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Abstract. In this paper we investigate pointed (q, g, n)-Boltzmann loop-decorated maps with loops
traversing only inner triangular faces. Using peeling exploration Budd (2018) modified to this setting
we show that its law in the non-generic critical phase can be coded in terms of a random walk confined
to the positive integers by a new specific boundary condition. Under a technical assumption that
we believe to be true, combining this observation with explicit quantities for the peeling law we
derive the large deviations property for the distribution of the so-called nesting statistic and show
that the exploration process possesses exactly the same scaling limit as in the rigid loop model on
bipartite maps that is a specific self-similar Markov process introduced in Budd (2018). Besides,
we conclude the equivalence of the admissible weight sequences related by the so-called fixed point
equation by proving the missing direction in the argument of Borot et al. (2012a).

1. Introduction

In this paper we study random planar maps coupled to an O(n) loop model. In the physics
literature, maps decorated with a particular class of O(n) loop models where loops visit only vertices
of degree three were analyzed already in the nineties via matrix integral techniques Duplantier
and Kostov (1988); Kostov (1989); Kostov and Staudacher (1992); Eynard and Zinn-Justin (1992);
Eynard and Kristjansen (1995, 1996) (see Borot et al. (2012b, Section 1.2) for a short summary of
these results). About ten years ago a new approach to study loop-decorated maps, the so-called
gasket decomposition, was proposed in Borot et al. (2012b) (see also Section 8 in Le Gall and
Miermont (2011)). This method is based on decomposing the map using the nesting structure
of the decorating loops and allows to reduce the study of loop-decorated maps to investigating
undecorated maps with faces of large degrees, studied in Le Gall and Miermont (2011). It brought
along a very fruitful wave of research on the geometry of random planar maps coupled to an O(n)
loop model and their gaskets Chen et al. (2020); Budd (2018); Budd and Curien (2017); Budd et al.
(2018).
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In most of the aforementioned rigorous works the authors only deal with bipartite maps decorated
by the rigid O(n) loop model. The goal of this work is to extend the results of Budd (2018) to
the case of non-bipartite Boltzmann random planar maps coupled to the triangular O(n) loop
model, where the loops intersect only triangular faces (see Figure 2.1). To be precise, we adjust
the peeling process of Budd (2018) to our triangular setting and introduce a new process, which
we call accelerated p-ricocheted random walk (ARRW), to study the law of this peeling exploration.
The additional “acceleration” term stems from the fact that, contrary to the case of the rigid O(n)
loop configurations, in the triangular O(n) loop configurations the lengths of the inner and outer
boundaries of the concatenation of faces covered by a loop are not necessarily equal. As explained
below, this extra term will, however, disappear in the scaling limit.

We now briefly discuss the main results of this article which we obtain using the aforementioned
adjusted peeling procedure and the ARRW. The precise statements and a discussion of the related
literature and strategies of the proofs, as well as all necessary definitions can be found in Section 2.

The first statement, Theorem 2.1, is about the equivalence of admissibility criteria for the weight
sequences of our loop-decorated maps and certain undecorated maps, when the two sequences are
related by the fixed-point equation (2.3). Recall that admissibility here refers to the finiteness of
the partition function. The proof of this theorem is carried out using an auxiliary result, Lemma
A.1, which ensures that under the assumption that a weight sequence q̂ is admissible for the set
of planar undecorated maps, the corresponding partition function for the set of planar undecorated
maps with a distinguished vertex is finite. This auxiliary result might be of independent interest.

In Theorem 2.2 we derive the distribution of the nesting statistic, i.e. the number of loops
separating the marked vertex from the root face, in terms of functions hrp related to the ARRW (see
Definition 5.4) and find its large deviations. The main ingredient to conclude the latter result is the
asymptotics of hrp derived in Proposition 5.5 (iii).

The last and most substantial result of this article is stated in Theorem 2.3 and says that the
perimeter process in the non-generic critical phase rescaled exactly in the same way as for the
rigid loop model converges in distribution in the J1-Skorokhod topology towards a positive self-
similar Markov process introduced in Budd (2018, Section 6). In particular, this confirms a certain
universality of the limit, and leads to the conjecture that the perimeter process of the model with
bending energy Borot et al. (2012a), which covers both triangular and rigid loop models, possesses
the same scaling limit.

1.1. Outline. Section 2 contains all necessary definitions, a description of the setting we work with
in this article and the precise statements of the aforementioned results. In Section 3 we recap
the peeling procedure of Budd (2018) and directly adjust it to rooted planar maps decorated by
triangular loop-configurations. In Section 4 we discuss the law of this peeling exploration when
applied to a pointed (q, g, n)-Boltzmann loop-decorated map (m•, `) under the assumption that
(q, g, n) is admissible and the expected number of vertices of (m•, `) is finite. Section 5 introduces a
Markov process on Z2, which we call accelerated ricocheted random walk (ARRW), whose transition
probabilities mimic the law of the peeling exploration performed on a pointed Boltzmann loop-
decorated map. We also discuss the proof of Theorem 2.2 by highlighting the changes which could
be done to make the proof from Budd (2018) work in our case. Section 6 contains the proof of
the part of Theorem 2.1 concerning the admissibility of (q, g, n) via algorithmic reconstruction of a
(q, g, n)-Boltzmann planar map using peeling exploration. As a by-product we obtain asymptotics
of the expected volume of a pointed (q, g, n)-Boltzmann loop-decorated map. In Section 7 we prove
our main result, Theorem 2.3, by showing the corresponding result first for a class of ARRWs and
then relating it to the perimeter process in the peeling exploration. In Appendix A we collect
technical computations omitted in the proofs throughout the article.



Exploration of critical Boltzmann planar maps decorated by a triangular O(n) loop model 3

2. Preliminaries and precise statements of the main results

2.1. The triangular O(n) loop model and its phase diagram. The combinatorial objects investigated
in this work are planar maps with a distinguished oriented edge, called root edge, decorated by loop
configurations. A planar map is a connected graph with all vertices of finite degree in which loops
and multiple edges are allowed and that is properly embedded in the sphere. The face to the right
of the root edge is the root face, all the other faces are called inner faces. The perimeter of the
map is the degree of its root face. A loop configuration on the rooted planar map m is a collection
` = {`1, . . . , `k} of disjoint unoriented loops on the dual map m† non-intersecting the root face. The
loop configurations investigated in this work, which we call triangular, consist of loops visiting only
inner triangular faces of m, i.e. visiting only vertices of m† of degree three which correspond to inner
faces of m (see Figure 2.1). A pair (m, `) consisting of a rooted planar map m and a triangular loop
configuration ` on m is called a loop-decorated map. The set of all such loop-decorated maps with
a fixed perimeter p modulo homeomorphisms of the sphere is denoted by LM(p).

Figure 2.1. A loop-decorated planar map m of perimeter 9 with a triangular loop configuration
` = {`1, `2, `3}. The weight of this map is wq,g,n(m, `) = n3g16q3q5q7.

Given a sequence of non-negative real numbers q = (q1, q2, . . .) and g, n ≥ 0, the weight of a
loop-decorated map, wq,g,n(m, `), is defined as

wq,g,n(m, `) :=

[∏
`∈`

ng|`|
][∏

f

qdeg(f)

]
, (2.1)

where |`| is the length of the loop `, the second product ranges over all inner faces f of m that are
not visited by a loop and deg(f) is the degree of the face f . The O(n) model partition function
F (p)(q, g, n) is given by the total weight of all loop-decorated maps of fixed perimeter p:

F (p)(q, g, n) :=
∑

(m,`)∈LM(p)

wq,g,n(m, `). (2.2)

The triplet (q, g, n) is said to be admissible iff F (p)(q, g, n) < ∞ for all p ≥ 1. In this case
it is possible to define a probability measure on LM(p) induced by wq,g,n via normalization by
1/F (p)(q, g, n). A rooted planar map of perimeter p together with this probability measure is called
(q, g, n)-Boltzmann loop-decorated map of perimeter p. If g = 0 or n = 0, then loops are suppressed
and the random map is the q-Boltzmann map. In this case the partition function is denoted by
W (p)(q) := F (p)(q, 0, 0), and the weight sequence q is called admissible iff W (p)(q) < ∞ for all
p ≥ 1. We set W (0) = F (0) := 1. The usual q-Boltzmann maps were studied in Budd (2016) and
extensively discussed in the bipartite setup in Curien (2016).
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The central method used in the literature to study Boltzmann loop-decorated maps is the gasket
decomposition. It was first introduced in Borot et al. (2012b) where it was applied to the rigid O(n)
loop model on bipartite maps to yield the results about its phase diagram and resolvent. In the
rigid O(n) model loops intersect only inner quadrangular faces of the map through their opposite
edges. Later in Borot et al. (2012a) the outcomes were extended to the O(n) loop model with
bending energy, which covers both rigid and triangular cases of loop configurations. The method
consists in splitting the loop-decorated map m into its gasket, outer loop rings, i.e. faces visited by
outermost loops, and maps contained inside the outer loop rings. The gasket g(m, `) is defined as
the undecorated map obtained from m by removing all edges traversed by any loop in ` and keeping
only the connected component containing the root. Via the gasket decomposition it was shown in
Borot et al. (2012b) that if (q, g, n) is admissible then so is q̂ given by the fixed point equation

q̂k = qk + n
∑
k′≥0

(
k + k′ − 1

k′

)
gk+k′F (k′)(q, g, n), (2.3)

and that the gasket g(m, `) of a (q, g, n)-Boltzmann loop-decorated map is distributed as a q̂-
Boltzmann map. The converse is also true, but was left implicit in both Borot et al. (2012b) and
Borot et al. (2012a). Here we prove this statement by relying on the corresponding proof for the
rigid O(n) loop model in Budd (2018).

Theorem 2.1 (Equivalence of admissibility). For n ∈ [0, 2], g ≥ 0 and a sequence of non-negative
real numbers q = (q1, q2, . . .), the triplet (q, g, n) is admissible iff there exists an admissible weight
sequence q̂ s.t.

qk = q̂k − n
∑
k′≥0

(
k + k′ − 1

k′

)
gk+k′W (k′)(q̂) ≥ 0.

In this case F (p)(q, g, n) = W (p)(q̂) and the expected number of vertices in a (q, g, n)-Boltzmann
loop-decorated map is finite.

Given any •-admissible q̂, meaning that the partition function of pointed1 q̂-Boltzmann maps of
perimeter p, W (p)

• (q̂), is finite for all p ∈ N, it was shown in Borot et al. (2012a, Section 6.1) that
the resolvent, defined as

W(x) =
∑
p≥0

W (p)(q̂)

xp+1
, (2.4)

can be analytically continued into a holomorphic function on C \ [γ−, γ+] with a finite discontinuity
on [γ−, γ+] ⊂ R. Moreover, γ± = γ±(q̂) satisfy γ+ ≥ |γ−|, and γ+ = |γ−| = −γ− hold exactly
in the bipartite case. We introduce a non-universal constant r := −γ−

γ+
∈ (−1, 1). We exclude the

bipartite case for simplicity since the results have to be slightly modified each time and this case
was covered in Budd (2018) for the rigid O(n) loop model and in Budd (2016) for maps without
loops. In addition to that, in Budd (2016) it was established that for any fixed k ≥ 0,

γk+(q̂) = lim
p→∞

W
(p+k)
• (q̂)

W
(p)
• (q̂)

. (2.5)

We extend both results by showing that it suffices to assume the admissibility of q̂ in the sense
W (p)(q̂) < ∞ for all p ∈ N instead, see A.1. Moreover, the following characterization of γ+ for an
admissible q̂ holds:

γ+(q̂) = lim
p→∞

W (p+1)(q̂)

W (p)(q̂)
. (2.6)

1with a distinguished vertex



Exploration of critical Boltzmann planar maps decorated by a triangular O(n) loop model 5

We refer the reader to the end of Section A.2 for the proof of (2.6).
We call a triplet (q, g, n) non-generic critical if it is admissible, n 6= 0, and gγ+(q̂) = 1

2 , where
q̂ is defined as in (2.3) and γ+(q̂) as in (2.6) with F (p)(q, g, n) = W (p)(q̂), cf. Theorem 2.1. In
Borot et al. (2012a) the alternative characterization of such triplets was provided in terms of the
four phases of the O(n) loop model with bending energy. For these phases to be well-defined, we
need to restrict ourselves to triplets (q, g, n) in the domain

D := [0,∞)d × (0,∞)× (0, 2),

where d is a fixed positive integer and q ∈ [0,∞)d means that qk = 0 for any k > d. According to
Borot et al. (2012a, (3.31), (3.32)), if (q, g, n) ∈ D is admissible, then

F (p)(q, g, n) ∼ Cγp+(q̂)p−a as p→∞, (2.7)

for some C > 0 depending on (q, g, n) but not on p, and a taking only the values 3
2 ,

5
2 , 2+b and 2−b,

where b = 1
π arccos

(
n
2

)
∈
(
0, 1

2

)
. The triplet (q, g, n) is then called subcritical, generic critical, non-

generic critical dilute and non-generic critical dense, respectively, in these four cases. In the last
two cases the triplet is also non-generic critical in the aforementioned sense.

The techniques in Borot et al. (2012a) and Borot et al. (2016) are, however, not sufficient to
rigorously establish the phase diagram, in particular (2.7). This issue was resolved in the Appendix
of Budd (2018) for the rigid O(n) loop model. Nevertheless, the numerical derivation of the phase
diagram in the physics papers Borot et al. (2012a, 2016) makes the following assumption plausible:

Assumption. Throughout this paper we assume that the non-generic critical dense and dilute
phases exist and are non-empty and that given (q, g, n) ∈ D non-generic critical (dilute or dense),
(2.7) holds for a = 2± b with γ+(q̂) as in (2.6) and q̂ as in (2.3).

We now discuss in more detail the rigorously established results of Borot et al. (2012a, 2016) and
explain the missing step to rigorously verify the assumption.
A set of conditions satisfied by the resolvent of the triangular O(n) loop model F(x) :=

∑
p≥0

F (p)

xp+1

was derived in Sections 2.3 and 6 of Borot et al. (2012a) and Propositions 4.1, 4.3 and 4.5 of Borot
et al. (2016), respectively. These conditions are composed of two parts:

• x 7→ F(x) is holomorphic on a domain of the form C \ [γ−, γ+] with [γ−, γ+] ⊂ R, and
satisfies some growth constraints and a functional linear equation on the segment [γ−, γ+].
• Characterization of γ−, γ+ ∈ R for a given q̂ defined by (2.3) for some (q, g, n).
Since the weights of q̂ depend in turn on F(x), as opposed to the case without loops, this
condition can not alone determine γ−, γ+, but should be considered as a system with the
first item.

