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Abstract. We prove that a system of locally interacting diffusions carrying discrete masses, subject
to an environmental noise and undergoing mass coagulation, converges to a system of Stochastic
Partial Differential Equations (SPDEs) with Smoluchowski-type nonlinearity. Existence, uniqueness
and regularity of the SPDEs are also proven.
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1. Introduction

Environmental noise in deterministic or stochastic interacting particle systems is a space-
dependent noise acting on all particles, opposite to the more common independent noise for each
particle. For particles in a fluid, the environmental noise may be an idealized description of a tur-
bulent fluid. An example which motivates the model studied in the present work are the small rain
droplets of which clouds are made. Droplets move in the cloud due to the force exerted on them
by the surrounding turbulent air, and coagulate when they become sufficiently close to each other.
We introduce a particle system modeling these two phenomena and investigate its scaling limit to
a continuous density model, which is a stochastic Smoluchowski system. Opposite to independent
noise for each particle which becomes a Laplacian in the scaling limit, the environmental noise yields
a stochastic transport term in the continuous limit. Raindrop formation in turbulent fluids has been
studied in the Physics literature Saffman and Turner (1956); Falkovich et al. (2002); Bodenschatz
et al. (2010); Pumir and Wilkinson (2016); our paper provides foundational results on the particle
system viewpoint and its continuum limit to a Stochastic Partial Differential Equation (SPDE).

We model the individual rain droplets as diffusions on Rd, d ≥ 1, with a small molecular diffusivity,
and subject to a common Stratonovich transport-type noise. Any pair of particles has a propensity
to coagulate into one, combining their masses, when their positions get locally close to each other.
Without the common noise, this is in the spirit of classical Smoluchowski coagulation model which
leads to his famous PDEs Smoluchowski (1916, 1918), mathematically derived before in the kinetic
limit from interacting particle systems in Lang and Nguyen (1980); Hammond and Rezakhanlou
(2007a, 2006). We prove in this work that as the total number of particles in our system tends to
infinity, the empirical measures as indexed by mass parameter, converge to a system of SPDEs with
the same Stratonovich transport-type noise. From Stratonovich-to-Itô correction, we obtain an extra
second-order divergence-form operator, the “eddy diffusion”. This opens the door to the investigation
of diffusion and coagulation enhancement, along the lines of Flandoli (2011, 2022+); Flandoli et al.
(2010); Delarue et al. (2014); Galeati (2020); Flandoli and Luo (2020); Flandoli et al. (2021) and
references therein (also for other independent works on mixing or diffusion enhancement). We stress
that the philosophy underlying the emergence of enhanced diffusion starting from a transport-type
noise and through a suitable scaling limit was first discovered by Galeati (2020). Numerical results
are recently obtained for a closely related coagulation model in Papini (2021).

Given a filtered probability space (Ω,F , {Ft},P), for each N ∈ N consider an interacting particle
system in Rd, d ≥ 1, consisting initially of N(0) = N particles. Each particle i has a position
xNi (t) ∈ Rd and carries an integer mass mN

i (t), which takes values in

S := {1, 2, ...,M, ∅},

where M ∈ N is the largest possible mass, and ∅ is a fictitious element. The particles are subject to
pairwise coagulation, at which time some particles may cease to be active in the system. So long
as particle i is still active (how the index set changes when a coagulation event happens will be
explained below), its position xNi (t) obeys the SDE:

dxNi (t) =
∑
k∈K

σk
(
xNi (t)

)
◦ dW k

t + λ dβi(t), i ∈ N (t) (1.1)

where ◦ denotes Stratonovich integration, scalar λ > 0, N (t) ⊂ {1, ..., N} denotes the set of indices
of active particles at time t, whose cardinality |N (t)| = N(t) ≤ N , K is a finite set, {W k

t }k∈K is
a given finite collection of independent standard Brownian motions in R, and {βi(t)}∞i=1 are given
independent standard Brownian motions in Rd, {σk(x)}k∈K are given divergence-free vector field of
class C∞b (Rd;Rd), where C∞b (·) denotes the space of smooth functions with derivatives of all orders
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uniformly bounded. Following Coghi and Flandoli (2016), we call

dW

dt
(t, x) :=

∑
k∈K

σk(x)
dW k

t

dt

the environmental noise or common noise acting simultaneously on all particles. We denote the
d× d spatial covariance matrix of W by

Q(x, y) :=
∑
k∈K

σk(x)⊗ σk(y). (1.2)

As the set K is finite, we do not assume Q is spatially homogeneous as in some prior studies using
such transport noise.

From Stratonovich to Itô, (1.1) can be equivalently written as

dxNi (t) =
∑
k∈K

σk
(
xNi (t)

)
dW k

t +
1

2

∑
k∈K

(∇σk · σk)
(
xNi (t)

)
dt+ λ dβi(t), i ∈ N (t)

where component-wise,

(∇σk · σk)α (x) :=

d∑
β=1

σβk (x)∂βσ
α
k (x), α = 1, ..., d. (1.3)

The initial masses {mi(0)}Ni=1 are chosen i.i.d. from {1, ...,M} with probability rm to be mass
m, so that

∑M
m=1 rm = 1; and once the masses are determined, the distributions of xi(0), i = 1, 2, ..

are independent with density pmi(0)(x), i = 1, 2, .., for some given probability density functions
pm(x) : Rd → R+, m = 1, ...,M , all of which satisfy

Condition 1.1.
(1) They are compactly supported in the Euclidean ball B(0, R) of finite radius R centered at

the origin;
(2) They are uniformly bounded above by some finite constant Γ, i.e. ‖pm‖∞ ≤ Γ;
(3) There exists some integer n > d/4 such that

pm(x) ∈W 2n,2(Rd),

where W k,p(Rd) are standard Sobolev spaces.

Note that the initial conditions for different N ∈ N are naturally coupled together, hence we do
not stress the dependence of xi(0),mi(0) on N . The probability space is endowed with the canonical
filtration

Ft := σ
{
{mi(0)}∞i=1, {xi(0)}∞i=1, {βi(s)}∞i=1, {W k

s }k∈K : s ∈ [0, t]
}
, t ≥ 0.

The interaction between particles is by means of coagulation of masses, heuristically described
below. It was studied, without the environmental noise, in Hammond and Rezakhanlou (2007a,
2006) (however the limit there is a system of PDEs instead of SPDEs, among other differences).
Let θ : Rd → R+ be nonnegative, of class Cα(Rd) (the space of Hölder continuous functions on Rd)
for some α ∈ (0, 1), compactly supported in B(0, C0) for some finite constant C0, with θ(0) = 0 and∫
Rd θ = 1, where we denote by B(x, r) the open Euclidean ball of radius r centered at x ∈ Rd. For
every ε > 0, we denote

θε(x) := ε−dθ(ε−1x). (1.4)

Throughout we impose the following relation between N and ε:

ε = ε(N)→ 0 as N →∞,
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lim sup
N→∞

ε1−d

N
<∞, d ≥ 2; lim sup

N→∞

| log ε|
N

<∞, d = 1. (1.5)

This regime includes local interaction (when ε−d � N), see discussion below, which is the scaling
of interest for modelling raindrop formations. A configuration of the stochastic system is a finite
string of positions and masses (whose length is at most 2N)

η = (x1, x2, ...;m1,m2, ..) ∈ (Rd)N × SN .
On top of individual diffusions (1.1), we impose the following rule of mass coagulation. Suppose the
current configuration is η. For each pair of particles (i, j) active in the system (i.e. mi,mj 6= ∅),
with positions (xi, xj) and masses (mi,mj), where i 6= j each ranges over the index set, with a rate

1

N
θε(xi − xj) (1.6)

we remove both particles from the system, and then add a new particle with mass (mi + mj) at
either xi or xj chosen with probability mi

mi+mj
for the former (and mj

mi+mj
for the latter). However,

we do this only if mi + mj ≤ M , otherwise after the pair is removed, no new particle is added to
the system, or equivalently we add a fictitious particle with mass ∅ at the origin. We denote the
new configuration obtained from η this way by S1

i,jη, and respectively S2
i,jη. For labelling purposes,

in the new configuration S1
i,jη, we call particle i the new mass-combined particle found at position

xi, whereas there is no longer a particle j in the system; and analogously for S2
i,jη. We will only be

tracking the empirical measures of particles with mass ≤ M . The interpretation is that, in terms
of raindrop formations, when the mass of a raindrop exceeds a certain threshold, it falls.

For N diffusion particles evolving in a unit-order volume in Rd, the typical inter-particle distance
is on the order ofN−1/d. With ε representing the typical length scale over which pairs of particles can
interact, see (1.6), the relation (1.5) includes the most relevant case ε � N−1/d for our modelling of
raindrops formation, namely when the interaction is so-called “local”. In such a regime, each particle
typically interacts with a bounded number of others at any given time, which is an analog of the
nearest-neighbor, or finite-range, interactions widely studied in the discrete setting, e.g. on lattices
De Masi and Presutti (1991); Kipnis and Landim (1999). If ε−d � N , then the interaction is no
longer local, but more spread-out, in particular when ε is independent of N it is the “mean-field”
case, and the regime between mean-field and local we can term “moderate” following Oelschläger.
In those regimes, each particle interacts with a diverging (in N) number of others, see Flandoli et al.
(2019, 2020); Flandoli and Huang (2021) for more discussion on local versus moderate or mean-field
interactions for diffusion systems. In the latter cases techniques are much more developed, see
e.g. Oelschläger (1985, 1989); Sznitman (1991); Méléard and Roelly-Coppoletta (1987); Jourdain
and Méléard (1998); Flandoli et al. (2019). Also in those regimes, particle systems subject to
environmental noise, with even “singular” interactions, have been studied, see Coghi and Flandoli
(2016); Flandoli and Luo (2021); Guo and Luo (2021) among others, where the interaction can
occur in the drift of the SDEs and not just in auxiliary variables (like mass). Localizing the range of
interaction for diffusions is a non-trivial task, in particular, in this work (as well as in Flandoli and
Huang (2021)) we have to utilize some techiniques developed in Hammond and Rezakhanlou (2007a,
2006) in the spirit of the classical Itô-Tanaka trick, to handle the convergence of the nonlinear terms,
see Section 3. In those papers Hammond and Rezakhanlou (2007a, 2006), a system of Smochulowski
PDEs is rigorously derived from interacting particles in the so-called “mean-free path” regime, which
corresponds to diluted gases (not covered by our result). Some of the other classical works on
diffusions with local interactions (that occur in the drift) are Varadhan (1991); Olla and Varadhan
(1991); Olla et al. (1993); Uchiyama (2000).

Now we can formally give the infinitesimal generator of the system

LNF (η) := LNDF (η) + LNJ F (η)
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where the first, diffusion part of the generator is

LNDF (η) :=
λ2

2

∑
i∈N (η)

∆xiF (η)

+
1

2

∑
i,j∈N (η)

d∑
α,β=1

∂2F

∂xαi ∂x
β
j

(η)
∑
k∈K

σαk (xi)σ
β
k (xj) +

1

2

∑
i∈N (η)

d∑
α,β=1

∂xαi F (η)
∑
k∈K

σβk (xi)∂βσ
α
k (xi)

=
λ2

2

∑
i∈N (η)

∆xiF (η)

+
1

2

∑
i,j∈N (η)

d∑
α,β=1

∂2F

∂xαi ∂x
β
j

(η)Qαβ(xi, xj) +
1

2

∑
i∈N (η)

d∑
α,β=1

∂xαi F (η)∂
xβi

(
Qαβ(xi, xi)

)
(1.7)

using div σk(x) = 0 in the last line, and N (η) denotes the set of indices of active particles in
configuration η; and the second, jump (or coagulation) part of the generator is

LNJ F (η) :=
1

N

∑
i 6=j∈N (η)

θε(xi − xj)
[

mi

mi +mj
F (S1

i,jη) +
mj

mi +mj
F (S2

i,jη)− F (η)

]
. (1.8)

We henceforth denote by η(t) the random configuration at time t. Note that if at time t, a coag-
ulation event happens for some pair of particles, the cardinality of active particles N(t) decreases
either by one or by two.

For each N ∈ N and 1 ≤ m ≤M , we denote the empirical measure of mass-m particles

µN,mt (dx) :=
1

N

∑
i∈N (t)

δxNi (t)(dx)1{mNi (t)=m}, t ≥ 0. (1.9)

For each t, these are nonnegative random measures on Rd with total mass bounded above by 1.
Denote byM+,1(Rd) the space of subprobability measures on Rd endowed with the weak topology,
and by D([0, T ];M+,1(Rd)) ≡ DT (M+,1) the space of càdlàg functions taking values inM+,1(Rd),
endowed with the Skorohod topology. Then, {µN,mt : t ∈ [0, T ]}m≤M are DT (M+,1)

M -valued
random variables.

Let us also introduce a finite system of SPDEs
dum(t, x) = 1

2λ
2∆um(t, x)dt+

∑m−1
n=1 un(t, x)um−n(t, x)dt− 2

∑M
n=1 un(t, x)um(t, x)dt

+1
2 div (Q(x, x)∇um(t, x)) dt−

∑
k∈K σk(x) · ∇um(t, x) dW k

t , (t, x) ∈ [0, T ]× Rd,

um(0, x) = rmpm(x), m = 1, ...,M

(1.10)

where by convention, whenm = 1, set
∑m−1

n=1 [...] = 0. For our notion of (analytically) weak solutions
of the system (1.10), see Definition A.1. The SPDE can be equivalently written as

dum(t, x) = 1
2λ

2∆um(t, x)dt+
∑m−1

n=1 un(t, x)um−n(t, x)dt− 2
∑M

n=1 un(t, x)um(t, x)dt

−
∑

k∈K σk(x) · ∇um(t, x) ◦ dW k
t , (t, x) ∈ [0, T ]× Rd,

um(0, x) = rmpm(x), m = 1, ...,M
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since by div σk(x) = 0, the Stratonovich-to-Itô correction takes the form

1

2

∑
k∈K

σk(x) · ∇ (σk(x) · ∇um(t, x)) dt =
1

2

∑
k∈K

d∑
α,β=1

σαk (x)∂α

(
σβk (x)∂βum(t, x)

)
dt

=
1

2

∑
k∈K

d∑
α,β=1

∂α

(
σαk (x)σβk (x)∂βum(t, x)

)
dt =

1

2
div (Q(x, x)∇um(t, x)) dt.

The main result of the article is the following.

Theorem 1.2. Assume that N and ε satisfy (1.5), and Condition 1.1 holds. Then, for every finite
T and d ≥ 1, the empirical measure of the particle system {µN,mt (dx) : t ∈ [0, T ]}m≤M defined
in (1.9) converges in probability as N → ∞, in the space DT (M+,1)

M to a limit {µmt (dx) : t ∈
[0, T ]}m≤M . The latter random measure is absolutely continuous with respect to Lebesgue measure,
with a uniformly bounded density {um(t, x) : t ∈ [0, T ], x ∈ Rd}m≤M that is the pathwise unique
weak solution to the SPDE (1.10).

Besides pathwise uniqueness (Corollary A.3), we also obtain regularity results for solutions of
such nonlinear SPDEs (1.10), see Proposition A.4, that may be of independent interest.

Regarding some of our assumptions, we have the following remarks.

Remark 1.3. (a). We have assumed σk(x) ∈ C∞b (Rd;Rd) for k ∈ K to facilitate the nontrivial SPDE
arguments in Appendix B. While we did not try to optimize the regularity and perhaps there exists
a different proof that imposes less regularity (see some remarks on this issue in Appendix B), we
believe that our arguments herein are of independent interest.

(b). The reason we chose finitely many mass levels (instead of infinite, i.e. M =∞), is in order
to have a finite system of SPDEs (1.10) in the limit, whose pathwise uniqueness of solution can
be proved, see Appendix A. Note that M = ∞ is assumed in Hammond and Rezakhanlou (2007a,
2006), with uniqueness for their PDE system proved in Hammond and Rezakhanlou (2007b) under
appropriate assumptions.

(c). The assumption θ(0) = 0 seems to be necessary in order to rewrite certain quantity by
means of the empirical measure, see (2.5). A potential criticism is that it is unrealistic: θ(0) = 0
and smooth implies θ(·) is very small near the origin, hence two particles which are “too close” to
each other have also little rate to coagulate. However, “physics” is saved since: (i) the region, call
it B(0, ιε), where θε(·) is very small near the origin can be extremely small compared to B(0, C0ε),
and (ii) before getting (ιε)-close, two particles have to be (C0ε)-close for a while, hence the loss of
rate in B(0, ιε) is practically not influential.

(d). Our dynamics (1.1) is less general than the setting of Hammond and Rezakhanlou (2007a,
2006) in that the coefficient λ and the coagulation rate (1.6) do not depend on the mass parameter
mN
i . This is for technical reasons, with the need to couple with an auxiliary free system in Sections

4 and 6, notably Proposition 4.1. How to incorporate the additional mass dependence in (1.1) is an
open problem.

The strategy of proof is summarised as follows. In Section 5, we show that the sequence of
probability laws {PN}N induced by the DT (M+,1)

M -valued random variables{
µN,mt (dx) : t ∈ [0, T ]

}
m≤M , N ∈ N

is tight hence weakly relatively compact. Fix any weak subsequential limit P of {PNj}j∈N along a
subsequenceNj . By Skorohod’s representation theorem, we can construct on an auxiliary probability
space (Ω̂, F̂ ,P) (that depends on the subsequence) random variables {µ̂Nj ,m}m≤M , j ≥ 1, and
{µm}m≤M , having the laws PNj , j ≥ 1, and P, respectively, such that P-a.s.

{µ̂Nj ,m}m≤M → {µm}m≤M , j →∞.
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In Section 6 and Appendix B, we show that any subsequential limit measure {µmt (dx) : t ∈
[0, T ]}m≤M is supported on the subset of measures that are absolutely continuous with respect
to Lebesgue measure, with density

{um(t, x), t ∈ [0, T ]}m≤M
uniformly bounded by the deterministic constant Γ in Condition 1.1. This is achieved by considering
an auxiliary (“free”) particle system without mass-coagulation, that dominates our true system, and
studying the regularity and boundedness of solutions of its associated SPDE (B.1), see in particular
Theorem B.5 and Lemma B.6. In Sections 2-4, we show that on (Ω̂, F̂ ,P), there exist a finite
collection of independent Brownian motions (W

k
t )k∈K such that

(
{um}m≤M , (W

k
)k∈K

)
is a weak

solution to the finite system of SPDEs (1.10). Here we need to deal with the difficulty posed by
local interaction.

In Appendix A we show that (analytically) weak solutions to (1.10) are pathwise unique. By
a well-known theorem of Gyöngy and Krylov (1996, Lemma 1.1, Theorem 2.4), see also Flandoli
(2022+, Chapter 2), Flandoli et al. (2010, Appendix C), having pathwise uniqueness, one can
strengthen the convergence in law along subsequences to convergence in probability along the full
sequence, of {µN,m}m∈M , N ∈ N, on the original probability space (Ω,F ,P). The details involve
representing two copies of the empirical measures by Skorohod’s representation, and showing that
any subsequential limit pair is concentrated on the diagonal. As this is similar to the Skorohod
argument we already elaborate in Section 2 as well as those in the above references, we omit the
proof of the Gyöngy-Krylov step.

2. Identity involving the empirical measure

We start by deriving an identity involving the empirical measure {µmt (dx)}m≤M . Taking any
φ ∈ C∞c (Rd), we consider the functional

F1(η) :=
1

N

∑
i∈N (η)

φ(xi)1{mi=m},

for any fixed 1 ≤ m ≤M . Applying Itô formula to the process

F1(η(t)) =
1

N

∑
i∈N (t)

φ(xNi (t))1{mNi (t)=m} =
〈
φ(x), µN,mt (dx)

〉
, t ≥ 0

where the notation 〈f, ν〉 denotes integrating a function f against a measure ν, in view of (1.7)-(1.8),
we get that for every finite T ,

〈
φ(x), µN,mT (dx)

〉
=
〈
φ(x), µN,m0 (dx)

〉
+

∫ T

0
dt
λ2

2N

∑
i∈N (t)

∆φ(xNi (t))1{mNi (t)=m}

+

∫ T

0
dt

1

2N

∑
i∈N (t)

d∑
α,β=1

Qαβ
(
xNi (t), xNi (t)

) (
∂2αβφ

)
(xNi (t))1{mNi (t)=m}

+

∫ T

0
dt

1

2N

∑
i∈N (t)

d∑
α,β=1

∂αφ
(
xNi (t)

)
∂β

(
Qαβ

(
xNi (t), xNi (t)

))
1{mNi (t)=m}

+

∫ T

0
dt

1

N

∑
i 6=j∈N (t)

1

N
θε(xNi (t)− xNj (t))

[ mN
i (t)

mN
i (t) +mN

j (t)
φ(xNi (t))1{mNi (t)+mNj (t)=m}
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+
mN
j (t)

mN
i (t) +mN

j (t)
φ(xNj (t))1{mNi (t)+mNj (t)=m} − φ(xNi (t))1{mNi (t)=m} − φ(xNj (t))1{mNj (t)=m}

]
+M1,D,φ

T +M2,D,φ
T +MJ,φ

T .

