note that when m(x)V (x) + b(x) > b∗ for every x ∈ X (that is, A = ∅), then (3.3) can
be seen as a variant of the change of measure procedure, a powerful technique known from mea-
sure/probability theory. In this particular case, the measure m(x), which originally normalizes the
kernel b(x, y), is modified in a proper way. This allows one to transform the Schrödinger operator
H, for which the perturbation by the potential is additive, to the Feynman–Kac operator which can
be treated directly by our method. A similar approach has been used recently by Fischer and Keller
(2021, p. 16). We remark that we chose the normalization by b∗ in (3.1) to make the condition (3.4)
as simple as possible.

Observe that if V is a confining potential in the sense of (B) and infx∈X m(x) > 0, then also
Ṽ (x) is a confining potential and A is at most finite.

Corollary 3.2. (DSP case) Suppose that b(x, y), m(x) and V (x) are as above. Assume that V
satisfies (B), infx∈X m(x) > 0 and that

b(x, y) > 0, and sup
x,y∈X

∑
z∈X

b(x, z)b(z, y)

b(x, y)
<∞. (3.4)

Let D ⊂ X and let f be a bounded solution to the equation Hf(x) = 0, x ∈ D. Then the following
assertions hold.

(1) There exists a finite set B0 ⊂ X (independent of m, D and f) with B0 ⊇ A such that for
any finite set B ⊂ X with B ⊇ B0 there exists a constant C > 0 (independent of V , m, D
and f) such that

|f(x)| 6 C b(x, x0)

m(x)V (x) + b(x)

∑
y∈B
|f(y)|, x ∈ D ∩Bc, x0 ∈ B,

whenever f(x) = 0 for x ∈ Dc ∩Bc;
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(2) If, in addition, f is non-negative, then for any finite set B ⊂ X with B ⊇ B0 there exists a
constant C̃ > 0 (independent of V , m, D and f) such that

f(x) > C̃
b(x, x0)

m(x)V (x) + b(x)

∑
y∈B

f(y), x ∈ D ∩Bc, x0 ∈ B.

In particular, the uniform Boundary Harnack Inequality at infinity holds (cf. Corol-
lary 2.5).

Proof : First note that by Proposition 3.1 the function f is (U − I)-harmonic in D ∩Ac. To justify
the upper bound in (1) it is then enough to observe that |f | is (U −I)-subharmonic in Bc and apply
Theorem 2.2. The corresponding lower bound (2) follows from Proposition 2.4. Finally, the sharp
two-sided estimates lead to the uBHP at infinity as in Corollary 2.5. �

For simplicity we formulate the following result under the assumption that the functions m(x)
and b(x) are constant. It is, however, not difficult to derive similar estimates for the case when
0 < infx∈X m(x) 6 supx∈X m(x) <∞ and 0 < infx∈X b(x) 6 supx∈X b(x) <∞.

Corollary 3.3. (Nearest-neighbour case) Let G = (X,E) be a graph such that assumption (C)
holds. Denote by d(x, y) the (geodesic) graph distance in X. Suppose that b(x, y) satisfy (2.5), m(x)
is as above, and V (x) satisfies assumption (D) with some x0 ∈ X and a profile W . Moreover,
assume that there are positive numbers b0,m0 such that b(x) = b0 and m(x) = m0 for all x ∈ X.
Then the following assertions hold.

(1) If D ⊂ X, r ∈ N is such that A ⊂ Br(x0), and f is a bounded solution to the equation
Hf(x) = 0, x ∈ D, such that f(x) = 0, x ∈ Dc ∩Br(x0)c, then

|f(x)| 6 ‖f‖∞
d(x,x0)∏
i=r+1

b0
b0 +m0W (i)

, x ∈ D ∩Br(x0)c.

(2) If, in addition, the kernel b(x, y) satisfies (2.9), f is non-negative and D is geodesically
convex, then there exists C > 0 (independent of V , m, D and f) such that for every xr ∈ D
with d(x0, xr) = r ∈ N we have

f(x) > f(xr)

d(x,x0)∏
i=r+1

C

b0 +m0W (i)
, x ∈ D ∩Br(x0)c.

Remark 3.4. When b(x, y) is a probability kernel and m is a counting measure (i.e. m ≡ 1), then
b0 = m0 = 1 and the estimates in Corollary 3.3 simplify and become sharper.

Proof of Corollary 3.3: By Proposition 3.1, the function f is (U − I)-harmonic in D∩Ac. It follows
that the function |f | is (U − I)-subharmonic in Br(x0)c. The potential Ṽ satisfies assumption (D)
with the profile W̃ (r) = max

{
1, (m0W (r) + b0)/b0

}
and the same x0 ∈ X. Therefore we get the

upper bound for |f | by employing Theorem 2.7.
The lower estimate in (2) follows from Theorem 2.9 by a similar argument. �

Remark 3.5. In Corollary 3.2 and Corollary 3.3 (and in the results of Section 2) we assume that the
function f is bounded. This assumption is not restrictive in the context of applications to graph
Laplacians. For example, it is evident that if the measure m satisfies the condition infx∈X m(x) > 0
then every function f ∈ `p(X,m), 1 6 p <∞ is bounded.

Remark 3.6. Corollaries 3.2 and 3.3 do not require the assumption that b(x, y) is symmetric. If,
however, b(x, y) is symmetric, infx∈X m(x) > 0 and V (x) is a confining potential, then H is an
unbounded self-adjoint operator on `2(X,m) with the dense domain D(H) = {f ∈ `2(X,m) :
V f ∈ `2(X,m)}. In this particular case, the obtained results seem to be of special interest as such
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operators serve as Hamiltonians in discrete models of quantum oscillators, see e.g. Chalbaud et al.
(1986); Gallinar and Chalbaud (1991); Mattis (1986). SinceH is self-adjoint, its spectrum is real and
it consists of a countable set of eigenvalues of finite multiplicities; this sequence has no limit points
and diverges to infinity. Eigenfunctions and eigenvalues of the Schrödinger operator H are called
energy eigenstates and energy levels of the system. The eigenvalue λ0 which lies at the bottom of
the spectrum of H has multiplicity 1; it describes the energy of the quantum system in the so-called
ground state. The respective eigenfunction ψ0 ∈ `2(X,m) is positive. In general, if ψ is a normalized
eigenfunction of the operator H, then |ψ(x)|2 is the density of the probability distribution of the
position of a particle in a quantum state respective to ψ. Therefore, the knowledge of the rate of
spatial decay of ψ provides an information about the localization of the particle in a configuration
space.

We finally show how one can apply our results to describe the decay rate of eigenfunctions of
operator H outside of a finite set. Let V be a confining potential and let ψ ∈ `2(X,m) be an
eigenfunction of the operator H corresponding to the eigenvalue λ ∈ R. It follows that

Hλψ = 0, (3.5)

where

Hλf(x) =
1

m(x)

∑
y∈X

b(x, y)
(
f(x)− f(y)

)
+ Vλ(x)f(x), with Vλ(x) := V (x)− λ.

