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Abstract. In this paper we provide a probabilistic representation of Lagrange’s identity which we
use to obtain Papathanasiou-type variance expansions of arbitrary order. Our expansions lead to
generalized sequences of weights which depend on an arbitrarily chosen sequence of (non-decreasing)
test functions. The expansions hold for univariate target distribution under weak assumptions, in
particular they hold for continuous and lattice distributions alike. The weights are studied under
different sets of assumptions either on the test functions or on the underlying distributions. Many
concrete illustrations for standard probability distributions are provided (including Pearson, Ord,
Laplace, Rayleigh, Cauchy, and Levy distributions).

1. Introduction

Covariances play a crucial role in probability and statistical inference, and good approximations
of covariances for nonlinear functions of random variables which are based on moments of the
underlying distribution of the random variables are hence sought after. In a surprisingly rarely
cited paper from 1988, and using little more than the Lagrange identity (a.k.a. Cauchy-Schwarz
with remainder), V. Papathanasiou proved the following variance expansion.

Theorem 1.1 (Papathanasiou’s expansion, Papathanasiou (1988)). Let p(x) denote the density of
X, an absolutely continuous real-valued random variable with finite moment of order 2n+ 2 where
n ∈ {0, 1, . . .} is fixed. Let g be a (n + 1)-times continuously differentiable function defined on the
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support of X, and assume that g(X) has finite variance. Then

Var[g(X)] =
n∑
k=1

(−1)k−1E
[
(g(k)(X))2Γk(X)

]
+ (−1)nRn (1.1)

where Rn is a non-negative remainder term and

Γk(t) =
(−1)k−1

k!(k − 1)!

(
E
[
(X − t)k

] ∫ t

−∞
(x− t)k−1 p(x)

p(t)
dx− E

[
(X − t)k−1

] ∫ t

−∞
(x− t)k p(x)

p(t)
dx

)
,

defined for all t such that p(t) > 0.

The weight sequence (Γk(·))k≥1 from (1.1) may seem unfathomable. However, in a short note
from 1993, Johnson (1993) proved that if the density p is a member of the Integrated Pearson (IP)
system of distributions (see Definition 3.7 below) then the weights read

Γk(t) =
(Γ1(x))k

k!
∏k
j=0(1− jΓ′′1(0))

,

with Γ1 now known to be the density’s Stein covariance kernel (see Remark 3.3 for a definition and
e.g. Saumard (2019); Ernst et al. (2020) for recent overviews). Many familiar univariate distributions
belong to the IP system, such as the normal, beta, gamma, and Student distributions, and in all of
these cases, Γ1 is easy to compute: Γ1(x) = 1 if X is standard Gaussian, Γ1(x) = x(1−x)/(α+β) if
X is beta distributed with parameters α, β, Γ1(x) = (x2+k)/(k−1) if X is tk distributed, etc. This
makes (1.1) explicit in all these important cases. Another remarkable aspect of Papathanasiou’s
result which was first noted in Afendras et al. (2007, Theorem 3.1) is that the methods and results
from Papathanasiou (1988); Johnson (1993) carry through after suitable adaptations to the dis-
crete integer-valued (or lattice) setting, yielding similar flavoured expansions with weight sequences
which also simplify under appropriate discretization of the Pearson assumption called Ord system of
distributions (see Definition 3.11 below). This, in particular, provides infinite variance expansions
for functionals of Poisson, binomial, geometric and many more distributions on the non-negative
integers.

In the particular case where X = N is a standard normal random variable, Papathanasiou’s
weight sequence simplifies to Γk(t) = 1/k!, leading to the variance bounds

2n∑
k=1

(−1)k+1

k!
E
[
g(k)(N)2

]
≤ Var[g(N)] ≤

2n−1∑
k=1

(−1)k+1

k!
E
[
g(k)(N)2

]
(1.2)

for all n ∈ {1, 2, . . .}. The first order (i.e. n = 1) term of this expansion reads as

Var[g(N)] ≤ E
[
g′(X)2

]
(1.3)

for all differentiable functions g with finite variance. This famous Gaussian variance bound was
independently discovered in Nash (1958) and Chernoff (1981) using properties of the Hermite poly-
nomials. The Gaussian expansion (1.2) was rediscovered in Houdré and Kagan (1995). Infinite-
dimensional versions of (1.2) for functionals of the Wiener and of the Poisson processes in Houdré and
Pérez-Abreu (1995), concomitantly to Ledoux (1995) where properties of the Ornstein-Uhlenbeck
process were used to obtain alternative expansions for general probability measures; here the terms
in the expansion rest on iterations of the “carré du champ” operator. In Olkin and Shepp (2005),
Chernoff’s technique based on Hermite polynomials was used to extend the first order bound to
the following matrix-inequality: still in the standard normal case, it holds that for all appropriate
functions f and g,(

Var[f(N)] Cov[f(N), g(N)]
Cov[f(N), g(N)] Var[g(N)]

)
≤
(

E[f ′(N)2] E[f ′(N)g′(N)]
E[f ′(N)g′(N)] E[g′(N)2]

)
(1.4)
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where the inequality indicates that the difference is a nonnegative definite matrix. Generalizations
of (1.4) can be found in Prakasa Rao (2006); Wei and Zhang (2009). In Afendras and Papadatos
(2011), and using techniques which are similar to Papathanasiou’s, the first order bound is extended
to an expansion for distributions belonging to the Integrated Pearson (see Theorem 1 in Afendras
and Papadatos (2011)) and Ord systems (see Theorem 3 in Afendras and Papadatos (2011)); the
weight sequence in those expansions is the same as for the scalar expansions.

Expansions inspired by (1.2) have attracted considerable attention over the years, e.g. with ex-
tensions to matrix inequalities as in Olkin and Shepp (2005); Wei and Zhang (2009); Afendras and
Papadatos (2011), to stable distributions (Koldobsky and Montgomery-Smith, 1996), to Bernoulli
random vectors (Bobkov et al., 2001); more references shall be provided in the text. Aside from
their intrinsic interest, they have many applications and are closely connected to a wide variety
of profound mathematical questions. For statistical inference purposes, they can be used in the
study of the variance of classes of estimators (see e.g. Afendras et al. (2007, section 5)), of copulas
(Cuadras and Cuadras (2008)), for problems related to superconcentration (Chatterjee (2014) and
Tanguy (2017)) or for the study of correlation inequalities Houdré et al. (1998) and López Blázquez
and Salamanca Miño (2014). These expansions can also be interpreted as refined log-Sobolev,
Poincaré or isoperimetric inequalities, see Saumard (2019). The weights appearing in the first order
(n = 1) bounds are crucial quantities in Stein’s method Fathi (2019); Ledoux et al. (2015) and their
higher order extensions are closely connected to eigenvalues and eigenfunctions of certain differential
operators Chen (1985).

A first connection with Stein’s method was identified in Chen (1982) for multivariate Gaussian
random variables, and extensions outside the Gaussian case (in a univariate setting) were obtained
for instance in the papers Klaassen (1985) and Cacoullos and Papathanasiou (1997). In Ernst et al.
(2020), we revisited the connection between first order (that is, n = 1) variance expansions and
Stein’s method. In particular we obtained the following first-order variance inequality (see Ernst
et al. (2020, Theorem 3.5)): for any sufficiently regular function g it holds that

Var[g(X)] ≤ E
[
(∆−`g(X))2Γ`1h(X)

]
for all monotone h ∈ L1(X) (1.5)

where ` = 0 ifX has a density p with interval support on the real line, in which case ∆−`f(x) = f ′(x),
and |`| = 1 if X has pmf p supported on the integers in which case ∆−`f(x) = (f(x+ `)− f(x))/`
(i.e. the classical finite difference operators , sometimes also called Noerlund difference quotients).
The weight appearing in (1.5) is given by

Γ`1h(x) = E
[

(h(X2)− h(X1))I [X1 + I[` = 1] ≤ x ≤ X2 − I[` = −1]]

p(x)∆−`h(x)

]
where X1, X2 are iid copies of X, I[A] is the indicator function which is 1 if A holds, and 0 otherwise.
The operator h 7→ Γ1

`h is the “inverse density Stein operator” (see Ernst et al. (2020) for more
details); the function h can be freely chosen as long as it is monotone. Taking h(x) = x leads to
Papathanasious’s Γ1(·) from (1.1) for continuous distributions and to the corresponding first order
weight from Afendras et al. (2007) for Z valued distributions.

The introduction of freedom of choice through the functions h makes the inequalities widely
applicable; not only does this allow for optimisation in the choice of the weights, but it also opens
new angles for obtaining explicit simple weights for distributions not belonging to the Pearson or
Ord systems and even provides variance expansions for functionals of distributions not admitting
finite moments. Finally, we note that these generalised weights are used in Ernst and Swan (2022) in
combination of Stein’s method of comparison of generators to provide sharp bounds on Wasserstein,
Kolmogorov and Total Variation distance between certain pairs of distributions.