Since for every α, β = 1, ..., d,

Qαβ (x, x)
(
∂2αβφ

)
(x) + ∂αφ (x) ∂β

(
Qαβ (x, x)

)
= ∂β

(
Qαβ (x, x) ∂αφ(x)

)
,

the above identity can be written as〈
φ(x), µN,mT (dx)

〉
=
〈
φ(x), µN,m0 (dx)

〉
+

∫ T

0

〈
µN,mt (dx),

λ2

2
∆φ(x)

〉
dt

+

∫ T

0

〈
µN,mt (dx),

1

2
div (Q(x, x)∇φ(x))

〉
dt

+

∫ T

0
dt

m−1∑
n=1

1

N2

∑
i 6=j∈N (t)

θε(xNi (t)− xNj (t))
n

m
φ(xNi (t))1{mNi (t)=n}1{mNj (t)=m−n}

+

∫ T

0
dt

m−1∑
n=1

1

N2

∑
i 6=j∈N (t)

θε(xNi (t)− xNj (t))
m− n
m

φ(xNj (t))1{mNi (t)=n}1{mNj (t)=m−n}

−
∫ T

0
dt

M∑
n=1

1

N2

∑
i 6=j∈N (t)

θε(xNi (t)− xNj (t))φ(xNi (t))1{mNi (t)=m}1{mNj (t)=n}

−
∫ T

0
dt

M∑
n=1

1

N2

∑
i 6=j∈N (t)

θε(xNi (t)− xNj (t))φ(xNj (t))1{mNj (t)=m}1{mNi (t)=n}

+M1,D,φ
T +M2,D,φ

T +MJ,φ
T (2.1)

where {MJ,φ
t }t≥0 denotes the martingale associated with jumps (which we do not write out explic-

itly), and there are two martingales associated with diffusions

M1,D,φ
T :=

∫ T

0

λ

N

∑
i∈N (t)

∇φ(xNi (t))1{mNi (t)=m} · dβi(t)

M2,D,φ
T :=

∫ T

0

∑
k∈K

σk(x
N
i (t)) · 1

N

∑
i∈N (t)

∇φ(xNi (t))1{mNi (t)=m}dW
k
t

=

∫ T

0

∑
k∈K

〈
µN,mt (dx), σk(x) · ∇φ(x)

〉
dW k

t .

Firstly, by Itô isometry and the independence among βi(t), we have that

E

[
sup
t∈[0,T ]

∣∣∣M1,D,φ
t

∣∣∣2] ≤ 4E

∫ T

0
dt
λ2

N2

∑
i∈N (t)

|∇φ(xNi (t))|21{mNi (t)=m}dt

 ≤ C (‖φ‖C1 , T )

N
. (2.2)

The second diffusion martingale M2,D,φ is not negligible, and is responsible for the stochastic term
in the limit SPDE. Secondly, we bound the jump martingale by (cf. Darling and Norris (2008,
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Proposition 8.7))

E

[
sup
t∈[0,T ]

∣∣∣MJ,φ
t

∣∣∣2] ≤ 4E
∫ T

0
dt

1

N2

∑
i 6=j∈N (t)

1

N
θε(xNi (t)− xNj (t))

[mN
i (t)

m
φ(xNi (t))1{mNi (t)+mNj (t)=m}

(2.3)

+
mN
j (t)

m
φ(xNj (t))1{mNi (t)+mNj (t)=m} − φ(xNi (t))1{mNi (t)=m} − φ(xNj (t))1{mNj (t)=m}

]2
≤ 64‖φ‖2∞E

[ ∫ T

0
dt

1

N3

∑
i 6=j∈N (t)

θε(xNi (t)− xNj (t))
]
≤ C(‖φ‖∞)

N
, (2.4)

by Lemma 2.1 below.

Lemma 2.1. We have that

E
∫ T

0
dt

∑
i 6=j∈N (t)

θε(xNi (t)− xNj (t)) ≤ N2.

Proof : We apply the generator to the process of cardinality N(t) of active particles. The diffusion
part of the generator does not affect N(t), whereas the coagulation part decreases cardinality by
either one or two (depending on if the combined mass exceeds M or not). Hence, by Itô formula
and taking expectation, we have that

EN(T ) ≤ EN(0)− E
∫ T

0
dt

1

N

∑
i 6=j∈N (t)

θε(xNi (t)− xNj (t)).

Since N(0) = N , this completes the proof. �

We observe that the middle four nonlinear terms of (2.1) can also be written by means of empirical
measure, since for every m,n, t,

1

N2

∑
i 6=j∈N (t)

θε(xNi (t)− xNj (t))φ(xNi (t))ψ(xNj (t))1{mNi (t)=m}1{mNj (t)=n}

=
〈
θε(x− y)φ(x)ψ(y), µN,mt (dx)µN,nt (dy)

〉
, (2.5)

where due to θε(0) = 0 we can include the terms with repeated indices i = j to the LHS of (2.5).
By (2.1),(2.2), (2.4),(2.5) for every φ ∈ C∞c (Rd) and 1 ≤ m ≤M , we have that

lim sup
N→∞

E
∣∣∣ 〈φ(x), µN,mT (dx)

〉
−
〈
φ(x), µN,m0 (dx)

〉
−
∫ T

0
dt

〈
µN,mt (dx),

λ2

2
∆φ(x)

〉
−
∫ T

0
dt

〈
µN,mt (dx),

1

2
div (Q(x, x)∇φ(x))

〉
−
∫ T

0
dt

m−1∑
n=1

n

m

〈
θε(x− y)φ(x), µN,m−nt (dy)µN,nt (dx)

〉
−
∫ T

0
dt

m−1∑
n=1

m− n
m

〈
θε(x− y)φ(y), µN,m−nt (dy)µN,nt (dx)

〉
+

∫ T

0
dt

M∑
n=1

〈
θε(x− y)φ(x), µN,nt (dy)µN,mt (dx)

〉
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+

∫ T

0
dt

M∑
n=1

〈
θε(x− y)φ(y), µN,mt (dy)µN,nt (dx)

〉
−
∫ T

0

∑
k∈K

〈
µN,mt (dx), σk(x) · ∇φ(x)

〉
dW k

t

∣∣∣ = 0. (2.6)

In Section 5, we show that the laws {PN
∗ }N of the sequence of DT (M+,1)

M ×C([0, T ];R)|K|-valued
random variables {{

µN,mt : t ∈ [0, T ]
}
m≤M ,

{
W k
t : t ∈ [0, T ]

}
k∈K

}
, N ∈ N

are tight hence relatively compact (cf. Remark 5.3), where the space C([0, T ];R) is endowed with the
uniform topology. Fix any weak subsequential limit P∗ of {P

Nj
∗ }j∈N along a subsequence Nj . By

Skorohod’s representation theorem, we can construct on an auxiliary probability space (Ω̂, F̂ ,P)

(that depends on the subsequence) random variables
{
{µ̂Nj ,m}m≤M , {ŴNj ,k}k∈K

}
, j ≥ 1, and{

{µm}m≤M , {W
k}k∈K

}
, having the laws P

Nj
∗ , j ≥ 1, and P∗, respectively, such that P-a.s.{

{µ̂Nj ,m}m≤M , {ŴNj ,k}k∈K
}
→
{
{µm}m≤M , {W

k}k∈K
}
, j →∞.

Further, the limit measure has a uniformly bounded density {um(t, x) : t ∈ [0, T ]}m≤M , i.e. for
every m

µmt (dx) = um(t, x)dx, ‖um‖∞ ≤ Γ,

as shown in Section 6 and Appendix B, and we also have that um(0, x) = rmpm(x).
By (2.6) and the representation, on (Ω̂, F̂ ,P) we have that for every φ ∈ C∞c (Rd) and 1 ≤ m ≤M ,

lim
j→∞

E
∣∣∣ 〈φ(x), µ̂

Nj ,m
T (dx)

〉
−
〈
φ(x), µ̂

Nj ,m
0 (dx)

〉
−
∫ T

0
dt

〈
µ̂
Nj ,m
t (dx),

λ2

2
∆φ(x)

〉
−
∫ T

0
dt

〈
µ̂
Nj ,m
t (dx),

1

2
div (Q(x, x)∇φ(x))

〉
−
∫ T

0
dt

m−1∑
n=1

n

m

〈
θε(x− y)φ(x), µ̂

Nj ,m−n
t (dy)µ̂

Nj ,n
t (dx)

〉
−
∫ T

0
dt

m−1∑
n=1

m− n
m

〈
θε(x− y)φ(y), µ̂

Nj ,m−n
t (dy)µ̂

Nj ,n
t (dx)

〉
+

∫ T

0
dt

M∑
n=1

〈
θε(x− y)φ(x), µ̂

Nj ,n
t (dy)µ̂

Nj ,m
t (dx)

〉
+

∫ T

0
dt

M∑
n=1

〈
θε(x− y)φ(y), µ̂

Nj ,m
t (dy)µ̂

Nj ,n
t (dx)

〉
−
∫ T

0

∑
k∈K

〈
µ̂
Nj ,m
t (dx), σk(x) · ∇φ(x)

〉
dŴ

Nj ,k
t

∣∣∣ = 0. (2.7)

Since µ̂Nj ,m → µm in DT (M+,1) under Skorohod topology, P-a.s. for every 1 ≤ m ≤ M , we have
that P-a.s. for every φ ∈ C∞c (Rd)

sup
t∈[0,T ]

〈
µ̂
Nj ,m
t (dx)− µmt (dx), φ(x)

〉
→ 0
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sup
t∈[0,T ]

〈
µ̂
Nj ,m
t (dx)− µmt (dx),

λ2

2
∆φ(x)

〉
→ 0

sup
t∈[0,T ]

〈
µ̂
Nj ,m
t (dx)− µmt (dx),

1

2
div (Q(x, x)∇φ(x))

〉
→ 0 (2.8)

(cf. Ethier and Kurtz (1986, Ch. 3, Proposition 5.3)). The convergences also hold in L1(P) by
dominated convergence, since the variables in (2.8) are all uniformly bounded. The middle four
nonlinear terms in (2.7) also converge in L1(P) by Lemma 2.3 below.

We now argue that the last martingale term in (2.7) also converges in L1(P), i.e. for every
1 ≤ m ≤M ,∫ T

0

∑
k∈K

〈
µ̂
Nj ,m
t (dx), σk(x) · ∇φ(x)

〉
dŴ

Nj ,k
t −

∫ T

0

∑
k∈K
〈µmt (dx), σk(x) · ∇φ(x)〉 dW k

t → 0, j →∞.

(2.9)

Indeed, by Burkholder-Davis-Gundy inequality, we first have that for every j ∈ N,

E

∣∣∣∣∣
∫ T

0

∑
k∈K

〈
µ̂
Nj ,m
t (dx)− µmt (dx),∇φ(x) · σk(x)

〉
dŴ

Nj ,k
t

∣∣∣∣∣
≤ C1E

(∫ T

0

∑
k∈K

∣∣∣〈µ̂Nj ,mt (dx)− µmt (dx),∇φ(x) · σk(x)
〉∣∣∣2 dt)1/2


≤ C1

√
TE

∑
k∈K

sup
t∈[0,T ]

∣∣∣〈µ̂Nj ,mt (dx)− µmt (dx),∇φ(x) · σk(x)
〉∣∣∣ . (2.10)

Since the variable inside the expectation in the last line is uniformly bounded (by 2
∑
k∈K
‖φ‖C1‖σk‖∞),

and converges to zero P-a.s. as j →∞, we have that (2.10) converges to zero.
Secondly, since ŴNj ,k

t − W
k
t is a P-martingale on t ∈ [0, T ] for every k ∈ K, we denote by[

ŴNj ,k −W k]
t
its quadratic variation. By Burkholder-Davis-Gundy inequality,

E

∣∣∣∣∣
∫ T

0

∑
k∈K
〈µmt (dx),∇φ(x) · σk(x)〉 d

(
Ŵ

Nj ,k
t −W k

t

)∣∣∣∣∣
≤
∑
k∈K

E

∣∣∣∣∫ T

0
〈µmt (dx),∇φ(x) · σk(x)〉 d

(
Ŵ

Nj ,k
t −W k

t

)∣∣∣∣
≤ C ′1

∑
k∈K

E

[(∫ T

0
|〈µmt ,∇φ(x) · σk(x)〉|2 d

[
ŴNj ,k −W k]

t

)1/2
]

≤ C ′1‖φ‖C1

∑
k∈K
‖σk‖∞E

[[
ŴNj ,k −W k]1/2

T

]
. (2.11)

Now by the definition of quadratic variation,

E
[
ŴNj ,k −W k]

T
= E

[∣∣ŴNj ,k
T −W k

T

∣∣2] . (2.12)

Since ŴNj ,k −W k → 0 in the uniform topoplogy of C([0, T ];R), P-a.s. as j → ∞, we have that
Ŵ

Nj ,k
T →W

k
T , P-a.s.; and besides, for all j ∈ N and p > 2,

E
[
|ŴNj ,k

T |p
]

= E
[
|W k

T |p
]
<∞.

By Vitali convergence theorem, RHS of (2.12) converges to zero as j → ∞, and as a consequence
(2.11) also converges to zero.
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Combining (2.10), (2.11) yields our claim (2.9) by the triangle inquality. Then, combining (2.7),
(2.8), (2.9) and Lemma 2.3, we conclude that for every φ ∈ C∞c (Rd) and 1 ≤ m ≤M , it holds that
P-a.s.

〈φ(x), um(T, x)〉 − 〈φ(x), rmpm(x)〉 −
∫ T

0
dt

〈
um(t, x),

λ2

2
∆φ(x)

〉
−
∫ T

0
dt

〈
um(t, x),

1

2
div (Q(x, x)∇φ(x))

〉
−
∫ T

0
dt

m−1∑
n=1

〈um−n(t, x)un(t, x), φ(x)〉

+ 2

∫ T

0
dt

M∑
n=1

〈un(t, x)um(t, x), φ(x)〉

−
∫ T

0

∑
k∈K
〈µmt (dx), σk(x) · ∇φ(x)〉 dW k

t = 0.

(We used n/m + (m − n)/m = 1 for every 1 ≤ n ≤ m − 1 in (2.7).) By the separability of the
space C∞c (Rd), we can combine countably many null sets such that P-a.s. for all φ ∈ C∞c (Rd),
the preceding identity holds, which means that

(
{um}m≤M , {W

k}k∈K
)
is a (both analytically and

probabilistically) weak solution to the SPDE (1.10) on (Ω̂, F̂ ,P) endowed with the filtration

Gt := σ
{
{um(s, ·)}m≤M , {W

k
s}k∈K : s ∈ [0, t]

}
, t ≥ 0.

To treat the nonlinear terms in (2.7), in Sections 3-4 we use Itô-Tanaka trick to show that

Proposition 2.2. On the original probability space (Ω,F ,P), for every T finite, 1 ≤ m,n ≤M and
φ, ψ ∈ C∞c (Rd), we have that

lim
|z|→0

lim sup
N→∞

E sup
t∈[0,T ]

∣∣∣ ∫ t

0
ds

1

N2

∑
i 6=j∈N (s)

φ
(
xNi (s)

)
ψ
(
xNj (s)

)
1{mNi (s)=m,mNj (s)=n}

·
[
θε
(
xNi (s)− xNj (s) + z

)
− θε

(
xNi (s)− xNj (s)

)] ∣∣∣ = 0. (2.13)

It can be seen as a form of local equilibrium (at two macroscopically distant locations separated
by z). Given (2.13), we can show the convergence in L1(P) of each of the nonlinear terms in (2.7)
as in Lemma 2.3 below.

Before delving into the proof of these two statements, let us provide some heuristics. The functions
θε(x), ε > 0, being rescaled versions of a fixed smooth bump function θ, converge to the Dirac delta
function at 0 as ε→ 0. Since we expect the empirical measures {µ̂N,m(dx)}Mm=1 to converge to the
true densities {um(x)}Mm=1 as N → ∞, Lemma 2.3 essentially encapsulates the combined effect of
these two convergences. Note however this is a delicate issue since ε and N are entangled together,
with ε → 0 simultaneously as N → ∞. The bulk of the paper is to prove that this expected
convergence holds in the scaling regime (1.5). We believe that it should fail if ε→ 0 too fast relative
to N . Indeed, ε is the range of interaction between pairs of particles in our system. If ε is too small
relative to typical inter-particle distances (which is governed by N), there will simply not be enough
interactions taking place. Our techniques however do not provide the sharp threshold.

The choice of θ (or θε) satisfying our assumptions can be many. Indeed, take any smooth
compactly-supported bump function, and modify it in a smooth way such that it vanishes at 0
gives an example. As mentioned in Remark 1.3(c), the latter requirement is in order to exclude
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self-interactions of the particles, which is not negligible if N . ε−d. An explicit example of θ is

θ(x) = cd

[
|x|21|x|≤ 1

2
+
(1

2
− (|x| − 1)2

)
1 1

2
<|x|≤ 3

2
+ (|x| − 2)21 3

2
<|x|≤2

]
.

It is easy to check that it is C1, nonnegative, with θ(0) = 0, compactly supported in B(0, 3), and
the constant cd is chosen such that it integrates to 1. One then obtains θε by scaling as in (1.4).

Lemma 2.3. Granted Proposition 2.2. On (Ω̂, F̂ ,P), for every T finite, 1 ≤ m,n ≤ M and
φ, ψ ∈ C∞c (Rd), we have that

lim
j→∞

E sup
t∈[0,T ]

∣∣∣ ∫ t

0

〈
θε(x− y)φ(x)ψ(y), µ̂

Nj ,m
s (dx)µ̂

Nj ,n
s (dy)

〉
ds

−
∫ t

0
ds

∫
Rd
dwφ(w)ψ(w)um(s, w)un(s, w)

∣∣∣ = 0. (2.14)

Proof : First notice that the quantity inside the absolute value on the LHS of (2.13) is a function
of the empirical measure (using θε(0) = 0)∫ t

0

〈[
θε(x− y + z)− θε(x− y)

]
φ(x)ψ(y), µN,ms (dx)µN,ns (dy)

〉
ds.

Thus, under Skorohod’s representation, the same limit (2.13) holds on the auxiliary probability
space (Ω̂, F̂ ,P) along the subsequence Nj , namely

lim
|z|→0

lim sup
j→∞

E sup
t∈[0,T ]

∣∣∣ ∫ t

0

〈[
θε(x− y + z)− θε(x− y)

]
φ(x)ψ(y), µ̂

Nj ,m
s (dx)µ̂

Nj ,n
s (dy)

〉
ds
∣∣∣ = 0.

(2.15)

The subsequent argument is similar to Hammond and Rezakhanlou (2007a, pages 42-43). We
introduce an auxiliary mollifier χδ(x) = δ−dχ(δ−1x) for some C∞b (Rd) function χ : Rd → R+,
nonnegative, compactly supported in B(0, 1), with

∫
χ = 1. By (2.15), we can write

sup
t∈[0,T ]

∣∣∣ ∫ t

0

〈
θε(x− y)φ(x)ψ(y), µ̂

Nj ,m
s (dx)µ̂

Nj ,n
s (dy)

〉
ds

−
∫∫

R2d

dz1dz2χ
δ(z1)χ

δ(z2)

∫ t

0

〈
θε(x− y + z2 − z1)φ(x)ψ(y), µ̂

Nj ,m
s (dx)µ̂

Nj ,n
s (dy)

〉
ds
∣∣∣

=: error(N, δ)
where lim

δ→0
lim sup
N→∞

E|error(N, δ)| = 0. (2.16)

Shifting the arguments of φ and ψ by z1 and z2 respectively, with |z1|, |z2| ≤ δ, we have that∣∣∣ ∫∫
R2d

dz1dz2χ
δ(z1)χ

δ(z2)

∫ t

0

〈
θε(x− y + z2 − z1)φ(x)ψ(y), µ̂

Nj ,m
s (dx)µ̂

Nj ,n
s (dy)

〉
ds

−
∫∫

R2d

dz1dz2χ
δ(z1)χ

δ(z2)

∫ t

0

〈
θε(x− y + z2 − z1)φ(x− z1)ψ(y − z2), µ̂

Nj ,m
s (dx)µ̂

Nj ,n
s (dy)

〉
ds
∣∣∣

≤ C(φ, ψ)δ

∫∫
R2d

dz1dz2χ
δ(z1)χ

δ(z2)

∫ t

0

〈
θε(x− y + z2 − z1), µ̂

Nj ,m
s (dx)µ̂

Nj ,n
s (dy)

〉
ds. (2.17)

By a change of variables, the second term in (2.17)∫∫
R2d

dz1dz2χ
δ(z1)χ

δ(z2)

∫ t

0

〈
θε(x− y + z2 − z1)φ(x− z1)ψ(y − z2), µ̂

Nj ,m
s (dx)µ̂

Nj ,n
s (dy)

〉
ds
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=

∫∫
R2d

dw1dw2θ
ε(w1 − w2)φ(w1)ψ(w2)

∫ t

0

〈
χδ(x− w1), µ̂

Nj ,m
s (dx)

〉〈
χδ(y − w2)µ̂

Nj ,n
s (dy)

〉
ds.