Note that under the assumption that infx∈X m(x) > 0 the eigenfunction ψ is bounded on X (see
Remark 3.5). Take D = Acλ, where

Aλ =

{
x ∈ X : Vλ(x) 6

b∗ − b(x)

m(x)

}
.

In this framework one can directly apply Corollary 3.2 and Corollary 3.3 to obtain the upper bound
for |ψ(x)| outside of a finite set in the DSP and the nearest-neighbour case. For the ground state
eigenfunction, i.e. λ = λ0 and ψ = ψ0, we also obtain the matching lower bound. We remark that
in the DSP case the decay of any eigenfunction of H at infinity is dominated by that of the ground
state eigenfunction ψ0, even if the growth of the confining potential is very small. Similar effect was
identified for non-local Schrödinger operators on Rd, but it is not always true for local Schrödinger
operators based on Laplacian, see Kaleta and Lőrinczi (2015, Corollary 2.1 and Example 4.8(5)).

Some concrete examples of decay rates will be discussed in Section 4.4.

3.2. Estimates for eigenfunctions of discrete Feynman–Kac operators. Estimates obtained in Sec-
tion 2 can be effectively used to investigate the spectral and analytic properties of discrete time
Feynman-Kac semigroups. Recall that the semigroup {Un : n ∈ N0} consists of operators U0f = f ,
Unf = Unf , for n > 1, where

Uf(x) =
1

V (x)

∑
y∈X

P (x, y)f(y), x ∈ X.

Suppose we are given a positive measure µ on X such that

(i) sup
y∈X

∑
x∈X µ(x)P (x, y)

µ(y)
<∞, and (ii) sup

x,y∈X

P (x, y)

µ(y)
<∞.

Under condition (i), the operator U is bounded in `p(X,µ), for any 1 6 p < ∞ (observe that the
U is also bounded in `∞(X,µ) as P (x, y) is a probability kernel and µ is a positive measure on X).
Condition (ii) implies that the operator U : `p(X,µ)→ `∞(X,µ) is bounded for every 1 6 p <∞.

From now on we restrict our attention to the case of `2(X,µ). We first show that under (B) the
operator U is compact in `2(X,µ). Clearly, this property is inherited by all the semigroup operators
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Un, n > 1. The following lemma seems to be a standard fact, but we give a short proof for reader’s
convenience.

Lemma 3.7. Under assumption (B), the operator U is compact in `2(X,µ).

Proof : We define the following sequence of finite-rank operators

U (k)f(x) = 1Bk(x)
1

V (x)

∑
y

P (x, y)f(y), k ∈ N,

where {Bk}k∈N is a family of finite subsets of X such that V (x) > k for x ∈ Bc
k, see (B). We aim to

prove that U (k) converges to U in the operator norm. This will imply the desired compactness of U
as any finite-rank operator is compact. Since P (x, y) is a probability kernel, the Cauchy–Schwarz
inequality combined with Tonelli’s theorem yield

‖(U − U (k))f‖22 =
∑
x/∈Bk

(
1

V (x)

)2 ∣∣∣∑
y

f(y)P (x, y)
∣∣∣2µ(x)

6

(
1

infx/∈Bk V (x)

)2∑
y

∑
x

µ(x)P (x, y)

µ(y)
|f(y)|2µ(y)

6
1

k2

(
sup
y∈X

∑
x µ(x)P (x, y)

µ(y)

)
‖f‖22.

By (i), the last expression converges to zero as k →∞ and the result follows. �

Remark 3.8. We do not assume that the kernel P (x, y) is symmetric. In consequence, the operator
U need not be self-adjoint in `2(X,µ). The duality issue will be discussed in Section 3.3.

We deduce that the spectrum of the operator U (excluding zero) consists solely of eigenvalues.
Moreover, by Jentzsch theorem Schaefer (1974, Theorem V.6.6.), the spectral radius of U is an
eigenvalue, which we denote by λ0 > 0, and the corresponding eigenfunction ψ0 is strictly positive
on X.

Let λ ∈ C, λ 6= 0 be an eigenvalue of the operator U and let ψ ∈ `2(X,µ) be the corresponding
eigenfunction, i.e. Uψ = λψ. We then have |λ||ψ| = |Uψ| 6 U|ψ|, which implies |ψ| 6 Uλ|ψ|, where

Uλf(x) =
1

Vλ(x)

∑
y∈X

P (x, y)|ψ(y)|, with Vλ := |λ|V.

In particular, (Uλ − I)|ψ|(x) > 0, x ∈ X, i.e. the non-negative function ϕ := |ψ| is (Uλ − I)-
subharmonic in X. We show similarly that the positive function ψ0 is (Uλ − I)-harmonic.

After this preparation we can apply Theorem 2.2 and Theorem 2.7 to obtain an upper bound for
|ψ| outside of a finite set in the DSP and the nearest-neighbour case, respectively. By Proposition
2.4 and Theorem 2.9, we can also find the matching lower bound for the positive eigenfunction ψ0

in this two cases.
Our main contribution here is that we can find sharp two-sided bounds for ψ0 outside of a finite

set. As we mentioned in the introduction, we apply this result in our ongoing work to investigate
the asymptotic behaviour of the kernel of the operator Un.

3.3. Conjugate Feynman–Kac semigroups and the duality issue. We close this section with a short
discussion concerning the definition of the discrete Feynman–Kac operators and the duality issue.

As we mentioned in the introduction, for a given sub-probability kernel P and a potential V the
corresponding discrete time Feynman–Kac semigroup can be defined in an alternative way. More
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precisely, we consider a semigroup {Wn : n ∈ N0} consisting of operators given by

W0g = g, Wng(x) = Ex
[ n∏
k=1

1

V (Yk)
g(Yn)

]
, n > 1 (3.6)

We have Wng =Wng, for n > 1, where Wn denotes the nth power of the operator

Wg(x) =
∑
y∈X

P (x, y)(g(y)/V (y)), x ∈ X.

Observe that

V −1Wg = U(V −1g), (3.7)

for all admissible functions g. We call {Wn : n ∈ N0} the conjugate discrete time Feynman–Kac
semigroup to {Un : n ∈ N0}.

Remark 3.9. (1) In view of identity (3.7) g is (W− I)-harmonic (superharmonic, subharmonic)
in D if and only if g/V is (U−I)-harmonic (superharmonic, subharmonic) in D. This allows
us to apply all results obtained in Section 2 to the operator W − I.

