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Abstract. For the renormalised sums of the random±1-colouring of the connected components of Z
generated by the coalescing renewal processes in the “power law Pólya’s urn” of Hammond and
Sheffield (2013) we prove functional convergence towards fractional Brownian motion, closing a gap
in the tightness argument of their paper.

In addition, in the regime of the strong renewal theorem we gain insights into the coalescing
renewal processes in the Hammond-Sheffield urn (such as the asymptotic depth of most recent
common ancestors) and are able to control the coalescence probabilities of two, three and four
individuals that are randomly sampled from [n]. This allows us to obtain a new, conceptual proof
of the asymptotic Gaussianity (including the functional convergence) of the renormalised sums of
more general colourings, which can be seen as an invariance principle beyond the main result of
Hammond and Sheffield (2013).

In this proof, a key ingredient of independent interest is a sufficient criterion for the asymptotic
Gaussianity of the renormalised sums in randomly coloured random partitions of [n], based on
Stein’s method.

Along the way we also prove a statement on the asymptotics of the coalescence probabilities in the
long-range seedbank model of Blath, González Casanova, Kurt, and Spanò, see Blath et al. (2013).
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1. Introduction

We start with a brief description of the model of Hammond and Sheffield (2013) and then state our
main results together with a short outline of the paper.

For 0 < α < 1
2 and a slowly varying function L : R→ R+ let µ := µα,L be a probability measure

on N = {1, 2, . . .} having the power law tails

µ
(
{n, n+ 1, . . .}

)
∼ n−αL(n) as n→∞, (1.1)

with the usual convention that for two sequences f(n), g(n) of real numbers

f(n) ∼ g(n) as n→∞

means that limn→∞ f(n)/g(n) = 1. Throughout it will be assumed that

the greatest common divisor of
{
n ∈ N : µ(n) > 0

}
is one. (1.2)

Let R be an N-valued random variable with distribution µ. A random directed graph Gµ with
vertex set Z is generated in the following way: Let (Ri)i∈Z be a family of independent copies of R.
The random set of edges E

(
Gµ
)
is then given by

E
(
Gµ
)

:=
{

(i, i−Ri) : i ∈ Z
}
.

This induces the random equivalence relation

i ∼ j :⇐⇒ i and j belong to the same connected component of Gµ. (1.3)

Note that the symbol ∼ is used in (1.1) and (1.3) in two different meanings; this will cause no risk
of confusion.

For i ∈ Z the connected component containing i is denoted by Ci. The random variables (Ri)i∈Z
give rise to coalescing renewal processes starting from the integers; see Section 10 for an interpre-
tation (and extension) in terms of the long-range seedbank model of Blath et al. (2013). In this
terminology Gµ is the graph of ancestral lineages of the individuals i ∈ Z, and the component Ci
consists of all j ∈ Z that are related to i, see Figure 1.1 for an illustration. The probability that
0 belongs to the ancestral lineage of n is thus given by the weight assigned to n by the renewal
measure,

qn := P
(
R̃1 + . . .+ R̃j = n for some j ≥ 0

)
(1.4)



Asymptotic Gaussianity in the Hammond-Sheffield urn 55

Figure 1.1. A realisation of the ancestral lineages of the individuals {0, . . . , 100}
traced back till −200. Each of the arcs corresponds to an edge of Gµ. All the
outgoing edges from i = 0, . . . , 100 which map to an individual in {0, . . . , 100} are
drawn (in red), whereas for i between −200 and −1 only those outgoing edges are
drawn (in blue) that belong to an ancestral lineage of some j ∈ {0, . . . , 100}. Here
the exponent α in (1.1) was chosen as 0.39.

with R̃1, R̃2, . . . being independent copies of R. (Note that P(0 ∼ n) is in general larger than qn
because 0 and n may be related to each other even if 0 is not an ancestor of n.)

Hammond and Sheffield suggest the picture of an urn in which the types of the individuals i are
determined recursively: each individual i ∈ Z inherits the type (or “colour”) of its parent i−Ri. With
{+1,−1} as the set of colours, they show that the set of random colourings of Z that are consistent
with Gµ has a Gibbs structure, with the extremal elements being given by i.i.d. assignments of
colours to the connected components of Gµ. The main result of Hammond and Sheffield (2013)
concerns the asymptotics of the rescaled sum over the types of the individuals 1, . . . , btnc, t ≥ 0,
which as n→∞ turns out to converge to fractional Brownian motion. The individuals’ types arise
as follows:

Assume that each component of Gµ gets coloured by an independent copy of a real-valued random
variable Y . In the situation of Hammond and Sheffield (2013), Y is a centered Rademacher(p)
variable, i.e.

Y = ξ − (2p− 1) with P(ξ = +1) = p, P(ξ = −1) = 1− p. (1.5)
For i ∈ Z the colour of the component Ci will be denoted by Yi. Define the “random walk” (with
dependent increments)

Sn :=
n∑
i=1

Yi, n = 0, 1, . . . . (1.6)

By construction,
σ2
n := Var[Sn] =

∑
i,j∈[n]

Cov[Yi, Yj ] = E[Y 2]
∑
i,j∈[n]

P(i ∼ j). (1.7)

Hammond and Sheffield (2013, Lemma 3.1) show by Fourier and Tauberian arguments that∑
i,j∈[n]

P(i ∼ j) ∼ Cα
α(2α+ 1)

n2α+1

L(n)2
as n→∞, (1.8)

with
Cα :=

1∑
m≥0 q

2
m

Γ(1− 2α)

Γ(α)Γ(1− α)3
. (1.9)

We will obtain (1.8) as a corollary of Proposition 2.1 below, which requires the additional condition

qn ∼
1

Γ(α)Γ(1− α)

nα−1

L(n)
as n→∞. (1.10)
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This condition, which also appears in our Theorem 1.1, is equivalent to the validity of the Strong
Renewal Theorem for the renewal process with an increment distribution µ satisfying (1.1) and (1.2),
see Caravenna and Doney (2019), whose Theorem 1.4 gives necessary and sufficient conditions in
terms of µ for the validity of (1.10). A well-known sufficient condition for (1.10) is the criterion of
Doney (1997)

sup
n≥1

nP(R = n)

P(R > n)
<∞. (1.11)

For i−1
n ≤ t ≤ i

n , i, n ∈ N, let S
(n)(t) be the linear interpolation of Si/σn and Si+1/σn. Because

of (1.7) and (1.8), for all t ≥ 0,

Var
[
S(n)(t)

]
→ t2α+1 as n→∞.

Since (Sn)n∈N0 has stationary increments by construction, this implies the convergence

Cov
(
S(n)
s , S

(n)
t

)
−→
n→∞

1

2

(
s2α+1 + t2α+1 − |t− s|2α+1

)
, s, t ≥ 0.