We now shift w2 to w1 in some arguments, using that |w1 −w2| ≤ 2C0ε being in the support of θε,
we get for every t ∈ [0, T ],∣∣∣ ∫ t

0
ds

∫∫
R2d

dw1dw2θ
ε (w1 − w2)φ(w1)ψ(w2)

〈
χδ(· − w1), µ̂

Nj ,m
s

〉〈
χδ(· − w2), µ̂

Nj ,n
s

〉
−
∫ t

0
ds

∫∫
R2d

dw1dw2θ
ε (w1 − w2)φ(w1)ψ(w1)

〈
χδ(· − w1), µ̂

Nj ,m
s

〉〈
χδ(· − w1), µ̂

Nj ,n
s

〉 ∣∣∣
≤ C(φ, ψ,C0, T )εδ−2d−1.

Since
∫
θε(w1 − w2)dw2 = 1, the second term above equals∫ t

0
ds

∫∫
R2d

dw1dw2θ
ε (w1 − w2)φ(w1)ψ(w1)

〈
χδ(· − w1), µ̂

Nj ,m
s

〉〈
χδ(· − w1), µ̂

Nj ,n
s

〉
=

∫ t

0
ds

∫
Rd
dw1φ(w1)ψ(w1)

〈
χδ(· − w1), µ̂

Nj ,m
s

〉〈
χδ(· − w1), µ̂

Nj ,n
s

〉
.

In Section 6, it is shown that {µ̂Nj ,mt (dx) : t ∈ [0, T ]}m≤M → {um(t, x)dx : t ∈ [0, T ]}m≤M , P-a.s.,
we get that for fixed δ > 0, as Nj →∞ (hence ε = ε(Nj)→ 0), P-a.s.

sup
t∈[0,T ]

∣∣∣ ∫ t

0
ds

∫
Rd
dw1φ(w1)ψ(w1)

〈
χδ(· − w1), µ̂

Nj ,m
s

〉〈
χδ(· − w1), µ̂

Nj ,n
s

〉
−
∫ t

0
ds

∫
Rd
dw1φ(w1)ψ(w1)

〈
χδ(· − w1), um(s, ·)

〉〈
χδ(· − w1), un(s, ·)

〉 ∣∣∣→ 0.

The convergence also holds in L1(P) by dominated convergence (note that at this step δ is fixed).
Then, since

∫
χδ = 1 for any δ > 0 and {um}m≤M is bounded above uniformly by Γ, we have that〈

χδ(· − w1), um(s, ·)
〉
≤ Γ.

By dominated convergence theorem, as δ → 0 we get that P-a.s.

sup
t∈[0,T ]

∣∣∣ ∫ t

0
ds

∫
Rd
dw1φ(w1)ψ(w1)

〈
χδ(· − w1), um(s, ·)

〉〈
χδ(· − w1), un(s, ·)

〉
−
∫ t

0
ds

∫
Rd
dw1φ(w1)ψ(w1)um(s, w1)un(s, w1)

∣∣∣→ 0.

The convergence also holds in L1(P). There is also the minor term on the RHS of (2.17)

C(φ, ψ)δ sup
t∈[0,T ]

∣∣∣ ∫ t

0

∫∫
R2d

dz1dz2χ
δ(z1)χ

δ(z2)
〈
θε(x− y + z2 − z1), µ̂

Nj ,m
s (dx)µ̂

Nj ,n
s (dy)

〉
ds
∣∣∣

that can be shown in a similar way to vanish in L1(P) as j →∞ followed by δ → 0.
By (2.16), (2.17) and the previous chain of limits, we get (2.14). �

3. Itô-Tanaka procedure

Our goal in this and next sections is to prove Proposition 2.2, which we argue on the original
probability space (Ω,F ,P).

The Itô-Tanaka trick, well-known in stochastic analysis, is a way to substitute a less regular
function (here θε(·)) by a more regular one, via the application of Itô formula. In the context of
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particle system, we learned of its use from Hammond and Rezakhanlou (2007a). Fix 1 ≤ m,n ≤ N
and consider the (time-dependent) functional

F2(t, η) :=
1

N2

∑
i 6=j∈N (η)

vε,z (t, xi, xj)φ(xi)ψ(xj)1{mi=m,mj=n}

where vε,z(t, x, y) : [0, T ] × Rd × Rd → R also depends on z ∈ Rd. In fact, it is of the form of a
difference

vε,z(t, x, y) = rε,z(t, x, y)− rε,0(t, x, y)

where rε,z(t, x, y) is a family (indexed by z) of nonnegative functions in the parabolic Hölder space
C1+α/2,2+α([0, T ] × R2d) (cf. Krylov (1996)), for some α ∈ (0, 1), defined in (3.10). Applying Itô
formula to the process

F2(t, η(t)) :=
1

N2

∑
i 6=j∈N (t)

vε,z
(
t, xNi (t), xNj (t)

)
φ(xNi (t))ψ(xNj (t))1{mNi (t)=m,mNj (t)=n}, t ≥ 0 (3.1)

and integrating on [0, T ′], for any T ′ ≤ T , we get the following terms from the action of the diffusion
generator LND (1.7):

H1 :=

∫ T ′

0
dt

1

N2

∑
i 6=j∈N (t)((

∂t +
λ2

2
∆x +

λ2

2
∆y

)
vε,z
)(

t, xNi (t), xNj (t)
)
φ(xNi (t))ψ(xNj (t))1{mNi (t)=m,mNj (t)=n} ; (3.2)

H2 :=

∫ T ′

0
dt
λ2

N2

∑
i 6=j∈N (t)

[1

2
vε,z

(
t, xNi (t), xNj (t)

) (
∆φ(xNi (t))ψ(xNj (t)) + φ(xNi (t))∆ψ(xNj (t))

)
+ (∇xvε,z)

(
t, xNi (t), xNj (t)

)
· ∇φ(xNi (t))ψ(xNj (t))

+ (∇yvε,z)
(
t, xNi (t), xNj (t)

)
· ∇ψ(xNj (t))φ(xNi (t))

]
1{mNi (t)=m,mNj (t)=n} ;

where ∆x denotes Laplacian with respect to the first d spatial coordinates, and ∆y with respect to
the last d spatial coordinates; the same interpretation applies for gradients ∇x,∇y;

H3 :=

∫ T ′

0
dt

1

N2

∑
i 6=j∈N (t)

1

2

d∑
α,β=1

[
Qαβ(xNi (t), xNi (t))

(
∂2xαxβv

ε,z
) (
t, xNi (t), xNj (t)

)
+Qαβ(xNj (t), xNj (t))

(
∂2yαyβv

ε,z
) (
t, xNi (t), xNj (t)

)
+Qαβ(xNi (t), xNj (t))

(
∂2xαyβv

ε,z
) (
t, xNi (t), xNj (t)

)
+Qαβ(xNj (t), xNi (t))

(
∂2yαxβv

ε,z
) (
t, xNi (t), xNj (t)

) ]
φ(xNi (t))ψ(xNj (t))1{mNi (t)=m,mNj (t)=n} ;

(3.3)

H4 :=

∫ T ′

0
dt

1

N2

∑
i 6=j∈N (t)

1

2

d∑
α,β=1

[
Qαβ(xNi (t), xNi (t))vε,z

(
t, xNi (t), xNj (t)

)
∂2αβφ(xNi (t))ψ(xNj (t))

+Qαβ(xNj (t), xNj (t))vε,z
(
t, xNi (t), xNj (t)

)
φ(xNi (t))∂2αβψ(xNj (t))

+ 2Qαβ(xNi (t), xNi (t)) (∂xαv
ε,z)
(
t, xNi (t), xNj (t)

)
∂βφ(xNi (t))ψ(xNj (t))

+ 2Qαβ(xNj (t), xNj (t)) (∂yαv
ε,z)
(
t, xNi (t), xNj (t)

)
∂βψ(xNj (t))φ(xNi (t))
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+Qαβ(xNi (t), xNj (t))vε,z
(
t, xNi (t), xNj (t)

)
∂αφ(xNi (t))∂βψ(xNj (t))

+Qαβ(xNi (t), xNj (t))
(
∂yβv

ε,z
) (
t, xNi (t), xNj (t)

)
∂αφ(xNi (t))ψ(xNj (t))

+Qαβ(xNi (t), xNj (t)) (∂xαv
ε,z)
(
t, xNi (t), xNj (t)

)
φ(xNi (t))∂βψ(xNj (t))

+Qαβ(xNj (t), xNi (t))vε,z
(
t, xNi (t), xNj (t)

)
∂βφ(xNi (t))∂αψ(xNj (t))

+Qαβ(xNj (t), xNi (t)) (∂xβv
ε,z)
(
t, xNi (t), xNj (t)

)
φ(xNi (t))∂αψ(xNj (t))

+Qαβ(xNj (t), xNi (t)) (∂yαv
ε,z)
(
t, xNi (t), xNj (t)

)
∂βφ(xNi (t))ψ(xNj (t))

]
1{mNi (t)=m,mNj (t)=n} ;

H5 :=

∫ T ′

0
dt

1

2N2

∑
i 6=j∈N (t)

d∑
α,β=1

∂α
(
vε,z

(
t, ·, xNj (t)

)
φ(·)

) (
xNi (t)

)
∂β

(
Qαβ

(
xNi (t), xNi (t)

))
ψ(xNj (t))1{mNi (t)=m,mNj (t)=n}

+

∫ T ′

0
dt

1

2N2

∑
i 6=j∈N (t)

d∑
α,β=1

∂α
(
vε,z

(
t, xNi (t), ·

)
ψ(·)

) (
xNj (t)

)
∂β

(
Qαβ

(
xNj (t), xNj (t)

))
φ(xNi (t))1{mNi (t)=m,mNj (t)=n} ;

(3.4)

we note here that only H1 and H3 involve second partial derivatives of vε,z.
From the action of the coagulation generator LNJ (1.8) we get:

H6 :=

∫ T ′

0
dt

1

N2

∑
i∈N (t)

∑
k∈N (t),k 6=i

1

N
θε(xNi (t)− xNk (t))

·
[ ∑
j∈N (t),
j 6=i,k

mN
i (t)

mN
i (t) +mN

k (t)
vε,z(t, xNi (t), xNj (t))φ(xNi (t))1{mNi (t)+mNk (t)=m}ψ(xNj (t))1{mNj (t)=n}

+
∑

j∈N (t),
j 6=i,k

mN
k (t)

mN
i (t) +mN

k (t)
vε,z(t, xNk (t), xNj (t))φ(xNk (t))1{mNi (t)+mNk (t)=m}ψ(xNj (t))1{mNj (t)=n}

−
∑

j∈N (t),j 6=i,k

vε,z(t, xNi (t), xNj (t))φ(xNi (t))1{mNi (t)=m}ψ(xNj (t))1{mNj (t)=n}

−
∑

j∈N (t),j 6=i,k

vε,z(t, xNk (t), xNj (t))φ(xNk (t))1{mNi (t)=m}ψ(xNj (t))1{mNj (t)=n}

]
(3.5)

+

∫ T ′

0
dt

1

N2

∑
i∈N (t)

∑
k∈N (t),k 6=i

1

N
θε(xNi (t)− xNk (t))

·
[ ∑
j∈N (t),
j 6=i,k

mN
i (t)

mN
i (t) +mN

k (t)
vε,z(t, xNj (t), xNi (t))φ(xNj (t))1{mNj (t)=m}ψ(xNi (t))1{mNi (t)+mNk (t)=n}

+
∑

j∈N (t),
j 6=i,k

mN
k (t)

mN
i (t) +mN

k (t)
vε,z(t, xNj (t), xNk (t))φ(xNj (t))1{mNj (t)=m}ψ(xNk (t))1{mNi (t)+mNk (t)=n}
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−
∑

j∈N (t),j 6=i,k

vε,z(t, xNj (t), xNi (t))φ(xNj (t))1{mNj (t)=m}ψ(xNi (t))1{mNi (t)=n}

−
∑

j∈N (t),j 6=i,k

vε,z(t, xNj (t), xNk (t))φ(xNj (t))1{mNi (t)=m}ψ(xNk (t))1{mNk (t)=n}

]
;

H7 :=−
∫ T ′

0
dt

1

N3

∑
i∈N (t)

∑
k∈N (t),k 6=i

θε(xNi (t)− xNk (t))vε,z
(
t, xNi (t), xNk (t)

)
φ(xNi (t))ψ(xNk (t))1{mNi (t)=m,mNk (t)=n}. (3.6)

Remark 3.1. This negative termH7 arises because of the specific coagulation rule, namely if particles
(i, k) coagulate, then they are both removed from the system. There may be a new particle added,
but it is of a different mass hence has to be reconsidered (inH6). Unlike Hammond and Rezakhanlou
(2007a, 2006), under our scaling (1.5) H7 turns out to be negligible, see Lemma 4.7.

Regarding the martingale terms, of which M1,M2 come from diffusion

M1 :=

∫ T ′

0

λ

N2

∑
i∈N (t)

∑
j∈N (t),j 6=i

∇
[
vε,z

(
t, ·, xNj (t)

)
φ(·)

] (
xNi (t)

)
ψ(xNj (t))1{mNi (t)=m,mNj (t)=n} · dβi(t)

+

∫ T ′

0

λ

N2

∑
j∈N (t)

∑
i∈N (t),i 6=j

∇
[
vε,z

(
t, xNi (t), ·

)
ψ(·)

] (
xNj (t)

)
φ(xNi (t))1{mNi (t)=m,mNj (t)=n} · dβj(t)

whose quadratic variation is

B1 =

∫ T ′

0

λ2

N4

∑
i∈N (t)

( ∑
j∈N (t),j 6=i

∇
[
vε,z

(
t, ·, xNj (t)

)
φ(·)

] (
xNi (t)

)
ψ(xNj (t))1{mNi (t)=m,mNj (t)=n}

)2
dt

+

∫ T ′

0

λ2

N4

N(t)∑
j=1

( ∑
i∈N (t),i 6=j

∇
[
vε,z

(
t, xNi (t), ·

)
ψ(·)

] (
xNj (t)

)
φ(xNi (t))1{mNi (t)=m,mNj (t)=n}

)2
dt ;

(3.7)

and

M2 =

∫ T ′

0

∑
k∈K

σk(x
N
i (t)) · 1

N2

∑
i∈N (t)

∑
j∈N (t),j 6=i

∇
[
vε,z

(
t, ·, xNj (t)

)
φ(·)

] (
xNi (t)

)
ψ(xNj (t))1{mNi (t)=m,mNj (t)=n}dWk(t)

+

∫ T ′

0

∑
k∈K

σk(x
N
j (t)) · 1

N2

∑
j∈N (t)

∑
i∈N (t),i 6=j

∇
[
vε,z

(
t, xNi (t), ·

)
ψ(·)

] (
xNj (t)

)
φ(xNi (t))1{mNi (t)=m,mNj (t)=n}dWk(t)

whose quadratic variation is

B2 :=∫ T ′

0

1

N4

∑
k∈K

(
σk(x

N
i (t)) ·

∑
i 6=j∈N (t)

∇
[
vε,z

(
t, ·, xNj (t)

)
φ(·)

] (
xNi (t)

)
ψ(xNj (t))1{mNi (t)=m,mNj (t)=n}

)2
dt
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+

∫ T ′

0

1

N4

∑
k∈K

(
σk(x

N
j (t)) ·

∑
i 6=j
∈N (t)

∇
[
vε,z

(
t, xNi (t), ·

)
ψ(·)

] (
xNj (t)

)
φ(xNi (t))1{mNi (t)=m,mNj (t)=n}

)2
dt ;

(3.8)

and the jump part of the martingale M3 (which we do not write explicitly) has its second moment
bounded above by

B3 :=

∫ T ′

0
dt

4

N4

∑
i∈N (t)

∑
k∈N (t),k 6=i

1

N
θε(xNi (t)− xNk (t))

·
[ ∑
j 6=i,k

mN
i (t)

mN
i (t) +mN

k (t)
vε,z(t, xNi (t), xNj (t))φ(xNi (t))1{mNi (t)+mNk (t)=m}ψ(xNj (t))1{mNj (t)=n}

+
∑
j 6=i,k

mN
k (t)

mN
i (t) +mN

k (t)
vε,z(t, xNk (t), xNj (t))φ(xNk (t))1{mNi (t)+mNk (t)=m}ψ(xNj (t))1{mNj (t)=n}

−
∑
j 6=i,k

vε,z(t, xNi (t), xNj (t))φ(xNi (t))1{mNi (t)=m}ψ(xNj (t))1{mNj (t)=n}

−
∑
j 6=i,k

vε,z(t, xNk (t), xNj (t))φ(xNk (t))1{mNi (t)=m}ψ(xNj (t))1{mNj (t)=n}

− vε,z
(
t, xNi (t), xNk (t)

)
φ(xNi (t))ψ(xNk (t))1{mNi (t)=m,mNk (t)=n}

]2
(3.9)

+

∫ T ′

0

4

N4

∑
i∈N (t)

∑
k∈N (t),k 6=i

1

N
θε(xNi (t)− xNk (t))

·
[ ∑
j 6=i,k

mN
i (t)

mN
i (t) +mN

k (t)
vε,z(t, xNj (t), xNi (t))φ(xNj (t))1{mNi (t)=m}ψ(xNi (t))1{mNi (t)+mNk (t)=n}

+
∑
j 6=i,k

mN
k (t)

mN
i (t) +mN

k (t)
vε,z(t, xNj (t), xNk (t))φ(xNj (t))1{mNj (t)=m}ψ(xNk (t))1{mNi (t)+mNk (t)=n}

−
∑
j 6=i,k

vε,z(t, xNj (t), xNi (t))φ(xNj (t))1{mNj (t)=m}ψ(xNi (t))1{mNi (t)=n}

−
∑
j 6=i,k

vε,z(t, xNj (t), xNk (t))φ(xNj (t))1{mNi (t)=m}ψ(xNk (t))1{mNk (t)=n}

− vε,z
(
t, xNi (t), xNk (t)

)
φ(xNi (t))ψ(xNk (t))1{mNi (t)=m,mNk (t)=n}

]2
dt.

We also have the initial and terminal conditions

H8 :=
1

N2

∑
i 6=j∈N (0)

vε,z (0, xi(0), xj(0))φ(xi(0))ψ(xj(0))1{mi(0)=m,mj(0)=n};

H9 :=
1

N2

∑
i 6=j∈N (T ′)

vε,z
(
T ′, xNi (T ′), xNj (T ′)

)
φ(xNi (T ′))ψ(xNj (T ′))1{mNi (T ′)=m,mNj (T ′)=n}.
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We set up the following family (indexed by z ∈ Rd) of auxiliary PDE terminal value problems,
whose unique nonnegative solution is called rε,z(t, x, y) : [0, T ]× Rd × Rd → R+:

[
∂t + λ2

2

(
∆x + ∆y

)
+ 1

2

∑d
α,β=1

(
Qαβ(x, x)∂2

xαxβ
+Qαβ(y, y)∂2

yαyβ

+Qαβ(x, y)∂2
xαyβ

+Qαβ(y, x)∂2
yαxβ

)]
rε,z (t, x, y) = −θε(x− y + z), (t, x, y) ∈ [0, T ]× R2d

rε,z(T, x, y) = 0.

(3.10)

To be more transparant, if we denote x := (x, y) ∈ R2d, ∆x := ∆x + ∆y,

D2
x :=

(
D2
xx, D

2
xy

D2
yx, D

2
yy

)
and the (2d)× (2d) non-negative definite matrix

Q̂(x) :=

(
Q(x, x), Q(x, y)
Q(y, x), Q(y, y)

)
, x = (x, y)

then, (3.10) can be rewritten as
[
∂t + λ2

2 ∆x + 1
2tr
(
Q̂(x)D2

x

)]
rε,z(t,x) = −θε(x− y + z)

rε,z(T,x) = 0, x = (x, y), t ∈ [0, T ].

(3.11)

To see that Q̂(x) is non-negative, take any ξ = (ξ1, ξ2) ∈ R2d, we have that

ξQ̂(x)ξT =
∑
k∈K
|ξ1 · σk(x) + ξ2 · σk(y)|2 ≥ 0.

Since λ > 0, θε ∈ Cα(Rd) for some α ∈ (0, 1) and Q̂ is smooth of class C∞b , the solution rε,z(t, x, y) ∈
C1+α/2,2+α([0, T ] × R2d), for every ε ∈ (0, 1) and z ∈ Rd (cf. Krylov (1996, Theorem 8.10.1)). Let
us denote the non-divergence form operator with C∞b (R2d) coefficients

Ax :=
λ2

2
∆x +

1

2
tr
(
Q̂(x)D2

x

)
. (3.12)

By the parabolic Maximum Principle, since θε ≥ 0, the unique solution rε,z(t, x, y) of (3.11) is
nonnegative. Since

vε,z(t, x, y) = rε,z(t, x, y)− rε,0(t, x, y),

by linearity it also follows that
[
∂t + λ2

2 ∆x + 1
2tr
(
Q̂(x)D2

x

)]
vε,z(t,x) = −θε(x− y + z) + θε(x− y)

vε,z(T,x) = 0, x = (x, y), t ∈ [0, T ].