(2) If condition (i) in Section 3.2 is satisfied and the following reversibility relation

µ(x)P (x, y) = µ(y)P (y, x), x, y ∈ X,

holds, then the operator W is adjoint to U in `2(X,µ). Indeed, for every f, g ∈ `2(X,µ), we
have ∑

x∈X
g(x)Uf(x)µ(x) =

∑
x∈X

∑
y∈X

g(x)

V (x)
µ(x)P (x, y)f(y)

=
∑
y∈X

∑
x∈X

1

V (x)
P (y, x)g(x)f(y)µ(y)

=
∑
y∈X
Wg(y)f(y)µ(y),

by Fubini’s theorem. Clearly, this extends to the operators Un and Wn, n > 1. We also ob-
serve that U acts as a self-adjoint operator in the space `2(X,µV ), where µV (x) = V (x)µ(x).
Indeed, for f, g ∈ `2(X,µV ) we have∑

x∈X
g(x)Uf(x)µV (x) =

∑
x∈X

∑
y∈X

g(x)µ(x)P (x, y)f(y)

=
∑
y∈X

∑
x∈X

g(x)µ(y)P (y, x)f(y)

=
∑
y∈X

∑
x∈X

1

V (y)
P (y, x)g(x)f(y)µV (y)

=
∑
y∈X
Ug(y)f(y)µV (y).

4. Markov chains with the DSP

In this section we present various methods which allow one to construct (sub-)probability kernels
that satisfy the direct step property. We start with a few general examples on metric spaces. Next,
we give more precise results for a class of discrete-time processes (constructed through subordination
techniques) on infinite countable sets, including weighted graphs, and also discuss a class of chains
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defined on product spaces. Finally, we give a few direct examples where we evaluate the decay rates
which appear in the obtained estimates of harmonic functions.

4.1. (Sub-)Markov kernels with the DSP on metric spaces. Let (X, d) be a countable metric space
and let P (x, y) be a given (sub-)probability kernel on X. In the first result we show that if the
kernel depends on the distance through a function that satisfies an appropriate doubling condition
then such a kernel fulfils assumption (A).

Proposition 4.1. Let P (x, y) be a (sub-)probability kernel such that

P (x, y) � J(d(x, y)), x, y ∈ X, (4.1)

for a non-increasing function J : [0,∞) → (0,∞) which satisfies the following doubling condition:
there exists a constant C > 0 such that

J(r) 6 CJ(2r), for all r > 0. (4.2)

Then the kernel P (x, y) satisfies assumption (A).

Proof : The kernel P (x, y) is strictly positive by (4.1), so we only need to prove (1.5). We aim to
show that there is a constant c > 0 such that for all x, y ∈ X∑

z∈X
J(d(x, z))J(d(z, y)) 6 cJ(d(x, y)).

We split the sum according to the distance of z to x and y. For d(x, z) > d(x, y) we have by
monotonicity that J(d(x, z)) 6 J(d(x, y)) and thus (1.2) combined with (4.1) imply∑

{z: d(x,z)>d(x,y)}
J(d(x, z))J(d(z, y)) 6 cJ(d(x, y)).

We proceed similarly for d(y, z) > d(x, y). If max{d(x, z), d(z, y)} 6 d(x, y) (this coincides with the
shadowed area in Figure 4.1), we distinguish between two cases: either d(x, z) > d(x,y)

2 (region II
in Fig. 4.1), then J(d(x, z)) 6 J(d(x,y)

2 ) 6 CJ(d(x, y)) by (4.2); or d(x, z) < d(x,y)
2 (region I), then

d(z, y) > d(x,y)
2 and we have J(d(z, y)) 6 J(d(x,y)

2 ) 6 CJ(d(x, y)). Hence, by employing (1.2) and
(4.1) to each of the two cases we obtain the desired result. �

x y

X

I

II

Figure 4.1. Two intersecting balls of radius d(x, y).

We remark that Proposition 4.1 is applicable to plenty of long range random walks. Prominent
examples are random walks on the integer lattice with one-step transition kernel defined through a
family of conductances that are comparable to the jump kernels of stable processes, see Bass and
Levin (2002). Another important examples are random walks on uniformly discrete metric measure
spaces studied in Murugan and Saloff-Coste (2019) (see also Murugan and Saloff-Coste (2015))
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where the jump kernel is comparable to a regularly varying function (depending on the distance
function) times a volume growth function which satisfy a doubling condition.

We also give a natural extension of the above result which covers many interesting examples of
kernels P (x, y) that decay faster at infinity than those in Proposition 4.1.

Corollary 4.2. Let P (x, y) be a (sub-)probability kernel such that

P (x, y) � J(d(x, y))K(d(x, y)), x, y ∈ X, (4.3)

where J,K : [0,∞)→ (0,∞) are non-increasing functions such that J satisfies (4.2) and K is such
that

K(r)K(s) 6 C̃K(r + s), r, s > 0. (4.4)

Then the kernel P (x, y) satisfies assumption (A).

Proof : We only need to show (1.5). By (4.4) and using the monotonicity of the function K and the
triangle inequality we obtain

K(d(x, z))K(d(z, y)) 6 C̃K(d(x, z) + d(z, y)) 6 C̃K(d(x, y)), x, y, z ∈ X.

It then follows from Proposition 4.1 that for all x, y ∈ X,∑
z∈X

K(d(x, z))J(d(x, z))K(d(z, y))J(d(z, y))

6 C̃K(d(x, y))
∑
z∈X

J(d(x, z))J(d(z, y)) 6 cK(d(x, y))J(d(x, y)).

Together with (4.3) this implies (1.5). �

Typical examples of profiles J and K satisfying the assumptions of Proposition 4.1 and Corollary
4.2 are: J(r) = (1 ∨ r)−γ , or J(r) = (1 ∨ r)−γ log(2 + r)δ, for appropriate γ > 0 and δ ∈ R (which
depend on the geometry of the space X), and K(r) = e−θr

β , θ > 0, β ∈ (0, 1].

4.2. Subordinate Markov chains. In this paragraph we consider a specific class of Markov chains
which enjoy the DSP property and are obtained via a random change of time procedure. We start
with a straightforward but at the same time very fruitful observation that the DSP property is
stable under a random change of time. For this, let {Zn : n > 0} be an arbitrary time-homogeneous
Markov chain with values in X and let {τn : n > 0} be an arbitrary increasing random walk starting
at 0 with values in N0 and which is independent of {Zn : n > 0} (by saying that it is a random
walk we mean that τn+1 − τn, n = 0, 1, 2. . . . are i.i.d. random variables). The subordinate Markov
chain {Yn : n > 0} is then defined as

Yn := Zτn , n = 0, 1, 2, . . . .

It is straightforward to check that the process {Yn : n > 0} is indeed a time-homogeneous Markov
chain.