The right-hand side is the covariance function of fractional Brownian motion with Hurst parameter
H = 1

2 + α, which is the unique centered Gaussian process with variance function t2H , t ≥ 0,
stationary increments and a.s. continuous paths. The processes S(n) are centered as well. Thus,
in order to prove that S(n) converges as n → ∞ (in the sense of finite dimensional distributions)
to fractional Brownian motion with Hurst parameter H, it only remains to show that the finite
dimensional distributions of S(n) are asymptotically Gaussian. This is provided by

Theorem 1.1. Let µ be a probability measure on N satisfying (1.1) and (1.2). Assume one of the
following conditions (A) or (B):

(A) The colouring Y is given by (1.5).
(B) The weights qn of the renewal measure specified in (1.4) satisfy the asymptotics (1.10), and

the colouring Y obeys

E [Y ] = 0 and 0 < E
[
Y 4
]
<∞. (1.12)

Then, for any fixed d ∈ N and fixed 0 < t1 < · · · < td <∞, the sequence
(
Sbt1nc, . . . , Sbtdnc

)
n∈N

is
asymptotically Gaussian as n→∞.

Under assumption (A) of Theorem 1.1, for each fixed t > 0 asymptotic Gaussianity of Sbtnc as
n → ∞ is proved in Hammond and Sheffield (2013) via a martingale central limit theorem. The
computations which ensure the applicability of the martingale CLT are quite subtle and involved,
making substantial use of the specific form (1.5) of the colouring of the random graph Gµ. In
Hammond and Sheffield (2013) it is not explicitly discussed whether these arguments also carry
over to the joint asymptotic Gaussianity of Sbt1nc, . . . , Sbtmnc for fixed t1 < · · · < tm. However, by
applying the martingale CLT to linear combinations of these random variables one can check that
this is indeed the case.

Under assumption (B) we give a new, conceptual proof of the asymptotic Gaussianity of the finite
dimensional distributions of S(n). This proof, which is completed in Section 8, is based on insights
into the structure of Gµ which are stated in Section 2 and proved in Sections 4-7. A key ingredient in
the new proof is Theorem 3.1, which provides a criterion for the asymptotic Gaussianity in randomly
coloured random partitions also in a more general setting. Proposition 3.3, which is instrumental in
the proof of Theorem 3.1, is based on Stein’s method and yields the closeness of the distribution of
Sn/σn to the standard normal distribution in terms of a bound that involves Var

[
Y 2
]
; this explains

the finiteness condition of E
[
Y 4
]
in (1.12).

Let us also mention that the loss of ground which comes with assuming the “strong renewal”
condition (1.10) in addition to (1.1) and (1.2) seems rather minor. Indeed it becomes clear from the
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examples in Caravenna and Doney (2019, Section 10) that the class of measures µ which satisfy (1.1)
and (1.2) but fail to satisfy (1.10) is rather special.

On the other hand, the benefit of assuming (1.10) is twofold. Firstly, it allows a direct analysis of
asymptotic properties of the genealogy of the coalescing renewal processes in the Hammond-Sheffield
urn, see Propositions 2.1, 2.3 and 2.5. Secondly, this opens the way to a two-step analysis (first
of the random partition of Z, then of its random colouring) which allows to derive the “invariance
principle” stated in Theorem 1.1(B).

The following implication of Theorem 1.1 is immediate from its introductory discussion.

Corollary 1.2. Under assumptions (A) or (B), S(n) converges as n → ∞ in the sense of finite
dimensional distributions to fractional Brownian motion with Hurst parameter H = 1

2 + α.

The next result, which will be proved in Section 9, amends the proof of Hammond and Sheffield
(2013, Lemma 4.1), see Remark 9.2. Here, for each n ∈ N and T > 0,

(
S(n)(t)

)
0≤t≤T

is viewed as

a random variable taking its values in C
(
[0, T ];R

)
, the space of continuous functions from [0, T ]

to R, equipped with the sup-norm.

Proposition 1.3. Under the assumptions of Theorem 1.1, for all T > 0 the sequence of random
variables

(
S(n)(t)

)
0≤t≤T

is tight.

A direct consequence of Corollary 1.2 and Proposition 1.3 is

Corollary 1.4. Under the assumptions of Theorem 1.1, S(n) converges in distribution (with respect
to the topology of locally uniform convergence) to fractional Brownian motion with Hurst parameter
H = 1

2 + α.

2. Coalescence probabilities in the Hammond-Sheffield urn

In this section we will assume that the weights qn of the renewal measure defined in (1.4) obey
the asymptotics (1.10), see the discussion of this condition in Section 1.

Proposition 2.1. The coalescence probabilities for the ancestral lineages obey the asymptotics

P(0 ∼ i) ∼ Cα
i2α−1

L(i)2
as i→∞, (2.1)

with Cα as in (1.9).

Remark 2.2.
(a) The asymptotics (1.8) is a direct consequence of (2.1). Indeed, the latter implies∑

i∈[n]

(n− i)P(i ∼ 0) ∼ n2α+1 Cα
L(n)2

1

n

n∑
i=1

(
1− i

n

)(
i

n

)2α−1

as n→∞, (2.2)

with the limit of the Riemann sums being∫ 1

0
(1− x)x2α−1dx =

1

2α(2α+ 1)
.

Since the left-hand sides of (2.2) and (1.8) are equal, this shows the asserted implication.

(b) In the light of the proof of Proposition 2.1 (carried out in Section 4) we conjecture that
increment distributions µ that satisfy (1.1) and violate (1.10), generically also do not admit
the asymptotics (2.1).
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The next result, Proposition 2.3, will be instrumental in the proof of Theorem 1.1 under Assump-
tion (B). This proposition will consider the probability that three (respectively four) individuals that
are randomly chosen from [n] belong to the same component of Gµ.

Proposition 2.3. Let I (n),J (n),K (n) and L (n) be independent and uniformly distributed on [n],
and independent of the random graph Gµ. Then for all δ > 0, as n→∞,

P
(
I (n) ∼J (n) ∼ K (n)

)
= O

(
n4α−2+δ

)
, (2.3)

P
(
I (n) ∼J (n) ∼ K (n) ∼ L (n)

)
= O

(
n6α−3+δ

)
. (2.4)

Proposition 2.3 will be proved in Section 6. The following corollary will bound the triplet and
quartet coalescence probabilities addressed in (2.3) and (2.4) asymptotically as n → ∞ by powers
of the pair coalescence probability. Estimates of this kind will be required in Theorem 3.2; note
that for sufficiently small ε the powers guaranteed by Corollary 2.4 are strictly larger than those
required in Theorem 3.2.

Corollary 2.4. Let I (n),J (n),K (n) and L (n) be as in Proposition (2.3).Then for all ε > 0, as
n→∞,

P
(
I (n) ∼J (n) ∼ K (n)

)
= O

((
P
(
I (n) ∼J (n)

))2−ε
)
, (2.5)

P
(
I (n) ∼J (n) ∼ K (n) ∼ L (n)

)
= O

((
P
(
I (n) ∼J (n)

))3−ε
)
. (2.6)

The proof of Corollary 2.4 is immediate from Proposition 2.3 together with (1.8). Indeed, (1.8)
asserts that the order ofP

(
I (n) ∼J (n)

)
is n

2α−1

L(n)2
as n→∞. With ε prescribed as in Corollary 2.4,

it thus suffices to choose in Proposition 2.3 a positive δ that is smaller than ε (1− 2α).
Although the next result, Proposition 2.5, will not be used explicitly in the proof of Theorem 1.1,

it seems interesting in its own right and also gives an intuition why the estimates in Corollary 2.4
should hold. Qualitatively, Proposition 2.5 says that for large n the ancestral lineages of 0 and n with
high probability either coalesce quickly (i.e. on the scale n) or never. This makes it believable that,
as asserted in Corollary 2.4, the triplet coalescence probability should asymptotically be comparable
to the square of the pair coalescence probability, and that the quartet coalescence probability should
roughly be equal to the third power of the pair coalescence probability.