It was shown that for a given interval [γ−, γ+] ⊂ R such that γ+ ≥ |γ−|, the solution to the first
bullet-point is unique, and an explicit function in parametric form (elliptic parametrization), F̃(x),
satisfying the first condition was constructed, see Borot et al. (2016, Section 5) and Borot et al.
(2012a, Section 3.3). From the latter, (2.7) was concluded with the given γ+. Furthermore, it was
proven that for a given sequence of weights q̂, the second condition uniquely determines γ−, γ+.
This, in particular, is the case, when we assume to know F (p)(q, g, n) = W (p)(q̂) for all p ∈ N, then
also (2.6) holds. However, to guarantee that the function F̃(x) constructed as the solution to the
first condition with γ± chosen to correspond to the resolvent of the triangular loop model F(x) is
indeed F(x), one has to show that the system of the two aforementioned conditions has a unique
solution. This step is missing in both Borot et al. (2012a) and Borot et al. (2016) and would have
verified the assumption.

We also mention that the proof of our assumption for bipartite maps decorated by the rigid O(n)
loop configuration by Linxiao Chen in Budd (2018) relies on the symmetry γ− = −γ+ for bipartite
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maps, which reduces the number of parameters in the system, and can not be directly extended to
our setting.

2.2. Nesting statistic. Let LM
(p)
• be the set of loop-decorated maps with a distinguished vertex,

called target. If (q, g, n) is admissible, it is possible to define a pointed (q, g, n)-Boltzmann loop-
decorated map as (m•, `) ∈ LM

(p)
• with probability distribution proportional to wq,g,n(m•, `) :=

wq,g,n(m, `). This is well-defined since the expected number of vertices of the (q, g, n)-Boltzmann
loop-decorated map is finite by Theorem 2.1. On the pointed loop-decorated maps a new variable,
the nesting statistic N , can be introduced. More precisely, N is the number of loops that separate
the target from the root face. Its distribution in the case of the O(n) loop model with bending
energy on triangulations of large size was studied in detail in Borot et al. (2016). In the case of
rigid O(n) loop model on large bipartite maps in the non-generic critical setting an alternative more
intuitive and direct proof of a weaker result via peeling exploration was given in Budd (2018). In
this work both these approaches are combined to derive Theorem 2.2. Before stating the result we
must present the functions hrp : Z→ R for p ∈ [0, 1] by setting hrp(0) = 1, hrp(p) = 0 for p < 0, and
for p ≥ 1

hr0(p) =

(
−r
4

)p(2p

p

)
2F1

(
1

2
,−p; 1

2
− p;−1

r

)
,

hr1(p) = 1,

(2.8)

where 2F1 is the hypergeometric function, i.e. 2F1(a, b; c; z) =
∑

n≥0
(a)n(b)n

(c)n
zn

n! in terms of the rising
Pochhammer symbol (a)n := a(a + 1) . . . (a + n − 1). For other values of p ∈ (0, 1) the functions
hrp(p) are introduced in Section 5.2, Definition 5.4, and are defined as the hitting probabilities of a
certain random walk.

Theorem 2.2 (Properties of the nesting statistic). Suppose that Assumption holds. Let n ∈
(0, 2), (q, g, n) be non-generic critical, and (m•, `) be a pointed (q, g, n)-Boltzmann loop-decorated
map of perimeter p. Then the number N of loops surrounding the target has probability generating
function

E(p)
•
[
xN
]

=
hrxn/2(p)

hrn/2(p)
for x ∈

[
0,

2

n

)
.

The following convergence in probability takes place

N

log p

P−→ n

π
√

4− n2
as p→∞,

and the large deviation property

logP(p)
• [N < λ log p]

log p

p→∞−−−→ − 1

π
Jn/2(πλ) for 0 < λ <

n

π
√

4− n2
,

logP(p)
• [N > λ log p]

log p

p→∞−−−→ − 1

π
Jn/2(πλ) for λ >

n

π
√

4− n2
,

holds with

Jp(x) = x log

(
x

p
√

1 + x2

)
+ arccotx− arccos p.

We recall that in order for the Assumption to hold we have to restrict ourselves to the triplets
(q, g, n) ∈ D that are associated with the maps of bounded face degrees.
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2.3. Geometry of large loop-decorated maps. In Chapter 3 we introduce an exploration process on
pointed loop-decorated maps (m•, `) ∈ LM

(p)
• and study their properties. This specific exploration

procedure, which we call targeted peeling process, is an adaptation of the procedure used in Budd
(2018) on planar maps with rigid loop configurations to our triangular setup. The exploration
process of undecorated maps presented in this work is exactly the one from Budd (2018) that in
turn is a modification of the lazy peeling process from the earlier work Budd (2016).

The (targeted) peeling process iteratively constructs an increasing sequence of submaps of (m•, `)
corresponding to the explored region including the root face at each stage of the exploration, and
terminates once the marked vertex is encountered (see Figure 3.2). Each exploration step consists
of choosing an edge on the boundary of the explored part according to an arbitrary but fixed peeling
algorithm, and discovering what is incident to this edge in the unexplored region. The peeling
algorithm used for exploration can be either deterministic or random, but in the latter case the
randomness involved has to be independent of the unexplored region of the map. If a new face or
loop is discovered, it is added to the explored region together with the still unexplored connected
components without target. When applied to a pointed Boltzmann loop decorated map the law
of this peeling exploration can be described (see Proposition 5.6) in terms of the perimeter process
(Pi), which is a Markov process on Z tracking the length of the boundary of the explored region.

For b ∈
(
0, 1

2

)
fixed as above, following Budd (2018) we introduce the Lévy process (ξ↓t )t≥0 started

at ξ↓0 = 0 with Laplace exponent

Ψ↓(z) := logE
[
ezξ
↓
1

]
=

1

π
Γ(1 + 2b− z)Γ(1− b+ z)[cos (πb)− cos (πz − πb)].

It has no killing and drifts to −∞ almost surely. By Lamperti (1972), a time-changed exponential of
such a Lévy process determines a positive self-similar Markov process (pssMp) that dies continuously
at zero. The pssMp (X↓t ) associated to the Lamperti representation (ξ↓s )s≥0 is given by

X↓t = e
ξ↓
s(t) , s(t) := inf

{
s ≥ 0 :

∫ s

0
e(1+b)ξ↓udu ≥ t

}
∈ R ∪ {∞}.

Here, ξ↓∞ = 0 by convention. It can be constructed from stable processes confined to the half-line
by the type of boundary condition first presented in Budd (2018), where these processes were called
ricocheted stable processes.

In Section 7.2 we show that the perimeter process of a non-generic critical Boltzmann triangular
loop-decorated map possesses a scaling limit described by a ricocheted stable process. The surprising
part of this result is that the obtained limiting process is the same as in the case of non-generic critical
Boltzmann rigid loop-decorated maps. This allows us to use the theory about ricocheted stable
processes developed in Budd (2018, Section 6) to describe the limiting object. Furthermore, we
might conclude that the difference in distributions of rescaled perimeter processes of the triangular
loop model and the rigid loop model has to be negligible in the limit.

Theorem 2.3 (Scaling limit of perimeter process). Suppose that Assumption holds. Let (q, g, n) ∈
D be in the non-generic critical phase (dense or dilute) and let (Pi)i≥0 be the perimeter process of a
pointed (q, g, n)-Boltzmann loop-decorated map with perimeter p. Then there exists a constant c > 0
such that we have the convergence in distribution(

Pbcpθtc

p

)
t≥0

(d)−−−→
p→∞

(X↓t )t≥0

in the J1-Skorokhod topology, where (X↓t )t≥0 is the pssMp defined above with parameter b = |θ − 1|
and θ = a− 1 as in (2.7).

We emphasize that by restricting to the triplets (q, g, n) ∈ D, we assume that the face degrees
of the considered maps are bounded.
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3. Peeling of loop-decorated random planar maps

In this chapter we perform a peeling process on a fixed rooted planar map m of perimeter p
coupled to a triangular loop configuration `, i.e. visiting only inner triangles, and on its pointed
version (m•, `). Before describing the precise procedure we need to introduce some notions. A map
with holes is a map together with a distinguished set of faces, called holes, that are assumed to be
simple and vertex-disjoint, i.e. each vertex of the map is incident to at most one corner of a hole.
A hollow map of perimeter p is the map consisting only of the root face and a single hole both of
degree p. By convention the root face cannot be a hole. We define a loop-decorated map with holes
(e, `) as a map e with holes together with a loop configuration `, such that the loops avoid the holes.
Throughout this section we assume that some deterministic procedure has been fixed that takes a
map with holes and distinguishes an edge on the boundary of each hole.

Given a (loop-decorated) map with holes e with a hole h of degree l and a second (loop-decorated)
map u of perimeter l, there is a natural operation of gluing u into h which yields a new map with
holes e′. More precisely, one pairwise identifies the edges in the contour of h with those in the
contour of the root face of u, such that the distinguished edge incident to h is identified with the
root edge of u. This procedure is well-defined since the holes of e are simple.

A map e with holes h1, . . . , hk is called a submap of a map with holes e′, denoted e ⊂ e′, if there
exists a sequence of maps (with holes) u1, . . . , uk such that gluing ui into hole hi for each i = 1, . . . , k
results in e′. In particular, e ⊂ e by choosing all ui to be hollow maps. It is easy to see that the gluing
procedure is rigid, in the sense that e and e′ uniquely determine the sequence of maps ui. Moreover,
⊂ defines a partial order on the set of all maps with holes. On the set of all loop-decorated maps
with holes we define a partial order relation ⊂ by letting (e, `) ⊂ (e′, `′) iff e ⊂ e′ and ` contains all
the loops of `′ that intersect a face of e′ that also appears in e.

Let (e, `) be a loop-decorated map with holes, we divide its edges into two disjoint sets: active
and inactive edges, Edges(e) = Active(e) ∪ Inactive(e), depending on whether they are incident to
a hole or not. So every inactive edge of submap e ⊂ m corresponds to a unique edge in m, while a
pair of active edges incident to the same hole hi can be identified while gluing ui into hi.

Let (e, `∗) ⊂ (m, `) be a loop-decorated submap with holes and e ∈ Active(e). Then there exists
a unique smallest (w.r.t. ⊂) loop-decorated submap (e′, `′) such that (e, `∗) ⊂ (e′, `′) ⊂ (m, `) and
in which e becomes inactive. This map is denoted by Peel((e, `∗), e, (m, `)) and called the result
of peeling the edge e. Iteration of this procedure builds an increasing sequence of loop-decorated
submaps of (m, `). For uniqueness of such a sequence we fix a peeling algorithm A that associates to
any (loop-decorated) map with holes e an active edge A(e) ∈ Active(e). Then the peeling exploration
of a loop-decorated map (m, `) with algorithm A can be defined as the sequence

(e0, `0) ⊂ (e1, `1) ⊂ . . . ⊂ (en, `n) = (m, `) with (ei+1, `i+1) = Peel((ei, `i),A(ei), (m, `)) (3.1)

being the minimal larger submap containing the peeled edge A(ei) as an inactive edge, e0 is the
hollow map of the same perimeter as m and `0 = ∅.

The operations that can occur when peeling an edge e ∈ Active(e) incident to the hole h are
threefold.

• If there is another active edge e′ incident to h that gets identified with e in the full map
m, then Peel((e, `∗), e, (m, `)) is the map with holes obtained from e by gluing e to e′. This
case is denoted by Gk1,k2 , where k1 (resp. k2) is the number of active edges incident to h in
between e and e′ to the left (resp. right) of e seen from outside the hole. In this situation
the number of holes may decrease by one (if k1 = k2 = 0), remain unchanged (if either
k1 = 0 or k2 = 0), or increase by one (if k1, k2 > 0).
• If e corresponds to an edge in (m, `) incident to a face of degree k that does not occur in e
and is not intersected by a loop of `, then Peel((e, `∗), e, (m, `)) is the loop-decorated map
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with holes obtained from (e, `∗) by gluing a new k-gon to the edge e inside the hole h. We
denote this case by Ck. The number of holes remains unchanged.
• The last type occurs when the edge e is incident to a new triangle in (m, `) intersected by
a loop ` ∈ ` of length |`|. To be consistent with the indexing of these events we assume
that all loops are oriented counterclockwise seen from inside of the loop. We start with
the triangle with the peeled edge as a base and assign k1 = out to it, further we move
in the direction of the loop and assign to each next triangle a parameter ki ∈ {in, out},
where ki = out if two vertices of the current triangle are outside of the loop, ki = in
otherwise. Any loop-decorated submap containing e as an inactive edge should contain the
full loop `. Hence, the minimal such submap (ei+1, `i+1) is obtained by gluing a ring of
length |`| and configuration k1, . . . , k|`| inside the hole of ei to the edge e. A ring of length
m of configuration k1, . . . , km is a loop-decorated map of perimeter v := |{ki = out}| with
a single hole of degree u := |{ki = in}| constructed by gluing v triangles from outer side
and u triangles from side of the hole into a ring and covering it by a single loop of length
m = u+v. We denote the case of gluing of the ring of configuration k1, . . . , k|`| by Lk1,...,k|`| .
This event increases the number of holes by one (if |{ki = in}| > 0) or does not change it
(if |{ki = in}| = 0).

Often a configuration of edges crossed by a loop will not be important for us, so we introduce the
notation Luv for the set of events Lk1,...,ku+v with |{ki = in}| = u, |{ki = out}| = v.

In all three cases the number of inactive edges not traversed by a loop of ` increases exactly by
one, therefore, the number of steps in the peeling exploration (3.1) is exactly the number of edges
of m not traversed by a loop of `.

When the peeling algorithm A and the perimeter of the map m are fixed, the loop-decorated map
(m, `) is completely determined by a finite sequence of events in {Gk1,k2 ,Ck, Lk1,...,km}. This fact
will play an important role in the proof of Theorem 2.1.

If we now distinguish a vertex of m - call it target - we get a pointed loop-decorated map (m•, `).
Let (e, `∗) ⊂ (m•, `) be a loop-decorated submap with holes h1, . . . , hk. Let u1, . . . , uk be unique
maps to be glued in the holes of e to retrieve (m•, `). The filled-in submap Fill((e, `∗), (m•, `)) ⊂
(m•, `) is the loop-decorated map obtained from e by gluing ui into hi if ui does not contain the
marked vertex for each i = 1, . . . , k. Since the holes of e are disjoint, the filled-in submap has at
most one hole.

Now we can define the targeted peeling exploration of (m•, `) with algorithm A by iteratively
peeling an edge followed by filling in the unpointed holes, i.e. as the sequence

(e0, `0) ⊂ (e1, `1) ⊂ . . . ⊂ (en, `n) = (m•, `)

with (ei+1, `i+1) = Fill(Peel((ei, `i),A(ei), (m•, `)), (m•, `)).
(3.2)

The operations that can occur upon peeling A(ei) in (ei, `i) and then filling are of five types.
Namely,

• Ck as before since in this case no filling is needed;
• Gk1,∗ upon filling in the left hole in the event Gk1,k2 , and G∗,k2 upon filling in the right hole
in the event Gk1,k2 ;
• Lk1,...,k|`|,∗ (resp. L∗,k1,...,k|`|) corresponding to the gluing of a ring via event Lk1,...,k|`| followed
by filling in the hole inside (resp. outside) the ring (see Figure 3.2).