(3.13)

From (3.2), (3.3), (3.13), we have that (recall T ′ ≤ T )

H1 +H3 =

∫ T ′

0
dt

1

N2

∑
i 6=j∈N (t)

φ(xNi (t))ψ(xNj (t))1{mNi (t)=m,mNj (t)=n}

·
[
∂t +

λ2

2
∆x +

1

2
tr
(
Q̂
(
xNi (t), xNj (t)

)
D2

x

)]
vε,z

(
t, xNi (t), xNj (t)

)
= −

∫ T ′

0
dt

1

N2

∑
i 6=j∈N (t)

φ(xNi (t))ψ(xNj (t))1{mNi (t)=m,mNj (t)=n}
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·
[
θε
(
xNi (t)− xNj (t) + z

)
− θε

(
xNi (t)− xNj (t)

)]
.

In view of the identity from Itô formula

H1 + ...+H9 +M1 +M2 +M3 = 0, (3.14)

we can accomplish (2.13) if we can show that the rest of the terms in (3.14), namely those apart
from H1, H3, are all negligible in the sense that

lim
|z|→0

lim sup
N→∞

E sup
T ′∈[0,T ]

|Hi| = 0, i ∈ {2, 4, 5, 6, 7, 8, 9}

lim
|z|→0

lim sup
N→∞

E sup
T ′∈[0,T ]

|Mi| = 0, i ∈ {1, 2, 3}. (3.15)

These terms only contain up to first partial derivatives of vε,z, hence their regularity is strictly
better than θε.

The following key proposition provides uniform bounds on rε and its gradient. The proof is
similar to Flandoli and Huang (2021, Proposition 5), due to which we omit some details. Recall
that C0 is the maximal radius of the compact support of θ.

Before delving into its proof, let us provide more remarks on the auxiliary PDE (3.11). Recall that
the key Proposition 2.2 we aim to prove is a statement about continuity under macroscopic shifts
in the argument of θε of a certain double-sum (2.13). For ε > 0 small, θε is close to a Dirac delta
function (which is singular), hence such a continuity claim is difficult to prove directly. The idea of
the auxiliary PDE is to introduce via (3.11) an auxiliary function rε,z that is “two derivatives more
regular” than θε (by elliptic regularity theory, here λ > 0 is used). Applying Itô formula to (3.1)
constructed from rε,z, as we did above, and using (3.11) gives an identity that makes appear the
original double-sum (2.13) as well as various double- and triple-sums involving rε,z and its partial
gradient (which are more regular than θε). Hence, it is equivalent to prove shift continuity for these
latter double- and triple-sums. For that, the pointwise estimates below are needed.

Both the auxiliary PDE and its estimates per se are not related to the scaling relation (1.5)
between N and ε. In fact, they hold for every fixed ε and do not involve N . The only place that
(1.5) plays a role is when we use these estimates to prove that various double- and triple-sums are
negligible in a double limit, in Section 4. There one will see in a few places (i.e. (4.8), (4.10)) a
competition between the dependence on ε of these PDE estimates (3.18)-(3.19) and the cardinality
of the system which is of order N . In other places, what counts are not (1.5) but the integrability
near their singularities of the estimates (3.16)-(3.17).

Proposition 3.2. Let rε,z(t, x, y) be the unique solution of the PDE (3.11). Then, there exists some
finite constant C(d, T, C0, {σk}k∈K , λ) such that for any x, y, z ∈ Rd, t ∈ [0, T ] and ε ≤ ε0 for some
small ε0(C0), we have that

rε,z(t, x, y) ≤


Ce−C|y−x−z|

2
1{|y−x−z|≥4} + C (|y − x− z| ∨ ε)2−d 1{|y−x−z|<4}, d ≥ 3

Ce−C|y−x−z|
2
1{|y−x−z|≥4} + C |log (|y − x− z| ∨ ε)| 1{|y−x−z|<4}, d = 2

Ce−C|y−x−z|
2
1{|y−x−z|≥4} + C1{|y−x−z|<4}, d = 1.

(3.16)

|∇xrε,z(t, x, y)| ≤

Ce
−C|y−x−z|21{|y−x−z|≥4} + C (|y − x− z| ∨ ε)1−d 1{|y−x−z|<4}, d ≥ 2

Ce−C|y−x−z|
2
1{|y−x−z|≥4} + C |log(|y − x− z| ∨ ε)| 1{|y−x−z|<4}, d = 1.

(3.17)

The same also holds for ∇y in place of ∇x.
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Remark 3.3. In particular, we have the following useful crude bounds: there exists
C = C(d, T, C0, {σk}k∈K , λ), such that for any x, y, z ∈ Rd, t ∈ [0, T ] and ε ∈ (0, 1) small

rε,z(t, x, y) ≤


Cε2−d, d ≥ 3

C| log ε|, d = 2

C, d = 1

(3.18)

|∇xrε,z(t, x, y)| ≤

{
Cε1−d, d ≥ 2

C| log ε|, d = 1.
(3.19)

Remark 3.4. Let us explain the first inequality in (3.18) by a simple heuristic argument. First,
notice that θε (x) ≤ cε−d1B(0,εC0) (x) for some constant c > 0; take C0 = 1 below for notational
simplicity. Due to the Gaussian upper bound described at the beginning of the proof, the problem
reduces to prove that

ε−d
∫ t

0
P (Bs ∈ S (y − x− z, ε)) ds ≤ Cε−d+2

for some constant C > 0, where (Bt) is a standard Brownian motion in R2d and S (u, ε) is the strip
in R2d defined as

S (u, ε) :=
{(
x′, y′

)
∈ R2d :

∣∣y′ − x′ − u∣∣ ≤ ε} , u ∈ Rd.

When |y − x− z| is not infinitesimal in ε, say |y − x− z| ≥ 4 as in the proof above, then the strip
S (y − x− z, ε) is far from the origin (where (Bt) starts deterministically), hence, thanks also to
the exponential decay of the Brownian density, the problem reduces to estimate (where Leb denotes
Lebesgue measure in R2d)

ε−d
∫ t

0
Leb (S (y − x− z, ε) ∩ B (0, 1)) ds.

It is easily seen that Leb (S (y − x− z, ε) ∩ B (0, 1)) ≤ εd (up to constants) and thus the bound
above holds (see also the first inequality in (3.16)). If |y − x− z| is very small, on the contrary, let
us examine the worst case,

ε−d
∫ t

0
P (Bs ∈ S (0, ε)) ds.

The problem is that P (Bs ∈ S (0, ε)) is not infinitesimal with ε for s = 0. The very crude but
convincing argument is that the Brownian motion Bs remains in the strip S (0, ε) for a time of order
ε2, contributing to the integral with the term∫ ε2

0
P (Bs ∈ S (0, ε)) ds ∼ ε2.

After this time the estimate is better. Thus there is an addend ε−dε2 in the estimate.

Proof : We first show (3.16), starting with the representation of solution of (3.11)

rε,z(T − t, x, y) =

∫
[0,t]×R2d

qt−s(x, y;x′, y′)θε(x′ − y′ + z)dsdx′dy′

where qt(x, y;x′, y′) is the (2d)-dimensional heat kernel (i.e. fundamental solution) associated with
the operator Ax (3.12). Since the latter operator is uniformly elliptic, we have Gaussian upper (and
lower) bounds for the heat kernel (cf. Ilyin et al. (2002, Theorem 1))

qt(x, y;x′, y′) ≤ C

t
2d
2

e−
|x−x′|2+|y−y′|2

Ct



1262 F. Flandoli and R. Huang

for any t > 0, x, y, x′, y′ ∈ Rd, where C = C (d, {σk}k∈K , λ) finite. One can show, for details cf. the
proof of Flandoli and Huang (2021, Proposition 5, pp. 615), that for some C = C(d, T ) and any
t ∈ [0, T ], x, y, x′, y′ ∈ Rd and d > 1 (hence 2d > 2), we have that∫ t

0
qs(x, y;x′, y′)ds ≤

∫ t

0

C

s
2d
2

e−
|x−x′|2+|y−y′|2

Cs ds

≤ C
(
|x− x′|2 + |y − y′|2

) 2−2d
2 e−

|x−x′|2+|y−y′|2
C + C1{|x−x′|2+|y−y′|2≤1}.

Now let us integrate in x′, y′ of the preceding expression against θε(x′ − y′ + z), up to constant C
we have that∫∫

R2d

(
|x− x′|2 + |y − y′|2

) 2−2d
2 e−

|x−x′|2+|y−y′|2
C θε(x′ − y′ + z)dx′dy′

+

∫∫
R2d

1{|x−x′|2+|y−y′|2≤1}θ
ε(x′ − y′ + z)dx′dy′

ζ=x′−y′+z, γ=x−x′
=

∫∫
R2d

(
|γ|2 + |y − x− z + γ + ζ|2

) 2−2d
2 e−

|γ|2+|y−x−z+γ+ζ|2
C θε(ζ)dγdζ (3.20)

+

∫∫
R2d

1{|γ|2+|y−x−z+γ+ζ|2≤1}θ
ε(ζ)dγdζ. (3.21)

We first argue about the exponential decay when |y − x− z| ≥ 4. In this case, if we look at (3.21),
since the support of ζ is in |ζ| ≤ C0ε, and the support of γ is in |γ| ≤ 1 (otherwise the indicator in
(3.21) is 0), we see that when |y − x − z| ≥ 4, then necessarily |y − x − z + γ + ζ| > 1 for ε small
enough, rendering the indicator again 0. Thus, we can focus solely on the first term (3.20) and we
argue exponential decay in |y − x− z| when |y − x− z| ≥ 4.

We separate the integral in γ of (3.20) according to |γ| ≤ |y − x− z|/2 and |γ| > |y − x− z|/2.
In the former case, |y − x− z + γ + ζ| ≥ |y − x− z|/4 ≥ 1 for ε small enough, thus we can bound
part of the integral by (noting 2− 2d < 0, and

∫
θε(ζ)dζ = 1)

C

∫
|γ|≤|y−x−z|/2

e−
|y−x−z|2

C dγ ≤ C|y − x− z|de−
|y−x−z|2

C ≤ C ′e−
|y−x−z|2

C′

for some C ′ > C. In the latter case that |γ| > |y − x − z|/2 ≥ 2, we can bound the other part of
the integral by

C

∫
|γ|>|y−x−z|/2

e−
|γ|2
C dγ ≤ C|y − x− z|d−2e−

|y−x−z|2
C ≤ C ′e−

|y−x−z|2
C′ .

That is, we have the claimed exponential decay when |y − x− z| ≥ 4.
Now we turn to the case when |y − x− z| < 4. Here the term (3.21) is merely bounded (due to∫
θε = 1 and that the indicator is over a compact ball), so the total bound cannot be smaller than a

constant bound. We now focus on the first integral (3.20). We separate two cases: |y−x−z| ≥ 4C0ε
or |y − x− z| < 4C0ε.

If |y − x − z| ≥ 4C0ε and |γ| ≤ |y − x − z|/4, then |y − x − z + γ + ζ| ≥ |y − x − z|/4 since
|ζ| ≤ C0ε, we can bound part of the integral (3.20) by (ignore the exponential)

C

∫
|γ|≤|y−x−z|/4

|y − x− z|2−2ddγ ≤ C|y − x− z|2−d.

If |y − x− z| ≥ 4C0ε and |γ| > |y − x− z|/4, then we bound the other part of the integral by

C

∫
|γ|>|y−x−z|/4

|γ|2−2de−|γ|2/Cdγ ≤ C
∫
1≥|γ|>|y−x−z|/4

|γ|2−2ddγ +

∫
|γ|>1

e−|γ|
2/Cdγ
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≤

{
C|y − x− z|2−d + C, d ≥ 3

C| log |y − x− z||+ C, d = 2
≤ C

{
|y − x− z|2−d, d ≥ 3

| log |y − x− z||, d = 2.

If on the other hand |y − x − z| < 4C0ε, then we have that |y − x − z + ζ| ≤ 5C0ε. We note that
for any γ ∈ Rd,

|γ| ∨ |y − x− z + γ + ζ| ≥ |x+ z − y − ζ|
2

,

hence

|γ|2 + |y − x− z + γ + ζ|2 ≥ |x+ z − y − ζ|2

4
.

We separate the integral (3.20) according to γ ∈ B
(
x+z−y−ζ

2 , |x+ z − y − ζ|
)
or otherwise. In the

former case, we can bound part of the integral

C

∫
Rd

∫
B(x+z−y−ζ2

,|x+z−y−ζ|)
|x+ z − y − ζ|2−2dθε(ζ)dγdζ ≤ C

∫
|x+ z − y − ζ|2−dθε(ζ)dζ

≤ Cε−d
∫
|ζ|≤C0ε

|x+ z − y − ζ|2−ddζ ≤ Cε−d
∫
|w|≤5C0ε

|w|2−ddw ≤ Cε2−d

where we have bounded ‖θε‖∞ ≤ ε−d‖θ‖∞ and used |y − x − z + ζ| ≤ 5C0ε. The second part of
(3.20) we bound by

C

∫
Rd

∫
Rd\B(x+z−y−ζ2

,|x+z−y−ζ|)
|γ|2−2de−|γ|2/Cθε(ζ)dγdζ

≤ C
∫ ∫

|γ|>x+z−y−ζ
2

|γ|2−2de−|γ|2/Cθε(ζ)dγdζ

≤ C

{∫
|ζ|≤C0ε

|x+ z − y − ζ|2−dθε(ζ)dζ, d ≥ 3∫
|ζ|≤C0ε

| log |x+ z − y − ζ||θε(ζ)dζ, d = 2

≤ Cε−d
{∫
|w|≤5C0ε

|w|2−ddζ, d ≥ 3∫
|w|≤5C0ε

| log |w||dζ, d = 2
≤ C

{
ε2−d, d ≥ 3

| log ε|, d = 2.

To summarise, we showed here that when |y − x − z| < 4, then a bound of the form C|y − x −
z|2−d ∧ Cε2−d holds for d ≥ 3 and C| log |y − x − z|| ∧ C| log ε| for d = 2. This, together with the
exponential decay when |y − x− z| ≥ 4, completes the proof of the first two items of (3.16).

The d = 1 case of (3.16) requires some changes. Since 2d = 2, we have that (cf. Flandoli and
Huang (2021, Proposition 5, pp. 615))∫ t

0
qs(x, y;x′, y′)ds ≤ Ce−

|x−x′|2+|y−y′|2
C − C log

(
|x− x′|2 + |y − y′|2

)
1{|x−x′|2+|y−y′|2≤1}

and thus,∫∫
R2

∫ t

0
qs(x, y;x′, y′)dsdx′dy′ ≤ C

∫∫
R2

e−
|γ|2+|y−x−z+γ+ζ|2

C θε(ζ)dγdζ

− C
∫∫

R2d

log
(
|γ|2 + |y − x− z + γ + ζ|2

)
1{|γ|2+|y−x−z+γ+ζ|2≤1}θ

ε(ζ)dγdζ.

Proceeding similarly as the d ≥ 2 case yields the thesis, where the constant bound is essentially due
to the integrability of − log r function near r = 0. The gradient bounds (3.17) can also be proved
analogously; we only comment that we start with

∇xrε,z(T − t, x, y) =

∫
[0,t]×R2d

∇xqt−s(x, y;x′, y′)θε(x′ − y′ + z)dsdx′dy′
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and the fact that due to Ax uniformly elliptic, the gradient of its (2d)-dimensional heat kernel
satisfies

|∇xqt(x, y;x′, y′)| ≤ C

t
1+2d

2

e−
|x−x′|2+|y−y′|2

Ct

for any t > 0, x, y, x′, y′ ∈ Rd (cf. Ilyin et al. (2002, Theorem 1)). Correspondingly, we have that
for any d ≥ 1 (cf. Flandoli and Huang (2021, Proposition 5, pp. 615)),∫ t

0
|∇xqs(x, y;x′, y′)|ds ≤

∫ t

0

C

s
1+2d

2

e−
|x−x′|2+|y−y′|2

Cs ds

≤ C
(
|x− x′|2 + |y − y′|2

) 1−2d
2 e−

|x−x′|2+|y−y′|2
C + C1{|x−x′|2+|y−y′|2≤1}.

The rest of the proof is analogous to that for the uniform bounds given above. �

4. Bounding various terms

Building on the Itô-Tanaka procedure of Section 3, still working on the original probability space
(Ω,F ,P) we complete the proof of Proposition 2.2 by showing the negligibility of all the minor terms
in (3.14).

To prepare, for each N ∈ N let us denote by [0, τNi ) the lifespan of particle i = 1, ..., N in our
system, namely at the stopping time τNi ∈ (0,∞] particle i is removed from the system due to the
coagulation rule. Let us also consider on the same probability space (Ω,F ,P) an auxiliary “free”
particle system (xfi (t))∞i=1, that obeys the same dynamics as (1.1), with xfi (0) = xi(0), i ∈ N, and
the same driving Brownian motions {W k

t }k∈K , {βi(t)}∞i=1, but without coagulation of masses. In
other words,

dxfi (t) =
∑
k∈K

σk

(
xfi (t)

)
◦ dW k

t + λ dβi(t), i ∈ N (4.1)

with lifespan [0,∞). This auxiliary particle system dominates our true system in the following
sense: P-a.s.

xfi (t) = xNi (t), t ∈ [0, τNi ), i = 1, ..., N (4.2)

due to the fact that the coefficients of the SDE (1.1) do not depend on the mass parameter.
We start with a lemma proving that any fixed number of particles in the auxiliary system have

a joint density that is uniformly bounded and decays exponentially at infinity. Recall that Γ is the
uniform upper bound on the initial density of an individual particle, and R the maximal radius of
its compact support.

Proposition 4.1. Let ` ∈ N, d ≥ 1 be fixed, and denote

X
f
t :=

(
xf1(t), ..., xf` (t)

)
∈ R`d

x := (x1, ..., x`) ∈ R`d

where xfi (t) are defined above. Then Xf
t has a probability density pt(x) on R`d that satisfies for any

t ∈ [0, T ],

pt(x) ≤ c−1e−c|x| (4.3)

where c = c(d, λ, `, T,R,Γ, {σk}k∈K , ) is a positive constant.

Proof : Let us denote

Bt := (β1(t), ..., β`(t)) ∈ R`d

Σk(x) := (σk(x1), ..., σk(x`)) ∈ R`d
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(∇Σk · Σk) (x) := ((∇σk · σk) (x1), ..., (∇σk · σk) (x`)) ∈ R`d

where ∇σk · σk is defined in (1.3). Then, by (4.1) the `-tuple Xf
t satisfies the SDE in R`d:

dX
f
t =

∑
k∈K

Σk(X
f
t ) ◦ dW k

t + λ dBt

=
∑
k∈K

Σk(X
f
t ) dW k

t +
1

2

∑
k∈K

(∇Σk · Σk) (X
f
t )dt+ λ dBt.

This is an Itô diffusion associated with the operator with coefficients of class C∞b (R`d) that acts on
functions on R`d,

L =
λ2

2
∆ +

1

2

∑
k∈K

tr
(
ΣT
k Σk(x)D2

)
+

1

2

∑
k∈K

(∇Σk · Σk) (x) ·D

thus admits a transition density (i.e. heat kernel) q(`)t (x, y) that is bounded above (and below) by
Gaussian kernel (cf. Ilyin et al. (2002, Theorem 1)), i.e.

q
(`)
t (x, y) ≤ CQt(x− y), ∀t > 0, x, y ∈ R`d,

where Qt(·) is the density of a centered Gaussian vector Y 0
t in R`d with covariance matrix CtI, for

some C = C (d, `, {σk}k∈K , λ) finite. Further, the initial condition Xf
0 has a density p0(x) bounded

above by Γ`, and compactly supported in the ball B(0,
√
`R), due to Condition 1.1. Then, for any

t ∈ [0, T ], the probability density of Xf
t

pt(x) =
(
q
(`)
t ∗ p0

)
(x) ≤

∫
Q

(`)
t (x− y)p0(y)dy

= E
[
p0

(
x+ Y

0
t

)]
≤ Γ`P

(
x+ Y

0
t ∈ B

(
0,
√
`R
))

≤ Γ`P
(
|Y 0

t | ≥ |x| −
√
`R
)
≤ c−1e−c(|x|−

√
`R)

+ ,

where we used the Gaussian tail of Y 0
t in the last line, and c = c(d, λ, `, T,R,Γ, {σk}k∈K) is a

positive constant. Adjusting the value of c yields our thesis. �

Lemma 4.2. For any finite T, d ≥ 1, we have that

lim
|z|→0

lim sup
N→∞

E
∫ T

0
dt

1

N2

∑
i 6=j∈N (t)

∣∣vε,z(t, xNi (t), xNj (t))
∣∣ = 0.