Proposition 2.5. Let M (0, n) := max {j ≤ 0 : j ∼ 0 and j ∼ n} (with max ∅ := −∞) be the most
recent common ancestor of 0 and n, and put Dn := −M (0, n). Then, as n → ∞, the sequence of
random variables Dn

n , conditioned under {0 ∼ n}, converges in distribution to the random variable
D with density B(α, 1− 2α)−1xα−1(1 + x)α−1 dx, x > 0.

Proposition 2.5 will be proved in Section 5. The distribution of the random variable D appearing
in Proposition 2.5 is known as Beta prime distribution with parameters α and 1 − 2α; it arises as
the distribution of B/(1−B) where B is Beta(α, 1−2α) distributed. See Figure 2.2 for simulations
of the ancestral lineages, which also illustrate the depths of the most recent common ancestors.

The following lemma will also be important in the proof of Theorem 1.1 under Assumption (B).

Lemma 2.6. Let ∼ be the random equivalence relation defined in (1.3). For i, j, k, ` ∈ Z,

Cov
[
I{i∼j}, I{k∼`}

]
≤ P (i ∼ j ∼ k ∼ `) . (2.7)

Here and below, IE denotes the indicator variable of an event E.

Remark 2.7. The proof of Lemma 2.6 (given in Section 7) shows that (2.7) holds for general incre-
ment distributions µ, without the assumptions (1.1) and (1.2).
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(a) (b)

Figure 2.2. This is a simulation of the ancestral lineages of the individuals 0, . . . , n,
with n = 100 in panel (a) and n = 1000 in panel (b). Direction of time is vertical, and
horizontal lines mark coalescence events. The two panels give an impression of how
the genealogical forest of the individuals i ∈ [n] scales with n, see e.g. Proposition 2.5.
Like in Figure 1.1, the parameter α was chosen as 0.39.
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3. Asymptotic Gaussianity in randomly coloured random partitions

In this section we consider a situation that is more general than the one described in Section 1.
For m ∈ N let P(m) be a random partition of [m]. The (random) equivalence relation on [m]

induced by P(m) will be denoted by m∼, i.e.
i
m∼ j :⇐⇒ i and j belong to the same partition element of P(m). (3.1)

The situation described in Section 1 fits into this framework, by choosing m∼ as the restriction to the
set [m] of the equivalence relation ∼ defined in (1.3). Note, however, that this kind of consistency
of the relations m∼ is not required in the present section.

Let Y be a real valued random variable with E[Y ] = 0 and 0 < E[Y 4] < ∞. Thinking of each
partition element being “coloured” by an independent copy of Y , we write Y (m)

i for the colour of
the partition element in P(m) to which i ∈ [m] belongs. We then define for k ∈ N

Z
(m)
k :=

k∑
i=1

Y
(m)
i .

In the sequel we fix a natural number d and real numbers 0 = ρ0 < ρ1 < · · · < ρd = 1. The following
theorem presents a sufficient criterion for the asymptotic normality of the sequence of Rd-valued
random variables

Z(m) :=
(
Z

(m)
bρ1mc

, . . . , Z
(m)
bρdmc

)
(3.2)

asm→∞. To prepare for this, let for allm ∈ N the random variables I (m),J (m),K (m) and L (m)

be independent and uniformly distributed on [m], and independent of P(m) and of
(
Y

(m)
i

)
i∈[m]

.

Theorem 3.1. The sequence of Rd-valued random variables Z(m) defined in (3.2) is asymptotically
Gaussian as m→∞ provided the following conditions are satisfied:

P
(
I (m) m∼J (m) m∼ K (m)

)
= o

((
P
(
I (m) m∼J (m)

))3/2
)

as m→∞, (3.3)

P
(
I (m) m∼J (m) m∼ K (m) m∼ L (m)

)
= o

((
P
(
I (m) m∼J (m)

))2
)

as m→∞, (3.4)

Cov
[
I{im∼j}, I{km∼`}

]
≤ P

(
i
m∼ j m∼ k m∼ `

)
for all m ∈ N and i, j, k, ` ∈ [m], (3.5)

and for all (α1, . . . , αd) ∈ Rd \ {(0, . . . , 0)} and

a
(m)
i := αg if bρg−1mc < i ≤ bρgmc, i = 1, . . .m; g = 1, . . . , d

there exists a constant C̃ > 0 (not depending on m) such that
m∑

i,j=1

a
(m)
i a

(m)
j P

(
i
m∼ j
)
≥ C̃

m∑
i,j=1

P
(
i
m∼ j
)
, m ∈ N. (3.6)

Remark 3.2.
(a) Asymptotic Gaussianity of the univariate sequence (Z

(m)
m )m∈N is implied by the first three

of the four conditions in Theorem 3.1. Indeed, for d = 1, condition (3.6) is automatically
satisfied with C̃ := α1, since in that case a(m)

i = α1 for i = 1, . . . ,m.

(b) If the partitions P(m) are induced by a Hammond-Sheffield urn as described in Section 1,
then all conditions of Theorem 3.1 (including condition (3.6) for all d ∈ N) are implied by
the assumption (1.10), see Section 8.
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Theorem 3.1 will be proved using the following proposition which, in turn, will be deduced from
a theorem of Charles Stein, see Stein (1986, Lecture X, Theorem 1). Since m will be fixed in
this proposition, we will write ∼ instead of m∼ for notational convenience and without any risk of
confusion.

Proposition 3.3. For fixed m ∈ N and a1, . . . , am ∈ R let

S̄m :=

m∑
i=1

aiYi, σ̄2
m := Var[S̄m], (3.7)

with Yi := Y
(m)
i as defined at the beginning of this section. Let N be a standard normal random

variable. Then for all continuously differentiable functions h : R→ R with compact support∣∣∣E[h( S̄m
σ̄m

)]
−E[h(N )]

∣∣∣
≤ c1(h)

σ̄2
m

√√√√Var
[ m∑
i,j=1

Y 2
i aiajI{i∼j}

]
+
c2(h)

σ̄3
m

E
[ m∑
i,j,k=1

|Yi|3|ai|ajakI{i∼j∼k}
]
.

(3.8)

where the finite numbers c1(h) and c2(h) are defined as

c1(h) := 2 sup |h−E[h(N )]|, c2(h) := 2 sup |h′|.

Proof : For i ∈ [m] we put

Xi :=
aiYi
σ̄m

, Mi := {j ∈ [m] : j ∼ i}, (3.9)

i.e., Mi is that element of the partition P(m) which contains i. With I being a uniform pick
from [m] that is independent of P(m), we write

M := (M1, . . . ,Mm), W :=

m∑
i=1

Xi, W ∗ := W −
∑
j∈MI

Xj , G := mXI ,

B := σ (M,X1, . . . , Xm) , C := σ
(
M,I , (Xj)j�I

)
and note that W = E[G|B] a.s. Now Stein (1986, Lecture X, Theorem 1) asserts that∣∣∣E [h (W )

]
−E[h(N )]

∣∣∣
≤ c1(h)

(√
E

[(
1−E

[
G(W −W ∗)|B

])2
]

+ cE
[∣∣∣E [G |C ]∣∣∣]) (3.10)

+ c2(h)E
[
|G|(W −W ∗)2

]
,

with N , c1(h) and c2(h) as in (3.8) and a constant c > 0. Let us first turn to the term under the
square root on the right-hand side of (3.10) and observe that

E
[
G(W −W ∗)|B

]
= E

[
mXI

∑
j∈MI

Xj

∣∣∣ B] =
m∑
i=1

Xi

∑
j∈Mi

Xj =
1

σ̄2
m

m∑
i=1

aiYi
∑
j∈Mi

ajYj .