From the perspective of the formalism we introduced to obtain (1.5), it seems evident that Pa-
pathanasiou’s expansion (1.1), its discrete version from Afendras et al. (2007), the simplifications
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for IP and Ord families identified in Johnson (1993); Afendras et al. (2007), as well as the covari-
ance matrix-inequalities from Olkin and Shepp (2005); Afendras and Papadatos (2011) all share
sufficiently common traits to warrant a unified treatment within our framework. In this paper we
address this task and gain new insights through the introduction of a sequence of weighting op-
erators h 7→ Γ`kk h which bring new interpretations to the classical weights from the literature; see
our main result Theorem 2.3. Despite some notational difficulties inherent to the generality of our
approach, we stress that the method of proof remains elementary; this in particular serves as a
testimony to the seminality of Papathanasiou’s approach in Papathanasiou (1988).

To illustrate the power of our result, we particularise our weights in a number of illustrative cases,
recovering the previous literature, providing new expansions even for the already treated examples
and also allowing to obtain new bounds for targets outside the reach of the current literature.
Moreover we find an intriguing connection between our weighting sequences and higher order Stein
operators. Elucidating the connection with infinite expansions such as Ledoux (1995), and other
weighting sequences appearing within the context of Stein’s method such as Azmoodeh et al. (2015),
will be deferred to future work.

The paper is organised as follows. In Section 2 we provide the main results in their most abstract
form. After setting up the notations (inherited mainly from Ernst et al. (2020)), Section 2.1 con-
tains the crucial Lagrange identity (Lemma 2.2) and Section 2.2 contains the Papathanassiou-type
expansion (Theorem 2.3). In Section 3 we provide illustrations by rewriting the weights appear-
ing in Theorem 2.3 under different sets of assumptions. First, in Section 3.1 we consider a general
weighting function h; next, in Section 3.2 we choose certain specific intuitively attractive h-functions
(namely the identity, the cdf and the score); finally in Section 3.3 we obtain explicit expressions for
various illustrative distributions (here in particular the connection with existing literature on the
topic is also made). For the sake or readability, all proofs are relegated to an Appendix.

2. Infinite matrix-covariance expansions

As in Ernst et al. (2020) the setup for this paper is as follows. Let X ⊂ IR and equip it with some
σ-algebra A and σ-finite measure µ. Througout this paper, ` ∈ {−1, 0, 1} though other choices are,
in principle, possible. We denote dom(∆`) the collection of functions f : IR→ IR such that ∆`f(x)
exists and is finite µ-almost surely on X . If ` = 0, this corresponds to all absolutely continuous
functions; if ` = ±1 the domain is the collection of all functions on Z.

Let X be a random variable on X , with probability measure PX which is absolutely contin-
uous with respect to µ; we denote p the corresponding probability density, and its support by
S(p) = {x ∈ X : p(x) > 0}. As usual, L1(p) is the collection of all real valued functions f such that
E|f(X)| <∞. We restrict our attention to distributions satisfying the following Assumption.

Assumption A. The measure µ is either the counting measure on X = Z or the Lebesgue measure
on X = IR. If µ is the counting measure then there exist a, b ∈ Z ∪ {−∞,∞} such that S(p) =

[a, b]∩Z. If µ is the Lebesgue measure then there exist a, b ∈ IR∪{−∞,∞} such that S(p) = [a, b].

As in Ernst et al. (2020) we define the generalized indicator function

χ`(x, y) = I[x ≤ y − I[` = 1]] (2.1)

which is defined with the obvious strict inequalities also for x = −∞ and y =∞, and

Φ`
p(u, x, v) = χ`(u, x)χ−`(x, v)/p(x) (2.2)



On Papathanasiou’s covariance expansions 1831

for all u, v ∈ S(p) (note that Φ`
p(u, x, v) = 0 for u > v). Similarly we set

Φ`
p(u, x1, x2, v) =

χ`(u, x1)χ
|`|(x1, x2)χ

−`(x2, v)

p(x1)p(x2)
. (2.3)

Moreover, for any sequence (xj)j≥1 we let Φ`̀̀,0p (x1, x2) = 1 and

Φ`̀̀,np (x1, x3, . . . , x2n−1, x2n+1, x2n+2, x2n, . . . , x2)

=
1∏2n+2

i=3 p(xi)
χ|`|(x2n+1, x2n+2)

n∏
i=1

χ`i(x2i−1, x2i+1)χ
−`i(x2i+2, x2i). (2.4)

Note that Φ`̀̀,1p (x1, x3, x4, x2) = Φ`
p(x1, x3, x4, x2) as defined in (2.3).

Using Lemma 2.19 in Ernst et al. (2020), it is easy to see that for all x, y, it holds that

χ|`|(x, y) + χ|`|(y, x) = 1 + I[` = 0]I[x = y]− I[` 6= 0]I[x = y]. (2.5)

Moreover,

χ`(u, y)χ`(v, y) = χ`(max(u, v), y) and χ`(x, u)χ`(x, v) = χ`(x,min(u, v)). (2.6)

We conclude with recalling Equation (28) from Ernst et al. (2020); this results motivates the
covariance expansion in Theorem 2.3. If f ∈ dom(∆−`) is such that ∆−`f is integrable on [x1, x2]∩
S(p) then,

f(x2)− f(x1) = E
[
Φ`
p(x1, X, x2)∆

−`f(X)
]
. (2.7)

2.1. A probabilistic Lagrange identity. The first ingredient for our results is the following covariance
representation (all proofs are in the Appendix and it is assumed throughout that the density or pmf
p satisfies Assumption A).

Lemma 2.1. Let X ∼ p. If X1, X2 are independent copies of X then for all f, g ∈ L2(p)

Cov[f(X), g(X)] = E
[(
f(X2)− f(X1)

)(
g(X2)− g(X1)

)
I[X1 < X2]

]
(2.8)

=
1

2
E
[(
f(X2)− f(X1)

)(
g(X2)− g(X1)

)]
. (2.9)

Equation (2.8) is obviously not new, per se; see e.g. the variance expression in Miclo (2008, page
122). In fact, treating the lattice and continuous cases separately, one could also obtain identity
(2.8) as a direct application of Lagrange’s identity which reads, in the finite discrete case, as(

v∑
k=u

a2k

)(
v∑

k=u

b2k

)
−

(
v∑

k=u

akbk

)2

=

v−1∑
i=u

v∑
j=i+1

(aibj − ajbi)2. (2.10)

Using ak = g(k)
√
p(k) and bk =

√
p(k) for k = 0, . . . , n, identity (2.8) follows in the finite case.

Identity (2.10) and its continuous counterpart will play a crucial role in the sequel. They are more
suited to our purpose under the following form.

Lemma 2.2 (A probabilistic Lagrange identity). Fix some integer r ∈ IN0 and introduce the (col-
umn) vector v(x) = (v1(x), · · · , vr(x))′ ∈ IRr. Also let g : IR → IR be any function such that
vkg ∈ L1(p) for all k = 1, . . . , r.Then

E
[
v(X)g(X)Φ`

p(u,X, v)
]
E
[
v′(X)g(X)Φ`

p(u,X, v)
]

= E
[
v(X)v′(X)Φ`

p(u,X, v)
]
E
[
g2(X)Φ`

p(u,X, v)
]
−R`(u, v;v, g), (2.11)
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where R`(u, v;v, g) is the r × r matrix given by

R`(u, v;v, g) = E
[
(v3g4 − v4g3)(v3g4 − v4g3)

′Φ`
p(u,X3, X4, v)

]
. (2.12)

Here X3, X4 denote two independent copies of X and vj = v(Xj) so that vij = vi(Xj), and gj =

g(Xj), i = 3, 4. When the context is clear, we abbreviate R`(u, v;v, g) = R(u, v).

2.2. Papathanasiou-type expansion. Now the necessary ingredients are available to give the main
result of this paper. We use the notation that for a vector v = (v1, . . . , vr)

′ (here ′ indicates the trans-
pose) of functions, the operator ∆` operates on each component, so that ∆`v = (∆`v1, . . . ,∆

`vr)
′.