Proof : Due to (4.2), it is enough to prove the thesis with the auxiliary system replacing the true
system, with the former having infinite lifespan, i.e. to prove that

lim
|z|→0

lim sup
N→∞

E
∫ T

0
dt

1

N2

N∑
i 6=j=1

∣∣∣vε,z(t, xfi (t), xfj (t))
∣∣∣ = 0.

(The same applies to all the subsequent lemmas in this section.) Consider any fixed pair (i, j), with
1 ≤ i 6= j ≤ N , and we go on to bound

E
∫ T

0

∣∣∣vε,z(t, xfi (t), xfj (t))
∣∣∣ dt.
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By Proposition 4.1, (xfi (t), xfj (t)) has a joint density pt(x, y) in R2d satisfying the bound (4.3) with
` = 2, implying that

E
∫ T

0

∣∣∣vε,z(t, xfi (t), xfj (t))
∣∣∣ dt =

∫∫
R2d

∫ T

0
|vε,z(t, x, y)|pt(x, y)dtdxdy

≤ C
∫∫

R2d

sup
t∈[0,T ]

|vε,z(t, x, y)| e−
√
|x|2+|y|2/Cdxdy , (4.4)

and thus the problem is reduced to prove that

lim
|z|→0

lim sup
ε→0

∫∫
R2d

sup
t∈[0,T ]

|vε,z(t, x, y)| e−
√
|x|2+|y|2/Cdxdy = 0.

By Fatou’s lemma, we have that

lim sup
ε→0

∫∫
R2d

sup
t∈[0,T ]

|vε,z(t, x, y)| e−
√
|x|2+|y|2/Cdxdy

≤
∫∫

R2d

lim sup
ε→0

sup
t∈[0,T ]

|vε,z(t, x, y)| e−
√
|x|2+|y|2/Cdxdy

and thus it is sufficient to prove that

lim
|z|→0

∫∫
R2d

lim sup
ε→0

sup
t∈[0,T ]

|vε,z(t, x, y)| e−
√
|x|2+|y|2/Cdxdy = 0.

By a change of variables, for any t ∈ [0, T ],

vε,z(T − t, x, y) = rε,z(T − t, x, y)− rε,0(T − t, x, y)

=

∫
[0,t]×R2d

qt−s(x, y;x′, y′)
[
θε(x′ − y′ + z)− θε(x′ − y′)

]
dsdx′dy′

=

∫
[0,t]×R2d

[
qt−s(x, y;x′, y′ + z)− qt−s(x, y;x′, y′)

]
θε(x′ − y′)dsdx′dy′

where qt(x, y;x′, y′) is the (2d)-dimensional heat kernel (i.e. fundamental solution) associated with
operator Ax introduced in the proof of Proposition 4.1. Hence, as ε→ 0,

vε,z(T − t, x, y)→
∫
[0,t]×Rd

[
qt−s(x, y;x′, x′ + z)− qt−s(x, y;x′, x′)

]
dsdx′.

Thus, the problem is reduced to prove that

lim
|z|→0

∫∫
R2d

sup
t∈[0,T ]

∣∣∣∣∣
∫
[0,t]×Rd

[
qt−s(x, y;x′, x′ + z)− qt−s(x, y;x′, x′)

]
dsdx′

∣∣∣∣∣ e−√|x|2+|y|2/Cdxdy = 0.

(4.5)

Since the integrand converges to zero pointwise (see below), to apply Vitali convergence theorem,
it suffices to check the uniform integrability in the parameter |z| ≤ 1, with respect to the finite
measure e−

√
|x|2+|y|2/Cdxdy, of

Ax,y,z := sup
t∈[0,T ]

∫
Rd

∫ t

0
qt−s(x, y;x′, x′ + z)dsdx′ ;

namely, to prove that for some δ > 1, we have that

sup
|z|≤1

∫∫
R2d

|Ax,y,z|δe−
√
|x|2+|y|2/Cdxdy <∞.
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To this end, in the proof of Proposition 3.2, we already mentioned that for d ≥ 2,∫ t

0
qt−s(x, y;x′, x′ + z)ds

≤ C
(
|x− x′|2 + |y − z − x′|2

) 2−2d
2 e−

|x−x′|2+|y−z−x′|2
C + C1{|x−x′|2+|y−z−x′|2≤1} (4.6)

(and the d = 1 case is similar, involving the logarithm). Let us integrate this expression in the
variable x′ over Rd. Note that, for any x′ ∈ Rd, it holds that

|x− x′| ∨ |y − z − x′| ≥ |x− (y − z)|
2

.

Thus, for any x′,

|x− x′|2 + |y − z − x′|2 ≥ |x− y + z|2

4
.

We separate the integral in x′ into one in the ball x′ ∈ B
(
x+(y−z)

2 , |x− y + z|
)
and the other outside

the ball, and then it is easy to show that the first part is upper bounded by C|x − y + z|2−d, and
the second part by C|x− y + z|2−d1{d≥3} + C| log |x− y + z||1{d=2}. In the case d = 1, a constant
bound can be shown to hold.

Now we need to check, for some δ > 1, the uniform finiteness in |z| ≤ 1 of

∫∫
R2d

|Ax,y,z|δe−
√
|x|2+|y|2/Cdxdy ≤


C
∫∫

R2d |x− y + z|(2−d)δe−
√
|x|2+|y|2/Cdxdy, d ≥ 3

C
∫∫

R2d | log |x− y + z||δe−
√
|x|2+|y|2/Cdxdy, d = 2

C
∫∫

R2d e
−
√
|x|2+|y|2/Cdxdy, d = 1.

Taking d ≥ 3 for instance (the other cases being similar),∫∫
R2d

|x− y + z|(2−d)δe−
√
|x|2+|y|2/Cdxdy

u=x−y√
2
, v=x−y√

2
=

∫∫
R2d

|
√

2u+ z|(2−d)δe−
√
|u|2+|v|2/Cdudv

≤
∫∫
|
√

2u+ z|(2−d)δe−(|u|+|v|)/(2C)dudv ≤ C
∫
|
√

2u+ z|(2−d)δe−|u|/(2C)du

|z|≤1
≤ C

∫
|u|≤2

|
√

2u+ z|(2−d)δdu+ C

∫
|u|>2

e−|u|/(2C)du

|z|≤1
≤ C

∫
|w|≤4

|w|(2−d)δdw + C ≤ C ′,

provided we take δ ≤ d/(d− 2), where the constant C ′ is independent of |z| ≤ 1.
Note also that z 7→ Ax,y,z is continuous at z = 0 by dominated convergence, since LHS of

(4.6) is continuous in z, a classical fact for Green functions, and RHS of (4.6) is dominated by
C|x− y|2−2de−|x−x′|2/C +C1{|x−x′|≤1}, for all |z| ≤ |x− y|/4 say (and x 6= y), which is integrable in
x′ ∈ Rd.

With the integrand of (4.5) converging pointwise to 0 as |z| → 0 (i.e. for a.e. fixed (x, y)),
and uniformly integrable with respect to the finite measure e−

√
|x|2+|y|2/Cdxdy, we have by Vitali

convergence theorem that

lim
|z|→0

lim sup
ε→0

∫∫
R2d

sup
t∈[0,T ]

|vε,z(T − t, x, y)| e−
√
|x|2+|y|2/Cdxdy = 0.

Since the cardinality in the double sum in the thesis is (at most) N2, this completes the proof. �
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Lemma 4.3. For any finite T, d ≥ 1, we have that

lim
|z|→0

lim sup
N→∞

E
∫ T

0
dt

1

N2

∑
i 6=j∈N (t)

∣∣∇xvε,z(t, xNi (t), xNj (t))
∣∣ = 0.

The same statement also holds for ∇y instead of ∇x.

Proof : The proof is analogous to Lemma 4.2, using the estimate for |∇xrε,z(t, x, y)| (3.19) instead
of (3.18). First we switch to the free system, and it suffices to prove that

lim
|z|→0

lim sup
N→∞

E
∫ T

0
dt

1

N2

N∑
i 6=j=1

∣∣∣∇xvε,z(t, xfi (t), xfj (t))
∣∣∣ = 0.

Considering any fixed pair of particles (i, j), 1 ≤ i 6= j ≤ N , we have that

E
∫ T

0

∣∣∣∇xvε,z (t, xfi (t), xfj (t)
)∣∣∣ dt =

∫∫
R2d

∫ T

0
|∇xvε,z(t, x, y)|pt(x, y)dtdxdy

≤
∫∫

R2d

sup
t∈[0,T ]

|∇xvε,z(t, x, y)| e−
√
|x|2+|y|2/Cdxdy (4.7)

by (4.3). Further, by a change of variables, for any t ∈ [0, T ],

∇xvε,z(T − t, x, y) = ∇xrε,z(T − t, x, y)−∇xrε,0(T − t, x, y)

=

∫
[0,t]×R2d

∇xqt−s(x, y;x′, y′)
[
θε(x′ − y′ + z)− θε(x′ − y′)

]
dsdx′dy′

=

∫
[0,t]×R2d

[
∇xqt−s(x, y;x′, y′ + z)−∇xqt−s(x, y;x′, y′)

]
θε(x′ − y′)dsdx′dy′.

Hence, as ε→ 0,

∇xvε,z(T − t, x, y)→
∫
[0,t]×Rd

[
∇xqt−s(x, y;x′, x′ + z)−∇xqt−s(x, y;x′, x′)

]
e−
√
|x|2+|y|2/Cdsdx′ ,

and by Fatou’s lemma it is sufficient to prove that

lim
|z|→0

∫∫
R2d

sup
t∈[0,T ]

∣∣∣∣∣
∫
[0,t]×Rd

[
∇xqt−s(x, y;x′, x′ + z)−∇xqt−s(x, y;x′, x′)

]
dx′ds

∣∣∣∣∣e−√|x|2+|y|2/Cdxdy
= 0.

To check that the integrand above is uniformly integrable in |z| ≤ 1, with respect to the finite
measure e−

√
|x|2+|y|2/Cdxdy, we note that for d ≥ 1 (already mentioned in the proof of Proposition

3.2) ∫ t

0
|∇xqt−s(x, y;x′, x′ + z)|ds

≤ C
(
|x− x′|2 + |y − z − x′|2

) 1−2d
2 e−

|x−x′|2+|y−z−x′|2
C + C1{|x−x′|2+|y−z−x′|2≤1}.

By the same reasoning as in the proof of Lemma 4.2, as we integrate the preceding expression in x′
over Rd, we get an upper bound C|x− y + z|1−d1{d≥2} + C| log |x− y + z||1{d=1}. Then, for d ≥ 2
we check for some δ > 1, the uniform finiteness in the parameter |z| ≤ 1 of∫∫

R2d

|x− y + z|(1−d)δe−
√
|x|2+|y|2/Cdxdy,
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which is true provided we take δ < d/(d− 1). By Vitali convergence theorem, we have that

lim
|z|→0

lim sup
ε→0

∫∫
R2d

sup
t∈[0,T ]

|∇xvε,z(T − t, x, y)| e−
√
|x|2+|y|2/Cdxdy = 0

which leads to our thesis, as in Lemma 4.2. �

Remark 4.4. By Lemmas 4.2 and 4.3, the terms H2, H4, H5, H8, H9 are negligible in the sense of
(3.15), once we bound test functions φ, ψ and their derivatives, as well as the C∞b functions Qαβ
and its partial derivatives above by constants.

Lemma 4.5. For any finite T, d ≥ 1, we have that

lim
|z|→0

lim sup
N→∞

E
∫ T

0
dt

1

N3

∑
i 6=k∈N (t)

θε(xNi (t)− xNk (t))
∑

j∈N (t),j 6=i,k

∣∣vε,z(t, xNi (t), xNj (t))
∣∣ = 0.

Proof : First switch to the free system. Consider any triple of particles (i, j, k) with indices all
distinct. To bound

E
∫ T

0
θε(xfi (t)− xfk(t))

∣∣∣vε,z(t, xfi (t), xfj (t))
∣∣∣ dt

by Proposition 4.1, (xfi (t), xfj (t), xfk(t)) has a joint density pt(x1, x2, x3) in R3d satisfying the bound
(4.3) with ` = 3. Thus, we can write

E
∫ T

0
θε(xfi (t)− xfk(t))

∣∣∣vε,z(t, xfi (t), xfj (t))
∣∣∣ dt

=

∫∫∫
R3d

∫ T

0
θε(x1 − x3) |vε,z(t, x1, x2)|pt(x1, x2, x3)dtdxdydz

≤ C
∫∫∫

R3d

∫ T

0
θε(x1 − x3) |vε,z(t, x1, x2)| e−

√∑3
`=1 |x`|2/Cdtdx1dx2dx3

Integrating in x3 first and using
∫
θε(x1 − x3)dx3 = 1, we bound the above integral above by

C

∫∫
R2d

∫ T

0
|vε,z(t, x1, x2)| e−

√
|x1|2+|x2|2/Cdtdx1dx2

This is the same integral apprearing in the proof of Lemma 4.2, which has been shown to tend to
zero as ε→ 0 followed by |z| → 0. Since the cardinality in the triple sum of the thesis is (at most)
N3, this completes the proof. �

Remark 4.6. By Lemma 4.5, the term H6 (3.5) is negligible in the sense of (3.15) (by considering
it term by term), after bounding the test functions by constants.

Lemma 4.7. For any finite T, d ≥ 1, we have that

lim sup
N→∞

E
∫ T

0
dt

1

N3

∑
i 6=j∈N (t)

θε(xNi (t)− xNj (t))
∣∣vε,z(t, xNi (t), xNj (t))

∣∣ = 0.

Proof : First switch to the free system. Consider any pair of particles (i, j) with 1 ≤ i 6= j ≤ N . By
(3.18), we have that

E
1

N

∫ T

0
θε(xfi (t)− xfj (t))

∣∣∣vε,z(t, xfi (t), xfj (t))
∣∣∣ dt ≤ κ(ε) E

∫ T

0
θε(xfi (t)− xfj (t))dt,
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where

κ(ε) := C


ε2−dN−1, d ≥ 3

| log ε|N−1, d = 2

N−1, d = 1,

(4.8)

which vanishes as N →∞ by (1.5). By Proposition 4.1 with ` = 2, we can write

E
∫ T

0
θε(xfi (t)− xfj (t))dt =

∫ T

0

∫∫
R2d

θε(x− y)pt(x, y)dxdydt

≤ CT
∫∫

R2d

θε(x− y)e−
√
|x|2+|y|2/Cdxdy

≤ C
∫
Rd
e−|x|/Cdx ≤ C ′

using
∫
θε(x− y)dy = 1. Since the double sum has cardinality at most N2, the claim is proved. �

Remark 4.8. By Lemma 4.7, the term H7 (3.6) is negligible in the sense of (3.15), after bounding
the test functions by constants.

Now we turn to the terms B1, B2, B3 related to the martingales.

Lemma 4.9. For any finite T, d ≥ 1, we have that

lim
|z|→0

lim sup
N→∞

E
∫ T

0
dt

1

N4

 ∑
i 6=j∈N (t)

∣∣vε,z(t, xNi (t), xNj (t))
∣∣2

= 0.

Proof : First switch to the free system. Expanding the square, we have

1

N4

 N∑
i 6=j=1

∣∣∣vε,z(t, xfi (t), xfj (t))
∣∣∣
2

=
1

N4

N∑
i 6=j 6=k 6=`=1

∣∣∣vε,z(t, xfi (t), xfj (t))vε,z(t, xfk(t), xf` (t))
∣∣∣

+
1

N4

N∑
i 6=j 6=`=1

∣∣∣vε,z(t, xfi (t), xfj (t))vε,z(t, xfi (t), xf` (t))
∣∣∣

+
1

N4

N∑
i 6=j 6=k=1

∣∣∣vε,z(t, xfi (t), xfj (t))vε,z(t, xfk(t), xfi (t))
∣∣∣

+
1

N4

N∑
j 6=i 6=`=1

∣∣∣vε,z(t, xfi (t), xfj (t))vε,z(t, xfj (t), xf` (t))
∣∣∣

+
1

N4

N∑
j 6=i 6=k=1

∣∣∣vε,z(t, xfi (t), xfj (t))vε,z(t, xfk(t), xfj (t))
∣∣∣

+
1

N4

N∑
i 6=j=1

∣∣∣vε,z(t, xfi (t), xfj (t))
∣∣∣2

+
1

N4

N∑
i 6=j=1

∣∣∣vε,z(t, xfi (t), xfj (t))vε,z(t, xfj (t), xfi (t))
∣∣∣
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The last six terms are negligible, since the cardinality in their sums are at most N3 (due to repeated
indices), and by the bound (3.18), each individual quadratic term, e.g.

1

N

∣∣∣vε,z(t, xfi (t), xfj (t))vε,z(t, xfi (t), xf` (t))
∣∣∣ ≤ κ(ε)

∣∣∣vε,z(t, xfi (t), xfj (t))
∣∣∣ (4.9)

where κ(ε) defined in (4.8), and hence the second sum above

1

N4

N∑
i 6=j 6=`=1

∣∣∣vε,z(t, xfi (t), xfj (t))vε,z(t, xfi (t), xf` (t))
∣∣∣

≤ κ(ε)

N3

N∑
i 6=j 6=`=1

∣∣∣vε,z(t, xfi (t), xfj (t))
∣∣∣ ≤ κ(ε)

N2

N∑
i 6=j=1

∣∣∣vε,z(t, xfi (t), xfj (t))
∣∣∣ .

Taking expectation and integrating in time, it is negligible by the statement of Lemma 4.2. The
other sums can be handled similarly.

Now we deal with the first (principle) term, where the cardinality of the sum is O(N4) and the
indices are all distinct, thus it suffices to consider any fixed quadruple of particles (i, j, k, `).

E
∫ T

0

∣∣∣vε,z(t, xfi (t), xfj (t))vε,z(t, xfk(t), xf` (t))
∣∣∣ dt.

By Proposition 4.1, (xfi (t), xfj (t), xfk(t), xf` (t)) has a joint density pt(x1, x2, x3, x4) in R4d satisfying
the bound (4.3) with ` = 4. Thus, we can write

E
∫ T

0

∣∣∣vε,z(t, xfi (t), xfj (t))vε,z(t, xfk(t), xf` (t))
∣∣∣ dt

=

∫
R4d

∫ T

0
|vε,z(t, x1, x2)vε,z(t, x3, x4)|pt(x1, x2, x3, x4)dtdx1dx2dx3dx4

≤ C
∫
R4d

∫ T

0
|vε,z(t, x1, x2)vε,z(t, x3, x4)| e−

√∑4
i=1 |xi|2/Cdtdx1dx2dx3dx4

≤ C
∫ T

0

(∫∫
R2d

|vε,z(t, x1, x2)| e
− 1√

2C

√
|x1|2+|x2|2dx1dx2

)2

dt.

As shown in the proof of Lemma 4.2,

lim
|z|→0

lim sup
ε→0

∫∫
R2d

sup
t∈[0,T ]

|vε,z(t, x1, x2)| e
− 1√

2C

√
|x1|2+|x2|2dx1dx2 = 0,

and hence, by the preceding inequality, we also have that

lim
|z|→0

lim sup
ε→0

E
∫ T

0

∣∣∣vε,z(t, xfi (t), xfj (t))vε,z(t, xfk(t), xf` (t))
∣∣∣ dt = 0.

Since the cardinality in the quadruple sum is (at most) N4, this completes the proof. �

Lemma 4.10. For any finite T, d ≥ 1, we have that

lim
|z|→0

lim sup
N→∞

E
∫ T

0
dt

1

N4

 ∑
i 6=j∈N (t)

∣∣∇vε,z(t, xNi (t), xNj (t))
∣∣2

= 0.

Proof : First switch to the free system. The proof is analogous to that of Lemmas 4.9, just using
the estimate (3.19) instead of (3.18), and Lemma 4.3 instead of Lemma 4.2. Just note that when
performing the analogous step to (4.9) to control the negligible terms, by (3.19)

1

N

∣∣∣∇vε,z(t, xfi (t), xfj (t))
∣∣∣ ∣∣∣∇vε,z(t, xfi (t), xf` (t))

∣∣∣ ≤ κ̃(ε)
∣∣∣∇vε,z(t, xfi (t), xfj (t))

∣∣∣
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where now

κ̃(ε) := C

{
ε1−dN−1, d ≥ 2

| log ε|N−1, d = 1
(4.10)

is uniformly bounded by (1.5). �

Remark 4.11. By Lemmas 4.9 and 4.10, the term B2 (3.8) is negligible in the sense of (3.15), after
bounding the test functions and supk∈K ‖σk‖∞ by constants. They also show that B1 (3.7) is
negligible, since

∑
i∈N (t)

 ∑
j∈N (t),j 6=i

∣∣vε,z(t, xNi (t), xNj (t))
∣∣2

≤

 ∑
i 6=j∈N (t)

∣∣vε,z(t, xNi (t), xNj (t))
∣∣2

∑
i∈N (t)

 ∑
j∈N (t),j 6=i

∣∣∇vε,z(t, xNi (t), xNj (t))
∣∣2

≤

 ∑
i 6=j∈N (t)

∣∣∇vε,z(t, xNi (t), xNj (t))
∣∣2

Lemma 4.12. For any finite T, d ≥ 1, we have that

lim
|z|→0

lim sup
N→∞

E
∫ T

0
dt

1

N5

∑
i 6=k∈N (t)

θε(xNi (t)− xNk (t))

 ∑
j∈N (t),j 6=i,k

vε,z(t, xNi (t), xNj (t))

2

= 0.