The expectation of this random variable is 1, since

E

E[ 1

σ̄2
m

m∑
i=1

aiYi

m∑
j=1

ajYj

∣∣∣P(m)
] =

1

σ̄2
m

Var[S̄m] = 1.
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Hence the term under the square root in (3.10) equals

Var
[ m∑
i=1

Xi

∑
j∈Mi

Xj

]
.

The term E
[∣∣∣E [G |C ]∣∣∣] in the right-hand side of (3.10) vanishes, since the assumed independence

of the colouring and the partitions together with the assumption E[Xi] = 0 implies

E
[∣∣∣E [G |C ]∣∣∣] = E

[∣∣∣E [mXI |M,I
]∣∣∣] = 0.

Finally, the rightmost term in (3.10) equals

E
[
|G|
(
W −W ∗

)2]
= E

|G|( ∑
j∈MI

Xj

)2

 =

m∑
i=1

E

I{I =i}|mXi|
(∑
j∈Mi

Xj

)2


=

m∑
i=1

E

|Xi|
(∑
j∈Mi

Xj

)2

 .
In summary we have shown that the right-hand side of (3.10) equals

c1(h)

√√√√Var
[ m∑
i=1

Xi

∑
j∈Mi

Xj

]
+ c2(h)E

 m∑
i=1

|Xi|
(∑
j∈Mi

Xj

)2

 , (3.11)

which in turn is equal to the right-hand side of (3.8). This concludes the proof of Proposition 3.3. �

Proof of Theorem 3.1: It suffices to show that for all d ∈ N and (α1, . . . , αd) 6= (0, . . . , 0), the linear
combination

Z̄m := α0Z
(m)
bρ1mc

+ α1

(
Z

(m)
bρ2mc

− Z(m)
bρ1mc

)
+ · · ·+ αd

(
Z(m)
m − Z(m)

bρd−1mc

)
(3.12)

is asymptotically Gaussian as m→∞. For m ∈ N we put

a
(m)
i := αg if bρg−1mc < i ≤ bρgmc, i = 1, . . .m; g = 1, . . . , d. (3.13)

It is then readily checked that Z̄m defined in (3.12) satisfies

Z̄m =

m∑
i=1

a
(m)
i Y

(m)
i , m ∈ N, (3.14)

and thus fits into the frame of Proposition 3.3, with S̄m := Z̄m. To use this proposition we will
show that under the assumptions (3.3), (3.4), (3.5) and (3.6) and with ai = a

(m)
i from (3.13), both

summands in the right-hand side of (3.8) converge to 0 as m → ∞. For notational convenience
we will for the rest of this proof suppress the superscript m in the equivalence relation m∼, in the
coefficients a(m)

i and in the random variables Y (m)
i , I (m), J (m), K (m), L (m).

For a constant C not depending on m we have

Var
[ m∑
i,j=1

Y 2
i aiajI{i∼j}

]
≤ CVar

[ m∑
i,j=1

Y 2
i I{i∼j}

]
, (3.15)

E
[ m∑
i,j,k=1

|Yi|3|ai|ajakI{i∼j∼k}
]
≤ C E

[
|Y |3

] m∑
i,j,k=1

P(i ∼ j ∼ k). (3.16)
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In order to boundVar

[
m∑

i,j=1
Y 2
i I{i∼j}

]
from above, we decompose the variance with respect to P(m)

and first note that

E
[ m∑
i,j=1

Y 2
i I{i∼j}

∣∣∣P(m)
]

= E
[
Y 2
] m∑
i,j=1

I{i∼j}.

The variance of the latter is

E
[
Y 2
]2 ∑

i,j,k,`∈[m]

Cov
[
I{i∼j}, I{k∼`}

]
which by assumption (3.5) is not larger than

E
[
Y 2
]2 ∑

i,j,k,`∈[m]

P(i ∼ j ∼ k ∼ `). (3.17)

Next we note that

Var
[ m∑
i,j=1

Y 2
i I{i∼j}

∣∣∣P(n)
]

=
m∑

i,j,k,`=1

Cov
[
Y 2
i I{i∼j}, Y

2
k I{k∼`}

∣∣∣P(m)
]

= Var
[
Y 2
] m∑
i,j,k,`=1

I{i∼j∼k∼`}.

Taking expectation of the latter and adding this to (3.17) we obtain

Var
[ m∑
i,j=1

Y 2
i I{i∼j}

]
≤ E

[
Y 4
] ∑
i,j,k,`∈[m]

P(i ∼ j ∼ k ∼ `) = O
(
m4 P

(
I ∼J ∼ K ∼ L

))
,

which because of (3.4) is o
(
m2 P

(
I ∼J

))2
.

Likewise the right-hand side of (3.16) is o
(
m2
(
P
(
I ∼J

))3/2
)
. From (3.7) and (3.14) we get

σ̄2
m =

∑
i,j∈[m]

a
(m)
i a

(m)
j Cov

[
Yi, Yj

]
= Var[Y ]

∑
i,j∈[m]

a
(m)
i a

(m)
j P(i ∼ j), (3.18)

which due to assumption (3.6) is bounded from below by C̃m2 P(I ∼ J ). Thus under the
assumptions of Theorem 3.1 the right-hand side of (3.8) converges to 0 as m → ∞, which shows
that Theorem 3.1 is a consequence of Proposition 3.3. �

4. Pair coalescence probabilities: Proof of Proposition 2.1

We now return to the setting of Section 1. Let R(i)
k , i ∈ Z, k ∈ N be independent copies of R,

and define
Ai :=

{
n ∈ Z : i−R(i)

1 − · · · −R
(i)
j = n for some j ≥ 0

}
. (4.1)

Note that the Ai are independent and thus can be seen as decoupled versions of the ancestral
lineages of the individuals i ∈ Z. In particular they do not coalesce if they meet. Decomposing
with respect to the most recent collision time one obtains immediately (cf. Hammond and Sheffield
(2013, p. 711)) that for i > 0

P
(
A0 ∩Ai 6= ∅

)∑
m≥0

q2
m = E

[
|A0 ∩Ai|

]
=
∑
m≥0

qmqm+i, (4.2)
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hence

P(0 ∼ i) =

∑
m≥0 qmqm+i∑

m≥0 q
2
m

, i ≥ 0. (4.3)

We will now assume (in accordance with the assumptions in Proposition 2.1) that the weights qn of
the renewal measure defined in (1.4) have the property (1.10). Under this condition we will prove

Proposition 4.1. As m→∞,∑
j≥1

qjqm+j ∼
1

Γ(α)2Γ(1− α)2

m2α−1

L(m)2

∫ ∞
0

(1 + x)α−1xα−1dx. (4.4)

The asymptotics (2.1) claimed in Proposition 2.1 is immediate from (4.3) combined with (4.4).