Analogously to the untargeted peeling we introduce the notions L∗,uv ,Luv,∗ for the sets of events
L∗,k1,...,ku+v and Lk1,...,ku+v ,∗, respectively.

Since for each i = 0, . . . , n − 1 the submap (ei, `i) has exactly one hole, we can introduce the
perimeter process (Pi)

n
i=0 by setting Pi equal to the degree of the hole of ei and Pn = 0 by convention.

Note that P0 is the perimeter of m• and that the perimeter process depends only on (m•, `) and the
chosen peeling algorithm A. On top of the perimeter process we can also keep track of the nesting
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process (Ni)i such that N0 = 0 and Ni increases, Ni+1 = Ni + 1, only in the event L∗,k1,...,km .
Then Nn is precisely the nesting statistic of (m•, `), i.e. the number of loops in ` that surround the
marked vertex seen from the root face.

Figure 3.2. The targeted peeling of the pointed (green vertex) loop-decorated map (m•, `). The
peeled edges are indicated by thick red lines, the inactive edges and inner vertices are
black. The corresponding perimeter process is (Pi)

7
i=0 = (9, 14, 16, 8, 4, 7, 1, 0) and the

nesting process is (Ni)
7
i=0 = (0, 0, 0, 0, 1, 1, 1, 2).

Note that both targeted and untargeted peeling processes introduced above apply as well to
undecorated maps m by identifying m with (m, ` = ∅).

4. Peeling process of Boltzmann loop-decorated maps

In this section we study the law of the peeling exploration applied to a Boltzmann loop-decorated
map. Both the untargeted exploration and the targeted exploration of a pointed Boltzmann loop-
decorated map are discussed. Before proceeding to this application, we present the gasket decompo-
sition result from Borot et al. (2012b), which delivers one direction of the equivalence of admissibility
criteria of Theorem 2.1. The proof of this result was summarized in Budd (2018) for the rigid O(n)
model and can be easily extended to our setting.

Recall from Section 2.1 that the gasket g(m, `) of a loop-decorated map (m, `) ∈ LM(p) is the
undecorated map obtained from m by removing all edges intersected by a loop in ` and retaining
only the connected component containing the root.
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Lemma 4.1. The gasket of (q, g, n)-Boltzmann loop-decorated map is itself a q̂-Boltzmann map,
where the effective weight sequence q̂ is defined via the fixed-point equation (2.3),

q̂k = qk + n
∑
l≥0

(
k + l − 1

l

)
gk+lF (l)(q, g, n).

In particular, if (q, g, n) is admissible, so is q̂.

4.1. Untargeted exploration. Let (q, g, n) be an admissible triplet and let (m, `) be a (q, g, n)-
Boltzmann loop-decorated map of perimeter p > 0. It satisfies the following Markov property,
which is an analogue of Budd (2018, Lemma 1).

Lemma 4.2. Let (e, `′) be a fixed loop-decorated map of perimeter p with holes h1, . . . , hk. If
(e, `′) ⊂ (m, `) with positive probability, then conditionally on this event the loop-decorated maps
u1, . . . , uk filling in the holes h1, . . . , hk are distributed as independent (q, g, n)-Boltzmann loop-
decorated maps of perimeters deg(h1), . . . ,deg(hk).

We omit the proof here since it follows closely the lines of the proof in Budd (2018). We as well
refer to Korzhenkova (2021) for the details.

We assume that a peeling algorithm A is fixed, deterministic or probabilistic. In the latter case
we require independence of the choice of a peeled edge A(e, `′) ∈ Active(e) of (m, `) conditioned on
(e, `′) ⊂ (m, `). Let (e0, `0) ⊂ (e1, `1) ⊂ . . . ⊂ (en, `n) = (m, `) be the associated peeling exploration.
By the Markov property and the convention F (0)(q, g, n) = 1 if the degree of the hole incident to
the peeled edge e is l we get the transition probabilities:

P[Lk1,...,km | ei, `i, e] =
ngmF (u)F (l+m−u−2)

F (l)
for u = |{ki = in}|, m ≥ 1, k1 = out,

P[Gk1,k2 | ei, `i, e] =
F (k1)F (k2)

F (l)
for k1, k2 ≥ 0, k1 + k2 + 2 = l, (4.1)

P[Ck| ei, `i, e] =
qkF

(l+k−2)

F (l)
for k ≥ 1,

where for simplicity F (i) = F (i)(q, g, n) for all i ≥ 0. For later usage we also need

P[Luv | ei, `i, e] =

(
u+ v − 1

u

)
ngu+vF (u)F (l+v−2)

F (l)
for u ≥ 0, v ≥ 1. (4.2)

4.2. Targeted exploration of pointed Boltzmann loop-decorated maps. In this section a pointed
(q, g, n)-Boltzmann loop-decorated map (m•, `) of perimeter p is studied. Its probability is pro-
portional to wq,g,n(m•, `). For this to be well-defined, we need the pointed partition function

F
(p)
• (q, g, n) :=

∑
(m•,`)∈LM(p)

•

wq,g,n(m•, `) (4.3)

to be finite. This will be a consequence of Theorem 2.1, but for now we make the following stronger
assumption.

Let (q, g, n) be strongly admissible, i.e. F (p)
• (q, g, n) <∞ for all p ≥ 1, and (m•, `) be a pointed

(q, g, n)-Boltzmann loop-decorated map of perimeter p. One can formulate the Markov property
result equivalent to Lemma 4.2 in the pointed case:

Lemma 4.3. Let (e, `′) be a fixed loop-decorated map of perimeter p with a single hole h. If with
positive probability (e, `′) ⊂ (m•, `) and the marked vertex of m• is not an inner vertex of e (inner
vertices of e are those not incident to a hole), then the pointed map u• filling in the hole h is
distributed as a pointed (q, g, n)-Boltzmann loop-decorated map of perimeter deg(h).
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Now using Lemma 4.3 we can easily study the distribution of the targeted peeling exploration
(3.2),

(e0, `0) ⊂ (e1, `1) ⊂ . . . ⊂ (en, `n) = (m•, `),

of a pointed (q, g, n)-Boltzmann loop-decorated map (m•, `) of perimeter p. Conditionally on (ei, `i),
if the degree of the hole of ei is Pi = l, then the exploration events Ck,Gk,∗,G∗,k,Lk1,...,km,∗,L∗,k1,...,km
with k1 = out occur with probabilities:

P[L∗,k1,...,km | ei, `i, e] =
ngmF

(u)
• F (l+m−u−2)

F
(l)
•

for u = |{ki = in}|, m ≥ 1,

P[Lk1,...,km,∗| ei, `i, e] =
ngmF (u)F

(l+m−u−2)
•

F
(l)
•

for u = |{ki = in}|, m ≥ 1,

P[Gk,∗| ei, `i, e] = P[G∗,k| ei, `i, e] =
F (k)F

(l−k−2)
•

F
(l)
•

for 0 ≤ k ≤ l − 2,

P[Ck| ei, `i, e] =
qkF

(l+k−2)
•

F
(l)
•

for k ≥ 1,

(4.4)

where F (i) = F (i)(q, g, n) for all i ≥ 0, and by convention F (0)
• = 1. We also have

P[Luv,∗| ei, `i, e] =

(
u+ v − 1

u

)
ngu+vF (u)F

(l+v−2)
•

F
(l)
•

for u ≥ 0, v ≥ 1,

P[L∗,uv | ei, `i, e] =

(
u+ v − 1

u

)
ngu+vF

(u)
• F (l+v−2)

F
(l)
•

for u ≥ 0, v ≥ 1.

(4.5)

For simplicity when we do not need to know the precise event Lk1,...,ku+v , we directly work with Luv
instead without further specification. After the peeling step the degree Pi+1 of the hole is given by

Pi+1 =


Pi − k − 2 after Gk,∗ or G∗,k,

Pi + v − 2 after Cv or Lk1,...,ku+v ,∗ ∈ Luv,∗,

u after L∗,k1,...,ku+v ∈ L∗,uv .

We conclude that the perimeter and nesting process (Pi, Ni) of (m•, `) is a Markov process with
transition probabilities given explicitly by

P[Pi+1 = p, Ni+1 = Ni + 1| Pi = l] =
F

(p)
•

F
(l)
•

∑
v≥1

(
v + p− 1

p

)
ngv+pF (l+v−2),

P[Pi+1 = p, Ni+1 = Ni| Pi = l] =
F

(p)
•

F
(l)
•

{
q̂p−l+2 for p ≥ l − 1,

2F (l−p−2) for p < l − 1,

(4.6)

where the fixed point equation (2.3) and transition probabilities (4.4), (4.5) were used.
Now we introduce the notion from Budd (2016), which we will need later to establish the con-

nection between the exploration process and the so-called accelerated ricocheted random walk:

νq̂(k) := γk+(q̂)

{
q̂k+2 for k ≥ −1,

2W (−k−2)(q̂) for k < −1,
(4.7)

where γ+(q̂) is defined by (2.5). Once q̂ is admissible, which is the case here, one can prove that
νq̂ is a probability measure on Z using Budd (2016) - see Appendix A.2 in Korzhenkova (2021).
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With this and the equality F (p)(q, g, n) = W (p)(q̂), which follows from Lemma 4.1, the transition
probabilities (4.6) can be rewritten as

P[Pi+1 = p, Ni+1 = Ni + 1| Pi = l] =
F

(p)
• γ−p+

F
(l)
• γ−l+

∑
v≥1

(
v + p− 1

p

)
n

2
(gγ+)p+vνq̂(−l − v),

P[Pi+1 = p, Ni+1 = Ni| Pi = l] =
F

(p)
• γ−p+

F
(l)
• γ−l+

νq̂(p− l),

(4.8)

where l > 0, p ≥ 0 and γ+ = γ+(q̂). In particular, for l > 0 the following holds

F
(l)
• γ−l+ =

∑
p≥0

F
(p)
• γ−p+

(
νq̂(p− l) +

n

2

∑
k≥1

(
k + p− 1

p

)
(gγ+)k+pνq̂(−k − l)

)
. (4.9)

4.3. Separating loops on pointed Boltzmann loop-decorated maps. In this section we present addi-
tional definitions and results which will be of importance in the proof of Proposition 5.5 (iii). The
latter, in turn, provides the asymptotic behaviour of the functions hrp appearing in Theorem 2.2 and
is crucial for the proof of Theorem 2.3.

We say that a loop in ` with (m•, `) ∈ LM
(p)
• is separating if, after its removal together with the

edges intersected by it, one connected component of the map contains the marked vertex (target)
and the other contains the root and the root face.

Following Borot et al. (2016) we generalize the model by assigning an additional weight s ∈
(
0, 2

n

)
to the separating loops. Let (q, g, n) be strongly admissible, n ∈ (0, 2), and for now additionally
assume that the partition function corresponding to this model, denoted as F (p)

• [s](q, g, n), is finite.
We will see in the proof of Proposition 5.5 (iii) that the additional assumption is redundant as
long as we are in the non-generic critical phase. Since the performed change is deterministic the
exploration process in this situation fulfils the Markov property analogous to Lemma 4.3. The
only modification is that u• is distributed as a pointed (q, g, n)-Boltzmann loop-decorated map of
perimeter deg(h) with additional weight s per separating loop. Then the transition probabilities
(4.4) for the peeling events have to be modified as follows

P[L∗,k1,...,km | ei, `i, e] =
sngmF

(u)
• [s]F (l+m−u−2)

F
(l)
• [s]

for u = |{ki = in}|, m ≥ 1,

P[Lk1,...,km,∗| ei, `i, e] =
ngmF (u)F

(l+m−u−2)
• [s]

F
(l)
• [s]

for u = |{ki = in}|, m ≥ 1,

P[Gk,∗| ei, `i, e] = P[G∗,k| ei, `i, e] =
F (k)F

(l−k−2)
• [s]

F
(l)
• [s]

for 0 ≤ k ≤ l − 2,

P[Ck| ei, `i, e] =
qkF

(l+k−2)
• [s]

F
(l)
• [s]

for k ≥ 1.

(4.10)

Following the above steps taken for the model with s = 1, which is exactly the targeted exploration
of pointed Boltzmann loop-decorated maps in Section 4.2, we get from (4.10) via (4.7) analogously
to (4.9),

F
(l)
• [s]γ−l+ =

∑
p≥0

F
(p)
• [s]γ−p+

(
νq̂(p− l) +

sn

2

∑
k≥1

(
k + p− 1

p

)
(gγ+)k+pνq̂(−k − l)

)
.
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In the non-generic critical case, i.e. gγ+ = 1/2, the recursive equation reads as

F
(l)
• [s]γ−l+ =

∑
p≥0

F
(p)
• [s]γ−p+

(
νq̂(p− l) +

sn

2

∑
k≥1

(
k + p− 1

p

)
1

2k+p
νq̂(−k − l)

)
. (4.11)

5. Accelerated ricocheted random walks

The main goal of this chapter is to give an interpretation of the law (4.8) in the non-generic
critical case as a Doob-transform of a random walk with law ν that is restricted to the non-negative
integers by a specific boundary condition. For this reason we extensively study properties of ν and
start working with functions hrp defined in (2.8). This chapter is a non-trivial adaptation of the
results of Budd (2018, Chapter 4) to our setting.

Suppose ν : Z → R+ is non-negative and
∑

k∈Z ν(k) = 1, such that it defines a probability
measure on Z. Let (Wi)i≥0 be a random walk started at p ∈ Z under Pp with independent increments
distributed according to ν. The random walk (Wi)i≥0 is said to drift to ±∞ if limi→∞Wi = ±∞
Pp-almost surely . If none of these hold, it is said to oscillate.

5.1. Admissibility criteria. Let us define hr0 : Z→ R as in (2.8),

hr0(p) =

(
−r
4

)p(2p

p

)
2F1

(
1

2
,−p; 1

2
− p;−1

r

)
1{p≥0}.

In particular, these are coefficients of the generating function 1/
√

(1− z)(1 + rz) for z ∈ [−1, 1).
We say hr0 is ν-harmonic on N if for all l ≥ 1,∑

k∈Z
hr0(l + k)ν(k) = hr0(l).

In Budd (2016, Proposition 3) it was shown that the mapping q̂ 7→ νq̂ given by (4.7) determines
a one-to-one correspondence between admissible weight sequences q̂ and probability measures ν
for which there is r ∈ (−1, 1] such that hr0 is ν-harmonic on N. Even though there q̂ was called
admissible iff W

(2)
• (q̂) < ∞, it is compatible with our definition under the additional assumption

of ν(−2) > 0. Indeed, since W (l)(q̂) ≤ W
(l)
• (q̂), one direction is obvious, the other direction is

proven in Appendix A.1. We slightly extend the mentioned result in the proposition below. The
same was done in Budd (2018) for the rigid loop model on bipartite maps and their proof can be
easily extended to our setting by substituting h↓0 in Budd (2018) with hr0 defined above. We refer
the interested reader to Korzhenkova (2021) for details.