Theorem 2.3. Fix ` ∈ {−1, 0, 1} and let `̀̀ = (`n)n≥1 be a sequence such that `n = 0 for all n if
` = 0, otherwise `n ∈ {−1, 1} arbitrarily chosen. Let (hn)n≥1 be a sequence of real valued functions
hi : IR→ IR such that P[∆−`ihi(X) > 0] = 1 for all i ≥ 1. Starting with some function g : IR→ IRr,
we recursively define the sequence (gk)k≥0 by g0(x) = g(x) and gi(x) = ∆−`igi−1(x)/∆−`ihi(x) for
all x ∈ S(p). Then, for all vectors of functions f : R → Rr such that the expectations below exist,
and all n ≥ 1, we have

Cov [f(X)] =

n∑
k=1

(−1)k−1E

[
∆−`kfk−1(X)∆−`kf ′k−1(X)

Γ`̀̀,kp h(X)

∆−`khk(X)

]
+ (−1)nR`̀̀,np (h) (2.13)

where the derivatives are taken component-wise, and the weight sequences are

Γ`̀̀,kp h(x) = E

[
(hk(X2k)− hk(X2k−1))Φ

`k
p (x2k−1, x, x2k)Φ

`̀̀,k−1
p (X1, . . . , X2k−1, X2k, . . . , X2)

k−1∏
i=1

∆−`ihi(X2i+1, X2i+2)

]
(2.14)

and

R`̀̀,np (h) = E

[
(fn(X2n+2)− fn(X2n+1)) (fn(X2n+2)− fn(X2n+1))

′

Φ`̀̀,np (X1, . . . X2n+1, X2n+2, . . . , X2)
n∏
i=1

∆−`ihi(X2i+1, X2i+2)

]
(2.15)

where ∆`hk(x, y) = ∆`hk(x)∆`hk(y) and an empty product is set to 1.

Remark 2.4. If R`̀̀,np (h)→ 0 as n→∞ then, under the conditions of Theorem 2.3,

Cov [f(X)] =

∞∑
k=1

(−1)k−1E

[
∆−`kfk−1(X)∆−`kf ′k−1(X)

Γ`̀̀,np h(X)

∆−`khk(X)

]
. (2.16)

In particular when f is a dth-degree polynomial, then R`̀̀,np (h) vanishes for n ≥ d and (2.13) is an
exact expansion of the variance in (2.13) with respect to the Γ`̀̀,kp h(x) functions (k = 1, . . . , d).

Remark 2.5. When ` 6= 0 then the condition that P[∆−`ihi(X) > 0] = 1 is itself also too restrictive
because, as will have been made clear in the proof (see the Appendix), the recurrence only implies
that ∆−`ihi(x) needs to be positive on some interval [a + ai; b − bi] ⊂ [a, b] where ai and bi are
positive integers (they will be properly defined in (3.4)). In particular when ` 6= 0 the sequence
necessarily stops if S(p) is bounded, since after a certain number of iterations the indicator functions
will be 0 everywhere.



On Papathanasiou’s covariance expansions 1833

Suppose that the remainder R`̀̀,np (h) is non negative definite. Then, taking n = 1 in (2.13) gives
an upper bound, and taking n = 2 gives a lower bound, on the covariance, and the following holds
(stated again in the case r = 2, for the sake of clarity).

Corollary 2.6. Let all the conditions in Theorem 2.3 prevail for n = 2. Then

E

[
∆−`1f(X)∆−`1g(X)

Γ`1,1p h1(X)

∆−`1h1(X)

]
−E

[
∆−`2

(
∆−`1f(X)

∆−`1h(X)

)
∆−`2

(
∆−`1f(X)

∆−`1h(X)

)
Γ`1,`2,2p (h1, h2)(X)

∆−`2h2(X)

]

≤ Cov[f(X), g(X)] ≤ E

[
∆−`1f(X)∆−`1g(X)

Γ`1,1p h1(X)

∆−`1h1(X)

]
.

Remark 2.7. When f = g, the upper bound for n = 1 is a weighted Poincaré inequality of the same
essence as the upper bound provided in Klaassen (1985); Cacoullos and Papathanasiou (1997) (as
revisited in Ernst et al. (2020)), whereas the lower bound obtained with n = 2 is of a different
flavour.

3. About the weights in Theorem 2.3

The crucial quantities in Theorem 2.3 are the sequences of weights Γ`̀̀,kp h defined in (2.14). For
k = 1, the expression are straightforward to obtain (see equations (3.10) for the continuous case
`1 = 0 and (3.7) for the lattice case `1 ∈ {−1, 1}). For larger k the situation is not so straight-
forward. Relevance of the higher order terms in the covariance expansions (2.13) then hinges on
the tractability of these weights, which itself depends on the choice of functions h1, h2, . . .. In this
section we restrict attention to the (natural) choice hk(x) = h(x) for all k. Then, writing Γ`̀̀kh(x)

instead of Γ`̀̀,kp (h, h, . . .)(x) we can express the sequence of weights as Γ`̀̀kh(x) =: E
[
γ`̀̀kh(X1, x,X2)

]
where, for all k ≥ 1, we set

γ`̀̀kh(x1, x, x2) = E
[
(h(X2k)− h(X2k−1))Φ

`k
p (X2k−1, x,X2k)Φ

`̀̀,k−1
p (x1, X3 . . . , X2k−1, X2k, . . . , x2)

k−1∏
i=1

∆−`ih(X2i+1, X2i+2)
]
. (3.1)

We now study (3.1) and the resulting expressions for the weights under different sets of assumptions.

3.1. General considerations. The continuous case is quite easy as (2.4) simplifies when all the test
functions hi are equal and the expressions follow directly from the structure of the weight sequence,
which turn out to be straightforward iterated integrals.

Lemma 3.1. Fix `̀̀ = (0, 0, . . .) and let h be non-decreasing. Then for all k ≥ 1,

γ0kh(x1, x, x2) = (h(x)− h(x1))
k−1(h(x2)− h(x))k−1(h(x2)− h(x1))

I[x1 ≤ x ≤ x2]
p(x)k!(k − 1)!

(3.2)

and

Γ0
kh(x) = E

[(
h(x)− h(X1)

)k−1(
h(X2)− h(x)

)k−1(
h(X2)− h(X1)

)I[X1 ≤ x ≤ X2]

p(x)k!(k − 1)!

]
. (3.3)

In the lattice case, simplifications of Γ`̀̀kh(x) are more difficult as (2.4) depends strongly on
the chosen sequence `̀̀. Let `̀̀ = (`1, `2, . . .) ∈ {−1,+1}∞. For k ≥ 1, 1 ≤ i ≤ k, we introduce
ai = ai(`̀̀) = I[`i = 1] and bi = bi(`̀̀) = I[`i = −1] as well as

ak= ak(`̀̀) =

k∑
i=1

ai and bk = bk(`̀̀) =

k∑
i=1

bi (3.4)



1834 Marie Ernst, Gesine Reinert and Yvik Swan

Note that ak counts the number of “+” in the first k components of `̀̀ and bk counts the corresponding
number of “−”, so that ak + bk = k. Then for (3.1), with sums over empty sets set to 1

γ`11 h(x1, x, x2) = (h(x2)− h(x1))
I[x1 + a1 ≤ x ≤ x2 − b1]

p(x)
(3.5)

γ`1,`22 h(x1, x, x2) =

x−a2)∑
x3=x1+a1

x2−b1∑
x4=x+b2

(h(x4)− h(x3))∆
−`1h(x3, x4)

I[x1 + a2 ≤ x ≤ x2 − b2]

p(x)
(3.6)

and for k ≥ 3 we have

γ`̀̀kh(x1, x, x2) =

(
x−ak∑

x3=x1+ak−1

x2−bk−1∑
x4=x+bk

(h(x4)− h(x3))∆
−`k−1h(x3, x4)

x3−ak−1∑
x5=x1+ak−2

x2−bk−2∑
x6=x4+bk−1

∆−`k−2h(x5, x6)

· · ·
x2k−3−a2∑

x2k−1=x1+a1

x2−b1∑
x2k+1=x2k−2+b2

∆−`1h(x2k−1, x2k)

)
I[x1 + ak ≤ x ≤ x2 − bk]

p(x)

for all x ∈ S(p) and all x1, x2. This is a proof of the next result.

Proposition 3.2. Instate all previous notations. For all k ≥ 1,

γ`̀̀kh(x1, x, x2) =

(
x−ak∑

x3=x1+ak−1

x2−bk−1∑
x4=x+bk

(h(x4)− h(x3))ψ
`̀̀
k−1h(x1, x3, x4, x2)

)
I[x1 + ak ≤ x ≤ x2 − bk]

p(x)

where ψ`̀̀0h(x1, x3, x4, x2) = 1 and, for k ≥ 2, ψ`̀̀k−1h(x1, x3, x4, x2) = ψ`̀̀k−1,1h(x1, x3)ψ
`̀̀
k−1,2h(x4, x2)

and

ψ`̀̀k−1,1h(x1, x3) = ∆−`k−1h(x3)

x3−ak−1∑
x5=x1+ak−2

(
∆−`k−2h(x5)

x5−ak−2∑
x7=x1+ak−4

(
· · ·

x2k−3−a2∑
x2k−1=x1+a1

∆−`1h(x2k−1)

))

ψ`̀̀k−1,2h(x4, x2) = ∆−`k−1h(x4)

x2−bk−2∑
x6=x4+bk−1

(
∆−`k−2h(x6)

x2−bk−3∑
x8=x6+bk−2

(
· · ·

x2−b1∑
x2k=x2k−2+b2

∆−`1h(x2k)

))
for all x1 + ak−1 ≤ x3 ≤ x4 ≤ x2 − bk−1.

