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Abstract. We consider two jointly stationary and ergodic random measures ξ and η on Rd with
equal finite intensities, assuming ξ to be diffuse (non-atomic). An allocation is a random mapping
taking Rd to Rd ∪ {∞} in a translation invariant way. We construct allocations transporting the
diffuse ξ to arbitrary η, under the mild condition of existence of an ‘auxiliary’ point process which
is needed only in the case when η is diffuse. When that condition does not hold we show by a
counterexample that an allocation transporting ξ to η need not exist.

1. Introduction

Mass transportation is an important and lively research area. We refer to Villani (2009) for an
extensive monograph on optimal transports. A more recent addition to the literature is transports
between random measures (and in particular balancing allocations), which connects to the classical
topic in several ways. For instance it was shown in Hoffman et al. (2006); Last and Thorisson
(2009) that balancing transports between stationary random measures correspond to certain cou-
plings (shift-couplings) of the associated Palm measures, while Huesmann and Sturm (2013) studied
quantitative optimality of a balancing allocation.

Before going further we need to establish some notation and terminology. An allocation is a
random mapping τ : x 7→ τ(x) taking Rd to Rd ∪ {∞} in a translation-invariant (equivariant,
covariant) way; note that in this paper the invariance is included in the definition of allocation.
Let ξ and η be jointly stationary and ergodic random measures on Rd (d ≥ 1) with finite identical
intensities λξ = λη. Joint ergodicity of ξ and η means that the distribution of (ξ, η) takes only the
values 0 and 1 on translation invariant sets, and joint stationarity means that (with D
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identity in distribution)

(ξ(x+ ·), η(x+ ·)) D
= (ξ, η), x ∈ Rd.

Say that an allocation balances the source ξ and the destination η if it transports ξ to η, that is, if
(a.s.) the image of the measure ξ under τ is η,

ξ(τ ∈ ·) = η.

See Section 2 for exact framework and definitions. See Remark 9.5 for historical notes beyond those
in this introduction.

In the present paper we construct allocations balancing a diffuse (a non-atomic) source ξ and an
arbitrary destination η. In order to explain the point of the paper, let us outline two remarkable
examples.

Extra head: The search for balancing allocations goes back to Liggett’s surprising idea of ‘how to
choose a head at random’ – an extra head – in a two-sided sequence of i.i.d. coin tosses. If there is
a head at the origin, it is an extra head (the other coins are i.i.d.). If there is a tail at the origin,
move the origin to the right counting heads and tails until you have more heads than tails. Then
you are at a head and it is an extra head; see Liggett (2002).

This can be restated as follows. If η is the simple point process (on Z) formed by the heads, and
T is the location of the extra head, then η(T + ·) has the same distribution as the Palm version η◦
of η,

η(T + ·) D
= η◦. (1.1)

This means that we have constructed a shift-coupling of η and η◦.
Allocations provide a proof of this result as follows. For each n ∈ Z let τ(n) be the location of the

‘extra head’ found when starting from n rather than from the origin 0. Then the map τ : Z→ Z∪∞
is an allocation that leaves the heads where they are, while τ turns out to be (a.s.) a bijection from
the tails to the heads. Thus if we let µ be the counting measure on Z then τ balances µ and 2η
(or, equivalently, τ balances µ/2 and η). According to Hoffman et al. (2006); Last and Thorisson
(2009), this implies that (1.1) holds.

Stable marriage of Poisson and Lebesgue: Liggett’s idea led Hoffman, Holroyd and Peres to
solving an open problem from the mid nineties: how to find an extra point in a Poisson process.
Let η be a stationary Poisson process on Rd with intensity 1. Associate disjoint cells of volume 1
to the points of η as follows. Expand balls simultaneously from all the points of η. If the ball of a
particular point has accumulated volume 1 before it hits another ball, then this ball is the cell of
that point. If not, then continue expanding to accumulate volume when reaching space that has not
already been reached by another ball; stop when volume 1 has been accumulated. It turns out (a.s.)
that in this way each point obtains a cell of volume 1 and that the cells are disjoint and cover Rd.
Now let T be the point of the cell containing the origin. If the origin is shifted to T and that point
is removed then the remaining points of η(T + ·) form a stationary Poisson process with intensity
1. Thus T is an extra point; see Hoffman et al. (2006).