Proof : By the elementary inequality (
∑L

i=1 ai)
2 ≤ L

∑L
i=1 a

2
i for any L ∈ N, and (3.18), we have

that

1

N5

∑
i 6=k∈N (t)

θε(xNi (t)− xNk (t))

 ∑
j∈N (t),j 6=i,k

vε,z(t, xNi (t), xNj (t))

2

≤ 1

N4

∑
i 6=k∈N (t)

θε(xNi (t)− xNk (t))
∑

j∈N (t),j 6=i,k

∣∣vε,z(t, xNi (t), xNj (t))
∣∣2

≤ κ(ε)

N3

∑
i 6=k∈N (t)

θε(xNi (t)− xNk (t))
∑

j∈N (t),j 6=i,k

∣∣vε,z(t, xNi (t), xNj (t))
∣∣

where κ(ε)→ 0 is as in (4.8). The conclusion then follows from the statement of Lemma 4.5. �

Remark 4.13. By Lemma 4.12, the term B3 (3.9) is negligible in the sense of (3.15). Indeed, there
are five terms inside the square, which we first use the elementary inequality (

∑5
i=1 ai)

2 ≤ 5
∑5

i=1 a
2
i ,

then we handle term by term, of which the first four are of the form in the lemma (after bounding the
test functions by constants), and the last one by Lemma 4.7 together with the fact N−2|vε,z(·)|2 ≤
κ(ε)2.

To conclude, we have thus far shown that Proposition 2.2 holds, by the discussion around (3.15).

5. Relative compactness of the empirical measure

In this section, we show the tightness of the sequence of laws of {µN,m}m≤M taking values in
DT (M+,1)

M .
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5.1. A general compactness criterion. Let M+,1

(
Rd
)
be the set of positive Borel measures on Rd

with mass ≤ 1. Recall that, given R > 0, the set KR ⊂M+,1

(
Rd
)
defined as

KR =
{
µ ∈M+,1

(
Rd
)

:

∫
Rd
|x|µ (dx) ≤ R

}
is relatively compact inM+,1

(
Rd
)
endowed with the topology of weak convergence of measures.

The weak convergence on M+,1

(
Rd
)
can be metrized in the following way. For every compact

set K ⊂ Rd, the space C (K) is separable; let
(
fKn
)
n∈N be a dense sequence in C (K) and define

the function δK :M+,1 (K)2 → [0,∞) as

δK (µ, ν) =
∞∑
n=1

2−n
(∣∣〈µ, fKn 〉− 〈ν, fKn 〉∣∣ ∧ 1

)
.

This is a metric on M+,1 (K) and the metric space (M+,1 (K) , dK) is complete and separable;
convergence in this metric is weak convergence of measures. Taking a sequence of compact sets
Km with ∪mKm = Rd and proceeding in a similar way we may define a metric on M+,1

(
Rd
)
.

Rearranging the double procedure in a single one, we may claim that there exists a sequence
(fn)n∈N, dense in C (K) for every compact set K ⊂ Rd, such that

δ (µ, ν) =
∞∑
n=1

2−n (|〈µ, fn〉 − 〈ν, fn〉| ∧ 1)

is a metric onM+,1

(
Rd
)
and the metric space

(
M+,1

(
Rd
)
, δ
)
is complete and separable; conver-

gence in this metric is weak convergence of measures. Finally, we may take the sequence (fn)n∈N,
in C∞c

(
Rd
)
, by revising the previous construction from the beginning and using the density of

C∞c
(
Rd
)
in Cc

(
Rd
)
.

Given T > 0, consider the space of càdlàg functions

µ· : [0, T ]→M+,1

(
Rd
)

where
(
M+,1

(
Rd
)
, δ
)
is considered as a metric space (hence continuity and limits of t 7→ µt are

understood in this metric). Denote it by D
(
[0, T ] ;M+,1

(
Rd
))

or more shortly as DT (M+,1) and
endow it by the Skorohod topology, not recalled here, but denoted by d below (cf. Ethier and Kurtz
(1986, Ch. 3, Eq. (5.2))).

Criteria of compacteness in (DT (M+,1) , d) are usually expressed by means of a modified modulus
of continuity, to account of jumps. When the jumps are very small (as in our case), the classical
modulus of continuity is sufficient, defined as (µ· ∈ DT (M+,1))

ωγ (µ·) = sup
s,t∈[0,T ]
|t−s|≤γ

δ (µs, µt) .

A sufficient condition for a (deterministic) sequence {µn· } ⊂ DT (M+,1) to be relatively compact
is:

Proposition 5.1. If (i). the family

{µnt ;n ∈ N, t ∈ [0, T ]} ⊂ M+,1

(
Rd
)

is relatively compact (see above a sufficient condition); and (ii).

lim
γ→0

sup
n
ωγ (µn· ) = 0,

then {µn· } is relatively compact in DT (M+,1).
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Let now {µn· } be a family of random elements of DT (M+,1) and let {Pn} be their laws. This
sequence of laws is weakly relatively compact if it is tight, namely if given ε > 0 there exists a
compact set Kε ⊂ DT (M+,1) such that

Pn (Kε) = P (µn· ∈ Kε) ≥ 1− ε.

Proposition 5.1 yields the following practical sufficient condition:

Proposition 5.2. If (i). there exists C1 > 0 such that

E
∫
Rd
|x|µnt (dx) ≤ C1

for all n and t ∈ [0, T ]; (ii). and there exists β > 0 such that, for every φ ∈ C∞c
(
Rd
)
, there exists

Cφ > 0 such that

E [|〈µnt , φ〉 − 〈µns , φ〉|] ≤ Cφ |t− s|
β

for all t, s ∈ [0, T ], then the sequence {Pn} is relatively compact.

5.2. Application to our case. Let {µN,m· }m≤M be the empirical measures defined in (1.9). Let us
check the conditions of Proposition 5.2 above, for each µN,m· , 1 ≤ m ≤ M . Let us start with (ii).
We have, analogously to (2.1), for φ ∈ C∞c

(
Rd
)
, 0 ≤ s < t ≤ T ,〈

φ(x), µN,mt (dx)
〉

=
〈
φ(x), µN,ms (dx)

〉
+

∫ t

s
dr

λ2

2N

∑
i∈N (r)

∆φ(xNi (r))1{mi(r)=m}

+

∫ t

s
dr

1

2N

∑
i∈N (r)

div
(
Q(xNi (r), xNi (r))∇φ(xNi (r))

)
1{mi(r)=m}

+

∫ t

s
dr

1

N2

∑
i 6=j∈N (r)

θε(xNi (r)− xNj (r))
[ mi(r)

mi(r) +mj(r)
φ(xNi (r))1{mi(r)+mj(r)=m}

+
mj(r)

mi(r) +mj(r)
φ(xNj (r))1{mi(r)+mj(r)=m} − φ(xNi (r))1{mi(r)=m} − φ(xNj (r))1{mj(r)=m}

]
+
(
M1,D,φ
t −M1,D,φ

s

)
+
(
M2,D,φ
t −M2,D,φ

s

)
+
(
MJ,φ
t −MJ,φ

s

)
.

Since N(r) ≤ N , we have that

E
∣∣∣〈µN,mt , φ

〉
−
〈
µN,ms , φ

〉∣∣∣ ≤ C(λ) |t− s| ‖φ‖C2 ‖Q‖C1

+ 4‖φ‖∞E
∫ t

s
dr

1

N2

∑
i 6=j∈N (r)

θε(xNi (r)− xNj (r))

+ E
∣∣∣M1,D,φ

t −M1,D,φ
s

∣∣∣+ E
∣∣∣M2,D,φ

t −M2,D,φ
s

∣∣∣+ E
∣∣∣MJ,φ

t −MJ,φ
s

∣∣∣
Similarly to (2.2), (2.4), we have that[

E
∣∣∣M1,D,φ

t −M1,D,φ
s

∣∣∣]2 ≤ E
[∣∣∣M1,D,φ

t −M1,D,φ
s

∣∣∣2] ≤ C(λ)(t− s)N−1‖φ‖2C1

[
E
∣∣∣M2,D,φ

t −M2,D,φ
s

∣∣∣]2 ≤ E
[∣∣∣M2,D,φ

t −M2,D,φ
s

∣∣∣2] ≤ (t− s)
∑
k∈K
‖φ‖2C1‖σk‖2∞
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To deal with

E
∫ t

s
dr

1

N2

∑
i 6=j∈N (r)

θε(xNi (r)− xNj (r)),

we consider each fixed pair (i, j) of particles, and assume they both are active in [s, t]. By Proposition
4.1, (xNi (t), xNj (t)) has a joint density pt(x1, x2) satisfying the bound (4.3) with ` = 2. Thus, we
have

E
∫ t

s
θε(xNi (r)− xNj (r))dr =

∫ t

s
θε(x1 − x2)pr(x1, x2)dx1dx2

≤ C(t− s)
∫∫

R2d

θε(x1 − x2)e−
√
|x1|2+|x2|2/Cdx1dx2 ≤ C ′(t− s).

Finally,[
E
∣∣∣MJ,φ

t −MJ,φ
s

∣∣∣]2 ≤ E
[∣∣∣MJ,φ

t −MJ,φ
s

∣∣∣2] ≤ 16‖φ‖2∞E
∫ t

s
dr

1

N3

∑
i 6=j∈N (r)

θε
(
xNi (r)− xNj (r)

)
≤ C ′(t− s)N−1‖φ‖2∞

by the previous estimate. Summarizing,

E
∣∣∣〈µN,qt , φ

〉
−
〈
µN,qs , φ

〉∣∣∣ ≤ C (φ, {σk}k∈K , λ) |t− s|1/2 .

Concerning (i), for any t ∈ [0, T ],

E
∫
Rd
|x|µN,mt (dx) ≤ 1

N
E
∑
i∈N (t)

|xi (t)| ≤ E |x1 (t)|

by the exchangeability among the particles, and the RHS is finite, by (4.3) with ` = 1.

Remark 5.3. As a consequence of the tightness of
{
µN,mt : t ∈ [0, T ]

}
m≤M , N ∈ N, the sequence of

DT (M+,1)
M × C([0, T ];R)|K|-valued random variables{{

µN,mt : t ∈ [0, T ]
}
m≤M ,

{
W k
t : t ∈ [0, T ]

}
k∈K

}
, N ∈ N

is also tight, as needed in Section 2, where C([0, T ];R) is endowed with the uniform topology. Note
that the Brownian motions are independent of N .

6. Existence and boundedness of limit density

In this section, we show that

Proposition 6.1. Any subsequential limit in law of {µN,mt (dx), t ∈ [0, T ]}m≤M in DT (M+,1)
M

is concentrated on absolutely continuous paths, and its density with respect to Lebesgue measure is
uniformly bounded by the deterministic constant Γ in Condition 1.1.

Denote on (Ω,F ,P) the empirical measure of all active particles (regardless of mass) in the true
system

µNt (dx) :=
M∑
m=1

µN,mt (dx) =
1

N

∑
i∈N (t)

δxNi (t)(dx), t ≥ 0.

Let us recall the auxiliary free system of particles {xfi (t)}∞i=1 introduced in Section 4. For each
N ∈ N, we denote their empirical measure

µN,ft (dx) :=
1

N

N∑
i=1

δ
xfi (t)

(dx), t ≥ 0.
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In addition to (4.2), we also have the following set inclusion holding, P-a.s. for all t ≥ 0{
xNi (t) : i ∈ N (t)

}
⊂
{
xfi (t) : i = 1, ..., N

}
⊂ Rd

and the domination between the empirical measures: P-a.s. for any N,m and t, and Borel set
B ⊂ Rd,

µN,mt (B) ≤ µNt (B) ≤ µN,ft (B). (6.1)

It is also clear that µN,f0 (dx)→
∑M

m=1 rmpm(x)dx (weakly), as N →∞, inM+,1(Rd) in probability.

We now argue that in order to show Proposition 6.1, it is sufficient to prove that

Proposition 6.2. For every finite T , the sequence of empirical measures of the auxiliary free system,
{µN,ft (dx) : t ∈ [0, T ]}, converges in law as N → ∞ to a limit {µft (dx) : t ∈ [0, T ]}, in the space
C([0, T ];M+,1(Rd)). The latter random measure is absolutely continuous with respect to Lebesgue
measure, with a density uf (t, x) uniformly bounded by the deterministic constant Γ.

We know by Section 5 that the sequence of laws {L N}N of
{
{µN,m}m≤M , µN,f

}
taking values in

DT (M+,1)
M+1 form a tight sequence hence is weakly relatively compact. Fix any weak subsequential

limit L of L Nj . By Skorohod’s representation theorem, on an auxiliary probability space (Ω̂, F̂ ,P),
there exist random variables

{
{µ̂Nj ,m}m≤M , µ̂Nj ,f

}
, j ≥ 1 and

{
{µm}m≤M , µf

}
, having the laws

L Nj , j ≥ 1, L , respectively, such that P-a.s.{
{µNj ,m}m≤M , µNj ,f

}
→
{
{µm}m≤M , µf

}
, j →∞.

In particular, µf satisfies the properties in Proposition 6.2.
By (6.1) and the representation, on (Ω̂, F̂ ,P) we have P-a.s. for every t,m and φ ∈ C∞c (Rd)

with φ ≥ 0, 〈
µ̂
Nj ,f
t (dx)− µ̂Nj ,mt (dx), φ

〉
≥ 0.

As j →∞, the above nonnegative sequence converges P-a.s. to〈
µft (dx)− µmt (dx), φ

〉
≥ 0.

This implies that P-a.s. for every open set A ⊂ Rd, t ∈ [0, T ] and m ≤M ,

µmt (A) ≤ µft (A) =

∫
A
uf (t, x)dx.

Recall that any Borel probability measure on a Polish space is regular; namely the measure of a
Borel set is the infimum of the measures of open sets larger than the given Borel set. Fix any Borel
set B ⊂ Rd with null Lebesgue measure, and any open set A ⊃ B. By absolute continuity of µft
with respect to Lebesgue, we have that µft (B) = 0, and further

0 ≤ µmt (B) ≤ µmt (A) ≤ µft (A), ∀t ∈ [0, T ]. (6.2)

Taking infimum over all open sets A ⊃ B in (6.2), we have that

0 ≤ µmt (B) ≤ inf
open A⊃B

µft (A) = µft (B) = 0, ∀t ∈ [0, T ].

That is, {µmt (dx)}m≤M is also absolutely continuous with respect to Lebesgue measure, P-a.s. Let
us denote its density by {um(t, x)}m≤M , then we have that∫

B

[
uf (t, x)− um(t, x)

]
dx ≥ 0

for every Borel set B ⊂ Rd, which implies uf (t, x) − um(t, x) ≥ 0, Lebesgue-a.e., whereby
‖um(t, ·)‖∞ ≤ Γ, P-a.s.
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Thus we are left to show Proposition 6.2. As a preliminary, note that we can repeat our derivation
in Section 2 for the empirical measure µN,f of the free system, and due to its linearity (there
are no coagulation terms), it is easy to show that under the Skorohod representation, any of its
subsequential limit µf must be a measure-valued solution of the following SPDE (formally written)∂µt(x) = λ2

2 ∆µt(x)dt−
∑

k∈K σk(x) · ∇µt(x) ◦ dW k
t , (t, x) ∈ [0, T ]× Rd,

µ0(x) =
∑M

m=1 rmpm(x)dx.

(see in particular (2.7), (2.8), (2.9)). Proposition 6.2 is proved in Appendix B.

Appendix A. Pathwise uniqueness of the SPDE (1.10) and regularity of its solutions

Consider the system

dum (t, x) = (Lum (t, x) + Fm (u (t, x))) dt−
∑
k∈K

σk · ∇um (t, x) dW k
t

m = 1, ...,M, u = (u1, ..., uM )

where

Fm (u (t, x)) =

m−1∑
n=1

un (t, x)um−n (t, x)− 2um (t, x)

M∑
n=1

un (t, x)

Lum =
λ2

2
∆um +

1

2
div (Q (x, x)∇um) (A.1)

Q (x, y) =
∑
k∈K

σk (x)⊗ σk (y)

with initial condition (r1p1, ..., rMpM ), where
∑M

m=1 rm = 1, satisfying

0 ≤ pm ≤ C,
∫
pm (x) dx ≤ 1

for every m = 1, ...,M . Notice that, also∫
p2m (x) dx ≤ C

∫
pm (x) dx ≤ C,

property often used below also for um (t, x).
In the equations above (A.1), L is the resulting elliptic operator after the reformulation of

Stratonovich in Itô form. Assume σk ∈ C∞b (Rd;Rd), div σk = 0.

Definition A.1. Given a filtered probability space (Ω,F , {Gt}t≥0,P) and Brownian motions
{W k

t }k∈K , by very weak solution we mean a progressively measurable process u (t, x) such that,
for some constant U > 0,

P (0 ≤ um (t, x) ≤ U for all (t, x)) = 1 for all m = 1, ...,M

P
(∫

um (t, x) dx ≤ 1 for all t
)

= 1 for all m = 1, ...,M

〈um (t) , φ〉 = 〈rmpm, φ〉+

∫ t

0
〈um (s) ,L∗φ〉 ds+

∫ t

0
〈Fm (u (s)) , φ〉 ds

+
∑
k∈K

∫ t

0
〈um (s) , σk · ∇φ〉 dW k

s
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for all φ ∈ C∞c , P-a.s. If in addition they satisfy

max
m=1,...,M

E
∫ T

0

∫
|∇um (t, x)|2 dxdt <∞

then they are called weak solutions.

As already remarked for pm, from the assumptions it follows that
∫
u2m (t, x) dx ≤ U a.s., for

every m = 1, ...,M .

Lemma A.2. Very weak solutions are also weak solutions.

Corollary A.3. Weak solutions are pathwise unique.

Proposition A.4. Let n > d/4 be an integer and let (um)m=1,...,M be the unique solution given by
Corollary A.3. If the initial conditions um (0) belong toW 2n,2

(
Rd
)
, m = 1, ...,M , then (um)m=1,...,M

has the following regularity:

E

[
sup
t∈[0,T ]

‖um (t, ·)‖2W 2n,2

]
+ E

∫ T

0
‖um (t, ·)‖2W 2n+1,2 dt <∞

for every m = 1, ...,M . In particular, if um (0) ∈ C∞
(
Rd
)
, m = 1, ...,M , with square integrable

derivatives of all orders, then P-a.s. one has um (t) ∈ C∞
(
Rd
)
for all t ∈ [0, T ] and m = 1, ...,M .

The proof of Proposition A.4 is postponed to Appendix B, since it shares some technical ingre-
dients with the proofs presented there.

A.1. Proof of Lemma A.2.

A.1.1. Preparation. One can prove (cf. Flandoli (1995), Flandoli (2022+)) that there exists η < 1
such that ∑

k∈K
‖σk · ∇f‖2L2 ≤ −2η 〈Lf, f〉

for all f ∈ C∞c . We want to exploit this property by means of an energy inequality. For this
purpose we need to apply Itô formula but um does not have the necessary regularity, in particular
the term 〈Lum (t) , um (t)〉 is not well defined (in a sense its good definition is our thesis). Thus we
take a smooth symmetric density ρ, with compact support in the unitary ball B (0, 1), we define
ρε (x) = ε−dρ

(
ε−1x

)
and set

uεm (t, x) = (ρε ∗ um (t)) (x) =

∫
ρε (x− y)um (t, y) dy.

The process uεm (t, x) is smooth in x; since
∫
u2m (t, x) dx ≤ U a.s., from the smoothness and compact

support of ρ plus Young’s inequality for convolutions, it follows in particular uεm (t) ∈W 2,2 a.s. (but
the W 2,2-norm depends on ε), hence the term 〈Luεm (t) , uεm (t)〉 is well defined.

From the weak formulation, using a test function of the form ρε ∗ φ and the arbitrariety of φ, we
easily get

uεm (t) = uεm (0) +

∫ t

0
(Luεm (s) + ρε ∗ Fm (u (s))) ds

+
∑
k∈K

∫ t

0
ρε ∗ (σk · ∇um (s)) dW k

s
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where all processes can be interpreted, for instance, as L2-valued processes and where the term
ρε ∗ (σk · ∇um (t)) is a short notation for

[ρε ∗ (σk · ∇um (t))] (x) :=

∫
∇xρε (x− y) · σk (y)um (t, y) dy.