Taking expectations in (3.5) and (3.6) we obtain

Γ`11 h(x) =
1

p(x)
E [(h(X2)− h(X1))I[X1 + a1 ≤ x ≤ X2 − b1]] (3.7)

Γ`1,`22 h(x) =
1

p(x)
E

 x−a2∑
x3=X1+a1

X2−b1∑
x4=x+b2

(h(x4)− h(x3))∆
−`1h(x3, x4)I[X1 + a2 ≤ x ≤ X2 − b2]

 .
The expressions for higher orders are easy to infer, but we have not been able to devise a formula as
transparent as (3.2) for general h in the lattice case. Nevertheless, simple manageable expressions
are obtainable for certain specific choices of h, particularly the case h(x) = Id(x), see Section 3.2.

Remark 3.3. In Ernst et al. (2020) we introduced the inverse Stein density operator

L`ph(x) = E
[
(h(X1)− h(X2))Φ

`
p(X1, x,X2)

]
(3.8)

for h ∈ L1(p) and X1, X2 independent copies of X ∼ p. This operator has the property of yielding
solutions to so-called Stein equations, both in lattice and continuous setting; it has many important
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properties within the context of Stein’s method. In particular it provides generalized covariance
identities and, when h(x) = Id(x) is the identity function, it provides

τ `p(x) = −L`pId(x), (3.9)

the Stein kernel of p. This function, first introduced in Stein (1986), has long been known to provide
a crucial handle on the properties of p and is now studied as an object of intrinsic interest, see e.g.
Courtade et al. (2019); Fathi (2019).

For absolutely continuous p, in Lemma 3.1 letting ν(h) denote the mean E[h(X)] we get

Γ0
1h(x) = E

[
(h(X2)− h(X1))

I[X1 ≤ x ≤ X2]

p(x)

]
= E

[
(ν(h)− h(X))

I[x ≤ X]

p(x)

]
(3.10)

which one may recognize as the inverse of the canonical Stein operator (see (3.8)); in particular
taking h(x) = Id(x) = x the identity function, (3.10) yields the Stein kernel. There is also a
connection between Γ`̀̀,kp h and “higher order” Stein kernels. To see this, restrict to the continuous
case `̀̀ = 0 and introduce Hk

x(y) = (h(y)− h(x))k/k!. Then (3.2) becomes

Γ000
kh(x) = (−1)k

(
E
[
Hk−1
x (X)

]
L0pHk

x(x)− E
[
Hk
x(X)

]
L0pHk−1

x (x)
)

(3.11)

(see the Appendix for a proof). In the case h(x) = x the expression (3.11) simplifies to Papathana-
siou’s weights from Theorem 1.1. This allows to make the connection between considerations related
to Stein’s method and the weights appearing in the expansions, as has already been observed (see
e.g. Afendras et al. (2007)). Thus, our result provides a framework to the important works Pa-
pathanasiou (1988); Korwar (1991); Johnson (1993); Afendras et al. (2007, 2018), which focus on
particular families of distributions, see Sections 3.3.1 and 3.3.2. Further study of this connection, in
line e.g. with Fathi (2021), is outside the scope of this paper and deferred to a future publication.

3.2. Handpicking the test functions. We now focus on particular choices of h. The probably most
intuitive choice is h(x) = Id(x). In this case we abbreviate Γ`kh(x) = Γ`k(x). If `̀̀ = 000 we have

Γ000
k(x) = E

[
(X2 − x)k−1(x−X1)

k−1(X2 −X1)
I[X1 ≤ x ≤ X2]

k!(k − 1)!p(x)

]
.

In the lattice case, direct computations for the first two weights give

Γ`11 (x) = E
[
(X2 −X1)

I[X1 + a1 ≤ x ≤ X2 − b1]

p(x)

]
Γ`1,`22 (x) = E

[
(X2 − x− b2 + 1)(x−X1 − a2 + 1)(X2 −X1)

I[X1 + a2 ≤ x ≤ X2 − b2]

2p(x)

]
.

With the rising and falling factorial notation

f [k](x) =

k−1∏
j=0

f(x+ j) and f[k](x) =

k−1∏
j=0

f(x− j), (3.12)

with the convention that f [0](x) = f[0](x) = 1, we have the following.

Lemma 3.4. If `̀̀ ∈ {−1, 1}∞ then for all k ≥ 1

Γ`̀̀k(x) = E
[
(X2 − x− bk + 1)[k−1](x−X1 − ak + 1)[k−1](X2 −X1)

I[X1 + ak ≤ x ≤ X2 − bk]

p(x)k!(k − 1)!

]
.

(3.13)

Remark 3.5. As already noted in Remark 3.3, the expression of the weights in the continuous case
is already known and can be traced back to works as early as Papathanasiou (1988); the expression
for the lattice case (namely equation (3.13)) is new, although a version with `̀̀ = (−1,−1,−1, . . .)
is available from Afendras et al. (2007).
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Another natural choice in the continuous case `̀̀ = 0 of an increasing function h to plug into the
weights is h(x) = P (x) with P the cdf of p. Then the following holds.

Lemma 3.6. If `̀̀ = 0 and X ∼ p has cdf P then Γ0
kP (x) = 1

k!(k+1)!p(x)P (x)k(1− P (x))k.

A final natural choice occurs whenever p is log-concave. Indeed in this case the function h1 =
−(log p)′ is increasing. In particular, Γ0

1h1(x) = −L0ph1(x) = 1, which yields that

Cov [f(X), g(X)] = E
[
f ′(X)g′(X)

−(log p)′′(X)

]
−R0

1(h)

for all f, g for which the expectations exist. This expression generalizes the Brascamp-Lieb inequality
from Ernst et al. (2020). For simple expressions of R0

1(h) one may like to choose hk = Id for k ≥ 2.
This example thus benefits from the flexibility in choosing a sequence of functions h.

3.3. Illustrations. The examples below take h(x) = Id(x) and many of them are phrased in terms
of Stein kernels as in (3.9). Tables at the end of Ernst et al. (2020) give explicit expressions of Stein
kernels for many standard distributions.

3.3.1. The weights for Integrated Pearson family. The integrated Pearson family of distribution is
an important subfamily of the Pearson family as the Rodrigues polynomials form an orthogonal
system for the corresponding Pearson density if and only if the density belongs to the Integrated
Pearson family, see the review Afendras and Papadatos (2015).

Definition 3.7 (Integrated Pearson). We say that X ∼ p belongs to the integrated Pearson (IP)
family if X is absolutely continuous and there exist δ, β, γ ∈ IR not all equal to 0 such that τ0p (x)

(
:=

−L0pId(x)
)

= δx2 + βx+ γ for all x ∈ S(p).

Definition 3.7 corresponds to the continuous Pearson systems, a.k.a. integrated Pearson, as stud-
ied e.g. in Afendras and Papadatos (2014) (see their Definition 1.1). The following result holds.

Proposition 3.8. If X ∼ p is IP distributed with Stein kernel τp(x) = τ0p (x) = δx2 + βx+ γ then

Γ0
k(x) =

τp(x)k

k!
∏k−1
j=0(1− jδ)

. (3.14)

The coefficient (δ, β, γ) of the Stein kernel can be used to directly obtain the infinite expansion of
covariance for the IP family. We give the expansions for two distributions in the following examples.

Example 3.9 (Normal expansion). The standard normal distribution φ is an element of the IP family
with δ = 0, β = 0, and γ = 1. Direct computations show that if X ∼ N (0, 1) then τφ(x) = 1 so
that Γ0

k(x) = 1
k! for all k and for all f, g for which the expectations exist

Cov[f(X), g(X)] =

∞∑
k=1

(−1)k−1

k!
E
[
f (k)(X)g(k)(X)

]
,

which extends the variance expansion (1.2) to a covariance expansion.

Example 3.10 (Beta expansion). The Beta(a, b) distribution is an element of the IP family with
δ = − 1

a+b , β = 1
a+b , and γ = 0; then τBeta(a,b)(x) = x(1−x)

a+b . If X ∼ Beta(a, b) then Γ0
k(x) =

(x(1− x))k/(k!(a+ b)[k]) for k ≥ 1, so that for all f, g for which the expectations exist

Cov[f(X), g(X)] =
∞∑
k=1

(−1)k−1

k!(a+ b)[k]
E
[
f (k)(X)g(k)(X)Xk(1−X)k

]
.
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3.3.2. The weights for Cumulative Ord family. In this subsubsection the superscript + denotes ` = 1
and the superscript − denotes ` = −1. We use the same notations as in Afendras et al. (2007).