Proposition 5.1. Let ν : Z→ R be a probability measure on Z with ν(−2) > 0. Then the following
are equivalent:

(i) ν = νq̂ for some admissible sequence q̂.

(ii) There is r ∈ (−1, 1] such that the function hr0 is ν-harmonic on N.

(iii) There is r ∈ (−1, 1] such that the strict descending ladder process of the random walk (Wi)

with law ν has probability generating function G<(z) = 1−
√

(1− z)(1 + rz).
The r in (ii) and (iii) is the same. It is uniquely determined by q̂ from (i) and is given by r = −γ−(q̂)

γ+(q̂) .
Conversely, r uniquely determines q̂ such that (4.7) is satisfied.

Recall that the strict descending ladder epochs (T<j ) are defined by T<0 = 0 and

T<j+1 := inf
{
i > T<j : Wi < WT<j

}
∈ Z ∪ {∞} for j ≥ 0.
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The strict descending ladder process (H<
j ) is given byH<

j := −WT<j
provided T<j <∞ and otherwise

H<
j := †. It is a defective walk if (Wi) drifts to ∞ and proper otherwise.
We call ν : Z→ R satisfying any of the equivalent conditions in Proposition 5.1 admissible.
In particular, we see that the law of the strict descending ladder process is almost universal for

any admissible ν, meaning that it depends on the single parameter r. This is useful for the following
statement, which is a counterpart of the result Budd (2018, Lemma 2). Let Hr

l : Z → R for l ≥ 0
be defined as

Hr
l (p) =

p

l + p
(hr0(p)hr0(l) + rhr0(p− 1)hr0(l − 1))1{p>0} + 1{l=p=0} (5.1)

so that Hr
0 = hr0 as hr0(−1) = 0.

Lemma 5.2. If ν is admissible, for l ≥ 0, p ≥ 1 we have

Pp[(Wi) hits Z≤0 at − l] = Hr
l (p),

where r is the one given by Proposition 5.1.

Proof : Analogously to the proof of Budd (2018, Lemma 2) using Proposition 5.1 we obtain the
following equation for Pl(p) := Pp[(Wi) hits Z≤0 at − l] with Pl(0) = 1{l=0},

hr0(p+ k) =

k∑
l=0

Pl(p)h
r
0(k − l) for all p, k ≥ 0.

This yields the following equation for the generating function P(x, y) :=
∑

p≥0

∑
l≥0 Pl(p)x

lyp, which
is necessarily convergent for |x|, |y| < 1,

P(x, y)√
(1 + rx)(1− x)

=

x√
(1+rx)(1−x)

− y√
(1+ry)(1−y)

x− y
,

where
∑

p≥0 h
r
0(p)xp = 1/

√
(1− x)(1 + rx) for |x| < 1 was used. From this we conclude,

(x∂x + y∂y)P(x, y) = y∂y

(
1 + rxy√

(1− x)(1 + rx)(1− y)(1 + ry)

)
. (5.2)

Note that the expression inside the brackets on the right side is a product of (1 + rxy) and two
generating functions of hr0 evaluated at x, y. Therefore, comparing the coefficients of the series we
get (p+ l)Pl(p) = p(hr0(p)hr0(l) + rhr0(p− 1)hr0(l − 1)) for l, p ≥ 0. �

In the course of the proof we have established that Hr
l (p) has the generating function

∑
p≥0

∑
l≥0

Hr
l (p)xlyp =

x− y
√

(1−x)(1+rx)
(1−y)(1+ry)

x− y
for |x|, |y| ≤ 1, y 6= 1. (5.3)

which is to be understood as 1
2

(
1

1−x + 1
1+rx

)
when x = y.

5.2. Accelerated ricocheted random walk. For an arbitrary probability measure ν on Z and a constant
p ∈ [0, 1] we define the accelerated p-ricocheted random walk (ARRW) to be a Markov process
(W ∗i , N

∗
i )i≥0 on Z2 started at (k, 0) under P∗k with the transition probabilities

P∗k[W ∗i+1 = l, N∗i+1 = N∗i + 1|W ∗i = p] = p
∑
v≥1

(
v + l − 1

l

)
ν(−p− v)

2l+v
, p > 0, l ≥ 0;

P∗k[W ∗i+1 = l, N∗i+1 = N∗i |W ∗i = p] =
(
1− p1{l<0}

)
ν(l − p), p > 0, l ∈ Z; (5.4)

P∗k[W ∗i+1 = p, N∗i+1 = N∗i |W ∗i = p] = 1, p ≤ 0.
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One should think of this process as a random walk with distribution ν on N with a specific
boundary condition. Whenever it is leaving N and jumping to −k < 0: with independent probability
1−p it “penetrates” the “wall” Z≤0 and gets trapped at −k forever, or with independent probability
p it “ricochets off the wall with some random acceleration” and lands at some l ∈ Z+, once the
walk hits 0 it is trapped there almost surely. The process (N∗i ) counts the number of ricochets that
have occurred up to time i. If the process is trapped eventually, its final position is denoted by
(W ∗∞, N

∗
∞).

Unlike the p-ricocheted walk introduced in Budd (2018) this process is not very illustrative since
the landing position after ricochet does not determine the “intentional” (if there were no “wall”)
landing position. Rather with a positive probability it can be any negative integer. The reason for
changing the process in such a way becomes understandable once we compare it with the peeling
process discussed in Section 4.2.

To any accelerated ricocheted walk (W ∗i , N
∗
i )i≥0 we can associate the accelerated ricochet sequence

(`∗n)n≥0 that tracks the landing point after ricochet. More precisely, `∗0 = W ∗0 and for 1 ≤ n ≤ N∗∞:
`∗n = W ∗i if the nth accelerated ricochet occurs at the ith step, i.e. N∗i−1 = n− 1 and N∗i = n. We
set `∗n = W ∗∞ if n > N∗∞. Then it is a Markov process with transition probabilities

P∗k[`∗n+1 = l| `∗n = p] = p
∑
n≥1

(
n+ l − 1

l

)
1

2n+l
Pp[(Wi) hits Z≤0 at − n],

P∗k[`∗n+1 = 0| `∗n = p] = Pp[(Wi) hits Z≤0 at 0] + p
∑
n≥1

1

2n
Pp[(Wi) hits Z≤0 at − n],

P∗k[`∗n+1 = k| `∗n = p] = (1− p)Pp[(Wi) hits Z≤0 at k],

where p > 0, l > 0, k < 0 and (Wi) under Pp is a random walk started at p with law ν. For
p ≤ 0, P∗k[`∗n+1 = p| `∗n = p] = 1. For an admissible measure ν we can rewrite the above probabilities
via Lemma 5.2 for p > 0, l ∈ Z as follows

P∗k[`∗n+1 = l| `∗n = p] = (1− p)Hr
|l|(p)1{l<0} +Hr

0(p)1{l=0}

+ p
∑
n≥1

(
n+ l − 1

l

)
1

2n+l
Hr
n(p)1{l≥0},

P∗k[`∗n+1 = p| `∗n = p] = 1 for p ≤ 0.

(5.5)

Lemma 5.3. If ν is admissible and p ∈ [0, 1), then the accelerated p-ricocheted random walk almost
surely gets trapped in finite time.

Consistent with the previous statements Theorem 2.2 and Theorem 2.3 we exclude the case n = 2,
which corresponds to p = 1.

Proof : Let (Wi) under Pp be a random walk started at p with law ν. When p < 1, as (Wi)i does not
drift to ∞ (see Budd (2016, Proposition 4) and Proposition 5.1) and every time it is about to jump
to Z≤0 it is trapped with probability at least 1− p. So the probability of N ricochets happening in
a row is ≤ pN . This yields directly that for p < 1, the ARRW gets trapped almost surely in finite
time. �

We now define a family of functions which we need for Theorem 2.2 and have already mentioned
in the introduction.

Definition 5.4. For p ∈ [0, 1] and admissible ν we define hrp : Z≥0 → R by setting

hrp(p) := P∗p[W ∗∞ = 0] for p < 1,

hr1(p) :=

{
P∗p[W ∗∞ = 0| T <∞] if P∗p[T <∞] > 0,

1 otherwise,



Exploration of critical Boltzmann planar maps decorated by a triangular O(n) loop model 17

where (W ∗i )i is the p-ARRW induced by ν, T is the first hitting time of Z≤0 by the 1-ARRW and
r as in Proposition 5.1.

We would like to mention that hrp(·) is well-defined since we will show that it indeed depends only
on r and p. More precisely, this will follow from (5.6) in the proof of the next proposition and the
explicit expression (5.1) for Hr

· , which depends only on r. Moreover, this definition is consistent
with Lemma 5.2 for p = 0 since in this case W ∗i = Wi with jump law ν and thus P∗p[W ∗∞ =
0] = Pp[(Wi) hits Z≤0 at 0]. It is also consistent with (2.8) for p = 1 since if P∗p[T < ∞] > 0,
P∗p[W ∗∞ = 0, T < ∞] = P∗p[T < ∞] as in this situation (W ∗i )i can only get trapped at 0; and, thus,
hr1(p) = P∗p[W ∗∞ = 0| T <∞] = 1. We further explore the properties of hrp.

Proposition 5.5. If ν is admissible such that ν(k) > 0 for an odd k ≥ −12 and p ∈ [0, 1], then the
function hrp satisfies the following properties:

(i) p 7→ hrp(p) is analytic on (0, 1) and continuous on [0, 1) for all p ≥ 0;

(ii) hrp(p) ∈ (0, 1] for all p ∈ [0, 1] and p ≥ 0;

(iii) if ν ≡ νq̂ as in Proposition 5.1 with q̂ corresponding to a non-generic critical triplet (q, g, n)
via (2.3) and Assumption holds, then for p ∈ [0, 1) the following asymptotics hold uniformly
in p in any compact subinterval

hrp(p) ∼ Cpp
−b with Cp > 0 independent of p,

where b = arccos(p)/π, Cp := 8
√

2
π

u
√

1−pΓ(b) sin(b arccos(
√
u))√

1−u(8u(1+r))b
and u = u(p) ∈ (0, 1) for all

p ∈ [0, 1) is a continuous function such that u(0) = 17+
√

33
128 .

Proof : The fact that hrp(p) ∈ (0, 1] for p < 1 follows easily from the definition and explicit law of
ARRW (5.4) together with Lemma 5.3.

If p = 0, then by Lemma 5.2 we have P∗p[W ∗∞ = 0] = Hr
0(p), which agrees with hr0(p) given by

(2.8). Let us now consider p ∈ (0, 1) in order to show that the function hrp is analytic in p on this
interval.
We introduce the following notation for the transition probability (5.5), for p, l > 0,

p p∗p,l := P∗k[`∗n+1 = l| `∗n = p] = p
∑
n≥1

(
n+ l − 1

l

)
1

2n+l
Hr
n(p);

p∗p :=
∑
n≥1

1

2n
Hr
n(p) = p∗p,0.

Exploring the number of ricochets until the ARRW gets trapped via (5.5) and our new notation we
can express the probability hrp(p) as

hrp(p) = Hr
0(p) +

∑
N≥1

pN
∑

(p1,...,pN−1)∈ZN−1
>0

p∗p,p1p
∗
p1,p2 . . . p

∗
pN−2,pN−1

∑
pN≥0

p∗pN−1,pN
Hr

0(pN ). (5.6)

Moreover, for any k > 0 we have∑
l≥0

p∗k,l
Fubini

=
∑
n≥1

Hr
n(k)

∑
l≥0

(
n+ l − 1

l

)
1

2n+l︸ ︷︷ ︸
=1

Lemma 5.2
≤ Pk[(Wi) hits Z≤0] ≤ 1.

Therefore, since Hr
0 ≤ 1, we inductively conclude that∑

(p1,...,pN−1)∈ZN−1
>0

p∗p,p1p
∗
p1,p2 . . . p

∗
pN−2,pN−1

∑
pN≥0

p∗pN−1,pN
Hr

0(pN ) ≤ 1.

2This assumption corresponds to the assumption of q̂ being non-bipartite. Thus, to r ∈ (−1, 1).
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This means that the coefficients in the expansion (5.6) of hrp in front of pN are uniformly bounded
by 1 and independent of p, which implies that hrp is analytic in p ∈ (0, 1) and by monotonicity we
see that pointwise hrp → hr0 as p→ 0. The proof of (i) is complete.

For p ∈ (0, 1) by the first step analysis, i.e. conditioning the probability P∗p[W ∗∞ = 0] on the first
step of the ARRW W ∗1 , we obtain the following recursive equation satisfied by hrp for p > 0,

hrp(p) =
∑
l≥0

hrp(l)

(
ν(l − p) + p

∑
k≥1

(
k + l − 1

l

)
1

2k+l
ν(−k − p)

)
. (5.7)

We recall (4.11) and note that by setting s := 2p/n ∈
(
0, 2

n

)
, if (q, g, n) is non-generic critical,

we get that hrp(p) and F
(p)
• [s](q, g, n)γ−p+ (q̂) satisfy the same recursive equation. Moreover, from

these equations we see that both functions (p,m) 7→ hrp(p)1{p≥0} and (p,m) 7→ F
(p)
• [s]γ−p+ 1{p≥0}

are harmonic w.r.t. the law of the p-ARRW. In particular, by the uniqueness property of harmonic
functions we deduce that F (p)

• [s]γ−p+ = hrp(p) for any p ≥ 0 and any non-generic critical triplet
(q, g, n). Note that we have used that both F

(p)
• [s]γ−p+ 1{p≥0} and hrp(p)1{p≥0} are equal to 1 at

p = 0. Indeed, hrp(0) = 1 since by definition the ARRW gets trapped in Z≤0 almost surely;
F

(0)
• [s] = F (0) since no loops are allowed to traverse the root face and F (0) = 1 by convention.