Lemma 4.3. Suppose that {τn : n > 0} satisfies the DSP, that is

P(τ2 = n) 6 CP(τ1 = n), n = 2, 3, . . . , (4.5)

for a constant C > 0. Then the chain {Yn : n > 0} satisfies (1.5) with the same constant C.
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Proof : Since P(τ2 = 1) = 0, for any x, y ∈ X we have

P(Y2 = y | Y0 = x) =
∞∑
k=1

P(Zk = y | Z0 = x)P(τ2 = k)

6 C
∞∑
k=1

P(Zk = y | Z0 = x)P(τ1 = k) = CP(Y1 = y | Y0 = x),

as desired. �

With this result at hand one can effectively construct examples of Markov chains in X that satisfy
(1.5) through choosing a random change of time process {τn : n > 0} which satisfies (4.5). This
observation provides an easy-to-check sufficient condition for assumption (A).

Corollary 4.4. If {Zn : n > 0} is irreducible, {τn : n > 0} is such that (4.5) holds and there exists
n0 ∈ N such that

P(τ1 = n) > 0, n > n0, (4.6)

then the subordinate chain {Yn : n > 0} satisfies assumption (A).

Proof : In view of Lemma 4.3, we only need to show P(Y1 = y | Y0 = x) > 0, for all x, y ∈ X.
Irreducibility of {Zn : n > 0} implies that for any x, y ∈ X there exists k > n0 such that

P(Zk = y | Z0 = x) > 0.

Then, by (4.6),

P(Y1 = y | Y0 = x) =
∞∑
n=1

P(Zn = y | Z0 = x)P(τ1 = n)

> P(Zk = y | Z0 = x)P(τ1 = k) > 0

and the result is proved. �

The class of processes {τn : n > 0} that fits our assumptions is relatively large. Among other
examples it includes random walks which are run by subexponential distributions, cf. Borovkov and
Borovkov (2008, Sec. 1.3.1), i.e. random walks satisfying

lim
n→∞

P(τ1 = n+ 1)

P(τ1 = n)
= 1 and lim

n→∞

P(τ2 = n)

P(τ1 = n)
= 2. (4.7)

A useful sufficient condition for (4.5) is given in the following lemma. We omit the proof as it is
an easy modification of the argument from Corollary 4.2.

Lemma 4.5. Suppose that
P(τ1 = n) � j(n)l(n), n ∈ N,

where j, l : N→ (0,∞) are non-increasing sequences such that for constants C1, C2 > 0

j(n) 6 C1j(2n), n ∈ N,

and
l(n)l(m) 6 C2l(n+m), n,m ∈ N.

Then {τn : n > 0} satisfies (4.5).

Another important examples of increasing random walks which can be used as a random change
of time in the present framework are discrete subordinators introduced in Bendikov and Saloff-Coste
(2012). Such processes correspond to Bochner’s subordination which is a well-known concept in the
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theory of continuous time Markov processes. To be more precise, let φ be a Bernstein function
Schilling et al. (2012) such that φ(0+) = 0, φ(1) = 1 and which admits the following representation

φ(λ) = bλ+

∫ ∞
0

(1− e−λt) ν(dt),

for a constant b > 0 and a measure ν on (0,∞) satisfying
∫

(1 ∧ x)ν(dx) < ∞. Let {τn : n > 0}
be a random walk (discrete subordinator) taking values in N0, started at 0 and with the first-step-
distribution given by

P(τ1 = k) = bδ1(k) +
1

k!

∫ ∞
0

tke−tν(dt). (4.8)

We remark that if L is the discrete generator of the Markov chain {Zn : n > 0} then the generator
of the subordinate process {Yn : n > 0} can be computed directly with the functional calculus and
is equal to −φ(−L) (for details see Bendikov and Saloff-Coste (2012, Section 2.3)).

The rest of this section is devoted to a special situation where {Zn : n > 0} is assumed to
be a nearest-neighbour (also called simple) random walk on a graph of finite geometry over X.
By L we denote the discrete Laplacian related to {Zn : n > 0} which is a local operator in the
sense that Lf(x) depends only on finitely many values of the function f that are taken on vertices
neighbouring to x. Recall that such processes can be seen as discrete-time counterparts of diffusions
in X. As we mentioned in the introduction, in this framework the concept of discrete subordination
enables us to define numerous non-local discrete counterparts of operators which are known from the
theory of jump Lévy processes in Euclidean spaces. This includes fractional powers of the discrete
Laplacian and quasi-relativistic operators which play an important role in various applications. We
first discuss in more detail the properties of the corresponding discrete subordinators.

Stable and relativistic stable subordinators. Let

φm(λ) =
(λ+m1/α)α −m

θm
, for α ∈ (0, 1) and any m > 0,

where θm = (1 +m1/α)α−m. We note that φm(λ) is a Bernstein function such that φm(1) = 1 and
it admits the following Lévy measure

νm(dt) =
α

θmΓ(1− α)
e−m

1/αtt−1−αdt.

Let {τ (m)
n : n > 0} denote the corresponding discrete subordinator. For m = 0 it is called the

α-stable subordinator (observe that φ0(λ) = λα), while for m > 0 it is called the relativistic α-stable
subordinator. With the aid of (4.8) we easily find that

am(k) := P(τ
(m)
1 = k) =

α

θmΓ(1− α)

Γ(k − α)

Γ(k + 1)
(1 +m1/α)α−k, k ∈ N, (4.9)

which implies the following relation

am(k) = θ−1
m eM(α−k)a0(k), M = log(1 +m

1/α) = log(θm +m)1/α, (4.10)

where

a0(k) =
α

Γ(1− α)

Γ(k − α)

Γ(k + 1)
(4.11)

is the first-step-distribution of the α-stable discrete subordinator.
It is also clear that (4.10) extends to the convolution powers, that is

a∗nm (k) = e(Mα−log θm)ne−Mka∗n0 (k), k, n ∈ N.
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This equality reveals that the long range distributional properties of {τ (m)
n : n > 0} for m = 0 and

m > 0 are essentially different.
We next show that the (relativistic) α-stable subordinator enjoys the DSP property.

Proposition 4.6. For any m > 0 and α ∈ (0, 1) there is a constant C = C(α,m) > 0 such that
the (relativistic) α-stable subordinator {τ (m)

n : n > 0} satisfies (4.5) with C.

Proof : We apply Wendel’s bounds Wendel (1948) in the form( x

x+ s

)1−s
Γ(x) 6 x−sΓ(x+ s) 6 Γ(x), x > 0, s ∈ (0, 1).

By setting x = k − α for any k ∈ N and s = α we arrive at

1

kα+1
6

Γ(k − α)

Γ(k + 1)
6

1

1− α
1

kα+1
, k > 1. (4.12)

Together with (4.10)–(4.11) this gives that

am(k) = eM(α−k)a0(k) � j(k)l(k),

with
j(k) = k−1−α, l(k) = e−Mk.