Definition 3.11 (Cumulative Ord families). We say that X ∼ p belongs to the cumulative Ord
(CO) family if X is discrete and there exist δ, β, γ ∈ IR not all equal to 0 such that τ−p (x)

(
:=

−L−p (Id)
)

= δx2 + βx+ γ for all x ∈ S(p).

Note that it follows that for this distribution p, τ+p (x) = p(x−1)
p(x) τ−p (x− 1) = x(δx+ β + 1). The

following result holds.

Proposition 3.12. If X ∼ p is CO distributed with τ−p (x) = δx2 + βx+ γ then

Γ`̀̀k(x) =
1

k!
∏k−1
j=0(1− jδ)

(
τ+p (x)

)
[ak]

(
τ−p (x)

)[bk] . (3.15)

Remark 3.13. By taking only k forward differences, i.e., `̀̀ = (−1, . . . ,−1), we deduce the result of
Afendras et al. (2007, Theorem 4.1). In particular, their Table 1 illustrates the expression of Γ`̀̀k(x)
for some discrete distributions from the CO family.

In the lattice case, there is much more flexibility in the construction of the bounds as any per-
mutation of +1 and −1 is allowed for every k, leading to:

Var[g(X)] = E
[
Γ+
1 (X)(∆−g(X))2

]
−R+

1 = E
[
Γ−1 (X)(∆+g(X))2

]
−R−1

and for an order 2 expansion, for any of the four choices of (`1, `2) ∈ {−1,+1}2,

Var[g(X)] = E
[
Γ`11 (X)(∆−`1g(X))2

]
− E

[
Γ`1,`22 (X)(∆−`1,−`2g(X))2

]
+R`1,`22

where we use the notation ∆`1,`2g(X) for ∆`2
(
∆`1g(X)

)
.

Example 3.14 (Binomial expansion). The Binomial(n, θ) distribution is an element of the CO family
with δ = 0, β = −θ, and γ = nθ; its Stein kernels are τ−(x) = θ(n − x) and τ+(x) = (1 − θ)x.
Hence

Γ+
1 (x) = (1− θ)x, Γ−1 (x) = θ(n− x)

so that the order 1 expansions are

Var[g(X)] = (1− θ)E
[
X(∆−g(X))2

]
−R+

1 (3.16)

= θE
[
(n−X)(∆+g(X))2

]
−R−1 ; (3.17)

choosing a linear combination of (3.16) and (3.17) with weights θ and 1− θ, respectively, yields

Var[g(X)] = nθ(1− θ)E
[
X

n
(∆−g(X))2 +

n−X
n

(∆+g(X))2
]
− θR+

1 − (1− θ)R−1 . (3.18)

In Hillion et al. (2014, Theorem 1.3) the “natural binomial derivative” ∇ng(x) = x
n∆−g(x) +

n−x
n ∆+g(x) is introduced and used to prove the Poincaré inequality

Var[g(X)] ≤ nθ(1− θ)E
[(
∇ng(X)

)2]
.

The connection with (3.18) is easy to see because (see e.g. Hillion et al. (2014, Remark 3.3))(
∇ng(x)

)2
=
x

n
(∆−g(x))2 +

n− x
n

(∆+g(x))2 − x(n− x)

n2
(∆+−g(x))2.

Moving to the second order, direct computations show that

Γ+,+
2 (x) =

1

2
(1− θ)2x(x− 1)I[1 ≤ x ≤ n], Γ+,−

2 (x) = Γ−,+2 (x) =
1

2
θ(1− θ)x(n− x)I[0 ≤ x ≤ n]

and Γ−,−2 (x) =
1

2
θ2(n− x)(n− x− 1)I[0 ≤ x ≤ n− 1]
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leading to four order 2 expansions for Var[g(X)]. These yield for example the lower variance bound

Var[g(X)] ≥ nθ(1− θ)
{
E
[(
∇ng(X)

)2]− n− 2

2
E
[
X(n−X)

n2
(∆+−g(X))2

]}
.

Combining these inequalities yields that for 0 < θ < 1,

E
[(
∇ng(X)

)2]− n− 2

2
E
[
X(n−X)

n2
(∆+−g(X))2

]
≤ Var[g(X)]

nθ(1− θ)
≤ E

[(
∇ng(X)

)2]
.

3.3.3. Examples which are not integrated Pearson or cumulative Ord distributions.

Example 3.15 (Laplace expansion). If X ∼ Laplace(0, 1) (i.e. p(x) = e−|x|/2 on IR) then Γ0
1(x) =

1 + |x| and Γ0
2(x) = 1

2x
2 + |x|+ 1 so that the first two terms in the variance expansion are

Var[g(X)] = E
[
(1 + |X|)g′(X)2

]
−R1

= E
[
(1 + |X|)g′(X)2

]
− E

[
(1 + |X|+X2/2)g′′(X)2

]
+R2.

The general expression for Γk is quite simple:

Γ0
k(x) =

k∑
j=0

|x|j

j!
.

The structure of this sequence seems to indicate that this distribution is of a different nature than
IP distributions; this is also illustrated in the properties of the corresponding Stein operator (which
is best described as a second order differential operator), see Eichelsbacher and Thäle (2015); Pike
and Ren (2014).

Example 3.16 (Rayleigh expansion). If X ∼ Rayleigh(0, 1) (i.e. p(x) = xe−x
2/2 on IR+) then τ0p (x)

does not take on an agreeable form. Nevertheless the choice h(x) = x2 leads to

Γ0
kh(x)

h′(x)
=

2k−2

k!
x2(k−1).

Example 3.17 (Cauchy expansion). The standard Cauchy distribution lacks moments; nevertheless
taking h(x) = arctan(x) leads to

Γ0
k(x)

h′(x)
=

1

4k(k + 1)!(k)!
(1 + x2)2

(
π2 − 4 arctan(x)2

)k
.

Example 3.18 (Levy expansion). The pdf of the standard Levy distribution is given by 1√
2π
e

1
2xx−

3
2 .

Similarly as in the previous example, taking h(x) = P (x),

Γ0
k(x)

h′(x)
=

(
k + 1

2

)
1

k!(k + 1)!
πe1/xx3

(
(1− P (x))P (x)

)k
.

3.4. Final remarks. As already mentioned in the Introduction, it would be interesting to provide a
spectral or orthogonal decomposition lens to our weighting sequence; for instance direct comparison
with the weights identified e.g. in Ledoux (1995) may be possible (recall for instance that in the
Beta case of Example 3.10 Jacobi polynomials are eigenvectors of the natural diffusion operator).
We also conjecture that there is a Stein’s method interpretation of these higher order weighting
operators h 7→ Γ`̀̀kh, and in particular in the context of Stein-Malliavin calculus where such higher
order operators already exist, see Azmoodeh et al. (2015) (from which the notation Γ for the weights
is inspired). Tackling this problem exceeds the scope of the present article.
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Appendix A. Proofs

Proof of Lemma 2.1: The equivalence between (2.9) and (2.8) follows from the fact that I[X1 <
X2] + I[X1 = X2] + I[X1 > X2] = 1 and

E
[(
f(X2)−f(X1)

)(
g(X2)−g(X1)

)
I[X1<X2]

]
= E

[(
f(X2)−f(X1)

)(
g(X2)−g(X1)

)
I[X2<X1]

]
.

Without loss of generality in (2.9) it can be assumed that E[f(X)] = E[g(X)] = 0. Evaluating the
expectation (2.9) through expanding the product yields the assertion. �

Proof of Lemma 2.2: First, from (2.6) in it follows directly that

Φ`
p(u, x1, x2, v)I[x1 6= x2] = I[x1 6= x2]χ

|`|(x1, x2)Φ
`
p(u, x1, v)Φ`

p(u, x2, v). (A.1)

With the abbreviations as introduced in the statement of the lemma, the (i, j) entry of the r × r
matrix R(u, v) is

(R(u, v))i,j := E
[
(vi3g4 − vi4g3)(vj3g4 − vj4g3)Φ`

p(u,X3, X4, v)
]

= E
[
I[X3 6= X4](vi3g4 − vi4g3)(vj3g4 − vj4g3)χ|`|(X3, X4)Φ

`
p(u,X3, v)Φ`

p(u,X4, v)
]
,

where we used (A.1) in the last step. Next, using (2.5), I[x1 6= x2](χ
|`|(x1, x2) + χ|`|(x2, x1)) =

I[x1 6= x2] and by symmetry,

E
[
I[X3 6= X4](vi3g4 − vi4g3)(vj3g4 − vj4g3)χ|`|(X3, X4)Φ

`
p(u,X3, v)Φ`

p(u,X4, v)
]

= E
[
I[X4 6= X3](vi3g4 − vi4g3)(vj3g4 − vj4g3)χ|`|(X4, X3)Φ

`
p(u,X3, v)Φ`

p(u,X4, v)
]
.