This again means that we have constructed a shift-coupling of η and its Palm version η◦, that
is, (1.1) holds. And again, allocations provide a proof of that result as follows. For each x ∈ Rd let
τ(x) be the point of the cell containing x and let µ be Lebesgue measure on Rd. Then τ is (clearly)
an allocation balancing µ and η. According to Hoffman et al. (2006); Last and Thorisson (2009),
this implies that (1.1) holds.

What makes allocations particularly interesting are the shift-coupling results in the above exam-
ples. In both examples the source µ is translation-invariant and non-random, but the shift-coupling
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result extends to general ξ and η as follows. If a stochastic process (or a random measure) X is
stationary and ergodic jointly with ξ and η, and τ transports ξ to η, then by shifting the origin to
τ(0) the Palm version of X w.r.t. ξ turns into the Palm version of X w.r.t. η. See (2.10) in the next
section, and Last and Thorisson (2009), for this result. See Aldous and Thorisson (1993); Thorisson
(1996) for the origin of shift-coupling.

Unbiased Skorokhod embedding: In Last et al. (2014, 2018) it is shown in the one-dimensional
case, d = 1, that if ξ is diffuse (non-atomic), η is arbitrary, and ξ and η are mutually singular then
they are balanced by the allocation τ defined by

τ(x) = inf{t > x : ξ([x, t]) ≤ η([x, t]}, x ∈ R. (1.2)

Local times of Brownian motion are diffuse and (see Geman and Horowitz (1973)) the two-sided
standard Brownian motion (Bx)x∈R is a Palm version of the σ-finite stationary Brownian measure.
Thus (see Last et al. (2014)) the shift-coupling result for general ξ and η can be applied with
ξ = `0 the local time at 0 and with η =

∫
`yν(dy) where `y is the local time at y and where

ν is a probability measure without atom at 0 (to ensure mutual singularity). This yields the
following unbiased Skorokhod embedding: (Bτ(0)+x)x∈R is a two-sided standard Brownian motion
with distribution ν at x = 0. It is said to be unbiased because not only the one-sided (Bτ(0)+x)x≥0,
but also the two-sided (Bτ(0)+x)x∈R, is Brownian. The same approach results in various embeddings
when applied to local times associated with Brownian motion, e.g. extra excursion (see Last et al.
(2018)) and (see Pitman and Tang (2015)) extra Brownian bridge.

In the present paper we consider the d dimensional case when ξ is diffuse, η is arbitrary, and
ξ and η need not be mutually singular. It turns out that there are special cases where balancing
allocations do not exist (Section 8). In order to guarantee the existence of a balancing allocation we
impose the mild condition of the existence of a non-zero simple point process χ on Rd with finite
intensity λχ and such that ξ, η and χ are jointly stationary and ergodic. We call this simple point
process χ auxiliary.

The following theorem is the main result of the paper. Note that the auxiliary χ is only needed
when η is purely diffuse.

Theorem 1.1. Assume that ξ and η are jointly stationary and ergodic random measures on Rd.
Let ξ be diffuse (non-atomic) and

0 < λξ = λη <∞.
Then there exists an allocation balancing ξ and η if one of the following conditions holds:

(a) η has a non-zero discrete component;
(b) η is diffuse and there exists an auxiliary χ.