Now uεm (t) is regular enough to apply Itô formula (cf. Krylov and Rozovskĭı (1979), Pardoux (1975),
Prévôt and Röckner (2007)):

d ‖uεm (t)‖2L2 = 2 〈Luεm (t) , uεm (t)〉 dt+ 2 〈ρε ∗ Fm (u (t)) , uεm (t)〉 dt

+ 2
∑
k∈K
〈ρε ∗ (σk · ∇um (t)) , uεm (t)〉 dW k

t +
∑
k∈K
‖ρε ∗ (σk · ∇um (t))‖2L2 dt.

Then we introduce the commutators. Let us write

ρε ∗ (σk · ∇um (t)) = σk · ∇uεm (t) +Rεm,k (t)

where Rεm,k (t) is defined by the identity. We have

d ‖uεm (t)‖2L2 = 2 〈Luεm (t) , uεm (t)〉 dt+ 2 〈ρε ∗ Fm (u (t)) , uεm (t)〉 dt

+ 2
∑
k∈K

〈
Rεm,k (t) , uεm (t)

〉
dW k

t +
∑
k∈K

∥∥σk · ∇uεm (t) +Rεm,k (t)
∥∥2
L2 dt

where we have used the fact that, being div σk = 0,

〈σk · ∇uεm (t) , uεm (t)〉 = 0.

For every δ > 0 we have 2ab ≤ δa2 + δ−1b2, hence∑
k∈K

∥∥σk · ∇uεm (t) +Rεm,k (t)
∥∥2
L2 ≤ (1 + δ)

∑
k∈K
‖σk · ∇uεm (t)‖2L2

+
(
1 + δ−1

)∑
k∈K

∥∥Rεm,k (t)
∥∥2
L2

≤ − (1 + δ) 2η 〈Luεm (t) , uεm (t)〉+
(
1 + δ−1

)∑
k∈K

∥∥Rεm,k (t)
∥∥2
L2 .

Choose δ > 0 such that (1 + δ) 2η = 2− ζ for some ζ > 0. We get

d ‖uεm (t)‖2L2 ≤ ζ 〈Luεm (t) , uεm (t)〉 dt+ 2 〈ρε ∗ Fm (u (t)) , uεm (t)〉 dt

+ 2
∑
k∈K

〈
Rεm,k (t) , uεm (t)

〉
dW k

t +
(
1 + δ−1

)∑
k∈K

∥∥Rεm,k (t)
∥∥2
L2 dt.

One has
2 〈ρε ∗ Fm (u (t)) , uεm (t)〉 ≤ ‖ρε ∗ Fm (u (t))‖2L2 + ‖uεm (t)‖2L2

and

‖ρε ∗ Fm (u (t))‖2L2 ≤ ‖Fm (u (t))‖2L2 ≤ ‖Fm (u (t))‖∞ ‖Fm (u (t))‖L1

≤ C ‖Fm (u (t))‖L1

for some deterministic constant C, since 0 ≤ um (t, x) ≤ U a.s. for every m; moreover each term of
Fm (u (t)) has L1-norm bounded by U : indeed a.s.∫

uk (t, x)uh (t, x) dx ≤ U.

We have found

d ‖uεm (t)‖2L2 + ζ

∫
|∇uεm (t, x)|2 dxdt
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≤ Cdt+ ‖uεm (t)‖2L2 dt+ 2
∑
k∈K

〈
Rεm,k (t) , uεm (t)

〉
dW k

t +
(
1 + δ−1

)∑
k∈K

∥∥Rεm,k (t)
∥∥2
L2 dt.

for some constant C > 0.

A.1.2. Commutator estimate. Let us prove:

Lemma A.5. ∑
k∈K

∥∥Rεm,k (t)
∥∥2
L2 ≤ CQ

∫
|um (t, x)|2 dx.

for a suitable constant CQ > 0.

Proof : Collecting the definitions, we have

Rεm,k (t) =

∫
∇xρε (x− y) · σk (y)um (t, y) dy − σk (x) · ∇

∫
ρε (x− y)um (t, y) dy

=

∫
∇xρε (x− y) · (σk (y)− σk (x))um (t, y) dy.

One has ∑
k∈K

∥∥Rεm,k (t)
∥∥2
L2 =

∑
k∈K

∫∫∫
∇xρε (x− y) · (σk (y)− σk (x))um (t, y)

· ∇xρε
(
x− y′

)
·
(
σk
(
y′
)
− σk (x)

)
um
(
t, y′

)
dydy′dx

≤ U2

∫∫∫ ∥∥∥∥∥∑
k∈K

(σk (y)− σk (x))⊗
(
σk
(
y′
)
− σk (x)

)∥∥∥∥∥
· |∇xρε (x− y)|

∣∣∇xρε (x− y′)∣∣ |um (t, y)|
∣∣um (t, y′)∣∣ dydy′dx

where ‖·‖ here denotes the Euclidean matrix norm. We show below that∥∥∥∥∥∑
k∈K

(σk (y)− σk (x))⊗
(
σk
(
y′
)
− σk (x)

)∥∥∥∥∥ ≤ CQ |x− y| ∣∣x− y′∣∣ (A.2)

for some constant CQ. Recall the support property of ρ; it implies that ρε has support in the ball
B (0, ε), hence the previous expression is bounded by

≤ CQε−2
∫
dx

∫
B(x,ε)

dy

∫
B(x,ε)

dy′ε−2d
∣∣∣∣(∇ρ)

(
x− y
ε

)∣∣∣∣ ∣∣∣∣(∇ρ)

(
x− y′

ε

)∣∣∣∣
· |x− y|

∣∣x− y′∣∣ |um (t, y)|
∣∣um (t, y′)∣∣

≤ CQ
∫∫∫

dxdydy′ε−2d
∣∣∣∣(∇ρ)

(
x− y
ε

)∣∣∣∣ ∣∣∣∣(∇ρ)

(
x− y′

ε

)∣∣∣∣ |um (t, y)|
∣∣um (t, y′)∣∣

= CQ

∫ (∫
ε−d

∣∣∣∣(∇ρ)

(
x− y
ε

)∣∣∣∣ |um (t, y)| dy
)2

dx.

By Young’s inequality for convolutions, this is bounded by

≤ CQ
∫
|um (t, x)|2 dx.

It remains to prove (A.2). It is equivalent to∥∥Q (y, y′)−Q (y, x)−Q
(
x, y′

)
+Q (x, x)

∥∥ ≤ CQ |x− y| ∣∣x− y′∣∣ .
It is sufficient to prove a similar estimate componentwise, for the matrix-value function Q. Now

Qij
(
y, y′

)
−Qij (y, x)
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=

∫ 1

0
∇2Qij

(
y, α

(
y − y′

)
+ (1− α) (y − x)

)
dα ·

(
x− y′

)
Qij

(
x, y′

)
−Qij (x, x) =

∫ 1

0
∇2Qij

(
x, α

(
x− y′

))
dα ·

(
x− y′

)
∂hQij

(
y, α

(
y − y′

)
+ (1− α) (y − x)

)
− ∂hQij

(
x, α

(
x− y′

))
=

∫ 1

0
∇2∂hQij

(
y, β

(
α
(
y − y′

)
+ (1− α) (y − x)

)
+ (1− β)

(
α
(
x− y′

)))
dβ · (y − x)

+

∫ 1

0
∇1∂hQij(βy + (1− β)x, α(x− y′))dβ · (y − x).

Collecting these identities, we get the required bound. �

A.1.3. Conclusion. From Lemma A.5 and the a priori bounds on um we get∑
k∈K

∥∥Rεm,k (t)
∥∥2
L2 ≤ CQU

∫
|um (t, x)| dx ≤ CQU.

Hence

d ‖uεm (t)‖2L2 + ζ

∫
|∇uεm (t, x)|2 dxdt ≤ C ′dt+ 2

∑
k∈K

〈
Rεm,k (t) , uεm (t)

〉
dW k

t

for a new constant C ′ > 0. It follows

ζE
∫ T

0

∫
|∇uεm (t, x)|2 dxdt ≤ C ′T + 2

(∑
k∈K

E
∫ T

0

〈
Rεm,k (t) , uεm (t)

〉2
dt

)1/2

≤ C ′T + 2

(∑
k∈K

E
∫ T

0

∥∥Rεm,k (t)
∥∥2
L2 ‖uεm (t)‖2L2 dt

)1/2

.

As above, ‖uεm (t)‖2L2 ≤ U , and
∑

k∈K

∥∥∥Rεm,k (t)
∥∥∥2
L2
≤ CQU , hence

ζE
∫ T

0

∫
|∇uεm (t, x)|2 dxdt ≤ C ′T + 2C

1/2
Q UT 1/2.

The proof of the lemma is complete.

A.2. Proof of Corollary A.3. Let u = (u1, ..., uM ), u′ = (u′1, ..., u
′
M ) be two weak solutions. Set

v (t) = u (t)− u′ (t), vm (t) = um (t)− u′m (t). The regularity of v is sufficient to apply Itô formula
(cf. Krylov and Rozovskĭı (1979), Pardoux (1975), Prévôt and Röckner (2007)):

d ‖vm (t)‖2L2 = 2 〈Lvm (t) , vm (t)〉 dt+ 2
〈
Fm (u (t))− Fm

(
u′ (t)

)
, vm (t)

〉
dt

+ 2
∑
k∈K
〈σk · ∇vm (t) , vm (t)〉 dW k

t +
∑
k∈K
‖σk · ∇vm (t)‖2L2 dt.

Since 〈σk · ∇vm (t) , vm (t)〉 = 0 and
∑
k∈K
‖σk · ∇vm (t)‖2L2 is bounded above by −2 〈Lvm (t) , vm (t)〉,

we get
d ‖vm (t)‖2L2 ≤ 2

〈
Fm (u (t))− Fm

(
u′ (t)

)
, vm (t)

〉
dt.

Now

Fm (u)− Fm
(
u′
)

=
m−1∑
n=1

(
unum−n − u′nu′m−n

)
− 2

(
um

M∑
n=1

un − u′m
M∑
n=1

u′n

)
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and each term of the form uhuk − u′hu′k can be estimated as∣∣uhuk − u′hu′k∣∣ ≤ ∣∣uhuk − uhu′k∣∣+
∣∣uhu′k − u′hu′k∣∣

≤ U |vk|+ U |vh|

hence ∣∣Fm (u)− Fm
(
u′
)∣∣ ≤ C M∑

n=1

|vn|

where C depends on U and M . It follows

d

dt
‖vm (t)‖2L2 ≤ 2C

M∑
n=1

∫
|vn (t, x)| |vm (t, x)| dx

≤ 2C
M∑
n=1

‖vn (t)‖2L2 + 2CM ‖vm (t)‖2L2 .

Summing over m and applying Gronwall lemma, we deduce ‖vm (t)‖2L2 = 0 for every m and t, which
is pathwise uniqueness.

Appendix B. The SPDE of the free system

B.1. Existence, uniqueness and regularity results. Arguing in the "free" case as in the more difficult
case with interaction, we can prove that the family of laws QN of the empirical measures are tight
and that every limit point may be seen, on a suitable probability space, as a random time-dependent
probability measure µt (in the case with interaction there were only finite measures, but here the
empirical measures have mass equal to one), adapted to the noise W , satisfying∫

φ (t, x)µt (dx) =

∫
φ (0, x)u0 (x) dx+

∑
k∈K

∫ t

0

(∫
∇φ (s, x) · σk (x)µs (dx)

)
dW k

s

+

∫ t

0

1

2

∑
ij

(∫
∂i∂jφ (s, x)

(
λ2δij +Qij (x, x)

)
µs (dx)

)
ds

+

∫ t

0

∫
∂sφ (s, x)µs (dx) ds (B.1)

for every φ ∈ C1,2
c

(
[0, T ]× Rd

)
.

The first result we want to prove is the uniqueness of measure-valued solutions to this equation.
Although potentially several techniques may be used, we present here one based on SPDE theory
in negative order Sobolev spaces, which may be of interest on its own. The approach presented
here is inspired by Flandoli (1995). For the sake of simplicity we develop the theory in the Hilbert
scale Wα,2

(
Rd
)
but, following Krylov (1999) and Agresti and Veraar (2021), one can work in a

Banach scale Wα,p
(
Rd
)
with p > 2 which has the advantage to reduce the necessary degree of

differentiability to have the Sobolev embedding Wα,p
(
Rd
)
⊂ Cb

(
Rd
)
(see below) and thus allows

one to ask less differentiability of the coefficients σk; since an optimal result is still not clear, we do
not stress this level of generality in this work.

In dimension d one has the Sobolev embedding W
d
2
+δ,2

(
Rd
)
⊂ Cb

(
Rd
)
for every δ > 0; for

simplicity of exposition we take δ = 1
2 . Therefore the set of probability measures Pr

(
Rd
)
is contained

in the dual of W
d+1
2
,2
(
Rd
)
, the negative order Sobolev space W−

d+1
2
,2
(
Rd
)
:

Pr
(
Rd
)
⊂W−

d+1
2
,2
(
Rd
)
.
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The set-theoretical inclusion is a continuous embedding of metric spaces when Pr
(
Rd
)
is endowed

of the distance
d (µ, ν) = sup

‖φ‖∞≤1
|〈µ, φ〉 − 〈ν, φ〉|

where 〈µ, φ〉 denotes, as usual,
∫
Rd φ (x)µ (dx). Moreover, up to a constant C > 0, one has

‖µ‖
W−

d+1
2 ,2
≤ C

for all µ ∈ Pr
(
Rd
)
.

A measure-valued solution in the sense above is also a weak solution of class W−
d+1
2
,2. Choosing

φ (t, x) related to etL∗ψ, with suitable choice of times, one can rewrite the previous identity as

〈ψ, µt〉 =
〈
etL
∗
ψ, µ0

〉
−
∑
k∈K

∫ t

0

〈
σk · ∇e(t−s)L

∗
ψ, µs

〉
dW k

s

for every ψ ∈ C∞c
(
Rd
)
, where we write etL∗ so that the duality structure is more clear, but it is

equal to etL, L as in (A.1). We only remark that, thanks to the C∞b regularity of σk, the semigroup
etL maps W k,2

(
Rd
)
in itself for every k, so that σk · ∇e(t−s)L

∗
ψ is of class W

d+1
2
,2 and thus the

duality is well defined under the stochastic integral (similarly for the initial condition term).
We want to move a step further, namely interpret the previous identity as an equation of the

form

µt = etLµ0 +
∑
k∈K

∫ t

0
e(t−s)Lσk · ∇µsdW k

s (B.2)

in a suitable Hilbert space. For technical reasons which will be clear below, given d, we choose the
minimal positive integer N such that 2N + 1 ≥ d+1

2 . Then we consider progressively measurable
processes µt in W−2N,2

(
Rd
)
with the following regularity:

sup
t∈[0,T ]

E
[
‖µt‖2W−2N,2

]
+ E

∫ T

0
‖µt‖2W−2N+1,2 dt <∞. (B.3)

Probability measure solutions of the equation above belong to this space. Under these condition,
E
∫ T
0 ‖∇µt‖

2
W−2N,2 dt < ∞ (∇ interpreted in the sense of distributions), the multiplication with

σk ∈ C∞b
(
Rd
)
remains of the same class; and the operators e(t−s)L are equibounded (on finite

time intervals) in W−2N,2
(
Rd
)
by duality, hence

∫ t
0 e

(t−s)Lσk · ∇µsdW k
s is a stochastic process in

W−2N,2
(
Rd
)
. We interpret (B.2) thus as an identity in W−2N,2

(
Rd
)
, for solution of class (B.3).

Call aij (x) := 1
2

(
λ2 +Qij (x, x)

)
. It is easy to check (Flandoli (2022+)) that there exists η0 ∈

(0, 1) such that
1

2

∑
k∈K

(σk (x) · ξ)2 ≤ η0
∑
i,j

aij (x) ξiξj

for all ξ ∈ Rd. This implies ∑
k∈K
‖σk · ∇g‖2L2 ≤ −2η0 〈Lg, g〉

and thus ∑
k∈K

∫ T

s

∥∥∥σk · ∇e(t−s)Lf∥∥∥2
L2
dt ≤ η0 ‖f‖2L2 (B.4)

for all f ∈ L2
(
Rd
)
because∑

k∈K

∫ T

s

∥∥∥σk · ∇e(t−s)Lf∥∥∥2
L2
dt ≤ −2η0

∫ T

s

〈
Le(t−s)Lf, e(t−s)Lf

〉
dt
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= −η0
∫ T

s

d

dt

∥∥∥e(t−s)Lf∥∥∥2
L2
dt ≤ η0 ‖f‖2L2 .

For every n ∈ Z, let us endow W 2n,2
(
Rd
)
by the norm

‖f‖W 2n,2 := ‖(1− L)n f‖L2 .

Lemma B.1. Let η ∈ (η0, 1) be given. For every integer number n ∈ Z there exists a constant
Cn,K > 0 such that∑

k∈K

∫ T

s

∥∥∥σk · ∇e(t−s)Lf∥∥∥2
W 2n,2

dt ≤ (η + Cn,K (T − s)) ‖f‖2W 2n,2

for all f ∈W 2n,2
(
Rd
)
.

Proof : The case n = 0 is already proved above. We give the proof for n = 1 and n = −1, the
general case being similar.

For every k ∈ K there is a second order differential operator D(2)
k , with coefficients of class

C∞b
(
Rd
)
, such that

σk · ∇ (1− L) f = (1− L)σk · ∇f +D
(2)
k f (B.5)

for all f ∈ C∞c
(
Rd
)
. Indeed, the terms with third order derivatives in σk ·∇ (1− L) f and (1− L)σk ·

∇f coincide. Therefore (case n = 1)∑
k∈K

∫ T

s

∥∥∥σk · ∇e(t−s)Lf∥∥∥2
W 2,2

dt =
∑
k∈K

∫ T

s

∥∥∥(1− L)σk · ∇e(t−s)Lf
∥∥∥2
L2
dt

=
∑
k∈K

∫ T

s

∥∥∥[σk · ∇ (1− L)−D(2)
k

]
e(t−s)Lf

∥∥∥2
L2
dt.

For ε > 0 we use the inequality (a+ b)2 ≤ (1 + ε) a2 +
(
1 + 1

ε

)
b2 to get

≤ (1 + ε)
∑
k∈K

∫ T

s

∥∥∥σk · ∇e(t−s)L (1− L) f
∥∥∥2
L2
dt+

(
1 +

1

ε

)∑
k∈K

∫ T

s

∥∥∥D(2)
k e(t−s)Lf

∥∥∥2
L2
dt.

The first term is handled by (B.4), the second one by a trivial bound, to get

≤ (1 + ε) η0 ‖(1− L) f‖2L2 + Cε,K (T − s) ‖f‖2W 2,2 .

If ε satisfies (1 + ε) η0 = η, this is the required bound.
For n = −1, we have to prove∑

k∈K

∫ T

s

∥∥∥(1− L)−1 σk · ∇e(t−s)Lf
∥∥∥2
L2
dt ≤ (η + C−1,K (T − s))

∥∥∥(1− L)−1 f
∥∥∥2
L2
.

We set g = (1− L)−1 f ∈ L2
(
Rd
)
, so that we have to prove∑

k∈K

∫ T

s

∥∥∥(1− L)−1 σk · ∇ (1− L) e(t−s)Lg
∥∥∥2
L2
dt ≤ (η + C−1,K (T − s)) ‖g‖2L2 .

By (B.5), the left-hand-side is bounded by

≤ (1 + ε)
∑
k∈K

∫ T

s

∥∥∥σk · ∇e(t−s)Lg∥∥∥2
L2
dt+

(
1 +

1

ε

)∑
k∈K

∫ T

s

∥∥∥(1− L)−1D
(2)
k e(t−s)Lg

∥∥∥2
L2
dt

and the claimed result is proved as above. �

Proposition B.2. Equation (B.2) has a unique solution in the class (B.3). In particular, the
equation for probability measures (B.1) has a unique solution.
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Proof : Let µ(i)t , i = 1, 2 be two solutions and µt = µ
(1)
t − µ

(2)
t . Then

µt =
∑
k∈K

∫ t

0
e(t−s)Lσk · ∇µsdW k

s .

We introduce the auxiliary processes in W−2N,2
(
Rd
)

vk (t) = σk · ∇µt
and their equations

vk (t) =
∑
h∈K

∫ t

0
σk · ∇e(t−s)Lvh (s) dW h

s .

We have ∑
k∈K

E
∫ T

0
‖vk (t)‖2W−2N,2 dt =

∑
h∈K

E
∫ T

0

∑
k∈K

∫ T

s

∥∥∥σk · ∇e(t−s)Lvh (s)
∥∥∥2
W−2N,2

dtds

and thus, using Lemma B.1,

≤ (η + CKT )
∑
h∈K

∫ T

0
E
[
‖vh (s)‖2W−2N,2

]
ds.

This implies vk = 0 for all k if T is small enough, hence µt = 0 since

µt =
∑
k∈K

∫ t

0
e(t−s)Lvk (s) dW k

s .

The argument can be repeated on intervals of constant length, proving uniqueness. �

We have proved pathwise uniqueness for equation (B.1). This implies convergence in probability
of the empirical measures, by an argument of Gyöngy and Krylov (1996) that we omit.