The remainder of this section is devoted to the proof of Proposition 4.1. We will prove (4.4) first
under a special assumption on the Karamata representation of the slowly varying function L.

Lemma 4.2. Let α ∈ (0, 1
2), and consider

rn := nα−1K(n) (4.5)

where K(n) is of the form

K(n) = exp

(∫ n

B

l(t)

t
dt

)
(4.6)

with B a positive constant and l(t), t ≥ B, a bounded measurable function converging to 0 as t→∞.
Then (rn) is ultimately decreasing, and∑

j≥1

rjri+j ∼ K(i)2i2α−1

∫ ∞
0

(1 + x)α−1xα−1dx as i→∞, (4.7)

with ∫ ∞
0

(1 + x)α−1xα−1dx = B(α, 1− 2α) =
Γ(α)Γ(1− 2α)

Γ(1− α)
. (4.8)

Proof :

a) The equality (4.8) is readily checked by substituting y = x
1+x .

b) The fact that (rn) is ultimately decreasing follows from (4.5) together with the Karamata
representation (4.6) of K(n). To see this, we argue as follows, putting β := 1− α. Since l(t) tends
to zero for t→∞ we know that there exists n0 ∈ N such that for all t ≥ n0 one has l(t) < β. This
implies

rn
rn+1

=
n−β

(n+ 1)−β
· K(n)

K(n+ 1)

=
n−β

(n+ 1)−β
exp

(
−
∫ n+1

n

l(t)

t
dt

)

= exp

(
β
(
ln(n+ 1)− ln(n)

)
−
∫ n+1

n

l(t)

t
dt

)

= exp

(∫ n+1

n

(
β

t
− l(t)

t

)
dt

)
.

Since by assumption the integrand on the right-hand side is strictly positive for n ≥ n0, we obtain
that (rn)n is decreasing for n ≥ n0.
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c) In view of (4.5), the claimed asymptotics (4.7) is equivalent to

lim
i→∞

1

i

∑
j≥1

rj
ri

ri+j
ri

=

∫ ∞
0

(1 + x)α−1xα−1dx. (4.9)

We now set out to prove (4.9). To this purpose we show first that for all ε > 0 there exists an
N ∈ N such that for all sufficiently large i

1

i

∑
j≥Ni

rj
ri

ri+j
ri

< ε. (4.10)

Since (rn) is ultimately decreasing, (4.10) will follow if we can show that exists an N ∈ N such that
for all sufficiently large i

1

i

∑
j≥Ni

(
rj
ri

)2

< ε. (4.11)

Again because of the ultimate monotonicity of (rn), the left-hand side. of (4.11) is for sufficiently
large i bounded from above by

∞∑
m=N

(
rmi
ri

)2

=
∞∑

m=N

m2α−2

(
K(mi)

K(i)

)2

. (4.12)

Using (4.6) one obtains that for any δ > 0 and i so large that l(t) < δ for all t ≥ i,

K(mi)

K(i)
= exp

(∫ mi

i

l(t)

t
dt

)
≤ exp

(
δ
(
ln(mi)− ln(i)

))
≤ mδ, (4.13)

which implies by dominated convergence that for sufficiently large N the right-hand side of (4.12)
is smaller than ε for all sufficiently large i. We have thus proved (4.10).

Next we show that for all ε > 0 there exists an η ∈ N such that for all sufficiently large i
1

i

∑
j≤ηi

rj
ri

ri+j
ri

< ε. (4.14)

Again by ultimate monotonicity of (rn) which gives us ri+j
ri
≤ 1 for i large enough, for this it suffices

to show that for all ε > 0 there exists an η > 0 ∈ N such that for all sufficiently large i
1

i

∑
j≤ηi

rj
ri
< ε. (4.15)

From Feller (1971, Theorem 5 on p. 447) we obtain that∑
j≤ηi

rj ∼
1

α
(ηi)αK(bηic) as i→∞, (4.16)

and hence
1

i

∑
j≤ηi

rj
ri
∼ 1

α
ηα
K(bηic)
K(i)

∼ ηα

α
as i→∞, (4.17)

which proves (4.15), and hence also (4.14). (The last asymptotic is by the fact that K is slowly
varying.)

In view of (4.5), (4.10) and (4.14), for proving (4.7) it remains to show that

lim
i→∞

1

i

∑
ηi≤j≤Ni

K(j)

K(i)

K(i+ j)

K(i)

(
1 +

j

i

)α−1(j
i

)α−1

=

∫ N

η
(1 + x)α−1xα−1dx. (4.18)
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From (4.6) one derives that

lim
i→∞

sup
ηi≤j≤(N+1)i

∣∣∣∣K(j)

K(i)
− 1

∣∣∣∣ = 0.

Hence (4.18) boils down to a convergence of Riemann sums to its integral limit, and the proof of
Lemma 4.2 is done. �

Let us now complete the proof of Proposition 4.1.

Proof : The asymptotics (1.10) can be rewritten as

qn = Cnn
α−1L̃(n)

where L̃(n) is a slowly varying function and Cn → 1
Γ(α)Γ(1−α) > 0.

As in the proof of Lemma 4.2 it suffices to show that
1

i

∑
j≥1

qj
qi

qi+j
qi
→
∫ ∞

0
(1 + x)α−1xα−1dx. (4.19)

Because of the Karamata representation theorem (see e.g. Theorem 1.3.1 in Bingham et al. (1987))
there exists a K(n) satisfying (4.6) and a sequence Dn converging to a positive constant D such
that

L̃(n) = DnK(n), n = 1, 2, . . . (4.20)
Defining rn as in (4.5) we have

qn = DnCnrn, n = 1, 2, . . .

Since the asymptotics of neither the left-hand side of (4.9) nor that of the left-hand side of (4.19)
reacts to the omission of a fixed finite number of summands, we see that (4.9) carries over to (4.19).

�

5. Depth of most recent common ancestor: Proof of Proposition 2.5

In this section we will assume that the weights qn of the renewal measure defined in (1.4) obey
the asymptotics (1.10), see the discussion after equation (1.10). For i,m ∈ N we set

fi(m) = P
(
M (0, i) = −m

)
, Fi(m) = P

(
M (0, i) ≥ −m

)
.

For the independent couplings Ai, i ∈ Z, of the ancestral lines of 0 and i as defined in (4.1) we have
for all r > 0 and i ∈ Z

ri∑
k=0

qkqk+i = E
[
|A0 ∩Ai ∩ {0, . . . ,−ri}|

]
=

ri∑
k=0

fi(k)

ri−k∑
l=0

q2
l

 ≤

 ri∑
l=0

q2
l

Fi(ri),

and consequently

P(Di ≤ ri) = Fi(ri) ≥
∑ri

k=0 qkqk+i∑ri
l=0 q

2
l

. (5.1)

As in the proof of Proposition 4.1 we obtain
ri∑
k=0

qkqk+i ∼
i2α−1

L(i)2

1

Γ(1− α)2Γ(α)2

∫ r

0
xα−1(1 + x)α−1dx as i→∞. (5.2)
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Together with (5.1) and the asymptotics (2.1) this gives

lim inf
i→∞

P
(
Di ≤ ri | 0 ∼ i

)
≥ B(α, 1− 2α)−1

∫ r

0
xα−1(1 + x)α−1dx. (5.3)

For the upper estimate we choose some arbitrary ε > 0 and observe

(r+ε)i∑
k=0

qkqk+i = E
[
|A0 ∩Ai ∩ {0, . . . ,−(r + ε)i}|

]
=

(r+ε)i∑
k=0

fi(k)

(r+ε)i−k∑
l=0

q2
l

 ≥
ri∑
k=0

fi(k)

(r+ε)i−k∑
l=0

q2
l


≥

 εi∑
l=0

q2
l

 ri∑
k=0

fi(k) =

 εi∑
l=0

q2
l

Fi(ri).