Furthermore, since γ+ and hrp(p) are well-defined and finite for any admissible ν (or equivalently by
Proposition 5.1, any admissible q̂), we conclude that for any non-generic critical (q, g, n) related to
q̂ by the fixed-point equation (2.3), F (p)

• [s](q, g, n) = γp+(q̂)hrp(p) <∞.
Hence now we can work with F (p)

• [s]γ−p+ instead of hrp to determine the asymptotic behaviour of the
latter function as p→∞ in the regime of (iii). More precisely, we use the result Borot et al. (2016,
Theorem 6.7). We choose there ξ := 8u(p)(1 + r)γ+ = 4u(p)(1 + r)/g for some continuous function
u := u(p) ∈ (0, 1) and note that since in our situation the bending energy α = 1 the shift in (5.26)
is automatically zero. Then the statement of Borot et al. (2016, Theorem 6.7) is that the resolvent
function F•[s](x) :=

∑
p≥0 F

(p)
• [s]/xp+1 defined analogously to (2.4) has the following form when

expanded around γ+:

F•[s](x) =

(
x−γ+
ξ

)b(s)−1

1−
(
x−γ+
ξ

)2b(s)
Φb(s)(ξ) + O

(
(x− γ+)b(s)

)
as x↘ γ+. (5.8)

The error is uniform for u in any compact subinterval of (0, 1), which is by definition of u(p) is
equivalent to being uniform for p in any compact subinterval of (0, 1). Here ξ := 8u(1 + r)γ+,
b(s) := arccos

(
ns
2

)
/π = arccos(p)/π = b as in (iii), (h in Borot et al. (2016) corresponds to our g,

ρ = 1 + r with r = −γ−/γ+ as defined in Section 2.1), and

Φb(ξ) =
2
√

2g

(1 + r)
√

1 + p

sin(b arccos(
√
u))

sin(arccos(
√
u))

=

√
2γ−1

+

(1 + r)
√

1 + p

sin(b arccos(
√
u))√

1− u
. (5.9)

In the last equality we have used that γ+g = 1/2.
Moreover, since 1/(1− ε) ≈ 1 + ε as ε→ 0, we further can simplify (5.8):

F•[s](x) =
Φb(ξ)

ξb−1
(x− γ+)b−1 + O

(
(x− γ+)b∧(3b−1)

)
as x↘ γ+. (5.10)
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By transfer theorems (see Flajolet and Sedgewick (2009, Theorems VI.1 and VI.3)) it amounts to
the asymptotic behaviour,

F
(p)
• [s]

p→∞∼
γb−1

+ Φb(ξ)

ξb−1Γ(1− b)
γp+1

+

(p+ 1)b
∼ 8
√

2

π

u
√

1− pΓ(b) sin(b arccos(
√
u))√

1− u(8u(1 + r))b︸ ︷︷ ︸
=Cp

γp+
pb
, (5.11)

where the reflection formula Γ(1 − x)Γ(x) = π/ sin(πx), (5.9) and definitions of ξ, b were used. In
the case p = 0 we can determine u explicitly (see below).
We can finally conclude that hrp = F

(p)
• [s]γ−p+ has asymptotics

hrp(p)
p→∞∼ Cpp

−b (5.12)

uniformly in p in any compact subinterval of (0, 1). This completes the proof of (iii) for p ∈ (0, 1).
For p = 0, (5.12) was obtained in Budd (2016, (23)) explicitly using the exact formulas for hr0 and
its resolvent function. More precisely, C0 = Γ(1/2)/(π

√
1 + r). This results from trigonometric

identities in the following equation for u = u(0),√
8u(1−

√
u)

1− u
= 1

u∈(0,1)⇐⇒ 8u

1 +
√
u

= 1.

Hence, u(0) = 17+
√

33
128 . By continuity of p 7→ u(p) and since u(0) ∈ (0, 1) we conclude that the

asymptotics (5.12) holds uniformly in p in any compact subinterval of [0, 1). �

5.3. Conditioning to be trapped at zero. The conditioning of the probability P∗p[W ∗∞ = 0] on the first
step of the accelerated ricocheted random walk leads us to the following equation satisfied by hrp for
p > 0,

hrp(p) =
∑
l≥0

hrp(l)

(
ν(l − p) + p

∑
k≥1

(
k + l − 1

l

)
1

2k+l
ν(−k − p)

)
, (5.13)

(see also the proof of Proposition 5.5 (iii)). Recall (4.9) and note that once p = n/2 and gγ+ = 1/2,
i.e. (q, g, n) is non-generic critical, hrp(p) and F (p)

• γ−p+ (q̂) satisfy the same recursive equation. Then
these equations show that both functions (p,m) 7→ hrp(p)1{p≥0} and (p,m) 7→ F

(p)
• γ−p+ (q̂)1{p≥0}

are harmonic w.r.t. the law of the accelerated n
2 -ricocheted random walk. In particular, by the

uniqueness property of harmonic functions (since both functions are equal to 1 at p = 0) we can
conclude that F (p)

• γ−p+ (q̂) = hrn
2
(p) for any non-generic critical triplet (q, g, n). The same result can

be deduced from Theorem 2.1, see Section 6.
We now introduce the process, which is the Doob-transform of the ARRW and will reconstruct

the law of the peeling exploration in the non-generic setting. Assume that the law of the random
walk (Wi)i on Z, ν, is admissible and that there exists an odd k ≥ −1 such that ν(k) > 0. Let
the accelerated p-ricocheted random walk conditioned to be trapped at 0 be defined as the process
(W r

i , N
r
i )i≥0 under Prp that has the law of the accelerated p-ricocheted random walk (W ∗i , N

∗
i )i≥0

conditioned on {W ∗∞ = 0} under P∗p. So, (W r
i , N

r
i ) is a Markov process obtained from (W ∗i , N

∗
i ) by

the h-transform w.r.t. the harmonic function (p,m) 7→ hrp(p)1{p≥0}. Note that the above conditions
on ν and Proposition 5.5 ensure that hrp > 0. This means that the transition probabilities are given
by

Prk[W r
i+1 = l, N r

i+1 = N r
i + 1|W r

i = p] =
hrp(l)

hrp(p)
p
∑
v≥1

(
v + l − 1

l

)
1

2l+v
ν(−p− v),

Prk[W r
i+1 = l, N r

i+1 = N r
i |W r

i = p] =
hrp(l)

hrp(p)
ν(l − p), (5.14)
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Prk[W r
i+1 = 0, N r

i+1 = N r
i |W r

i = 0] = 1,

where p > 0, l ≥ 0.
The discussion at the beginning of this section yields the desired main result of this chapter.

Alternatively, it can be deduced by comparing (4.8) with (5.14) after application of (6.6), which
says that F (p)

• γ−p+ = hrn
2
(p). The latter strategy does not require the Assumption to hold.

Proposition 5.6. If (q, g, n) is a non-generic critical triplet such that q is non-bipartite, then the
perimeter and nesting process (Pi, Ni)i≥0 of the pointed (q, g, n)-Boltzmann map of perimeter p with
the triangular loop configuration is equal in distribution to the accelerated n

2 -ricocheted random walk
(W r

i , N
r
i )i≥0 with law νq̂ conditioned to be trapped at 0 under Prp.

5.4. Nesting statistic. The goal of this section is to prove our main statement about the nesting
statistic, Theorem 2.2. For this reason, we verify the following result about the total number of
ricochets.

Proposition 5.7 (Distribution of number of ricochets). Let ν be admissible such that there exists
an odd k ≥ −1 with ν(k) > 0, p ∈ (0, 1), and (W r

i , N
r
i )i≥0 be the accelerated p-ricocheted walk of

law ν conditioned to be trapped at 0. Then the number N r
∞ of ricochets has probability generating

function

Erk
[
xN

r
∞
]

=
hrxp(p)

hrp(p)
for x ∈

[
0,

1

p

)
. (5.15)

Moreover, Nr
∞

log k

Prk−→ p

π
√

1−p2
as k →∞, and the large deviation property holds

logPrk[N r
∞ < λ log k]

log k

k→∞−−−→ − 1

π
Jp(πλ) for 0 < λ <

p

π
√

1− p2
,

logPrk[N r
∞ > λ log k]

log k

k→∞−−−→ − 1

π
Jp(πλ) for λ >

p

π
√

1− p2
,

where

Jp(x) = x log

(
x

p
√

1 + x2

)
+ arccotx− arccos p.

The proof is omitted since it is analogous to the proof of Budd (2018, Proposition 6) once
Proposition 5.5 is established. We also refer to Korzhenkova (2021) for details.

Now the key result about the nesting statistic, Theorem 2.2, follows by applying Proposition 5.6
to the outcomes of Proposition 5.7.

6. Equivalence of admissibility of weight sequences

In this chapter we prove the remaining statement of Theorem 2.1. Namely we assume that q̂ is
admissible and g > 0, n ∈ (0, 2] are such that for all k ≥ 1

qk = q̂k − n
∑
l≥0

(
k + l − 1

l

)
gk+lW (l)(q̂) ≥ 0. (6.1)

We exclude cases n = 0 or g = 0 since otherwise the statement of the theorem is trivial. We then
show that (q, g, n) is admissible. Note that by excluding both cases n = 0 or g = 0 we as well exclude
the situation when q̂ is bipartite. Indeed, suppose that q̂ is bipartite, then since W (0) ≡ 1 and since
qk ≥ 0 for all k ≥ 1, we conclude that either n or g has to be zero. Equivalently, via Proposition
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5.1 and (4.7), we are given q̂k =
(ν(−2)

2

) k−2
2 ν(k − 2) for an admissible probability measure ν that

satisfies ν(k) > 0 for an odd k ≥ −1 and

ν(k − 2) ≥ n

2

∑
l≥0

(
k + l − 1

l

)(
2g2

ν(−2)

) k+l
2

ν(−l − 2) for k ≥ 1. (6.2)

This implies that
√

2g2

ν(−2) ≤
1
2 , see A.2.

The strategy of the proof is chosen to be be exactly as in Budd (2018). Namely, we explicitly
construct a random loop-decorated map and show that it is distributed as a (q, g, n)-Boltzmann
loop-decorated map, where q is defined by (6.1). Since most of the proof steps follow Budd (2018,
Section 5), we omit many details and only highlight the necessary changes. All of the details skipped
here can be found in Korzhenkova (2021).
As we have mentioned before in Section 3, a loop-decorated map (m, `) of perimeter p can be
specified by fixing a peeling algorithm A and providing a valid sequence of peeling events among
Gk1,k2 ,Ck,Lk1,...,km .

Let (e0, `0) be the hollow map of perimeter p. We iteratively construct the random sequence

(e0, `0) ⊂ (e1, `1) ⊂ (e2, `2) ⊂ . . . (6.3)

by setting (ei+1, `i+1) = (ei, `i) if ei has no holes and otherwise (ei+1, `i+1) is obtained from (ei, `i)
by one of the peeling events. If the peeled edge A(ei) is incident to a hole of degree l, the event
E ∈ {Gk1,k2 ,Ck,Lk1,...,km} is chosen independently of everything else with probability Pl(E), which
we choose, motivated by (4.1), to be

Pl[Lout,k2,...,km ] =
n

2

(
2g2

ν(−2)

)m
2 ν(−l − v)ν(−m+ v − 2)

ν(−l − 2)
for v = |{ki = out}|, m ≥ 1,

Pl[Ck] = qk

(
2

ν(−2)

) k−2
2 ν(−l − k)

ν(−l − 2)
for k ≥ 1, (6.4)

Pl[Gk1,k2 ] =
ν(−k1 − 2)ν(−k2 − 2)

2ν(−l − 2)
for k1, k2 ≥ 0, k1 + k2 + 2 = l.

Here, qk

(
2

ν(−2)

) k−2
2

= ν(k − 2)− n

2

∑
l≥0

(
k + l − 1

l

)(
2g2

ν(−2)

) k+l
2

ν(−l − 2).

These expressions are non-negative by (6.1) and sum up to one. Indeed,

Pl[Ck] +
∑
u≥0

Pl[L
u
k ] =

ν(−l − k)ν(k − 2)

ν(−l − 2)
is independent of n,

and for n = 0 the loop equation Budd (2016, (9)) delivers the result. The events with non-vanishing
probability are always valid, thus (6.3) is a well-defined random infinite sequence of loop-decorated
maps with holes.

Proposition 6.1. The sequence (6.3) stabilizes almost surely and gives rise to a well-defined random
loop-decorated map (m, `) of perimeter p.

The proof of this result follows from the next lemma as in Budd (2018) with the only difference
that the number of inner vertices increases not only in the events G0,l−2,Gl−2,0 when l > 1, but
also Lout,...,out if l > 1 and Lout,in,...,in,C1 if l = 1. This, however, does not destroy the argument
used to conclude the proof since P1[C1] > 0 and Pl[G0,l−2] are uniformly bounded away from 0 also
in our setting. The proof of the latter can be found in Korzhenkova (2021, A.7).
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For a loop-decorated planar map (e, `) with holes we set

V(e, `) = |e|+
∑
h

f r(deg(h)) for f r(p) :=
ν(−2)hrp(p)

ν(−p− 2)
, (6.5)

where |e| is the number of inner (not incident to a hole) vertices of e, p = n
2 , r as in Proposition 5.1

and the sum is over the holes h of e.

Lemma 6.2.

E[V(ei+1, `i+1)| (ei, `i)] ≤ V(ei, `i)

with equality if g = 1
2

√
ν(−2)

2 . In particular, V is superharmonic for (6.3).

The only changes that have to be made to the proof in Budd (2018) are the following. We need
to use f r defined by (6.5) instead of f↓, then in the event of peeling a face intersected by a loop
Lk1,...,kl+l′ ∈ Ll

′
l , V(ei+1, `i+1)− V(ei, `i) = −f r(p) + f r(p+ l − 2) + f r(l′). The difference of Budd

(2018, (38)) to the explicit probabilities (6.4) is compensated by the corresponding modified (5.13)
and the fact that

√
2g2

ν(−2) ≤
1
2 holds.

The following lemma provides the last component to complete the proof of Theorem 2.1.

Lemma 6.3. The probability of getting any particular loop-decorated map (m, `) of perimeter p in
the described way is wq,g,n(m, `)/W (p)(q̂).

The proof of this result is a straightforward modification of the corresponding proof in Budd
(2018) using (6.4) and the aforementioned fact that the number of inner vertices increases not only
in the events G0,l−2,Gl−2,0 when l > 1, but also Lout,...,out if l > 1 and Lout,in,...,in,C1 if l = 1.

This gives us all the ingredients to prove Theorem 2.1: Proposition 6.1 and Lemma 6.3 together
imply that

F (p)(q, g, n) :=
∑

(m,`)∈LM(p)

wq,g,n(m, `) = W (p)(q̂).

This shows that F (p)(q, g, n) <∞, and, thus, (q, g, n) is admissible and the random loop-decorated
map (m, `) is distributed as a (q, g, n)-Boltzmann loop-decorated map of perimeter p. Furthermore,
from Lemma 6.2 we deduce that the expected number of vertices of m is at most f r(p). This
completes the proof of Theorem 2.1. From F

(p)
• (q, g, n) = F (p)(q, g, n)E(p)[|m|] we deduce the

following statement.

Corollary 6.4. If (q, g, n) is admissible and n ∈ [0, 2], then (q, g, n) is strongly admissible.

Moreover, if (q, g, n) is non-generic critical, i.e gγ+(q̂) = g
√

2/ν(−2) = 1/2, then it follows
from Lemma 6.2 that f r(p) is exactly the expected number of vertices of the (q, g, n)-Boltzmann
loop-decorated map. In this case via (4.7) we get

F
(p)
• (q, g, n) = f r(p)F (p)(q, g, n) = γp+(q̂)hrn

2
(p). (6.6)

And hence by (2.7) and Proposition 5.5 (iii) we obtain the following result.