The assertion follows then from Lemma 4.5. �

Nearest-neighbour random walk and the corresponding subordinate Markov chain. We now present
useful estimates of the one-step transition probabilities for the subordinate nearest neighbour ran-
dom walk where the underlying subordinator is (relativistic) α-stable. We consider the graph G
over X which satisfies our assumption (C) and further assume that G is endowed with a family of
symmetric and non-negative weights (conductances)

{
µx,y

}
x,y∈X such that µx,y > 0 if and only if

x ∼ y. We set µx =
∑

y∈X µx,y and consider the measure on X given by µ(A) =
∑

x∈A µx. The cor-
responding nearest-neighbour random walk {Zn : n > 0} is then a µ-symmetric time-homogeneous
Markov chain with values in X and one-step transition probabilities given by

P(Zn+1 = y | Zn = x) :=
µx,y
µx

,

see e.g. Barlow (2017) or Kumagai (2014). Let

gn(x, y) =
Px(Zn = y)

µy

denote the transition densities of {Zn : n > 0} with respect to µ. Finally, let {Yn : n > 0} be the
subordinate Markov chain which is subordinated by the (relativistic) α-stable subordinator {τ (m)

n :
n > 0}. Recall that by (4.10), its one-step transition probabilities are given by P (x, y) = p(x, y)µy,
where

p(x, y) =

∞∑
n=1

gn(x, y)P(τ
(m)
1 = n) =

eMα

θm

∞∑
n=1∨d(x,y)

gn(x, y)e−Mna0(n), M = log(1 +m1/α).

We next find two-sided estimates of the kernel p(x, y). This can be achieved under the assumption
that the densities gn(x, y) satisfy the sub-Gaussian estimates. More precisely, we assume that there
are parameters β, γ > 1 and the constants c1, . . . , c4 > 0 such that for all x, y ∈ X, n ∈ N,

gn(x, y) 6
c1

nγ/β
exp

{
− c2

(
d(x, y)

n1/β

) β
β−1 }

, (4.13)
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gn(x, y) + gn+1(x, y) >
c3

nγ/β
exp

{
− c4

(
d(x, y)

n1/β

) β
β−1 }

, (4.14)

whenever n > d(x, y), cf. Kumagai (2014, Definition 3.3.4(1)) (note that for β = 2 these are Gaussian
bounds). For the lower bound we take into account the sum of pn(x, y) and pn+1(x, y) as it may
happen that the graph G is bipartite, as in the case of Zd. Upper and lower heat kernel bounds of
the form (4.13)–(4.14) are valid on the integer lattice but also on many fractal-type graphs including
the famous example of the graphical Sierpinski gasket Jones (1996) and Sierpinski carpet Barlow
and Bass (1999), and more general graphs Barlow (2017); Grigor′yan and Telcs (2001); Hambly and
Kumagai (2004); Kumagai (2014).

Proposition 4.7. Under (4.13)–(4.14) the following estimates holds.
a) If m = 0, then there is a constant C > 1 such that

1

C

1

(1 + d(x, y))αβ+γ
6 p(x, y) 6 C

1

(1 + d(x, y))αβ+γ
, x, y ∈ X.

b) If m > 0, then there are constants C, C̃ > 1 such that
1

C
exp(−C̃d(x, y)) 6 p(x, y) 6 C exp

(
− d(x, y)

C̃

)
, x, y ∈ X.

Proof : We start with part a). It follows by (4.11)–(4.12) and (4.13)–(4.14) that

p(x, x) �
∞∑
n=1

n−α−γ/β−1 <∞,

and thus we only need to consider x, y ∈ X for which d(x, y) > 1. For the upper bound, we observe
that by (4.11), (4.12) and (4.13) we have

p(x, y) 6 c′1

∞∑
n=d(x,y)

n−α−γ/β−1 exp
(
− c2

(
d(x, y)

n1/β

) β
β−1 )

6 c3

∫ ∞
d(x,y)

t−α−γ/β−1 exp
(
− c4

(
d(x, y)

t1/β

) β
β−1 )

dt.

With the substitution t = (u d(x, y))β , we obtain that the last integral is equal to

β d(x, y)−αβ−γ
∫ ∞
d(x,y)

1
β
−1
u−αβ−γ−1 exp

(
− c4

(
1

u

) β
β−1 )

du,

which leads to the desired bound

p(x, y) 6 c5d(x, y)−αβ−γ .

For the matching lower bound, we observe that by (4.11), (4.12) and (4.14),
∞∑

n=d(x,y)

(
gn(x, y) + gn+1(x, y)

)
a0(n) > c6

∞∑
n=d(x,y)

n−α−γ/β−1 exp
(
− c7

(
d(x, y)

n1/β

) β
β−1 )

> c6e
−c7

∞∑
n=dd(x,y)βe

n−α−γ/β−1

> c8(1 + d(x, y))−αβ−γ .

On the other hand, by (4.9) and (4.12),

a0(n) � a0(n+ 1), n ∈ N,
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which yields
p(x, y) > c9(1 + d(x, y))−αβ−γ ,

and the proof of part a) is completed.
To establish part b) we observe that the upper bound follows directly by (4.11), (4.12) and (4.13),

p(x, y) 6 c10
eMα

θm

∞∑
n=1∨d(x,y)

e−Mna0(n)n−γ/β 6 c11e
−Md(x,y).

The proof of the lower estimate is similar to that one in part a). Indeed, by (4.9), (4.11), (4.12),
and (4.14), we obtain

p(x, y) > c12

∞∑
n=d(x,y)

e−Mnn−α−γ/β−1 exp
{
− c7

(
d

n1/β

) β
β−1 }

> c12d(x, y)−α−γ/β−1e−Md(x,y) exp
{
− c7

(
d(x, y)

d(x, y)1/β

) β
β−1 }

> c13 exp
{
− c14d(x, y)

}
,

and the proof is finished. �

4.3. Markov chains with independent coordinates on product spaces. The following observation was
kindly communicated to us by T. Kulczycki. Suppose we are given two independent Markov chains{
Y

(1)
n : n ∈ N0

}
and

{
Y

(2)
n : n ∈ N0

}
with values in countably infinite spaces X1 and X2. Then the

product chain
{

(Y
(1)
n , Y

(2)
n ) : n ∈ N0

}
with values in X1×X2 satisfies the DSP if and only if each of

its coordinates has this property. It easily extends to general product discrete time processes with
finitely many independent coordinates and provides a lot of interesting examples of Markov chains
with the DSP on integer lattices and products of more general graphs.

Interestingly, this example allows us to observe that the class of Markov chains with the DSP
includes also processes which neither have one-step transition probability with an isotropic profile
on a countable measure metric space, nor are subordinate Markov chain, cf. Sections 4.1, 4.2. It
may lead to highly anisotropic transition probabilities, e.g. one can have

P (x, y) = P1(x1, y1)P2(x2, y2),

where P1 decays polynomially and P2 decays exponentially, cf. Section 4.4 paragraphs (2) and (3).