Using (5.2), now with r + ε instead of r, we get

lim sup
i→∞

P
(
Di ≤ ri | 0 ∼ i

)
≤ B(α, 1− 2α)−1

∫ r+ε

0
xα−1(1 + x)α−1dx.

Since ε was arbitrary, this together with (5.3) gives the assertion of Proposition 2.5.

6. Triplet and quartet coalescence probabilities: Proof of Proposition 2.3

In this section we will assume that the weights qn of the renewal measure defined in (1.4) obey
the asymptotics (1.10). We now turn to the asymptotic analysis of triplet and quartet coalescence
probabilities.

6.1. Triplet coalescence probabilities.

Lemma 6.1. For all r > 0 and i ∈ N we have for a slowly varying function L̃ not depending on r

P
(
0 ∼ i ∼ b(1 + r)ic

)
≤
(
rα−1 + r2α−1

)
L̃(i) i4α−2. (6.1)

Proof: Let (Ak) be the independent (non-merging) ancestral lineages defined in (4.1). We set

Ak,` :=

{
Amax(Ak∩A`) if Ak ∩A` 6= ∅,
∅ if Ak ∩A` = ∅,

Bk,` :=
⋃

g∈Ak∩A`

Ag.

In words, Bk,` is the union of the (non-merging) ancestral lineages starting at all the points of
intersection of Ak and A`. Distinguishing the 3 shapes of the ancestral tree of the individuals 0, i
and (1 + r)i on the event E := {0 ∼ i ∼ (1 + r)i} (and omitting the Gauss brackets in b(1 + r)ic
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etc. for the sake of readability) we have by subadditivity

P
(
0 ∼ i ∼ (1 + r)i

)
≤ P

(
E; M (0, i) ≥M (0, (1 + r)i

)
+ P

(
E; M (0, (1 + r)i) ≥M (0, i)

)
+P

(
E; M (i, (1 + r)i) ≥M (0, i)

)
≤ P

(
A0,i ∩A(1+r)i 6= ∅

)
+ P

(
A0,(1+r)i ∩Ai 6= ∅

)
+ P

(
Ai,(1+r)i ∩A0 6= ∅

)
≤ E

[
|A0,i ∩A(1+r)i|

]
+ E

[
|A0,(1+r)i ∩Ai|

]
+ E

[
|Ai,(1+r)i ∩A0|

]
(6.2)

≤ E
[
|B0,i ∩A(1+r)i|

]
+ E

[
|B0,(1+r)i ∩Ai|

]
+ E

[
|Bi,(1+r)i ∩A0|

]
.

=
∑
m≥0

qmqm+i

∑
n≥0

qnqn+(1+r)i+m +
∑
m≥0

qmqm+(1+r)i

∑
n≥0

qnqn+i+m

+
∑
m≥0

qmqri+m
∑
n≥0

qnqn+i−m.

An inspection of the third summand on the right-hand side leads to∑
m≥0

qmqri+m
∑
n≥0

qnqn+i−m

= qmqri+i
∑
n≥0

qnqn +
∑
m6=i

qmqri+m
∑
n≥0

qnqn+i−m

≤ C

qiq(1+r)i +
∑
m 6=i

mα−1

L(m)

(m+ ri)α−1

L(m+ ri)

|i−m|2α−1

L(|i−m|)2



∼ C

(
i2α−2

L(i)2
+
i4α−2

L(i)4

∫ ∞
0

xα−1(x+ r)α−1|1− x|2α−1dx

)
≤ L̃(i)i4α−2rα−1,

where L̃ is a slowly varying function that dominates C
(

1
L2 + 1

L4

)
, and where the asymptotics is

justified in the same way as (4.18) was derived first for slowly varying functions satisfying (4.6) and
then, using the Karamata representation, for general slowly varying functions obeying (4.20). The
first and the second summand on the r.h.s of (6.2) can be analysed in an analogous manner, leading
to the bounds L̃(i)i4α−2r2α−1 and L̃(i)i4α−2rα−1, respectively. �

Proof of Proposition 2.3 Part 1: We set out to show (2.3), and first observe that

n∑
i=0

n∑
j=0

P (0 ∼ i ∼ j) =

n∑
i=0

P (0 ∼ i) + 2

n∑
i=1

n−i∑
j=1

P (0 ∼ i ∼ i+ j) . (6.3)

By Lemma 6.1 we get, noting that rα−1 + r2α−1 ≤ 2rα−1 + 1,
n∑
i=1

n−i∑
j=1

P (0 ∼ i ∼ i+ j) ≤
n∑
i=1

n−i∑
j=1

L̃(i)i4α−2

((
j

i

)α−1

+ 1

)

≤ L̃(n)

 n∑
i=1

i3α−1(n− i)α + n

n∑
i=1

i4α−2

 = O
(
n4α+δ

) (6.4)
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for each δ > 0. From (6.3) combined with (2.1) and (6.4) we obtain for each δ > 0 the estimate
n∑
i=0

n∑
j=0

P (0 ∼ i ∼ j) ≤ Cn4α+δ, (6.5)

where the constant C depends on δ but not on n. An analogous calculation for k in place of 0 shows
that also

n∑
i=0

n∑
j=0

P (k ∼ i ∼ j) ≤ Cn4α+δ, k ∈ [n], (6.6)

where C can be chosen uniformly in n and in k ∈ [n]. (An intuitive reason for this uniformity comes
from the fact that for each k ∈ [n] and small ε > 0, the big majority of the pairs (i, j) ∈ [n]2 leads
to pairwise distances |i− j|, |i− k| and |j− k| that are all between εn and n.) With this uniformity
in k, (2.3) follows directly from (6.6). �

6.2. Quartet coalescence probabilities.

Lemma 6.2. For all r2 > r1 > 0 and i ∈ N we have for a slowly varying function L̄ not depending
on r

P
(
0 ∼ i ∼ b(1 + r1)ic ∼ b(1 + r2)ic

)
≤

(
rα−1

1 + r2α−1
1 + rα−1

2 + r2α−1
2

)
L̄(i)i6α−3. (6.7)

Proof: Again let (Ai) be the independent (non-merging) ancestral lineages defined in (4.1). Let Bk,`
be as in (6.1) and set

B[k,`]j :=
⋃

m∈Bk,`

⋃
g∈Am∩Aj

Ag.

We fix i ∈ N and set with j1 := (1 + r1)i, j2 := (1 + r2)i,

Q := {(0, i, j1, j2), (0, i, j2, j1), (0, j1, i, j2), (0, j1, j2, i),

(0, j2, i, j1), (0, j2, j1, i), (i, j1, 0, j2), (i, j1, j2, 0),

(i, j2, 0, j1), (i, j2, j1, 0), (j1, j2, 0, i), (j1, j2, i, 0)}

We now argue in a similar way as in the proof of Proposition 6.1. By subadditivity we get

P
(
0 ∼ i ∼ (1 + r1)i ∼ (1 + r2)

)
≤

∑
(k1,k2,k3,k4)∈Q

E
[
|B[k1,k2]k3 ∪Ak4 |

]
.