Proposition 6.5. If Assumption holds and (q, g, n) ∈ D is non-generic critical (dilute or dense)
with exponent a, then the number |m| of vertices of a (q, g, n)-Boltzmann loop-decorated map (m, `)
of perimeter p has expectated value

E(p)[|m|] =
γp+(q̂)hrn

2
(p)

F (p)(q, g, n)

p→∞∼ Cpmax(2,2a−2) for some C > 0. (6.7)
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We recall that when considering triples in D we exclude g = 0 and n = 0, and, thus, as we have
seen at the beginning of this section the case of bipartite weight sequences. Therefore, Proposition
5.5 is indeed applicable.

7. Ricocheted stable processes

The goal of this section is to investigate the convergence of the perimeter process (Pi)i after
appropriate rescaling and to prove the main result, Theorem 2.3. Before we start with the proof, we
need to understand the limiting process better. As mentioned above, we will show that this limit
coincides with the one introduced in Budd (2018), so in the following section we recall most of the
results and definitions from Budd (2018, Section 6.1).

7.1. Definition and some properties of ricocheted stable processes. Consider S = {(θ, ρ) : θ ∈
(0, 1), ρ ∈ (0, 1)} ∪ {(θ, ρ) : θ ∈ (1, 2), ρ ∈ (1− 1/θ, 1/θ)}. For (θ, ρ) ∈ S let (St)t≥0 be the (strictly)
θ-stable Lévy process started at 0 with positivity parameter ρ = P[S1 ≥ 0]. More precisely, (St)t≥0 is
characterized by E[exp (iλSt)] = exp (−tψ(λ)) with characteristic exponent in the Lévy-Khintchine
form

ψ(λ) = ia0λ+

∫
R

(
1− eiλy +iλy1{|y|<1}

)
π(y)dy

with Lévy measure π(y) = c+y
−θ−11{y>0} + c−|y|−θ−11{y<0}, where

a0 =
c+ − c−
θ − 1

, c+ = Γ(1 + θ)
sin(πθρ)

π
, c− = Γ(1 + θ)

sin(πθ(1− ρ))

π
. (7.1)

The infinitesimal generator A corresponding to (St) acting on twice differentiable measurable func-
tions f : R→ R defined as Af(x) := limt→0

1
tE[f(x+St)− f(x)] is given by (see e.g. Khoshnevisan

and Schilling (2016, Chapter 6))

Af(x) = −a0f
′(x) +

∫
R

(
f(x+ y)− f(x)− yf ′(x)1{|y|<1}

)
π(y)dy. (7.2)

Following Budd (2018, Section 6.1), for p ∈ [0, 1] we define the p-ricocheted stable process (X∗t )t≥0

to be the càdlàg Markov process with the infinitesimal generator A∗ acting on twice-differentiable
measurable functions f : (0,∞)→ R given in terms of (7.2) for y > 0, x ∈ R by

A∗f(y) = Af∗(y), with f∗(x) := f(x)1{x≥0} + pf(−x)1{x<0}. (7.3)

Its explicit expression was derived in Budd (2018, Lemma 6). We cite their result here.

Lemma 7.1. The infinitesimal generator A∗ defined by (7.3) can be rewritten as

A∗f(x) = x−θ
∫
R+

(
f(ux)− f(x)− xf ′(x)(u− 1)1{|u−1|<1}

)
µ(u)du

+ (p− 1)c−θ
−1x−θf(x) + (pc−κ− a0)x1−θf ′(x),

(7.4)

where µ(u) := π(u− 1) + pπ(−u− 1), κ :=
∫ 2

0 (u− 1)(u+ 1)−θ−1du,.

(X∗t )t≥0 is an example of a positive self-similar Markov process (pssMp) with index θ. The result
by Lamperti Lamperti (1972) (reformulated in Caballero and Chaumont (2006) with notation closer
to ours) shows that any such pssMp (Xt)t≥0 may be written as the exponential of a time-change of
a (killed) Lévy process (ξs)s≥0 started at ξ0 = 0. More precisely, let X0 = x for some x > 0 and let
T0 := inf{t > 0 : Xt = 0} (possibly infinite), then

Xt = x exp
(
ξs(tx−θ)

)
with s(t) := inf

{
s ≥ 0 :

∫ s

0
eθξu du ≥ t

}
, 0 ≤ t ≤ T0.



24 Aleksandra Korzhenkova

Such a Lévy process (ξs)s≥0 is called the Lamperti representation of the pssMp (Xt)t≥0. The
following result is cited from Budd (2018, Proposition 11).

Proposition 7.2. The Lamperti representation (ξ∗s )s≥0 of (X∗t )t≥0 is given by the sum of

(i) the Lamperti representation (ξ̂s)s≥0 of the θ-stable process killed upon hitting (−∞, 0) with
Laplace exponent

Ψ̂(z) := logE
[

ezξ̂1 1{1<ζ(ξ̂)}

]
=

1

π
Γ(θ − z)Γ(1 + z) sin(πz − πθ(1− ρ)); (7.5)

(ii) a compound Poisson process (ξ�s )s≥0 with rate pΓ(θ) sin(πθ(1− ρ))/π and Laplace exponent

Ψ�(z) := logE
[

ezξ
�
1 1{1<ζ(ξ�)}

]
=

p

π
Γ(θ − z)Γ(1 + z) sin(πθ(1− ρ)). (7.6)

In both these cases ζ(·) denotes the lifetime of the process (when the process is sent to the cemetery
state, which we set to be +∞). With the notation σ := 1/2 − θ(1 − ρ) ∈ (−1/2, 1/2) and b :=
1
π arccos(p cos(πσ)) ∈ [|σ|, 1/2], the Laplace exponent Ψ∗(z) = Ψ̂(z) + Ψ�(z) of (ξ∗s )s≥0 can be
expressed in factorized form as

Ψ∗(z) = 2θ
Γ
(

1+z
2

)
Γ
(

2+z
2

)
Γ
(
θ−z

2

)
Γ
(

1+θ−z
2

)
Γ
(
σ+b+z

2

)
Γ
(
σ−b+z

2

)
Γ
(

2−σ+b−z
2

)
Γ
(

2−σ−b−z
2

) . (7.7)

We note that for all allowed parameters (θ, ρ) ∈ S and p ∈ [0, 1], the Laplace exponent Ψ∗ is
analytic in (−1, θ) and has precisely two zeroes z = ±b− σ on this interval, except when p = 1 and
ρ = 1− 1/(2θ) when both zeroes coincide. Thus, let us exclude this case and for now assume that
p < 1 whenever ρ = 1− 1/(2θ). Then the functions h↓, h↑ : (0,∞)→ R defined as

h↓(x) := x−b−σ, h↑(x) := xb−σ (7.8)

are A∗-harmonic on (0,∞). In the following, we restrict ourselves to h↓, but the same can be done
with h↑. Now we can introduce the corresponding h-transform (X↓t )t≥0 of the process (X∗t )t≥0 under
h↓ with generator

A↓f(x) =
1

h↓(x)

(
A∗h↓f

)
(x). (7.9)

This process is again a pssMp with index θ. We denote its Lamperti representation by (ξ↓t )t≥0.
Its Laplace exponent is then obtained by a shift of Ψ∗(z), i.e.

Ψ↓(z) = Ψ∗(z − b− σ) =
1

π
Γ(θ + b+ σ − z)Γ(1− b− σ + z)

(
cos(πb)− cos(π(z − b))

)
.

The corresponding Lévy measure is Π↓(dy) = e−(b+σ)y Π∗(dy). Since Ψ↓(0) = 0, the corresponding
Lévy process has infinite lifetime. Furthermore, if ϕ↓ is the corresponding Laplace transformation,
then E

[
ξ↓1
]

= (ϕ↓)′(0) < 0. This means that (ξ↓s )s≥0 drifts almost surely to −∞, which implies that
the pssMp (X↓t )t≥0 continuously hits zero. We set X↓t = 0 after the process hits the origin.

7.2. Scaling limit. The goal of this Section is to prove Theorem 2.3. For this reason we restrict
ourselves to the according setting, less general than in the discussion of Section 7.1. Let ν be a
non-generic critical probability measure of index θ ∈

(
1
2 ,

3
2

)
, meaning that ν is admissible, the

random walk with jump probabilities ν oscillates, and the tails of ν as k →∞ are ν(−k) ∼ ck−θ−1

and ν(k) ∼ −c cos (πθ)k−θ−1 for some c > 0. A random walk with such a law ν is in the domain
of attraction of θ-stable process with c+/c− = − cos (πθ). This follows, e.g., from Feller (1971,
Theorem 1a Chapter IX.8). We also note that c+/c− = − cos (πθ) is equivalent to a positivity
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parameter ρ = 1−1/(2θ) by (7.1). We, therefore, restrict ourselves in the remainder of this chapter
to such processes. More precisely, we assume

ρ = 1− 1

2θ
, σ = 0, c− =

1

π
Γ(θ + 1), c+ = − cos(πθ)c−, b =

1

π
arccos(p).

Analogously to Section 5.4 we first prove the statement similar to Theorem 2.3 for the accelerated
ricocheted random walk and then via Proposition 5.6 yield the result for the perimeter process. The
similar result for the rigid O(n) loop model was proven in Budd (2018, Section 6.2). We will refer to
their proof highlighting and establishing the changes which have to be made due to the additional
acceleration appearing in our case. Most of the technical details will be presented in the appendix.

Proposition 7.3. Suppose ν is non-generic critical of index θ ∈ (1/2, 3/2) and p ∈ (0, 1). Let
(W r

i )i≥0 under Prp be the associated accelerated p-ricocheted random walk of law ν started at p and
conditioned to be trapped at zero. Then the following convergence in distribution in the J1-Skorokhod
topology holds, (W r

bCpθtc

p

)
t≥0

(d)−−−→
p→∞

(X↓t )t≥0, (7.10)

where (X↓t )t≥0 is the p-ricocheted stable process defined in Section 7.1 with parameters (θ, ρ =

1−1/(2θ), p) started at X↓0 = 1, and C := c+/ limk→∞ k
θ+1ν(k) = Γ(1+θ)/(π limk→∞ k

θ+1ν(−k)).

The main ingredient of the proof of this proposition is an invariance principle established in
Bertoin and Kortchemski (2016). To apply this result we need to verify some assumptions. The
main step in this direction is the following lemma.

Lemma 7.4. Under the assumptions of Proposition 7.3 for any twice-differentiable function f :
(0,∞)→ R with compact support it holds that

CpθErp
[
f

(
W r

1

p

)
− f(1)

]
p→∞−−−→ A↓f(1), (7.11)

where A↓ is the infinitesimal generator (7.9).

We can easily extend the proof of Budd (2018, Lemma 7) to conclude the desired statement once
we establish that as p→∞,

Cpθ

[
− f(1) +

∑
k>−p

(
1 +

k

p

)−b
f

(
1 +

k

p

)(
ν(k) + p

∑
u≥1

(
u+ p+ k − 1

p+ k

)
ν(−u− p)

2u+p+k

)]

= Cpθ
∑
s∈Z

[
f↓
(

1 +
s

p

)
− f↓(1)

]
ν(s) + O

(
log3/2(p)
√
p

)
,

(7.12)

where f↓ is defined as f↓(x) := h↓(x)f(x)1{x≥0} + ph↓(−x)f(−x)1{x<0}.
The latter is done in Appendix A.3. See also Korzhenkova (2021) for the detailed proof of the
lemma.

Proof of Proposition 7.3: The main ingredient to prove the convergence (7.10) to the self-similar
Markov process with the Lamperti representation ξ↓, which has Laplace exponent Ψ↓(z) computed
in the previous section, is Bertoin and Kortchemski (2016, Theorem 2). We recall that Π↓(dy) =

e−by Π∗(dy) = e(1−b)y µ(ey)dy is the Lévy measure of ξ↓, and we can rewrite the Laplace exponent
Ψ↓ in the Lévy-Khintchine form as

Ψ↓(z) = b↓z +

∫
R

(
ezy −1− zy1{|y|≤1}

)
Π↓(dy),
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where b↓ is some constant which can be computed explicitly from the expression for Π∗ obtained in
the proof of Proposition 7.2. To use Bertoin and Kortchemski (2016, Theorem 2) we need to verify
three assumptions, (A1) - (A3).

Lemmas 7.1 and 7.4 imply that for any twice-differentiable function f : (0,∞)→ R with compact
support in (0, 1) ∪ (1,∞),

CpθErp
[
f

(
W r

1

p

)
− f(1)

]
p→∞−−−→ A↓f(1) =

∫
R+

h↓(u)f(u)µ(u)du =

∫
R
f(ey)Π↓(dy). (7.13)

This convergence is the assumption (A1) in Bertoin and Kortchemski (2016), except that it has to
hold true for continuous instead of twice-differentiable functions. This can be done by approximating
these continuous with twice-differentiable functions and comparing the large p-limit of (7.12) with
the right-hand side of (7.13) (see Korzhenkova (2021, A.9) for the details). Assumption (A2) is
equivalent to Lemma 7.4 with f chosen first such that f(z) = log(z) and then such that f(z) =
log2(z), resp., for z in some small neighbourhood of 1. Assumption (A3) follows from the fact that
for any β ∈ (0, b), as p→∞,

pθErp
[(

W r
1

p

)β
1{log(W r

1 /p)>1}

]
. pθ

∑
k≥2p

(
k

p

)β−b[
(k − p)−θ−1 +

∑
l≥1

(
l + k − 1

k

)
(p+ l)−θ−1

2k+l

]
. 1,

(7.14)

where ap . bp means that as p → ∞ there exists a uniform constant C > 0 such that ap ≤ Cbp.
The first estimate follows from the tail-asymptotics of ν and the asymptotics (iii) in Proposition
5.5. The second inequality we prove in A.4.
Since ξ↓ drifts to −∞ and (A1) - (A3) are fulfilled, we can apply Bertoin and Kortchemski (2016,
Theorem 2) to yield the desired convergence (7.10) of (W r

i )i≥0. �

Proof of Theorem 2.3: Suppose (q, g, n) ∈ D is admissible and non-generic (dilute, dense) critical
with exponent a. By Proposition 5.6 the perimeter process (Pi)i≥0 of the (q, g, n)-Boltzmann
triangular loop-decorated map with perimeter p has the same law as the accelerated n

2 -ricocheted
random walk (W r

i )i≥0 of law νq̂ under Prp.
We recall that in the non-generic critical phase gγ+ = 1/2 and q̂ is critical. This implies by Budd
(2016, Proposition 4) that the random walk with distribution νq̂ oscillates. Moreover, from (2.7)
we obtain

νq̂(−k) = 2γ−k+ W (k−2)(q̂) ∼ 2γ−2
+ C(2.7)k

−a as k →∞,

and since q has finite support, i.e. qk = 0 for all large k, via (2.3) we get

νq̂(k) = q̂k+2γ
k
+ ∼ 2γ−2

+ C(2.7) cos(πa)k−a as k →∞

(see A.5 for the proof of the latter asymptotics). Hence, we are in the setting of Proposition 7.3
with θ = a− 1, p = n/2, and b = |a− 2|.
The above two arguments imply the statement of the theorem. �
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Appendix A. Appendix

A.1. Admissibility criteria for Boltzmann maps without loops. Let us consider Boltzmann maps
without loops. We call the weight sequence q̂ •-admissible if W (2)

• (q̂) < ∞, or equivalently
W

(p)
• (q̂) <∞ for all p ≥ 1. The equivalence follows from Budd (2016, Proposition 2 & (17)).
The main goal of this section is to prove that the admissibility of the weight sequence implies the

•-admissibility. An analogous result for the bipartite maps was shown in Curien (2016, Corollary
3.153).