4.4. Estimates of harmonic functions – a few explicit examples. We now give some examples of
the decay rates for (U − I)-harmonic functions for various types of Markov chains with values in a
countably infinite set X for which the one-step transition probabilities P (x, y) are driven by profiles
with respect to a given metric d on X. We analyze nearest-neighbor random walks and chains with
strictly positive kernels P (x, y) with polynomial and exponential decay at infinity.

For better illustration we also assume that the confining potential V takes the form V (x) =
W (d(x, x0)) for some x0 ∈ X with the profile function W : [0,∞) → R such that logW is an
increasing function regularly varying (at infinity) of index ρ > 0.
(1) Nearest-neighbour random walk. Our Corollary 2.11 (resulting from Theorems 2.7-2.9)
states that in this case the decay rate of (U − I)-harmonic functions is governed by the expression

e
− 1

1+ρ
d(x,x0) logW (d(x,x0))(1+o(1))

, as d(x, x0)→∞. (4.15)

This is illustrated in Table 4.1 for several typical profiles W . Interestingly, we observe that in this
case for confining potentials the decay rate is always super-exponential.
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profile W (n) exp(cnρ) nρ (log n)ρ

decay rate (4.15) e
− c

1+ρ
d(x,x0)ρ+1(1+o(1))

e−ρd(x,x0) log d(x,x0)(1+o(1)) e−d(x,x0) log log d(x,x0)(1+o(1))

Table 4.1. The case of nearest-neighbor walk (ρ > 0)

(2) Long-range random walks with polynomial transition probabilities. Let us consider
Markov chains with one-step transition probabilities satisfying

P (x, y) � d(x, y)−γ , x, y ∈ X, x 6= y

for some γ > 0. This class includes some of examples discussed in Section 4.1 (see, e.g. Bass and
Levin (2002); Murugan and Saloff-Coste (2015, 2019)) and the subordinate chains obtained for
discrete α-stable subordinators (m = 0) presented in Section 4.2, see Proposition 4.7 a). The decay
rate obtained for such chains in Theorem 2.2 and Proposition 2.4 (see also Corollary 2.5) takes the
form

1

d(x, x0)γW (d(x, x0))
, as d(x, x0)→∞. (4.16)

The decay rates of (U − I)-harmonic functions corresponding to such Markov chains are illustrated
in Table 4.2.

profile W (n) exp(cnρ) nρ (log n)ρ

decay rate (4.16) e−cd(x,x0)ρd(x, x0)−γ d(x, x0)−γ−ρ d(x, x0)−γ(log n)−ρ

Table 4.2. The case of chains with polynomial transition probabilities (ρ > 0).

(3) Random walks with exponential transition probabilities. Suppose there are c1, c2 > 0
such that

c1e
−c2d(x,y) 6 P (x, y) 6 c3e

−c4d(x,y), x, y ∈ X,
This covers chains with P (x, y) as in Corollary 4.2 for K(r) = e−cr as well as subordinate chains
obtained for discrete relativistic α-stable subordinators (m > 0) introduced in Section 4.2, see
Proposition 4.7 b). As in (2), the decay rate obtained for this class (see Theorem 2.2, Proposition
2.4 and Corollary 2.5) is

e−c̃d(x,x0) 1

W (d(x, x0))
, as d(x, x0)→∞, (4.17)

where c̃ = c2 in the lower bound and c̃ = c4 in the upper bound. The behaviour of (U −I)-harmonic
functions in this case is presented in Table 4.3.

profile W (n) exp(cnρ) nρ (log n)ρ

decay rate (4.17) e−cd(x,x0)ρ−c̃d(x,x0) e−c̃d(x,x0)d(x, x0)−ρ e−c̃d(x,x0)(log n)−ρ

Table 4.3. The case of chains with exponential transition probabilities (ρ > 0).

Acknowledgements

We thank Krzysztof Bogdan, Tadeusz Kulczycki, Mateusz Kwaśnicki and René Schilling for
discussions and helpful comments. We also wish to thank the referees for valuable comments and
the editors for their careful handling of the paper.



Harmonic functions for discrete Feynman–Kac operators 1099

References

Acuña Valverde, L. Heat content estimates for the fractional Schrödinger operator (−∆)
α
2 + c1Ω,

c > 0. J. Spectr. Theory, 10 (2), 599–616 (2020). MR4107526.
Acuña Valverde, L. and Bañuelos, R. Heat content and small time asymptotics for Schrödinger

operators on Rd. Potential Anal., 42 (2), 457–482 (2015). MR3306692.
Anastassiou, G. A. and Bendikov, A. D. A discrete analog of Kac’s formula and optimal approx-

imation of the solution of the heat equation. Indian J. Pure Appl. Math., 28 (10), 1367–1389
(1997). MR1605288.

Bañuelos, R. and Yolcu, S. Y. Heat trace of non-local operators. J. Lond. Math. Soc. (2), 87 (1),
304–318 (2013). MR3022718.

Barlow, M. T. Random walks and heat kernels on graphs, volume 438 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge (2017). ISBN 978-1-107-
67442-4. MR3616731.

Barlow, M. T. and Bass, R. F. Random walks on graphical Sierpinski carpets. In Random walks
and discrete potential theory (Cortona, 1997), Sympos. Math., XXXIX, pp. 26–55. Cambridge
Univ. Press, Cambridge (1999). MR1802425.

Bass, R. F. and Levin, D. A. Transition probabilities for symmetric jump processes. Trans. Amer.
Math. Soc., 354 (7), 2933–2953 (2002). MR1895210.

Bendikov, A. and Saloff-Coste, L. Random walks on groups and discrete subordination. Math.
Nachr., 285 (5-6), 580–605 (2012). MR2902834.

Bingham, N. H., Goldie, C. M., and Teugels, J. L. Regular variation, volume 27 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge (1987). ISBN
0-521-30787-2. MR898871.

Bogdan, K., Kulczycki, T., and Kwaśnicki, M. Estimates and structure of α-harmonic functions.
Probab. Theory Related Fields, 140 (3-4), 345–381 (2008). MR2365478.

Bogdan, K., Kumagai, T., and Kwaśnicki, M. Boundary Harnack inequality for Markov processes
with jumps. Trans. Amer. Math. Soc., 367 (1), 477–517 (2015). MR3271268.

Borovkov, A. A. and Borovkov, K. A. Asymptotic analysis of random walks. Heavy-tailed distri-
butions, volume 118 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge (2008). ISBN 978-0-521-88117-3. MR2424161.

Böttcher, B., Schilling, R., and Wang, J. Lévy matters III. Lévy-type processes: construction, ap-
proximation and sample path properties, volume 2099 of Lecture Notes in Mathematics. Springer,
Cham (2013). ISBN 978-3-319-02683-1; 978-3-319-02684-8. MR3156646.

Chalbaud, E., Gallinar, J.-P., and Mata, G. The quantum harmonic oscillator on a lattice. J. Phys.
A, 19 (7), L385–L390 (1986). MR844439.