Now we prove the regularity of µt. Consider the equation (for functions, now)

du (t, x) =
1

2

(
λ2∆ + div (Q (x, x)∇)

)
u (t, x) dt+

∑
k∈K

σk (x) · ∇u (t, x) dW k
t

u|t=0 = u0

interpreted in the mild form

u (t) = etLu0 +
∑
k∈K

∫ t

0
e(t−s)Lσk · ∇u (s) dW k

s . (B.6)

Definition B.3. Given u0 ∈W 2n,2
(
Rd
)
, we say that u is a mild solution inW 2n,2

(
Rd
)
of equation

(B.6) if it is progressively measurable in W 2n,2
(
Rd
)
, satisfies

sup
t∈[0,T ]

E
[
‖u (t, ·)‖2W 2n,2

]
+ E

∫ T

0
‖u (t, ·)‖2W 2n+1,2 dt <∞

and identity (B.6) holds true.

Proposition B.4. Given u0 ∈ W 2n,2
(
Rd
)
, there exists a unique mild solution in W 2n,2

(
Rd
)
of

equation (B.6).

Proof : As above for the uniqueness proof, we consider the auxiliary equations

vk (t) = σk · ∇etLu0 +
∑
h∈K

∫ t

0
σk · ∇e(t−s)Lvh (s) dW h

s
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and progressively measurable solutions v = (vk)k∈K such that

‖v‖22 :=
∑
k∈K

E
∫ T

0
‖vk (t)‖2W 2n,2 dt

is finite. Given u0 ∈W 2n,2
(
Rd
)
, the terms σk ·∇etLu0 form a vector with this property, by Lemma

B.1. Then we apply the contraction mapping principle to the equation for v with the norm ‖v‖2
above. Being linear, the key estimate is∑

k∈K
E
∫ T

0

∥∥∥∥∥∑
h∈K

∫ t

0
σk · ∇e(t−s)Lvh (s) dW h

s

∥∥∥∥∥
2

W 2n,2

ds

=
∑
h∈K

E
∫ T

0

∑
k∈K

∫ T

s

∥∥∥σk · ∇e(t−s)Lvh (s)
∥∥∥2
W 2n,2

dtds

≤ (η + CKT )
∑
h∈K

∫ T

0
E
[
‖vh (s)‖2W 2n,2

]
ds

which, for T small enough, allows one to apply the contraction principle. The argument can be
repeated on intervals of constant length, proving existence and uniqueness. �

Collecting the previous results we have:

Theorem B.5. Given u0 ∈W 2n,2
(
Rd
)
for some n ≥ 1, u0 non negative with

∫
u0 (x) dx = 1, define

µ0 (dx) = u0 (x) dx. Then equation (B.1) has a unique solution µt (dx) according to Proposition B.2.
It has a density u (t, x),

µt (dx) = u (t, x) dx

which is a mild solution in W 2n,2
(
Rd
)
of equation (B.6). In particular, if n > d/4, then ‖u (t, ·)‖∞

is finite a.s.

Proof : The function u0 ∈ W 2n,2
(
Rd
)
is also of class u0 ∈ W−2N,2

(
Rd
)
, and the corresponding

mild solution u of class W 2n,2
(
Rd
)
is also a distributional solution in the sense of Proposition

B.2, hence it is the unique solution of that negative order Sobolev class. A probability-measure
solution µt (dx) exists as a subsequential limit of the empirical measures, with initial condition
µ0 (dx) = u0 (x) dx, hence by the uniqueness statement of Proposition B.2, it coincides with u, in
the sense of distributions, which implies µt (dx) = u (t, x) dx. �

The previous argument proves only that ‖u (t, ·)‖∞ is finite. In the next section we prove that it
is uniformly bounded by a deterministic constant.

B.2. Uniform upper bound.

Lemma B.6. Let u0 ∈W 2n,2
(
Rd
)
with n > d/4 and let C0 > 0 be a constant such that

‖u0‖∞ ≤ C0.

Then
‖u (t, ·)‖∞ ≤ C0

a.s. in all parameters.

Proof : Let us prove only that
u (t, x) ≤ C0.

The proof that u (t, x) ≥ −C0 is similar. The first remark is that the process identically equal to
C0 is a solution, in the sense that it satisfies the weak formulation, with initial condition C0. By
linearity, the process

v (t, x) := u (t, x)− C0
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also satisfies the weak formulation, with initial condition

v0 (x) := u0 (x)− C0 ≤ 0.

Our thesis is that also
v (t, x) ≤ 0.

Given δ > 0, let βδ : R → [0,∞) be a C2-convex function such that βδ (r) = 0 for r < 0,
βδ (r) = r − δ for r > 2δ. The family βδ converges uniformly to the function β (r) = r1[0,∞) (r).
From Itô formula

dβδ (v (t, x)) = β′δ (v (t, x)) dv (t, x) +
1

2
β′′δ (v (t, x)) d [v (·, x)]t .

From a number of intermediate computations that we omit (better understood formally at the level
of Stratonovich calculus), we get

dβδ (v (t, x)) =
λ2

2
β′δ (v (t, x)) ∆v (t, x) dt+

∑
k∈K

σk · ∇βδ (v (t, x)) dW k
t

+
1

2
div (Q (x, x)∇βδ (v (t, x))) dt

interpreted of course in integral

βδ (v (t, x)) =

∫ t

0

λ2

2
β′δ (v (s, x)) ∆v (s, x) ds

+
∑
k∈K

∫ t

0
σk (x) · ∇βδ (v (s, x)) dW k

s

+
1

2

∫ t

0
div (Q (x, x)∇βδ (v (s, x))) ds

(but pointwise in x, thanks to the regularity of v). We have neglected the term βδ (v0 (x)) because it
is zero, by definition of the objects. Now we want to integrate in x this identity. The first and second
derivatives of v, being equal to those of u, are integrable; hence all terms on the right-hand-side
are integrable. The function v itself could not be integrable, becuase the constant C0 is not, hence
βδ (v (t, x)) a priori is not integrable. However, it is integrable as a consequence of the identity. We
have also used stochastic Fubini theorem to deal with the stochastic term.

Taking into account that ∫
Rd
σk (x) · ∇βδ (v (s, x)) dx = 0

because div σk = 0 and ∫
Rd

div (Q (x, x)∇βδ (v (s, x))) dx = 0

(in both cases we use Gauss-Green formula), we get∫
Rd
βδ (v (t, x)) dx =

λ2

2

∫ t

0

∫
Rd
β′δ (v (s, x)) ∆v (s, x) dxds.

But ∫
Rd
β′δ (v (s, x)) ∆v (s, x) dx = −

∫
Rd
β′′δ (v (s, x)) |∇v (s, x)|2 dx ≤ 0

because, by convexity, β′′δ (r) ≥ 0. Therefore∫
Rd
βδ (v (t, x)) dx ≤ 0.
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Since the function βδ is non-negative, we deduce

βδ (v (t, x)) = 0

a.s. and thus, taking the limit as δ → 0, v (t, x) ≤ 0 a.s., completing the proof. �

B.3. Proof of Proposition A.4. The proof consists in two main steps plus a few remarks. First we
show that a modified version of the system for (um)m=1,...,M has a global solution in the regularity
class specified by Proposition A.4; this is Step 1 below. Then, in Step 2, we connect this regular
solution with the one provided by Corollary A.3: we show they are the same, hence the solution of
Corollary A.3 has the regularity stated by Proposition A.4.
Step 1. Consider the auxiliary system

um (t) = etLum (0) +

∫ t

0
e(t−s)LF̃m (u (s)) ds+

∑
k∈K

∫ t

0
e(t−s)Lvm,k (s) dW k

s

vm,k (t) = σk · ∇etLum (0) +

∫ t

0
σk · ∇e(t−s)LF̃m (u (s)) ds+

∑
h∈K

∫ t

0
σk · ∇e(t−s)Lvm,h (s) dW h

s

u = (u1, ..., uM )

with m = 1, ...,M , k ∈ K and F̃m defined as follows. Recall that 0 ≤ um (0) ≤ U . Taken a smooth
compact support function χ : R→ R such that

χ (a) = a for |a| ≤ U + 1,

we define F̃m as

F̃m (u (t, x)) =
m−1∑
n=1

χ (un (t, x))χ (um−n (t, x))− 2χ (um (t, x))
M∑
n=1

χ (un (t, x)) .

Given T > 0, consider the space XT of progressively measurable processes um, vm,k inW 2n,2
(
Rd
)

such that ∥∥∥(um, vm,k)m=1,...,M,k∈K

∥∥∥2
XT

:= sup
t∈[0,T ]

M∑
m=1

E
[
‖um (t, ·)‖2W 2n,2

]
+

M∑
m=1

∑
k∈K

E
∫ T

0
‖vm,k (t, ·)‖2W 2n+1,2 dt

is finite; the space XT with the norm ‖·‖XT is a Banach space. In it, let us define the map ΓT as
follows. We write an element (um, vm,k)m=1,...,M,k∈K of XT in the form (u, v), u = (um)m=1,...,M ,

v = (vm,k)m=1,...,M,k∈K , and similarly we write ΓT (u, v) in the form
(

Γ
(1)
T (u, v) ,Γ

(2)
T (u, v)

)
, with

components Γ
(1)
T (u, v)m, Γ

(2)
T (u, v)m,k, m = 1, ...,M, k ∈ K, given by

Γ
(1)
T (u, v)m (t) := etLum (0) +

∫ t

0
e(t−s)LF̃m (u (s)) ds+

∑
k∈K

∫ t

0
e(t−s)Lvm,k (s) dW k

s

Γ
(2)
T (u, v)m,k (t) := σk · ∇etLum (0) +

∫ t

0
σk · ∇e(t−s)LF̃m (u (s)) ds

+
∑
h∈K

∫ t

0
σk · ∇e(t−s)Lvm,h (s) dW h

s .

By Lemma B.1, ΓT maps XT into itself; the proof is similar to the computation done below to prove
the contraction property and thus it is not duplicated. We only remark a property of F̃m for the
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purpose of proving that ΓT maps XT into itself: since χ is smooth and compact support, hence
having all derivatives of every order bounded, χ (um (t, x))χ (un (t, x)) is of class

C
(

[0, T ] ;L2
(

Ω;W 2n,2
(
Rd
)))

∩ L2
(

[0, T ]× Ω;W 2n+1,2
(
Rd
))

(B.7)

for every un, um of the same class.
Given two input functions (u, v), (u′, v′), with the same initial values um (0), we have

Γ
(1)
T (u, v)m (t)− Γ

(1)
T

(
u′, v′

)
m

(t) =

∫ t

0
e(t−s)L

(
F̃m (u (s))− F̃m

(
u′ (s)

))
ds

+
∑
k∈K

∫ t

0
e(t−s)L

(
vm,k (s)− v′m,k (s)

)
dW k

s

Γ
(2)
T (u, v)m,k (t)− Γ

(2)
T

(
u′, v′

)
m,k

(t) =

∫ t

0
σk · ∇e(t−s)L

(
F̃m (u (s))− F̃m

(
u′ (s)

))
ds

+
∑
h∈K

∫ t

0
σk · ∇e(t−s)L

(
vm,h (s)− v′m,h (s)

)
dW h

s .

Let us develop the estimates for the second line, the first one being similar and a little bit easier.
We have, from (a+ b)2 ≤

(
1 + 1

ε

)
a2 + (1 + ε) b2,

M∑
m=1

∑
k∈K

E
∫ T

0

∥∥∥Γ
(2)
T (u, v)m,k (t)− Γ

(2)
T

(
u′, v′

)
m,k

(t)
∥∥∥2
W 2n+1,2

dt

≤
(

1 +
1

ε

)
T

M∑
m=1

∑
k∈K

E
∫ T

0

∫ T

s

∥∥∥σk · ∇e(t−s)L (F̃m (u (s))− F̃m
(
u′ (s)

))∥∥∥2
W 2n+1,2

dtds

+ (1 + ε)
M∑
m=1

∑
k∈K

E
∫ T

0

∑
h∈K

∫ T

s

∥∥∥σk · ∇e(t−s)L (vm,h (s)− v′m,h (s)
)∥∥∥2
W 2n+1,2

dtds

where we have used also Fubini-Tonelli theorem. We apply Lemma B.1 to both terms and get

≤
(

1 +
1

ε

)
T (η + CKT )

M∑
m=1

E
∫ T

0

∥∥∥F̃m (u (s))− F̃m
(
u′ (s)

)∥∥∥2
W 2n,2

ds

+ (1 + ε) (η + CKT )

M∑
m=1

E
∫ T

0

∑
h∈K

∥∥vm,h (s)− v′m,h (s)
∥∥2
W 2n,2 ds.

Using as above the fact that all derivatives of every order of χ are bounded, we get

≤ Cχ
(

1 +
1

ε

)
T (η + CKT )

M∑
m=1

E
∫ T

0

∥∥um (s)− u′m (s)
∥∥2
W 2n,2 ds

+ (1 + ε) (η + CKT )
M∑
m=1

E
∫ T

0

∑
h∈K

∥∥vm,h (s)− v′m,h (s)
∥∥2
W 2n,2 ds.

Since η < 1, if T is small enough we deduce that ΓT is a contraction in XT . Therefore it has a
unique fixed point. Since the size of T to get this result is not related to the size of the initial
condition, the procedure can be repeated on intervals of constant length. We deduce that there is
a unique solution in XT with T arbitrarily large and a priori chosen.
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Let (um, vm,k)m=1,...,M,k∈K be the unique solution of the system above. From the firstM identities
of the system (those for um, m = 1, ...,M), we see that σk · ∇um is well defined in

L2
(

[0, T ]× Ω;W 2n,2
(
Rd
))

and we have

σk · ∇um (t) = σk · ∇etLum (0) +

∫ t

0
σk · ∇e(t−s)LF̃m (u (s)) ds

+
∑
h∈K

∫ t

0
σk · ∇e(t−s)Lvm,h (s) dW h

s .

But this is equal to vm,k (t), by the second group of equations of the system. Hence we may replace
vm,h (s) by σh · ∇um (s) in the first group of equations and get the identity

um (t) = etLum (0) +

∫ t

0
e(t−s)LF̃m (u (s)) ds+

∑
k∈K

∫ t

0
e(t−s)Lσk · ∇um (s) dW k

s . (B.8)

Therefore (um)m=1,...,M is a solution of this mild system, of class (B.7).
Now let us use Theorem 6.10 of Da Prato and Zabczyk (1992) (the semigroup etL is of contraction

type, being also a Markov semigroup) to deduce that um has continuous paths in W 2n,2
(
Rd
)
,

precisely

um ∈ L2
(

Ω;C
(

[0, T ] ;W 2n,2
(
Rd
)))

.

This completes the proof that there exists a solution, unique, with the regularity specified in Propo-
sition A.4; however it is the solution of a modified system, with F̃m in place of Fm.
Step 2. Let

(
u0m
)
m=1,...,M

(we use a new notation to avoid confution) the solution of the original
system introduced in Definition A.1 and proved to be unique by Corollary A.3. Since each u0m (t)
take values in [0, U ], we have χ

(
u0m (t, x)

)
= u0m (t, x) and then

(
u0m
)
m=1,...,M

is also a solution, in
the space

C
(

[0, T ] ;L2
(

Ω;L2
(
Rd
)))

∩ L2
(

[0, T ]× Ω;W 1,2
(
Rd
))

(B.9)

of equation (B.8) (originally it is a solution in the weak sense, but the passage from the weak
formulation to the mild formulation, in the regularity class (B.9), is standard, see for instance
Proposition 6.3 of Da Prato and Zabczyk (1992)). Let (um)m=1,...,M be the smoother solution
given by Step 1 above. It satisfies the same equation (B.8), and it has the regularity (B.9). Hence(
u0m
)
m=1,...,M

= (um)m=1,...,M (fact that completes the proof of Proposition A.4) if we prove that
equation (B.8) has a unique solution in the class (B.9). But the proof of this fact is identical to the
one of Step 1 above, based on the inequality of Lemma B.1 which holds (first of all) for n = 0.
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Krylov, N. V. and Rozovskĭı, B. L. Stochastic evolution equations. In Current problems in mathe-
matics, Vol. 14 (Russian), pp. 71–147, 256. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn.
Informatsii, Moscow (1979). MR570795.

Lang, R. and Nguyen, X.-X. Smoluchowski’s theory of coagulation in colloids holds rigorously in
the Boltzmann-Grad-limit. Z. Wahrsch. Verw. Gebiete, 54 (3), 227–280 (1980). MR602510.

Méléard, S. and Roelly-Coppoletta, S. A propagation of chaos result for a system of particles with
moderate interaction. Stochastic Process. Appl., 26 (2), 317–332 (1987). MR923112.

Oelschläger, K. A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch.
Verw. Gebiete, 69 (2), 279–322 (1985). MR779460.

Oelschläger, K. On the derivation of reaction-diffusion equations as limit dynamics of systems
of moderately interacting stochastic processes. Probab. Theory Related Fields, 82 (4), 565–586
(1989). MR1002901.

Olla, S. and Varadhan, S. R. S. Scaling limit for interacting Ornstein-Uhlenbeck processes. Comm.
Math. Phys., 135 (2), 355–378 (1991). MR1087388.

Olla, S., Varadhan, S. R. S., and Yau, H.-T. Hydrodynamical limit for a Hamiltonian system with
weak noise. Comm. Math. Phys., 155 (3), 523–560 (1993). MR1231642.

Papini, A. Coagulation dynamics under random field: turbulence effects on rain. ArXiv Mathematics
e-prints (2021). arXiv: 2111.12584.

Pardoux, É. Équations aux dérivées partielles stochastiques non linéaires monotones: étude de
solutions fortes de type Itô. Ph.D. thesis, Universite Paris-Sud (1975).

Prévôt, C. and Röckner, M. A concise course on stochastic partial differential equations, volume
1905 of Lecture Notes in Mathematics. Springer, Berlin (2007). ISBN 978-3-540-70780-6; 3-540-
70780-8. MR2329435.

Pumir, A. and Wilkinson, M. Collisional Aggregation Due to Turbulence. Annual Review of
Condensed Matter Physics, 7 (1), 141–170 (2016). DOI: 10.1146/annurev-conmatphys-031115-
011538.

Saffman, P. G. F. and Turner, J. S. On the collision of drops in turbulent clouds. Journal of Fluid
Mechanics, 1 (1), 16–30 (1956). DOI: 10.1017/S0022112056000020.

Smoluchowski, M. v. Drei vortrage uber diffusion, brownsche bewegung und koagulation von kol-
loidteilchen. Zeitschrift fur Physik, 17, 557–585 (1916).

Smoluchowski, M. v. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lö-
sungen. Zeitschrift für physikalische Chemie, 92 (1), 129–168 (1918).

Sznitman, A.-S. Topics in propagation of chaos. In École d’Été de Probabilités de Saint-Flour XIX—
1989, volume 1464 of Lecture Notes in Math., pp. 165–251. Springer, Berlin (1991). MR1108185.

Uchiyama, K. Pressure in classical statistical mechanics and interacting Brownian particles in
multi-dimensions. Ann. Henri Poincaré, 1 (6), 1159–1202 (2000). MR1809796.

Varadhan, S. R. S. Scaling limits for interacting diffusions. Comm. Math. Phys., 135 (2), 313–353
(1991). MR1087387.

http://www.ams.org/mathscinet-getitem?mr=MR1707314
http://www.ams.org/mathscinet-getitem?mr=MR1406091
http://www.ams.org/mathscinet-getitem?mr=MR1661766
http://www.ams.org/mathscinet-getitem?mr=MR570795
http://www.ams.org/mathscinet-getitem?mr=MR602510
http://www.ams.org/mathscinet-getitem?mr=MR923112
http://www.ams.org/mathscinet-getitem?mr=MR779460
http://www.ams.org/mathscinet-getitem?mr=MR1002901
http://www.ams.org/mathscinet-getitem?mr=MR1087388
http://www.ams.org/mathscinet-getitem?mr=MR1231642
http://arxiv.org/abs/2111.12584
http://www.ams.org/mathscinet-getitem?mr=MR2329435
http://dx.doi.org/10.1146/annurev-conmatphys-031115-011538
http://dx.doi.org/10.1146/annurev-conmatphys-031115-011538
http://dx.doi.org/10.1017/S0022112056000020
http://www.ams.org/mathscinet-getitem?mr=MR1108185
http://www.ams.org/mathscinet-getitem?mr=MR1809796
http://www.ams.org/mathscinet-getitem?mr=MR1087387

	1. Introduction
	2. Identity involving the empirical measure
	3. Itô-Tanaka procedure
	4. Bounding various terms
	5. Relative compactness of the empirical measure
	5.1. A general compactness criterion
	5.2. Application to our case

	6. Existence and boundedness of limit density
	Appendix A. Pathwise uniqueness of the SPDE (1.10) and regularity of its solutions
	A.1. Proof of Lemma A.2
	A.2. Proof of Corollary A.3

	Appendix B. The SPDE of the free system
	B.1. Existence, uniqueness and regularity results
	B.2. Uniform upper bound
	B.3. Proof of Proposition A.4

	References