Lemma A.1. Assume that q̂ is an admissible weight sequence with q̂k > 0 for some odd k ≥ 3,
then q̂ is •-admissible.

Before proceeding to the proof we need to introduce several notations and make some observations.
We note that there is a natural bijection between pointed planar maps with root face of degree
2 (with more than one face) and pointed rooted planar maps with arbitrary root face degree,
corresponding to the gluing of the edges of the root face. We denote the latter set as M• and to
each m• ∈M• we associate the weight wq̂(m•) :=

∏
f q̂deg(f), where the product runs over all faces of

m• (including the root face). We set Z•(q̂) := wq̂(M•). HenceW
(2)
• (q̂)−1 = Z•(q̂), which coincides

with the definition of Z• in the proposition. By comparing the distances between the distinguished
vertex and the source (target) vertex of the root, we can split M• in three disjoint sets M+

• ,M
−
•

and M0
•. Namely, M+

• ,M
−
• and M0

• correspond to the cases when the distance between the marked
vertex and the target vertex of the root is greater (smaller and equal, resp.) than the distance
between the marked vertex and the source vertex of the root. On top of that we assume that the
map consisting only of one vertex belongs to M+

• . Then Zi•(q̂) := wq̂(Mi
•) with i ∈ {+,−, 0}.

The starting point for the proof is the following result Miermont (2006, Proposition 1) by Mier-
mont.

Proposition A.2. Define

f•q̂(x, y) :=
∑
k≥0

∑
k′≥0

xkyk
′
(

2k + k′ + 1

k + 1

)(
k + k′

k

)
q̂2+2k+k′

f�q̂(x, y) :=
∑
k≥0

∑
k′≥0

xkyk
′
(

2k + k′

k

)(
k + k′

k

)
q̂1+2k+k′

The non-bipartite sequence q̂ is •-admissible iff there exist z+, z� > 0 such that

f•q̂(z+, z�) = 1− 1

z+
, f�q̂(z+, z�) = z�

and the matrix

Mq̂(z+, z�) :=

 0 0 z+ − 1
z+

z� ∂xf
�
q̂(z+, z�) ∂yf

�
q̂(z+, z�) 0

(z+)2

z+−1
∂xf

•
q̂(z+, z�) z+z�

z+−1
∂yf

•
q̂(z+, z�) 0


has spectral radius ρq̂ ≤ 1. Moreover, if q̂ is •-admissible the solution z+, z� is unique and Z+

• (q̂) =

z+, Z0
• (q̂) = (z�)2, so that the partition function Z•(q̂) := W

(2)
• (q̂)− 1 = 2z+ + (z�)2 − 1.

Proof of Lemma A.1: Let u ∈ (1/2, 1), define (q̂u)k = qku
k−2. If m ∈ M(p), using Euler’s formula

and
∑

f deg(f) = 2|Edges(m)| − p, where f varies over inner faces of m, we obtain

wq̂u(m) = u−2−pu2|m|wq̂(m)

3Corollary 23 in the original version of the notes.
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where |m| is the number of vertices of m. Since k · u2k is uniformly bounded from above by some
constant depending on u, we deduce that

W
(p)
• (q̂u) = u−2−p

∑
m∈M(p)

|m|u2|m|wq̂(m) ≤ CuW (p)(q̂) <∞.

Hence q̂u is •-admissible for any u ∈ (1/2, 1). Proposition A.2 implies that there is a positive
solution to f•q̂u(z+, z�) = f•q̂(u2z+, uz�) = 1− 1

z+
, u · f�q̂u(z+, z�) = f�q̂(u2z+, uz�) = uz� such that

the spectral radius ρq̂u of Mq̂u(z+, z�) is ≤ 1 for any u ∈ (1/2, 1). With the change of variables
(x, y) := (u2z+, uz�) and notation f• = f•q̂, f

� = f�q̂ we can restate the system of equations as

f•(x, y) = 1− u2

x
, f�(x, y) = y, (A.1)

and rewrite Mq̂u(z+, z�) as

Mq̂u

( x
u2
,
y

u

)
=

 0 0 x−u2
u2

x
y∂1f

� ∂2f
� 0

x2

x−u2∂1f
• yx

x−u2∂2f
• 0

 (A.1)
=

 0 0 xf•

u2
x
f�∂1f

� ∂2f
� 0

x
f•∂1f

• f�

f•∂2f
• 0


=

 0 0 xf•

u2

x∂1 log f� ∂2f
� 0

x∂1 log f• f�∂2 log f• 0

 = Mq̂(x, y) +

0 0 xf•
(

1
u2
− 1
)

0 0 0
0 0 0


In the entries of matrices f•, f� and its derivatives are evaluated at (x, y); and the last equality
holds by repeating the same computations for the original system given in the Propostion A.2.
Via the performed reformulation and Proposition A.2 we know that for any u ∈ (1/2, 1), the
system of equations (A.1) has the unique positive solution, denoted by (xu, yu) ∈ Z2

>0 and given
by (xu, yu) = (u2Z+

• (q̂u), u
√
Z0
• (q̂u)), with Mq̂u

(
xu
u2
, yuu
)
of spectral radius ≤ 1. Moreover, we get

xu > u2, and since the total weights Z+
• (q̂u), Z0

• (q̂u) monotonically increase in u, the sequence of
solutions ((xu, yu))u is non-decreasing as u↗ 1 as well. From the equations (A.1) and assumption
that q̂k > 0 for some odd k ≥ 3 we deduce that (xu, yu)u is uniformly bounded from above (in each
component). Indeed, since the left-hand side of the first equation in (A.1) lies in [0, 1] for any value
of x, and since q̂k > 0 for some odd k ≥ 3, we deduce that yu is uniformly bounded from above;
now using the second equation in (A.1) we conclude that the same has to hold for xu. Therefore,
we can define

(x•, y•) := lim
u↗1

(xu, yu) <∞,

and y• > 0, x• ≥ 1 (as xu, yu are increasing and each xu > u2, yu > 0). Now by taking limit u↗ 1
in (A.1), we deduce that (x•, y•) ∈ Z2

≥0 solves (A.1) for u = 1. Indeed,

f•(x•, y•)
Fatou
≤ lim inf

u↗1
f•(xu, yu)

(A.1)
= 1− lim sup

u↗1

u2

xu
= 1− 1

x•

= 1− lim inf
u↗1

u2

xu

(A.1)
= lim sup

u↗1
f•(xu, yu) ≤ f•(x•, y•)

where the last inequality follows from the fact that xu ≤ x•, yu ≤ y•. Since the right-hand side and
the left-hand side coincide, we obtain f•(x•, y•) = 1− 1

x•
. Analogously we deduce that f�(x•, y•) =

y•.
If we set Au := Mq̂u

(
xu/u

2, yu/u
)
, Bu := (bij) with b13 = (1− u2)(xu/u

2 − 1), bkl = 0 otherwise
(1 ≤ i, j ≤ 3, 1 ≤ l < 3, 2 ≤ k ≤ 3), we get from the above computation and (A.1) thatMq̂(xu, yu) =
Au − Bu. Since B2

u = 0, it holds (Au − Bu)n = Anu − nAn−1
u Bu for any n. Furthermore, w.r.t. the
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matrix norms ‖·‖1 (or ‖·‖∞) corresponding to the maximum absolute column (row) sum of the
matrix, the following is true:

‖Anu − nAn−1
u Bu‖

1
n ≤

(
‖Anu‖+ n|b13|‖An−1

u ‖
) 1
n

≤ ‖Anu‖
1
n + n

1
n |b13|

1
n ‖An−1

u ‖
1
n

n→∞−−−→ ρ(Au) + 1 · 1 · ρ(Au),
(A.2)

where the convergence on the right-hand side follows by Gelfand’s theorem (note that for each
fixed u ∈ (1/2, 1), |b13| is finite and independent of n). Applying Gelfand’s theorem, i.e. ρ(A) =

limn→∞‖An‖1/n for any matrix norm ‖·‖, to the left-hand side we obtain that the spectral radius
ρ(Mq̂(xu, yu)) ≤ 2ρ(Au) ≤ 2 for all u ∈ (1/2, 1). On the other hand, for any ε > 0 we can choose n
sufficiently large such that ‖Anu‖

1
n < 1 + ε (since q̂u is admissible for all u < 1), now if we first take

the limit u↗ 1 in (A.2) we get

‖Mn
q̂(x•, y•)‖

1
n = lim

u↗1
‖Mn

q̂(xu, yu)‖
1
n

≤ 1 + ε+ n
1
n (1 + ε) lim

u↗1
|b13|

1
n = 1 + ε.

In the last line we have used that x• < ∞. Now taking the limit n → ∞ we obtain by Gelfand’s
theorem that ρ(Mq̂(x•, y•)) ≤ 1+ε. Sending ε to zero, yields that the spectral radius of Mq̂(x•, y•)
is ≤ 1. Hence Proposition A.2 implies that q̂ is •-admissible. �

A.2. (6.2) implies
√

2g2

ν(−2) ≤
1
2 . Recall that we want to show that if for all k ≥ 1

ν(k − 2) ≥ n

2

∑
l≥0

(
k + l − 1

l

)(
2g2

ν(−2)

) k+l
2

ν(−l − 2).

for an admissible probability measure ν, then x :=
√

2g2

ν(−2) ≤
1
2 . Since the left hand side is summable

in k, so is the right one. Therefore, x ≤ 1 and summation over k ≥ 1 yields

Sx :=
n

2

∑
l≥0

( x

1− x

)l+1
ν(−l − 2) ≤ 1.

Now, it suffices to prove that liml→∞
ν(−l−1)
ν(−l) = 1 as it would imply that the radius of convergence

of the above power series Sx is 1. To this end, let q̂ be an admissible non-bipartite weight sequence
and recall from A.1 the notion (q̂u)k = q̂ku

k−2 for u ∈ (0, 1) and that then

wq̂u(m) = u−2−pu2|m|wq̂(m),

where |m| is the number of vertices of m. Moreover,

W
(p)
• (q̂u) = u−p

∑
m∈M(p)

|m|(u2)|m|−1wq̂(m) <∞. (A.3)

For each fixed u ∈ (0, 1), let (z+
u , z

�
u) be the solution to the system of equations corresponding to q̂u

as in Proposition A.2. We have seen in the proof of Lemma A.1 that u 7→ (z+
u , z

�
u) is non-decreasing

in both components and that (z+, z�) = limu↑1(z+
u , z

�
u) exists and solves the system of equations

corresponding to q̂ (u = 1). Furthermore, γ+(q̂u) = z�u+ 2
√
z+
u (see Budd (2016, end of A.1)), and,

thus, also non-decreasing as a function of u.
We recall as well that W (l)

• (q̂)γ−l+ (q̂) = hr0(l) for any fixed l ≥ 0 and any admissible q̂. Set v = u2

and integrate (A.3) over v from 0 to 1, then

hr0(p)

∫ 1

0
dv
(√

vγ+(q̂√v)
)p

= W (p)(q̂u).
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By the above considerations, we conclude that
√
vγ+(q̂√v) ≤ γ+(q̂) for v ∈ (0, 1) and

√
vγ+(q̂√v) ≥√

1− εγ+(q̂√1−ε) for v ∈ (1− ε, 1). Therefore,

W (p+1)(q̂)

W (p)(q̂)
=
hr0(p+ 1)

∫ 1
0 dv

(√
vγ+(q̂√v)

)p+1

hr0(p)
∫ 1

0 dv
(√

vγ+(q̂√v)
)p ≤ γ+(q̂)

hr0(p+ 1)

hr0(p)

p→∞−−−→ γ+(q̂)

since hr0(p) ∼ p−1/2

Γ(1/2)
√

1+r
as p → ∞ by Budd (2016, (23)). On the other hand, using Laplace’s

method,

lim inf
p→∞

W (p+1)(q̂)

W (p)(q̂)
≥ lim inf

p→∞

∫ 1
1−ε dv

(√
vγ+(q̂√v)

)p+1

∫ 1
1−ε dv

(√
vγ+(q̂√v)

)p ≥ √1− εγ+(q̂√1−ε)

for any ε ∈ (0, 1). By sending ε to zero, we get that limp→∞
W (p+1)(q̂)

W (p)(q̂)
= γ+(q̂). We conclude the

statement for ν - liml→∞
ν(−l−1)
ν(−l) = 1 - by Proposition 5.1 and (4.7).

A.3. Proof of equality in (7.12). In this section we want to complete the proof of Lemma 7.4 by
showing that as p→∞,

Cpθ

[
− f(1) +

∑
k>−p

(
1 +

k

p

)−b
f

(
1 +

k

p

)(
ν(k) + p

∑
u≥1

(
u+ p+ k − 1

p+ k

)
ν(−u− p)

2u+p+k

)]

= Cpθ
∑
s∈Z

[
f↓
(

1 +
s

p

)
− f↓(1)

]
ν(s) + O

(
log3/2(p)
√
p

)
,

(A.4)

where f : (0,∞) → R is a twice-differentiable function with compact support, h↓(x) = x−b and
f↓(x) := h↓(x)f(x)1{x≥0} + ph↓(−x)f(−x)1{x<0}.
Let δ > 0 such that suppf ⊂ [δ,∞), we will work with the sum in the first line of (A.4).

Sp :=
∑
k>−p

h↓
(

1 +
k

p

)
f

(
1 +

k

p

)(
ν(k) + p

∑
u≥1

(
u+ p+ k − 1

p+ k

)
ν(−u− p)

2u+p+k

)

=
∑
s∈Z

ν(s)

[
1{s≥−p}h

↓
(

1 +
s

p

)
f

(
1 +

s

p

)
+

+ 1{s<−p}p
∑
k≥−p

h↓
(

1 +
k

p

)
f

(
1 +

k

p

)(
−s+ k − 1

p+ k

)
1

2k−s

]
.

We define

f↓p (x) := 1{x≥0}h
↓(x)f(x) + 1{x<0}p

∑
l≥0

h↓
(
l

p

)
f

(
l

p

)(
−px+ l − 1

l

)
1

2l−px
.