Thus

2(R(u, v))i,j = E
[
I[X3 6= X4](vi3g4 − vi4g3)(vj3g4 − vj4f3)χ|`|(X3, X4)Φ

`
p(u,X3, v)Φ`

p(u,X4, v)
]

+E
[
I[X4 6=X3](vi3g4−vi4g3)(vj3g4−vj4g3)χ|`|(X4, X3)Φ

`
p(u,X3, v)Φ`

p(u,X4, v)
]

= E
[
I[X3 6= X4](vi3g4 − vi4g3)(vj3g4 − vj4g3)Φ`

p(u,X3, v)Φ`
p(u,X4, v)

]
= E

[
(vi3g4 − vi4g3)(vj3g4 − vj4g3)Φ`

p(u,X3, v)Φ`
p(u,X4, v)

]
.

Now we exploit the independence of X3 and X4 to obtain

2(R(u, v))i,j = 2E
[
vi3vj3Φ

`
p(u,X3, v)

]
E
[
g24Φ`

p(u,X4, v)
]

− 2E
[
vi3g3Φ

`
p(u,X3, v)

]
E
[
vj4g4Φ

`
p(u,X4, v)

]
.

The assertion follows by dividing by 2 and re-arranging the equation. �

Proof of Theorem 2.3: First by direct verification we note that the following recursion for Φ`̀̀,np holds.
Starting from Φ`̀̀,1p (x1, x3, x4, x2) = Φ`1

p (x1, x3, x4, x2) we have for n ≥ 2

Φ`̀̀,np (x1, x3, . . . , x2n−1, x2n+1, x2n+2, x2n, . . . , x2)

= Φ`n
p (x2n−1, x2n+1, x2n+2, x2n)Φ`̀̀,n−1p (x1, x3, . . . , x2n−1, x2n, . . . , x2) (A.2)

for any sequence (xj)j≥1. We abbreviate

Φ`̀̀n,1(x1, x3, . . . , x2n−1, x, x2n, . . . , x2) = Φ`n
p (x2n−1, x, x2n)Φ`̀̀,n−1p (x1, x3, . . . , x2n−1, x2n, . . . , x2).

(A.3)
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The proof uses induction in n. First consider n = 1. Let X1, X2, X3, X4 be independent copies of
X. Starting from (2.8),

Cov [f(X)] = E[(f(X2)− f(X1))(f(X2)− f(X1))
′I[X1 < X2]]

= E
[
E
[
Φ`1
p (X1, X3, X2)∆

−`1f(X3) |X1, X2

]
E
[
Φ`1
p (X1, X4, X2)∆

−`1f(X4) |X1, X2

]′
I[X1 < X2]

]
where we used (2.7) in the last step. Now for any h1 such that P[∆−`1h1(X) > 0] = 1, dividing and
multiplying by

√
∆−`1h1(X) and applying Lemma 2.2 (Lagrange identity) with

v(x) =
∆−`1f(x)√
∆−`1h1(x)

and g(x) =
√

∆−`1h1(x) (A.4)

gives

Cov [f(X)] + E
[
R`1(X1, X2;v, g)I[X1 < X2]

]
= E

[
E
[
v(X)v′(X)Φ`1

p (X1, X,X2) |X1, X2

]
E
[
g2(X)Φ`1

p (X1, X,X2) |X1, X2

]
I[X1 < X2]

]
=E
[
E
[
∆−`1f(X)∆−`1f ′(X)

∆−`1h1(X)
Φ`1
p (X1, X,X2)|X1, X2

]
E
[
∆−`1h1(X)Φ`1

p (X1, X,X2)|X1, X2

]
I[X1<X2]

]
= E

[
E
[

∆−`1f(X)∆−`1f ′(X)

∆−`1h1(X)
Φ`1
p (X1, X,X2)|X1, X2

]
(h1(X2)− h(X1))I[X1 < X2]

]
(A.5)

with the last equality following from (2.7). Note that, in the lattice case, the strict inequality in
the indicator I[X1 < X2] is implicit in Φ`1

p (X1, X,X2) = χ`1(X1, X)χ−`1(X,X2)/p(X) (and hence a
fortiori also in Φ`1

p (X1, X3, X4, X2); in the continuous case there is no difference between I[X1 < X2]
and I[X1 ≤ X2]. Hence unconditioning yields

E
[

∆−`1f(X)∆−`1f ′(X)

∆−`1h1(X)
Φ`1
p (X1, X,X2)(h1(X2)− h1(X1))I[X1 < X2]

]
= E

[
∆−`1f(X)∆−`1f ′(X)

∆−`1h1(X)
Φ`1
p (X1, X,X2)(h1(X2)− h1(X1))

]
= E

[
∆−`1f(X)∆−`1f ′(X)

Γ`1,1p h1(X)

∆−`1h1(X)

]
,

giving the first term in the covariance expansion (2.13). With the notation (A.4), the remainder
term in (A.5) is

E
[
R`1(X1, X2;v, g)I[X1 < X2]

]
= E

[
E
[
(v3g4 − v4g3)(v3g4 − v4g3)

′Φ`1
p (X1, X3, X4, X2)|X1, X2

]
I[X1 < X2]

]
.

Now,

v3g4 =
∆−`1f(X3)√
∆−`1h1(X3)

√
∆−`1h1(X4) =

∆−`1f(X3)

∆−`1h1(X3)

√
∆−`1h1(X3)∆−`1h1(X4)
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and
√

∆−`1h1(X3)∆−`1h1(X4) is a common factor, so that

E
[
R`1(X1, X2;v, g)I[X1 < X2]

]
= E

[(
∆−`1f(X3)

∆−`1h1(X3)
− ∆−`1f(X4)

∆−`1h1(X4)

)(
∆−`1f(X3)

∆−`1h1(X3)
− ∆−`1f(X4)

∆−`1h1(X4)

)′
×
(√

∆−`1h1(X3)∆−`1h1(X4)

)2

Φ`1
p (X1, X3, X4, X2)I[X1 < X2]

]
= E

[
(f1(X3)− f1(X4))(f1(X3)− f1(X4))

′∆−`1h1(X3)∆
−`1h1(X4)Φ

`1
p (X1, X3, X4, X2)

]
= R`1,1p (h)

as required; here h = h1. Thus the assertion holds for n = 1.
To obtain the complete claim, we proceed by induction and suppose that the claim holds at some

n. It remains to show that

R`̀̀,np (h) = E

[
∆−`n+1fn(X)∆−`n+1f ′n(X)

Γ`̀̀,n+1
p h(X)

∆−`n+1hn+1(X)

]
−R`̀̀,n+1

p (h). (A.6)

To this purpose, starting from (2.15), we simply apply the same process as above: for x2n+1 < x2n+2,
we use

fn(x2n+2)− fn(x2n+1) = E
[
∆−`n+1fn(X)Φ`n+1

p (x2n+1, X, x2n+2)
]

as well as the Lagrange identity (2.11) and simple conditioning to obtain that

R`̀̀,np (h) = E

[
(fn(X2n+2)− fn(X2n+1)) (fn(X2n+2)− fn(X2n+1))

′

Φ`̀̀,np (X1, . . . X2n+1, X2n+2, . . . , X2)
n∏
i=1

∆−`ihi(X2i+1, X2i+2)

]

= E

[
E
[
∆−`n+1fn(X2n+3)Φ

`n+1
p (X2n+1, X2n+3, X2n+2)|X2n+1, X2n+2

]
E
[
∆−`n+1f ′n(X2n+4)Φ

`n+1
p (X2n+1, X2n+4, X2n+2)|X2n+1, X2n+2

]
Φ`̀̀,np (X1, . . . X2n+1, X2n+2, . . . , X2)

n∏
i=1

∆−`ihi(X2i+1, X2i+2)

]
.