Condition (a) covers discrete η and, in particular, point processes. Note that under condition
(a) an auxiliary χ always exists and can be chosen as a factor of η, that is, as a measurable and
equivariant (w.r.t. translation) function of η. When the discrete component of η has isolated atoms
then χ can be taken to be the support of η. And although in general the support of the discrete
component need not consist of isolated points (it can even be dense), there exists a constant c > 0
such that the following simple point process (here δx is the measure with mass 1 at x)

χ =
∑
x

1{η({x}) > c}δx (1.3)

is non-zero.
Under condition (b), there are also cases where an auxiliary χ exists as a factor of (ξ, η). But

the counterexample in Section 8 shows that the condition of the existence of an auxiliary χ cannot
simply be removed from (b). There are diffuse ξ and η such that an allocation transporting ξ to η
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does not exist. However, if extension of the underlying probability space (Ω,F ,P) is allowed, then
that obstacle can be overcome.

Corollary 1.2. Assume that ξ and η are jointly stationary and ergodic random measures on Rd.
Let ξ be diffuse and

0 < λξ = λη <∞.
Extend (Ω,F ,P) to support a stationary Poisson process χ on Rd which is independent of ξ and η.
Then there exists an allocation balancing ξ and η.

As stressed above, an important property of a balancing allocation τ is the shift-coupling at
(2.10). When specialised to the case ξ = λη times Lebesgue measure, then (2.10) turns into (2.11),
that is, into (1.1) with T = τ(0). This is called extra head scheme in Holroyd and Peres (2005).
Note however that removing a ‘head’ (or some pattern like an excursion) from η◦, does not result
in a copy of η except in very special cases such as coin tossing, the Poisson process and Brownian
motion.

According to Theorem 1.1 applied with ξ = λη times Lebesgue measure, the result (1.1) always
holds with T a function of η alone, unless η is diffuse. In that case, (1.1) still holds with T a function
of η, provided there exists an auxiliary χ that is a factor of η. Finally, according to Corollary 1.2,
if external randomisation is allowed then (1.1) always holds for some T , also when η is diffuse.
(Actually, due to ergodicity and the definition of Palm probabilities at (2.4), the distributions of η
and η◦ have the same (zero-one) values on invariant sets. Thus, according to an abstract existence
result in Thorisson (1996) for shift-coupling on groups, (1.1) always holds for some T defined on an
extended probability space. But the constructions of T in the present paper are explicit.)

The plan of the paper is as follows. Section 2 collects some preliminaries on stationary random
measures, balancing allocations, and Palm theory. Section 3 prepares for the proof of Theorem 1.1.
The theorem is then proved in Sections 4-7, where allocations are constructed in four exhaustive
cases: discrete η with only isolated atoms in Section 4, discrete η with some accumulating atoms in
Section 5, diffuse η (η with no atoms) in Section 6, and η with discrete and diffuse parts in Section 7.
We give algorithmically explicit constructions in the discrete cases, and less explicit in the diffuse.
Section 8 proves by counterexample that the auxiliary χ cannot simply be removed from part (b)
of Theorem 1.1. Section 9 concludes with remarks.

2. Preliminaries

Let (Ω,F ,P) be a probability space with expectation operator E. A random measure (resp.
point process) ξ on Rd (equipped with its Borel σ-field B(Rd)) is a kernel from Ω to R such that
ξ(ω,C) <∞ (resp. ξ(ω,C) ∈ Z+) for P-a.e. ω and all compact C ⊂ Rd; see e.g. Kallenberg (2002);
Last and Penrose (2018). A point process ξ is called simple if ξ({x}) ∈ {0, 1}, x ∈ Rd, except on
a set with probability zero. Further, let (Ω,F) be equipped with a measurable flow θx : Ω → Ω,
x ∈ Rd. This is a family of mappings such that (ω, x) 7→ θxω is measurable, θ0 is the identity on Ω
and

θx ◦ θy = θx+y, x, y ∈ Rd, (2.1)

where ◦ denotes composition. An allocation Holroyd and Peres (2005); Last and Thorisson (2009)
is a measurable mapping τ : Ω× Rd → Rd ∪ {∞} that is equivariant in the sense that

τ(θyω, x− y) = τ(ω, x)− y, x, y ∈ Rd, P-a.e. ω ∈ Ω. (2.2)

We illustrate these concepts with a simple but illustrative example.