Then Sp =
∑

s∈Z ν(s)f↓p
(

1 + s
p

)
, f↓p (1) = f(1) = f↓(1), and therefore, the right hand side of A.4 is

equal to

Cpθ
∑
s∈Z

ν(s)

[
f↓p

(
1 +

s

p

)
− f↓p (1)

]
= Cpθ

∑
s∈Z

ν(s)

[
f↓
(

1 +
s

p

)
− f↓(1)

]
+ O

(
log3/2(p)
√
p

)
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provided f↓p (x) = f↓(x) +O
(

log3/2(p)√
p

)
for x < 0 as p→∞ with the uniform error in −x ∈ supp(f),

and using ν(s) ∼ c|s|−θ−1 as s→∞. This is the desired result. Hence, we only need to show that
for x < 0,

f↓p (x) = f↓(x) + O

(
log3/2(p)
√
p

)
with the uniform error for −x ∈ supp(f). Note also that f↓p (x) = f↓(x) for any x ≥ 0. We fix an
x ≤ −δ, then as suppf ⊂ [δ,∞),∑

l≥0

h↓
(
l

p

)
f

(
l

p

)(
−px+ l − 1

l

)
1

2l−px

=
∑

u∈ 1
p
Z: u≥δ

h↓(u)f(u)

(
p(u+ |x|)− 1

pu

)
︸ ︷︷ ︸

=1/(puB(pu,p|x|))

1

2p(u+|x|)

Stirling
=

√
p

2π

∑
u∈ 1

p
Z: u≥δ

h↓(u)f(u)

u

√
u|x|
u+ |x|︸ ︷︷ ︸

=:gx(u)


(
u+|x|

2

)u+|x|

uu|x||x|


p(

1 + O(1/p)
) 1

p︸︷︷︸
∆u

Riemann
=

1√
2π

∫
u≥δ

gx(u)

p1/(2p)

(
u+|x|

2

)u+|x|

uu|x||x|


p

du
(
1 + O(1/p)

)
=: Ix,

where the error O(1/p) is uniform in u,−x ≥ δ.
We notice that gx(u) is twice-differentiable and with compact support because of f , uniformly

bounded and independent of p. We also easily see that the function t : u ∈ R+ 7→ ((u+|x|)/2)u+|x|

uu|x||x|
is strictly increasing on (0, |x|), attains its maximum 1 at u = |x| and is strictly decreasing on
(|x|,∞). Therefore, once we find an ε > 0 dependent on p, |x| such that ((u+|x|)/2)u+|x|

uu|x||x| p1/(2p) < 1 for
u = |x|±ε, the part

∫
[δ,∞)\(|x|−ε,|x]+ε) converges to zero exponentially fast by dominated convergence

theorem. To determine ε we expand t(u) in the neighbourhood of u = |x| and p−1/(2p) at p → ∞
and compare the coefficients, this results in ε =

√
6|x| log(p)/p and holds for all p sufficiently large

such that log(p)/p < 8|x|/27. In particular, by choosing log(p)/p < 8δ/27, we get the uniform errors
for −x ≥ δ. The estimation of the error in the Riemann approximation can be, thus, (compact
support of gx) reduced to the interval Ix = [|x| − ε, |x| + ε], and from the classical analysis result

the error is bounded from above by (2ε)2

4pε supIx |(
√
ptp(u)gx(u))′| =

√
6|x| log(p)

p supIx t
p(u)

∣∣∣g′x(u) +

pgx(u) log
(
u+|x|

2u

)∣∣∣. By evaluating the derivative at |x|, we get that |x| is not an extremum, thus,
since tp(u) for u 6= |x| converges exponentially fast to zero, so does the error. This establishes the
last equality in the above computation. Moreover, it allows to simplify Ix, namely

Ix =

√
p

2π

∫ ε

−ε
gx(y + |x|)

(
1− y2

4|x|
+ O

((
log(p)

p

)3/2
))p

︸ ︷︷ ︸
p→∞
≈ exp

(
−py2/(4|x|)+O

(
log3/2(p)/

√
p
))

dy
(
1 + O(1/p)

)

=

√
p

2π

∫ ε

−ε
gx(y + |x|) e

−py2
4|x|

(
1 + O

(
log3/2(p)
√
p

))
dy.
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The error O
(

log3/2(p)√
p

)
in the second line is uniform for any −x ≥ δ, as so is ε.

We approximate gx(y) in the neighbourhood of |x| with gx(|x|), with the error uniformly bounded
by |y| supu∈Ix |g

′
x|(u) ≤ Cε = O

(√
log(p)/p

)
, with C < ∞ as gx has compact support. Note that

C can be chosen uniformly for all −x ∈ supp(f), which follows from the explicit expression and
continuity in x of g′x on supp(f) ⊂ [δ,∞). Using the change of variables z := y

√
p

2|x| we obtain

Ix = f(|x|)h↓(|x|) erf

(√
3 log(p)

2

)(
1 + O

(
log3/2(p)
√
p

))

= f(|x|)h↓(|x|) + O

(
log3/2(p)
√
p

)
,

where we have used that erf(x) ≈ 1 + e−x
2
(−1/(

√
πx) + O(1/x2)) as x → ∞. The proof is thus

completed.
We also mention that a similar approximation holds for continuous compactly supported instead

of twice-differentiable functions. Indeed, the Riemann approximation still works, except that one
needs to multiply the integral with (1+o(1)), where o(1)→ 0 as p→∞ uniformly for −x ∈ supp(f).
The approximation of gx(y) with gx(|x|) does not cause any problems since we have a uniformly
continuous function.

A.4. Proof of the estimate (7.14). We recall that we want to prove that for any β ∈ (0, b), as p→∞,

pθ
∑
k≥2p

(
k

p

)β−b[
(k − p)−θ−1 +

∑
l≥1

(
l + k − 1

k

)
(p+ l)−θ−1

2k+l

]
. 1.

We first estimate the easier part

pθ
∑
k≥2p

(
k

p

)β−b
︸ ︷︷ ︸
≤1

(k − p)−θ−1 . pθ
∫ ∞
p

x−θ−1dx . 1.

For the remaining term we proceed as follows

pθ
∑
k≥2p

(
k

p

)β−b∑
l≥1

(
l + k − 1

k

)
(p+ l)−θ−1

2k+l

.
∫ ∞

1
(u+ 1)β−b−1

∫ ∞
1+1/p

1

B(p(u+ 1), p(v − 1))

v−θ−1

2p(u+v)
dvdu =: Jp,

where the upper estimate up to a constant follows via Riemann approximation and setting u :=
(k − p)/p, v := (p+ l)/p. Once we manage to show that for some C > 0 independent of u, p,

Rp(u) :=

∫ ∞
1/p

1

B(pu, pv)

(v + 1)−θ−1

2p(u+v)
dv ≤ C, (A.5)

it follows that for any β ∈ (0, b), Jp ≤ C
∫∞

2 u−(1+b−β)du <∞ independently of p.
Let us now prove (A.5): when x, y →∞, B(x, y) ∼

√
2π
(
xx−1/2yy−1/2

)
/(x+y)x+y−1/2 by Stirling

formula. Hence if x = o(1) such that x→ 0, but px→∞ as p→∞, then

Rp(u) .
∫ x

1/p

1

B(pu, pv)

(v + 1)−θ−1

2p(u+v)
dv +

∫ ∞
x

(v + 1)−θ−1

√
2π

√
uv

u+ v︸ ︷︷ ︸
≤(v+1)−θ−1/2/

√
2π

(
p1/(2p)

(
u+v

2

)u+v

uuvv

)p
dv.
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We see that the second integral is very similar to Ix defined in Appendix A.3. Combining the result
from there with the fact that v 7→ (v + 1)−θ−1/2 is integrable over R+, we get that

Rp(u) .
∫ x

1/p

(v + 1)−θ−1

2p(u+v)B(pu, pv)
dv + u(u+ 1)−θ−1 + 1 ≤

∫ x

1/p

(v + 1)−θ−1

2p(u+v)B(pu, pv)
dv + 2.

It is left to estimate the first integral. Noting that m(m+ p)−θ−1 ≤ (1 + p)−θ for m ≥ 1,∫ x

1/p

(v + 1)−θ−1

2p(u+v)B(pu, pv)
dv ≈

px∑
m=1

pθ
m(m+ p)−θ−1

2m+n

(
n+m− 1

m

)
≤ pθ

(1 + p)θ
≤ 1.

A.5. Positive tail of νq̂. The goal of this section is to show that in the non-generic critical setup
(q, g, n) ∈ D, so that gγ+ = 1/2 (we supress the dependence on the triplet in what follows),

νq̂(k) ∼ 2γ−2
+ C(2.7) cos(πa)k−a as k →∞.

We recall that νq̂(k) = q̂k+2γ
k
+ via (4.7), and by the fixed-point equation (2.3) we have the recursive

relation q̂k = qk + n
∑

k′≥0

(
k+k′−1
k′

)
gk+k′F (k′)(q, g, n). Since q has finite support, i.e. qk = 0 for all

large k, we only need to analyse the asymptotic behaviour of the sum

Sk := n
∑
k′≥0

(
k + k′ − 1

k′

)
gk+k′F (k′)(q, g, n).

By definition of b, we can rewrite n as n = 2 cos(πb) = 2 cos(πa). We thus need to show that
Claim: kaγk+Sk+2/n→ γ−2

+ C(2.7) as k →∞.
We proceed analogously to Appendix A.3 and A.4, namely we split the sum in three terms

∑N
k′=1,∑

k′>N and k′ = 0, where N = o(k) converging to ∞ as k →∞. We introduce the notation

Tk := γk+2
+ Sk+2/n =

1

2k+2

∑
k′≥0

(
k + k′ + 1

k′

)
gk
′
F (k′)(q, g, n).

(i) : k′ = 0: ka/2k+2 = o(1)→ 0 as k →∞. Therefore, this term is irrelevant for determination
of the constant.

(ii) : 1 ≤ k′ ≤ N : It follows from (2.7), F (k) ∼ Cγk+k−a as k →∞, and since F (k) <∞ for all k
that F (k′) ≤ Cq̂

(
1 + γk

′
+ (k′)−a

)
for any k′ ≥ 0. Therefore, Lk defined as

ka
1

2k+2

N∑
k′=1

(
k + k′ + 1

k′

)
gk
′
F (k′) ≤ Cq̂k

a 1

2k+2

N∑
k′=1

(
k + k′ + 1

k′

)(
gk
′
+

(k′)−a

2k′

)
.

By Stirling formula since N = o(k), as k →∞,

Lk ≤ Ĉq̂k
a 1

2k+2

N∑
k′=1

1√
2πk′

(
e(k + k′ + 1)

k′

)k′
︸ ︷︷ ︸

mon. incr. in k′

exp

(
−(k′)2

2(k + k′ + 1)

)
︸ ︷︷ ︸

mon. decr. in k′,≤1

(
gk
′
+

(k′)−a

2k′

)

≤ C̃q̂ ka
1

2k+2

(
e(k +N + 1)

N

)N
︸ ︷︷ ︸

≤ka
(

1
2

( 2 e k
N

)N/k
)k

=ka((1+o(1))/2)k

N∑
k′=1

√
1

2πk′

(
gk
′
+

(k′)−a

2k′

)
︸ ︷︷ ︸

≤
∑

2−k′+
∑
gk′/
√
k′

≤ C̄q̂k
a+1/2

(
1

2
(1 + o(1))(1 ∨ g)N/k

)k
k→∞−−−→ 0 as N = o(k).

This shows that this term is also irrelevant for determination of the constant in the limit.
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(iii) : k′ > N : On the contrary to the previous two, this case is relevant for determination of
the scaling constant. We recall that N = o(k) tends to infinity if k does, gγ+ = 1/2. For this part
of the sum we can use the asymptotics F (k′) ∼ Cγk′+ (k′)−a and obtain as in A.3

kaC(2.7)
1

2k+2

∑
k′>N

(
k + k′ + 1

k′

)
1

2k′
(k′)−a

Riemann
≈

Stirling

C(2.7)

2
√

2π

∫ ∞
N
k

u−a

√
1 + u+ 1

k

u

k1/(2k)

(
u+1+1/k

2

)1+u+1/k

uu
(
1 + 1

k

)1+1/k


k

du.

We observe that this integral is similar to Ix defined in Appendix A.3 and we treat it similarly. We
take ε as there adjusting it to this case, i.e. ε =

√
6
(
1 + 1

k

)
log(k)/k, and split the above integral in

three terms
∫ 1+1/k−ε
N
k

+
∫ 1+1/k+ε

1+1/k−ε +
∫∞

1+1/k+ε. We recall that for u outside of
(
1 + 1

k − ε, 1 + 1
k + ε

)
,

the function k1/(2k)

(
u+1+1/k

2

)1+u+1/k

uu(1+1/k)1+1/k < 1. We estimate the mentioned three integrals separately.

(a) : We start with the third term. Since u−a
√

1+u+1/k
u ≤ 2u−a and a ∈

(
3
2 ,

5
2

)
, this function is

integrable, and by dominated convergence theorem we conclude that this term converges to 0. It
is, thus, irrelevant for the determination of the limiting constant.

(b) : The middle term

I :=
C(2.7)

2
√

2π

∫ 1+ 1
k

+ε

1+ 1
k
−ε

u−a

√
1 + u+ 1

k

u

k1/(2k)

(
u+1+1/k

2

)1+u+1/k

uu
(
1 + 1

k

)1+1/k


k

du

is fully analogous to the integrals in A.3 and A.4. Using the computation from these sections, we
get, as k →∞,

I ≈
C(2.7)

2
√

2π

√
2gx(1)

∫
R

e−z
2/2 dz ≈ C(2.7).

The Claim follows provided that the contribution of the remained integral is o(1) as k →∞.
(c) : The goal of this part of the proof is to show that as k →∞

J :=
C(2.7)

2
√

2π

∫ 1+ 1
k
−ε

N
k

u−a

√
1 + u+ 1

k

u

k1/(2k)

(
u+1+1/k

2

)1+u+1/k

uu
(
1 + 1

k

)1+1/k


k

du = o(1).

We use that u 7→
(
u+1+1/k

2

)1+u+1/k

uu
(

1+ 1
k

)1+1/k is strictly increasing on
(
N
k , 1 + 1

k − ε
]
and conclude

J ≤
3C(2.7)

2
√

2π

(
k1/(2k)

(
1 + 1/k − ε

2

)2+2/k−ε(
1 + 1/k − ε

2

)1+1/k− ε
2
(
1 + 1

k

)1+1/k︸ ︷︷ ︸
≈
(

1− 3
2

log(k)
k

+O
((

log(k)
k

)3/2))(
1+

log(k)
2k

+O(k−2)
)
)k ∫ 1+ 1

k
−ε

N
k

u−a−1/2du

≤ C̃

(
1− log(k)

k
+ O

((
log(k)

k

)3/2
))k

︸ ︷︷ ︸
≤2 e− log(k)

(
1 +

(
N

k

)−a+1/2
)
≤ C̄ 1

k

(
N

k

)−a+1/2
k→∞−−−→ 0
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for appropriate N = o(k), e.g. N = k1−δ for any δ ∈ (0, 1) satisfying δ
(
a− 1

2

)
< 1.
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