Now for any hn+1 such that P[∆−`n+1hn+1(X) > 0] = 1, dividing and multiplying by√
∆−`n+1hn+1(X) and applying Lemma 2.2 with

vn+1(x) =
∆−`n+1fn(x)√
∆−`n+1hn+1(x)

and gn+1(x) =
√

∆−`n+1hn+1(x) (A.7)
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we obtain with (2.14)

R`̀̀,np (h)− E
[
E
[
R`n+1(X2n+1, X2n+2;vn+1, gn+1)|X2n+1, X2n+2

]
I[X2n+1 < X2n+2]Φ

`̀̀,n
p (X1, . . . X2n+1, X2n+2, . . . , X2)

n∏
i=1

∆−`ihi(X2+1, X2i+2)

]
= E

[
E
[
vn+1(X)v′n+1(X)Φ`n+1

p (X2n+1, X,X2n+2)|X2n+1, X2n+2

]
×E

[
g2n+1(X)Φ`n+1

p (X2n+1, X,X2n+2)|X2n+1, X2n+2

]
I[X2n+1 < X2n+2]Φ

`̀̀,n
p (X1, . . . X2n+1, X2n+2, . . . , X2)

n∏
i=1

∆−`ihi(X2+1, X2i+2)

]
= E

[
E
[
vn+1(X)v′n+1(X)Φ`n+1

p (X2n+1, X,X2n+2)
]

(hn+1(X2n+2)− hn+1(X2n+1))

Φ`̀̀,np (X1, . . . X2n+1, X2n+2, . . . , X2)
n∏
i=1

∆−`ihi(X2i+1, X2i+2)
]

= E

[
∆−`n+1fn(X)∆−`n+1f ′n(X)

Γ`̀̀,n+1
p h(X)

∆−`n+1hn+1(X)

]
(A.8)

where we used (A.7) in the last step. Thus we have recovered the first summand in (A.6). For the
remainder term in (A.8), leaving out the negative sign, the notation (A.7) gives

E
[
E
[
R`n+1(X2n+1, X2n+2;vn+1, gn+1)|X2n+1, X2n+2

]
I[X2n+1 < X2n+2]Φ

`̀̀,n
p (X1, . . . X2n+1, X2n+2, . . . , X2)

n∏
i=1

∆−`ihi(X2i+1, X2i+2)
]

= E
[
(vn+1,2n+3gn+1,2n+4 − vn+1,2n+4gn+1,2n+3)(vn+1,2n+3gn+1,2n+4 − vn+1,2n+4gn+1,2n+3)

′

Φ`n+1
p (X2n+1, X2n+3, X2n+4, X2n+2)Φ

`̀̀,n
p (X1, . . . X2n+1, X2n+2, . . . , X2)

n∏
i=1

∆−`ihi(X2i+1, X2i+2)
]

and again extracting the common factor
√

∆−`n+1hn+1(X2n+3)∆−`n+1hn+1(X2n+4) and re-arranging
yields the assertion. �

Proof of Lemma 3.1: Let x1 ≤ x ≤ x2 and h an increasing function. Direct application of the
definitions with (2.4) lead to

p(x)γ0kh(x1, x, x2) =

∫ x

x1

∫ x2

x

∫ x

x3

∫ x4

x
· · ·
∫ x

x2k−3

∫ x2k−2

x
(h(x2k)− h(x2k−1)h

′(x2k−1)h
′(x2k)dx2kdx2k−1

· · ·h′(x5)h′(x6)dx6dx5h′(x3)h′(x4)dx4dx3.

Applying the change of variables uk = h(xk), k = 1, . . . , 2k and setting u = h(x) we see that the
sequence γ0kh depends only on the iterated integrals

ιk(u1, u, u2) :=

∫ u

u1

∫ u2

u

∫ u

u3

∫ u4

u
· · ·
∫ u

u2k−3

∫ u2k−2

u
(u2k − u2k−1)du2kdu2k−1 · · · du6du5du4du3
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which we can write recursively as

ι1(u1, u, u2) = u2 − u1

ιk(u1, u, u2) =

∫ u

u1

∫ u2

u
ιk−1(u3, u, u4)du4du3, k ≥ 2.

It remains to show that

ιk(u1, u, u2) = (u2 − u)k−1(u− u1)k−1(u2 − u1)
I[u1 ≤ u ≤ u2]
k!(k − 1)!

(A.9)

for all k ≥ 1. We proceed by induction on k. Clearly ι1(u1, u, u2) = (u2 − u1)I[u1 ≤ u ≤ u2], as
required. Next suppose that (A.9) holds. Then

ιk+1(u1, u, u2) =
1

k!(k − 1)!

∫ u

u1

∫ u2

u
(u4 − u)k−1(u− u3)k−1(u4 − u3)du4du3

=
1

k!(k − 1)!

∫ u

u1

∫ u2

u
(u4 − u)k(u− u3)k−1du4du3

+
1

k!(k − 1)!

∫ u

u1

∫ u2

u
(u4 − u)k(u− u3)k−1du4du3

=
(u2 − u)k+1(u− u1)k + (u2 − u)k(u− u1)k+1

(k + 1)!k!

which leads to the claim. �

Proof of Identity (3.11): Identity (3.11) follows from Lemma 3.1 by using h(X2)−h(X1) = h(X2)−
h(x) + h(x)− h(X1) and I[X1 ≤ x ≤ X2]I[X1 6= X2] = I[X1 ≤ x]I[X2 ≥ x]I[X1 6= X2] to get

Γ000
kh(x) = (−1)k−1

1

p(x)
E
[
Hk−1
x (X)I[X ≤ x]

]
E
[
Hk
x(X)I[X ≥ x]

]
+ (−1)k

1

p(x)
E
[
Hk
x(X)I[X ≤ x]

]
E
[
Hk−1
x (X)I[X ≥ x]

]
(A.10)

= (−1)k−1E
[
Hk−1
x (X)

] 1

p(x)
E
[
Hk
x(X)I[X ≥ x]

]
+ (−1)kE

[
Hk
x(X)

] 1

p(x)
E
[
Hk−1
x (X)I[X ≥ x]

]
where the last equality follows from

E
[
Hk
x(X)

]
= E

[
Hk
x(X)I[X ≤ x]

]
+ E

[
Hk
x(X)I[X ≥ x]

]
.

Upon noting that

−L0pHk
x(x)

=
1

p(x)

{
E
[
Hk
x(X2)I[X1 < x < X2]

]
− E

[
Hk
x(X1)I[X1 < x < X2]

]}
=

1

p(x)

{
E
[
Hk
x(X2)I[x < X2]

]
P[x > X1]− E

[
Hk
x(X1)I[X1 < x

]
P[x < X2]

}
=

1

p(x)

{
E
[
Hk
x(X2)I[x < X2]

]
− E

[
Hk
x(X2)I[x < X2]

]
P[x < X1]

−E
[
Hk
x(X1)I[X1 < x

]
P[x < X2]

}
with P (x) = P[X ≤ x] we obtain

1

p(x)
E
[
Hk
x(X)I[X ≥ x]

]
= −L0pHk

x(x) +
1− P (x)

p(x)
E
[
Hk
x(X)

]
,
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the required result is obtained after straightforward simplifications by writing

Γ000
kh(x)=(−1)k−1E

[
Hk−1
x (X)

] 1

p(x)
E
[
Hk
x(X)I[X≥x]

]
+(−1)kE

[
Hk
x(X)

] 1

p(x)
E
[
Hk−1
x (X)I[X≥x]

]
= (−1)k−1

(
−E
[
Hk−1
x (X)

]
L0pHk

x(x) + E
[
Hk
x(X)

]
L0pHk−1

x (x)
)

+ (−1)k−1
1− P (x)

p(x)

(
E
[
Hk−1
x (X)

]
E
[
Hk
x(X)

]
− E

[
Hk
x(X)

]
E
[
Hk−1
x (X)

])
and noticing that the last term cancels. �

Proof of Lemma 3.4: We shall prove that

γ`̀̀k(x1, x, x2) := γ`̀̀kId(x1, x, x2) = (x2 − x){k−1;̀`̀}(x− x1){k−1;̀`̀}(x2 − x1)
I[x1 + ak ≤ x ≤ x2 − bk]

p(x)k!(k − 1)!
.

(A.11)

The claim is obvious from (3.2) in the continuous case. For the lattice case, the assertion is proved
by induction in k; the cases k = 1 and k = 2 need to be asserted to start the induction. The case
k = 1 is immediate. For k = 2, we show that

γ`1,`22 (X1, x,X2) =
1

2
(x−X1−a`̀̀(2)+1)(X2−x− b`̀̀(2)+1)(X2−X1)

I[X1+a`̀̀(2) ≤ x ≤ X2−b`̀̀(2)]

p(x)

for `i ∈ {−1, 1}. To this end, from Proposition 3.2 where we sum over (x3, x4) instead of (y, z), we
obtain

γ`1,`22 (x1, x, x2) =

x−a2∑
x3=x1+a1

x2−b1∑
x4=x+b2

(x4 − x3)
I[x1 + a2 ≤ x ≤ x2 − b2]

p(x)

=
1

2
(x− x1 − a2 + 1)(x2 − x− b2 + 1)(x2 − x1)

I[x1 + a2 ≤ x ≤ x2 − b2]

p(x)

as required.
To conclude the argument, we prove the identity (A.11) by induction: we suppose the claims

hold for k and investigate its validity for k + 1. The definition of Γ`̀̀,kp in (2.14) gives

γ`̀̀k+1(x1, x, x2) = E
[
χ`1(x1, X3)

p(X3)

χ−`1(X4, x2)

p(X4)
γ
`2,...,`k+1

k (X3, x,X4)

]
(A.12)

Now we can plug-in the induction assumption (A.11) into (A.12):

γ`̀̀k+1(x1, x, x2)

= E
[
(X4 − x− b′k + 1)[k−1](x−X3 − a′k + 1)[k−1](X4 −X3)

I[X3 + a′k ≤ x ≤ X4 − b′k]

p(x)k!(k − 1)!