By the very same arguments as in the proof of Lemma 6.1 one checks that each of the twelve
summands is bounded by the right-hand side of (6.7). �

Proof of Proposition 2.3 Part 2: We are now going to prove (2.4), and first set out to show that for
all δ > 0

n∑
i=1

n−i∑
j=1

n−i−j∑
`=1

P (0 ∼ i ∼ i+ j ∼ i+ j + `) = O
(
n6α+δ

)
. (6.8)

Setting r1 = j
i , r2 = j+l

i we have rα−1
1 + r2α−1

1 + rα−1
2 + r2α−1

2 ≤ 4(rα−1
1 + 1) and by Lemma 6.2 the

left-hand side of (6.8) is bounded from above by

C

n∑
i=1

L̄(i)i6α−3
n−i∑
j=1

n−i−j∑
`=1

[(
j

i

)α−1

+ 1

]
.
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By arguments analogous to those leading to (6.3) in the proof of Part 1, this implies (6.8). As in
the proof of Part 1 we can argue that, as n→∞ the terms

n∑
i=0

n∑
j=0

n∑
`=0

P (k ∼ i ∼ j ∼ `)

are of the same order uniformly in for all k ∈ {0, 1, . . . , n}, so it is enough to look at the case k = 0.
Also, from (2.1) and (2.3) it is clear that we may restrict to pairwise distinct i, j, `. Thus, similar
as in Part 1, (2.4) follows from (6.8). �

7. A covariance estimate: Proof of Lemma 2.6

For i = j or k = ` the assertion of Lemma 2.6 is clearly true because then the left-hand side. of
(2.7) vanishes. For i = k we have

Cov[I{i∼j}, I{i∼`}] = P(i ∼ j ∼ `)−P(i ∼ j)P(i ∼ `) ≤ P(i ∼ j ∼ `).

Hence we may assume without loss of generality that i, j, k, ` are pairwise distinct. We then have

Cov
[
Ii∼k, Ij∼`

]
= P (i ∼ k ∩ j ∼ `)−P (i ∼ k)P (j ∼ `) (7.1)

and
P (i ∼ k ∩ j ∼ `) = P (i ∼ k 6∼ j ∼ `) + P (i ∼ k ∼ j ∼ `) . (7.2)

By (7.1) and (7.2), the inequality (2.7) is immediate from the following

Lemma 7.1. For pairwise distinct i, j, k, ` we have

P (i ∼ k 6∼ j ∼ `) ≤ P (i ∼ k)P (j ∼ `)

Proof: Let Ag, g ∈ Z, be defined as in (4.1). For m ∈ N and i1 < . . . < im ∈ Z we define an
(Ai1 , . . . , Aim)-measurable random graph G{i1,...,im} which is equal in distribution to the subgraph
of Gµ that is formed by the (possibly coalescing) ancestral lineages of i1, i2, . . . , im. The construction
of G{i1,...,im} is done inductively in the following “lookdown” manner: the ancestral lineage of i1 is
taken as Ai1 , correspondingly, we put G{i1} := Ai1 . The ancestral lineage of ih+1 is given by
Aih+1

as long as the latter did not meet G{i1,...,ih}. At the time of the first (seen in backward time
direction) collision of Aih+1

with G{i1,...,ih}, the ancestral lineage of ih+1 is continued by the lineage
in G{i1,...,ih} that starts in the meeting point (and the continuation of Aih+1

from there on is erased).
An inspection of G{i,j,k,`} reveals that

P
(
{i ∼ k 6∼ j ∼ `}

)
= P

({
Ai ∩Ak 6= ∅

}
∩
{
Aj ∩A` 6= ∅

}
∩
{
G{i,k} ∩G{j,`} = ∅

})
≤ P

({
Ai ∩Ak 6= ∅

}
∩
{
Aj ∩A` 6= ∅

})
,

which because of mutual independence of the Ag gives the assertion of the lemma. �

8. Asymptotic Gaussianity in the Hammond-Sheffield urn: Proof of Theorem 1.1(B)

We are going to apply Theorem 3.1, with P(m) being the partition on [m] that is generated
by the Hammond-Sheffield urn, i.e. by the equivalence class ∼ defined in (1.3). For d ∈ N and
t1 < · · · < td as prescribed in Theorem 1.1 we apply Theorem 3.1 with m = m(n) = btdnc and
ρg := btgnc/btdnc, g = 1, . . . , d. Under condition (B) of Theorem 1.1, Corollary 2.4 ensures the
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validity of assumptions (3.3) and (3.4), and Lemma 2.6 guarantees that (3.5) is fulfilled. It remains
to check the assumption (3.6). Indeed, with

a(x) := αg if ρg−1 < x ≤ ρg, x ∈ (0, 1], g = 1, . . . , d,

because of P(i ∼ j) = P(0 ∼ |i− j|) and in view of Proposition 2.1 the left-hand side. of (3.6) has
the asymptotics

m−2
∑

i,j∈[m]

a
(m)
i a

(m)
j P(i ∼ j) ∼ Cm2α−1

L(m)2

∫ 1

0

∫ 1

0
a(x)a(y)|x− y|2α−1dx dy as m→∞ (8.1)

The Riesz kernel |x− y|2α−1 is positive definite (see e.g. Dostanić (1998)), hence the integral term
in (8.1) is strictly positive, and consequently the left-hand side of (8.1) is of the order m2α+1 as
m→∞. Because of (1.8), this is also the order of the right-hand side of (3.6).

9. Tightness: Proof of Proposition 1.3

Inspired by the proof of Theorem 1 in Sottinen (2001), which shows tightness of a different
approximation scheme for fractional Brownian motion, we will make use of the following

Lemma 9.1 (Billingsley (1968, Theorem 13.5)). Let T > 0 and (ζ(n)(t))0≤t≤T be continuous pro-
cesses that converge to a continuous process (ζ(t))0≤t≤T in the sense of finite dimensional distribu-
tions. Assume that for a nondecreasing continuous function F on [0, T ], for some γ > 1, for all
0 ≤ s ≤ t ≤ u ≤ T , for some N ∈ N and all n ≥ N

E
[∣∣∣ζ(n)(t)− ζ(n)(s)

∣∣∣ · ∣∣∣ζ(n)(u)− ζ(n)(t)
∣∣∣] ≤ [F (u)− F (s)

]γ
. (9.1)

Then (ζn(t))0≤t≤T converges in distribution in
(
C
(
[0, T ]

)
, || · ||L∞([0,T ])

)
to (ζ(t))0≤t≤T .

Proof of Proposition 1.3: We first note the following immediate consequence of (1.7) and (1.8):
There exist constants c, c′ > 0 such that

cn2α+1L(n)−2 ≤ σ2
n ≤ c′n2α+1L(n)−2, ∀n ∈ N. (9.2)

Next we fix 0 ≤ s ≤ t ≤ u ≤ T and j, k, l ∈ N satisfying
j

n
≤ s < j + 1

n
,

k

n
≤ t < k + 1

n
,

l

n
≤ u < l + 1

n
.