Chen, X. and Wang, J. Intrinsic ultracontractivity of Feynman-Kac semigroups for symmetric jump
processes. J. Funct. Anal., 270 (11), 4152–4195 (2016). MR3484966.

Csáki, E. A discrete Feynman-Kac formula. J. Statist. Plann. Inference, 34 (1), 63–73 (1993).
MR1209990.

Demuth, M. and van Casteren, J. A. Stochastic spectral theory for selfadjoint Feller operators.
A functional integration approach. Probability and its Applications. Birkhäuser Verlag, Basel
(2000). ISBN 3-7643-5887-4. MR1772266.

Diaconis, P., Houston-Edwards, K., and Saloff-Coste, L. Analytic-geometric methods for finite
Markov chains with applications to quasi-stationarity. ALEA Lat. Am. J. Probab. Math. Stat.,
17 (2), 901–991 (2020). MR4182157.

Durugo, S. O. and Lőrinczi, J. Spectral properties of the massless relativistic quartic oscillator. J.
Differential Equations, 264 (5), 3775–3809 (2018). MR3741403.

Fischer, F. and Keller, M. Riesz decompositions for Schrödinger operators on graphs. J. Math.
Anal. Appl., 495 (1), Paper No. 124674, 22 (2021). MR4172839.

http://www.ams.org/mathscinet-getitem?mr=MR4107526
http://www.ams.org/mathscinet-getitem?mr=MR3306692
http://www.ams.org/mathscinet-getitem?mr=MR1605288
http://www.ams.org/mathscinet-getitem?mr=MR3022718
http://www.ams.org/mathscinet-getitem?mr=MR3616731
http://www.ams.org/mathscinet-getitem?mr=MR1802425
http://www.ams.org/mathscinet-getitem?mr=MR1895210
http://www.ams.org/mathscinet-getitem?mr=MR2902834
http://www.ams.org/mathscinet-getitem?mr=MR898871
http://www.ams.org/mathscinet-getitem?mr=MR2365478
http://www.ams.org/mathscinet-getitem?mr=MR3271268
http://www.ams.org/mathscinet-getitem?mr=MR2424161
http://www.ams.org/mathscinet-getitem?mr=MR3156646
http://www.ams.org/mathscinet-getitem?mr=MR844439
http://www.ams.org/mathscinet-getitem?mr=MR3484966
http://www.ams.org/mathscinet-getitem?mr=MR1209990
http://www.ams.org/mathscinet-getitem?mr=MR1772266
http://www.ams.org/mathscinet-getitem?mr=MR4182157
http://www.ams.org/mathscinet-getitem?mr=MR3741403
http://www.ams.org/mathscinet-getitem?mr=MR4172839


1100 Wojciech Cygan, Kamil Kaleta and Mateusz Śliwiński

Gallinar, J.-P. and Chalbaud, E. Harmonic oscillator on a lattice in a constant force field and asso-
ciated Bloch oscillations. Phys. Rev. B, 43, 2322–2333 (1991). DOI: 10.1103/PhysRevB.43.2322.

Garbaczewski, P. and Stephanovich, V. Lévy flights in confining potentials. Phys. Rev. E, 80,
031113 (2009). DOI: 10.1103/PhysRevE.80.031113.

Gatland, I. R. Theory of a nonharmonic oscillator. Am. J. Phys., 59 (2), 155–158 (1991). DOI:
10.1119/1.16597.

Grigor′yan, A. and Telcs, A. Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math.
J., 109 (3), 451–510 (2001). MR1853353.

Hambly, B. M. and Kumagai, T. Heat kernel estimates for symmetric random walks on a class
of fractal graphs and stability under rough isometries. In Fractal geometry and applications: a
jubilee of Benoît Mandelbrot, Part 2, volume 72 of Proc. Sympos. Pure Math., pp. 233–259. Amer.
Math. Soc., Providence, RI (2004). MR2112125.

Jacob, N. Pseudo differential operators and Markov processes. Vol. I, II, III. Imperial College
Press, London (2001–2005). ISBN 1-86094-293-8; 1-86094-324-1; 1-86094-568-6. MR1873235;
MR1917230; MR2158336.

Jacob, N. and Wang, F.-Y. Higher order eigenvalues for non-local Schrödinger operators. Commun.
Pure Appl. Anal., 17 (1), 191–208 (2018). MR3808977.

Jakubowski, T. andWang, J. Heat kernel estimates of fractional Schrödinger operators with negative
Hardy potential. Potential Anal., 53 (3), 997–1024 (2020). MR4140086.

Jones, O. D. Transition probabilities for the simple random walk on the Sierpiński graph. Stochastic
Process. Appl., 61 (1), 45–69 (1996). MR1378848.

Kac, M. On distributions of certain Wiener functionals. Trans. Amer. Math. Soc., 65, 1–13 (1949).
MR27960.

Kac, M. On some connections between probability theory and differential and integral equations. In
Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950,
pp. 189–215. University of California Press, Berkeley-Los Angeles, Calif. (1951). MR0045333.

Kaleta, K. Spectral gap lower bound for the one-dimensional fractional Schrödinger operator in the
interval. Studia Math., 209 (3), 267–287 (2012). MR2944472.

Kaleta, K., Kwaśnicki, M., and Lőrinczi, J. Contractivity and ground state domination properties
for non-local Schrödinger operators. J. Spectr. Theory, 8 (1), 165–189 (2018). MR3762130.

Kaleta, K. and Lőrinczi, J. Pointwise eigenfunction estimates and intrinsic ultracontractivity-type
properties of Feynman-Kac semigroups for a class of Lévy processes. Ann. Probab., 43 (3),
1350–1398 (2015). MR3342665.

Kaleta, K. and Lőrinczi, J. Zero-energy bound state decay for non-local Schrödinger operators.
Comm. Math. Phys., 374 (3), 2151–2191 (2020). MR4076095.

Kaleta, K. and Schilling, R. L. Progressive intrinsic ultracontractivity and heat kernel estimates for
non-local Schrödinger operators. J. Funct. Anal., 279 (6), 108606, 69 (2020). MR4100844.

Keller, M. and Lenz, D. Dirichlet forms and stochastic completeness of graphs and subgraphs. J.
Reine Angew. Math., 666, 189–223 (2012). MR2920886.

Keller, M., Lenz, D., and Wojciechowski, R. K. Graphs and discrete Dirichlet spaces, volume 358
of Grundlehren der mathematischen Wissenschaften. Springer, Cham (2021). ISBN 978-3-030-
81458-8; 978-3-030-81459-5. MR4383783.

Kim, P., Song, R., and Vondraček, Z. Scale invariant boundary Harnack principle at infinity for
Feller processes. Potential Anal., 47 (3), 337–367 (2017). MR3713581.