χ`1(x1, X3)

p(X3)

χ−`1(X4, x2)

p(X4)

]

=

x−a′k∑
x3=x1+a1

x2−b1∑
x4=x+b′k

(x4 − x− b′k + 1)[k−1](x− x3 − a′k + 1)[k−1](x4 − x3)
I[x1 + ak+1≤x≤x2 − bk+1]

p(x)

= (x2 − x− bk+1 + 1)[k](x− x1 − ak+1 + 1)[k](x2 − x1)
I[x1 + ak+1 ≤ x ≤ x2 − bk+1]

p(x)

where a′k =
∑k+1

i=2 ai and b′k =
∑k+1

i=2 bi. �
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Proof of Lemma 3.6: By Lemma 3.1 and (A.10), we have

Γ0
kP (x) =

1

p(x)k!(k − 1)!
E
[
(P (x)− P (X1))

k−1I[X1 ≤ x]
]
E
[
(P (X2)− P (x))kI[X2 ≥ x]

]
+

1

p(x)k!(k − 1)!
E
[
(P (x)− P (X1))

kI[X1 ≤ x]
]
E
[
(P (X2)− P (x))k−1I[X2 ≥ x]

]
.

Moreover, using integration by substitution,

E
[
(P (x)− P (X1))

kI[X1 ≤ x]
]
=

∫ x

a
(P (x)− P (x1))

kp(x1)dx1 = −
∫ 0

P (x)
ukdu =

P (x)k+1

k + 1

E
[
(P (X2)− P (x))kI[X2 ≥ x]

]
=

∫ b

x
(P (x2)− P (x))kp(x2)dx2 =

∫ 1−P (x)

0
ukdu =

(1− P (x))k+1

k + 1
,

and the conclusion follows. �

Proof of Proposition 3.8: This argument is inspired by Johnson (1993, Theorem 2). By Lemma 3.1,

γ0k(x1, x, x2) = (x− x1)k−1(x2 − x)k−1(x2 − x1)
I[x1 ≤ x ≤ x2]
p(x)k!(k − 1)!

= (x− x1)k−1(x2 − x)k−1(x2 − µ+ µ− x1)
I[x1 ≤ x]I[x ≤ x2]
p(x)k!(k − 1)!

Therefore, Γ0
k(x) can be decomposed using expectations:

Γ0
k(x) =

1

p(x)k!(k − 1)!

(
E
[
(x−X1)

k−1I[X1 ≤ x]
]
E
[
(X2 − µ)(X2 − x)k−1I[x ≤ X2]

]
+ E

[
(µ−X1)(x−X1)

k−1I[X1 ≤ x]
]
E
[
(X2 − x)k−1I[x ≤ X2]

])
. (A.13)

In the continuous setting, the Stein kernel τp is such that is satisfies for X ∼ p with mean µ and
differentiable f such that the expectations exist,

E[(X − µ)f(X)] = E[τp(X)f ′(X)].

Integrating by parts we thus obtain

E
[
(X2 − µ)(X2 − x)k−1I[X2 ≥ x]

]
= E

[
τp(X2)(k − 1)(X2 − x)k−2I[X2 ≥ x]

]
and

E
[
(µ−X1)(x−X1)

k−1I[X1 ≤ x]
]

= E
[
τp(X1)(k − 1)(x−X1)

k−2I[X1 ≤ x]
]
.

When we plug it into (A.13), we get

Γ0
k(x) =

k − 1

p(x)k!(k − 1)!
E
[
(x−X1)

k−2(X2−x)k−2(τp(X2)(x−X1) + τP (X1)(X2−x))I[X1≤x≤X2]
]
.

Using the particular form of τp for the IP family, Taylor expansion of τp(x) around x1 and around
x2 and using that τ ′′p (x) = 2δ is constant gives

(x− x1)τp(x2) + (x2 − x)τp(x1) = τp(x)(x2 − x1) +
τ ′′p (x)

2
(x− x1)(x2 − x)(x2 − x1)
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Therefore,

Γ0
k(x) =

k − 1

k!(k − 1)!

1

p(x)
E
[
(x−X1)

k−2(X2 − x)k−2I[X1 ≤ x ≤ X2](
τp(x)(X2 −X1) +

τ ′′p (x)

2
(x−X1)(X2 − x)(X2 −X1)

)]
=
τp(x)

k
Γ0
k−1(x) +

τ ′′p (x)(k − 1)

2
Γ0
k(x)

=
1

k
(
1− k−1

2 τ ′′p (x)
)τp(x)Γ0

k−1(x)

The assertion follows from iterating this expression and using Γ0
1(x) = τp(x) and τ ′′p (x) = 2δ. �

Proof of Proposition 3.12: By induction, we only have to prove the relation with respect to `k+1,
i.e.,

Γ`̀̀,1k+1(x) =
τ+p (x− ak)

(k + 1)(1− kδ)
Γ`̀̀k(x) and Γ`̀̀,−1k+1 (x) =

τ−p (x+ bk)

(k + 1)(1− kδ)
Γ`̀̀k(x).

The following argument is inspired by Afendras et al. (2007). Using (A.11) and a similar proof as
in the IP case (Proposition 3.8), we may rewrite Γ`̀̀,1k+1(x) using expectations:

Γ`̀̀,1k+1(x) =
1

p(x)

1

k!(k + 1)!

(
E
[
(x−X1 − ak)

[k]I[X1 + ak + 1 ≤ x]
]
E
[
(X2 − µ)(X2 − x− bk + 1)[k]I[x ≤ X2 − bk]

]
+ E

[
(µ−X1)(x−X1−ak)[k]I[X1 + ak + 1 ≤ x]

]
E
[
(X2−x−bk + 1)[k]I[x ≤ X2−bk]

])
.

(A.14)

With the notation (3.12) is it straightforward to verify that for all x we have

∆`
(
f [k](x)

)
= f [k−1](x+ a`)

k−1∑
j=0

∆`f(x+ j). (A.15)

In particular, for all x, a, we have

∆−
(

(x− a+ 1)[k]I[x ≥ a]
)

= k(x− a+ 1)[k−1]I[x ≥ a]

∆+
(

(a+ 1− x)[k]I[x ≤ a]
)

= −k(a+ 1− x)[k−1]I[x ≤ a]

∆−
(

(a− x)[k]I[x < a]
)

= −k(a− x+ 1)[k−1]I[x ≤ a]

The Stein kernel τ `p for discrete distributions satisfies for X ∼ p with mean µ and functions f such
that the expectations exist,

E[(X − µ)f(X)] = E[τ `p(X)∆−`f(X − `)],

see for example Ley et al. (2017). Hence, with (A.15), we may use the discrete integration by parts
formula to rewrite

E
[
(X2 − µ)(X2−x−bk + 1)[k]I[x ≤ X2−bk]

]
=kE

[
τ+p (X2)(X2−x−bk + 1)[k−1]I[x ≤ X2−bk]

]
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and

E
[
(µ−X1)(x−X1−ak)[k]I[X1 ≤ x−ak−1]

]
=E
[
(µ−X1)(x−X1 − ak)

[k]I[X1 ≤ x− ak]

]
=kE

[
τ+p (X1)(x−X1 − ak + 1)[k−1]I[X1 ≤ x− ak]

]
.

After plugging these equations into (A.14) and some further algebraic developments, we obtain

Γ`̀̀,1k+1(x) =
1

p(x)

1

k!(k + 1)!

(
kτ+p (x− ak)

E
[
(x−X1 − ak + 1)[k−1](X2 − x− bk + 1)[k−1](X2 −X1)I[X1 + ak ≤ x ≤ X2 − bk]

]
+ δkE

[
(X2 −X1)(x−X1 − ak)(X2 − x+ k − bk)I[X1 + ak + 1 ≤ x ≤ X2 − bk]

])

=
τ+p (x− ak)

k + 1
Γ`̀̀k(x) + δkΓ`̀̀,1k+1(x)

which gives the assertion. The equivalent result for Γ`̀̀,−1k+1 (x) can easily be obtained. �
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