The definition of S(n) as a linear interpolation gives

σn(S(n)(t)− S(n)(s)) =
k∑

m=j+1

Ym +
[
1− (sn− j)

]
Yj+1 + [tn− k]Yk+1.

We note that 0 ≤
[
1− (sn− j)

]
≤ 1, 0 ≤ [tn− k] ≤ 1 and get that for some constants c1, c2, c3, c4

Var
[
S(n)(t)− S(n)(s)

]
≤

[
2Var

[
S(k−j)

]
+ 2c1 Var

[
Yj+1 + Yk+1

]]
σ−2
n

≤
[
2c′(k − j)2α+1L(k − j)−2 + c2

]
σ−2
n

≤
[
c3(k − j)2α+1L(k − j)−2

]
σ−2
n

≤ c4

(
k − j
n

)2α+1( L(n)

L(k − j)

)2

. (9.3)

Here the first inequality holds because for any two square-integrable random variables G1, G2 one
has Var [G1 +G2] ≤ 2Var[G1] + 2Var[G2], the second and the last inequality hold because of
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(9.2), and the third one holds for some c3 > 0, some N1 ∈ N and all n ≥ N1 because L is a slowly
varying function. (Remember that k, j, l depend on n for fixed time points s, t, u.) Analogously,

Var
[
S(n)(u)− S(n)(t)

]
≤ c3

(
l − k
n

)2α+1( L(n)

L(l − k)

)2

. (9.4)

To use Lemma 9.1 we have to bound the expectation

E
[∣∣∣S(n)(t)− S(n)(s)

∣∣∣ · ∣∣∣S(n)(u)− S(n)(t)
∣∣∣] .

For l ≤ j+1 we get that |u−t| ≤ 2
n and |t−s| ≤ 2

n , so that by basic calculus (u−t)(t−s) ≤ (u−s)1+α.
By the definition of µ and the fact that L is slowly varying one has L(n) ≤ n−α for n large enough.
So linear interpolation gives:

E
[
|S(n)(t)− S(n)(s)| · |S(n)(u)− S(n)(s)|

]
≤

(
c̃n−

1
2
−αL(n)

)2 (
(t− s) · (u− s)

)
≤

(
c̃n−

1
2

)2
(u− s)1+2α = c̃2 1

n
(u− s)1+2α

≤ c̃2(u− s)1+2α = [c0u− c0s]
1+2α

for some c0 > 0. Now assume l > j + 1. Cauchy-Schwarz and the estimates (9.3), (9.4) yield

E
[∣∣∣S(n)(t)− S(n)(s)

∣∣∣ · ∣∣∣S(n)(u)− S(n)(t)
∣∣∣]

≤
√
Var

[
S(n)(t)− S(n)(s)

]√
Var

[
S(n)(u)− S(n)(t)

]
≤

√
c3

(
k − j
n

)2α+1( L(n)

L(k − j)

)2
√
c3

(
l − k
n

)2α+1( L(n)

L(l − k)

)2

≤ c3

(
l − j
n

)2α+1( L(n)

L(k − j)L(l − k)

)2

≤ 2c3

(
l − j
n

)2α+1

≤
(
2c3 · 2(u− s)

)2α+1
.

(The third inequality holds because of 4|k−j| · |l−k| ≤ |l−j|2, and the fourth one holds for n ≥ N2

for some N2 ∈ N because L is a slowly varying function.)
Thus, ζ(n) := S(n) fulfills condition (9.1) with with N := max{N1, N2}, γ := α + 1/2 and

F (x) := 4 max{c0, c3}x. In view of Corollary 1.2 we can thus apply Lemma 9.1 and conclude the
assertion of Proposition 1.3. �

Remark 9.2. In Hammond and Sheffield (2013) the functional convergence of S(n) was deduced from
a tail estimate (uniform in n) on maxt∈[0,1] S

(n)
t , stated in Hammond and Sheffield (2013, Lemma

4.1). The proof of this lemma given there relies on the statement that for a certain sequence (rn)
the inequalities (4.11) in Hammond and Sheffield (2013) imply boundedness of (rn). There are,
however, examples of unbounded sequences which fulfill these inequalities. Still, things clear up
nicely because the assertion of Hammond and Sheffield (2013, Lemma 4.1) is a quick consequence
of Corollary 1.4 and the Borell-TIS inequality.

10. Coalescence probabilities in long-range seedbanks

In this section we will assume that the weights qn of the renewal measure defined in (1.4) obey
the asymptotics (1.10), see the discussion after equation (1.10). Following Blath et al. (2013) we
extend the model described in Section 1 as follows. For fixed N ∈ N, the set of vertices of Gµ is
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now Z × [N ]. The set of those vertices whose first component is i constitutes the population of
individuals living at time i. The parent of the individual (i, k) is (i−Ri,k, Hi,k), where the random
variables Ri,k are independent copies of R and the random variables Hi,k are i.i.d. picks from [N ]. In
words, each individual chooses its parent uniformly from a previous time with delay (or dormancy)
distribution µ. The corresponding urn model, which goes back to Kaj, Krone and Lascoux (Kaj
et al. (2001)), thus specialises to the Hammond-Sheffield urn for N = 1.

Again we write (i, k) ∼ (j, `) if the two individuals (i, k) and (j, `) belong to the same connected
component of Gµ. Thanks to Proposition 4.1, which also provides a proof of Blath et al. (2013,
Lemma 3.1 (c)), we arrive at the following analogue of Proposition 2.1 (see also Blath et al. (2013,
Theorem 3(c))):

Proposition 10.1. For all k, ` ∈ [N ]

P
(
(0, k) ∼ (i, `)

)
∼ Cα,N

i2α−1

L(i)2
as i→∞, (10.1)

where now
Cα,N :=

1

N +
∑

m≥1 q
2
m

Γ(1− 2α)

Γ(α)Γ(1− α)3
.

Proof : Denote by Ã0,k and Ãi,` the decoupled ancestral lineages of the individuals (0, k) and (i, `)
constructed in analogy to (4.1). Like in (4.2) we observe

E
[
|Ã0,k ∩ Ãi,`|

]
=
∑
m≥0

1

N
qmqm+i.

Decomposing at the most recent collision time of Ã0,k and Ãi,` we get

E
[
Ã0,k ∩ Ã0,`

]
= P

(
Ã0,k ∩ Ãi,` 6= ∅

)
·

1 +
∑
m≥1

1

N
q2
m

 .

The last two equalities combine to

P
(
A0,k ∩Ai,` 6= ∅

)
=

∑
m≥0 qmqm+i

N +
∑

m≥1 q
2
m

.

The claimed asymptotics (10.1) is now immediate from Proposition 4.1. �

Remark 10.2. For given natural numbers n and N let I ,J ,K and L be independent and uni-
formly distributed on [n]× [N ]. In complete analogy to Proposition 2.3 one can derive that for all
δ > 0 and for a constant C not depending on n and N

P
(
I ∼J ∼ K

)
≤ C

N2
n4α−2+δ,

P
(
I ∼J ∼ K ∼ L

)
≤ C

N3
n6α−3+δ.

Consequently, along the lines of the proof of Theorem 1.1 one obtains the convergence of an analogue
of
(
S(n)

)
towards fractional Brownian motion also in the long-range seedbank model of Blath et al.

(2013).
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