Klüppelberg, C. Asymptotic ordering of distribution functions. Semigroup Forum, 40 (1), 77–92
(1990). MR1014226.

Kulczycki, T. Gradient estimates of q-harmonic functions of fractional Schrödinger operator. Po-
tential Anal., 39 (1), 69–98 (2013). MR3065315.

Kulczycki, T. and Siudeja, B. Intrinsic ultracontractivity of the Feynman-Kac semigroup for rela-
tivistic stable processes. Trans. Amer. Math. Soc., 358 (11), 5025–5057 (2006). MR2231884.

http://dx.doi.org/10.1103/PhysRevB.43.2322
http://dx.doi.org/10.1103/PhysRevE.80.031113
http://dx.doi.org/10.1119/1.16597
http://dx.doi.org/10.1119/1.16597
http://www.ams.org/mathscinet-getitem?mr=MR1853353
http://www.ams.org/mathscinet-getitem?mr=MR2112125
http://www.ams.org/mathscinet-getitem?mr=MR2158336
http://www.ams.org/mathscinet-getitem?mr=MR2158336
http://www.ams.org/mathscinet-getitem?mr=MR2158336
http://www.ams.org/mathscinet-getitem?mr=MR3808977
http://www.ams.org/mathscinet-getitem?mr=MR4140086
http://www.ams.org/mathscinet-getitem?mr=MR1378848
http://www.ams.org/mathscinet-getitem?mr=MR27960
http://www.ams.org/mathscinet-getitem?mr=MR0045333
http://www.ams.org/mathscinet-getitem?mr=MR2944472
http://www.ams.org/mathscinet-getitem?mr=MR3762130
http://www.ams.org/mathscinet-getitem?mr=MR3342665
http://www.ams.org/mathscinet-getitem?mr=MR4076095
http://www.ams.org/mathscinet-getitem?mr=MR4100844
http://www.ams.org/mathscinet-getitem?mr=MR2920886
http://www.ams.org/mathscinet-getitem?mr=MR4383783
http://www.ams.org/mathscinet-getitem?mr=MR3713581
http://www.ams.org/mathscinet-getitem?mr=MR1014226
http://www.ams.org/mathscinet-getitem?mr=MR3065315
http://www.ams.org/mathscinet-getitem?mr=MR2231884


Harmonic functions for discrete Feynman–Kac operators 1101

Kumagai, T. Random walks on disordered media and their scaling limits, volume 2101 of Lecture
Notes in Mathematics. Springer, Cham (2014). ISBN 978-3-319-03151-4; 978-3-319-03152-1.
Lecture notes from the 40th Probability Summer School held in Saint-Flour, 2010. MR3156983.

Kwaśnicki, M. Intrinsic ultracontractivity for stable semigroups on unbounded open sets. Potential
Anal., 31 (1), 57–77 (2009). MR2507446.

Li, Z.-F., Liu, J.-J., Lucha, W., Ma, W.-G., and Schöberl, F. F. Relativistic harmonic oscillator. J.
Math. Phys., 46 (10), 103514, 11 (2005). MR2178614.

Mattis, D. C. The few-body problem on a lattice. Rev. Modern Phys., 58 (2), 361–379 (1986).
MR838693.

Mohazzabi, P. Theory and examples of intrinsically nonlinear oscillators. Am. J. Phys., 72 (4),
492–498 (2004). DOI: 10.1119/1.1624114.

Murugan, M. and Saloff-Coste, L. Transition probability estimates for long range random walks.
New York J. Math., 21, 723–757 (2015). MR3386544.

Murugan, M. and Saloff-Coste, L. Heat kernel estimates for anomalous heavy-tailed random walks.
Ann. Inst. Henri Poincaré Probab. Stat., 55 (2), 697–719 (2019). MR3949950.

Nagaev, S. V. Renewal theorems in the case of attraction to the stable law with characteristic
exponent smaller than unity. Ann. Math. Inform., 39, 173–191 (2012). MR2959887.

Schaefer, H. H. Banach lattices and positive operators. Die Grundlehren der mathematischen
Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg (1974). MR0423039.

Schilling, R. L., Song, R., and Vondraček, Z. Bernstein functions. Theory and applications, vol-
ume 37 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, second edition
(2012). ISBN 978-3-11-025229-3; 978-3-11-026933-8. MR2978140.

Takeda, M. Lp-independence of growth bounds of Feynman-Kac semigroups. In Surveys in stochastic
processes, EMS Ser. Congr. Rep., pp. 201–226. Eur. Math. Soc., Zürich (2011). MR2883860.

Wang, J. On-diagonal heat kernel estimates for Schrödinger semigroups and their application.
Commun. Math. Stat., 6 (4), 493–508 (2018). MR3877715.

Wendel, J. G. Note on the gamma function. Amer. Math. Monthly, 55, 563–564 (1948). MR29448.
Woyczyński, W. A. Lévy processes in the physical sciences. In Lévy processes, pp. 241–266.

Birkhäuser Boston, Boston, MA (2001). MR1833700.

http://www.ams.org/mathscinet-getitem?mr=MR3156983
http://www.ams.org/mathscinet-getitem?mr=MR2507446
http://www.ams.org/mathscinet-getitem?mr=MR2178614
http://www.ams.org/mathscinet-getitem?mr=MR838693
http://dx.doi.org/10.1119/1.1624114
http://www.ams.org/mathscinet-getitem?mr=MR3386544
http://www.ams.org/mathscinet-getitem?mr=MR3949950
http://www.ams.org/mathscinet-getitem?mr=MR2959887
http://www.ams.org/mathscinet-getitem?mr=MR0423039
http://www.ams.org/mathscinet-getitem?mr=MR2978140
http://www.ams.org/mathscinet-getitem?mr=MR2883860
http://www.ams.org/mathscinet-getitem?mr=MR3877715
http://www.ams.org/mathscinet-getitem?mr=MR29448
http://www.ams.org/mathscinet-getitem?mr=MR1833700

	1. Introduction
	Motivation
	Discrete time Feynman–Kac semigroups
	Results for Markov chains with the DSP and confining potentials
	Related estimates for nearest-neighbor walks with confining potentials
	Direct applications
	Markov chains with the DSP and discrete subordination

	2. Estimates for functions harmonic in infinite sets
	2.1. Estimates for Markov chains with the DSP
	2.2. Estimates for nearest-neighbor random walks

	3. Applications
	3.1. Decay of solutions to equations involving the graph Laplacians
	3.2. Estimates for eigenfunctions of discrete Feynman–Kac operators
	3.3. Conjugate Feynman–Kac semigroups and the duality issue

	4. Markov chains with the DSP
	4.1. (Sub-)Markov kernels with the DSP on metric spaces
	4.2. Subordinate Markov chains
	4.3. Markov chains with independent coordinates on product spaces
	4.4. Estimates of harmonic functions – a few explicit examples.

	Acknowledgements
	References