Example 2.1. Take Ω as the space of all locally finite sets ω ⊂ Rd, equipped with the usual σ-field
and define θxω := ω − x, x ∈ Rd. The counting measure ξ(ω) supported by ω defines a (discrete)
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random measure ξ. An example of an allocation τ is to take τ(ω, x) as the point of ω ∈ Ω closest
to x ∈ Rd, using lexicographic order to break ties. (For ω = ∅ we set τ(ω, ·) ≡ ∞.)

We assume that the measure P is stationary; that is

P ◦ θx = P, x ∈ Rd,

where θx is interpreted as a mapping from F to F in the usual way:

θxA := {θxω : ω ∈ A}, A ∈ F , x ∈ Rd.

A random measure ξ on Rd is said to be stationary if

ξ(θxω,C − x) = ξ(ω,C), C ∈ B(Rd), x ∈ Rd,P-a.e. ω ∈ Ω. (2.3)

Abusing our notation by defining the shifts θx, x ∈ Rd, also for measures on Rd in the obvious way,
we obtain from (2.3) and stationarity of P that

θxξ
D
= ξ, x ∈ Rd.

The invariant σ-field I ⊂ F is the class of all sets A ∈ F satisfying θxA = A for all x ∈ Rd. We also
assume that P is ergodic; that is for any A ∈ I, we have P(A) ∈ {0, 1} (see however Remark 9.1).

Let ξ be a stationary random measure on Rd with positive and finite intensity

λξ := Eξ[0, 1]d.

The Palm probability measure Pξ of ξ (with respect to P) is defined by

Pξ(A) := λ−1ξ λd(B)−1 E
∫

1B(x)1A(θx) ξ(dx), A ∈ F , (2.4)

where B ⊂ Rd is a Borel set with positive and finite Lebesgue measure λd(B). This definition does
not depend on B. The expectation operator associated with Pξ is denoted by Eξ. Any multiple cλd
of Lebesgue measure is a (rather trivial) stationary random measure. In this case we obtain from
stationarity of P that

Pcλd = P. (2.5)

An allocation τ balances two random measures ξ and η if

P(ξ({s ∈ R : τ(s) =∞}) > 0) = 0 (2.6)

and the image measure of ξ under τ is η, that is,∫
1{τ(s) ∈ C} ξ(ds) = η(C), C ∈ B(Rd), P-a.e. (2.7)

The balancing properties (2.6) and (2.7) imply easily that

λξ = λη. (2.8)

By Last and Thorisson (2009, Theorem 4.1) we then have the shift-coupling

Pξ(θτ(0) ∈ ·) = Pη. (2.9)

Remark 2.2. In this remark we consider the shift-coupling result (2.9) in terms of random elements.
Let X be a random element that can be translated by t ∈ Rd, for instance a random measure, or
a random field, or the identity on Ω. Then X, ξ and η, defined on the probability space (Ω,F ,P)
above, are jointly stationary and ergodic.

A Palm version of X w.r.t. ξ is any random element with the distribution Pξ(X ∈ ·). In particular,
according to (2.5), a Palm version of X w.r.t. Lebesgue measure is X itself. What is generally called
a Palm version of a random measure ξ is a random measure ξ◦ with the distribution Pξ(ξ ∈ ·). That
is, ξ◦ is a Palm version of ξ with respect to itself.
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The informal interpretation of ξ◦ in the case when ξ is a simple point process is that ξ◦ behaves
like ξ conditioned on having a point at the origin. When ξ is a Poisson process then (and only then)
ξ◦ can be obtained simply by placing an extra point at the origin, ξ◦ = ξ + δ0. In the ergodic case,
which is assumed here, another informal interpretation of ξ◦ is that ξ◦ behaves like ξ with origin
shifted to a uniformly chosen point of ξ, – or when ξ is not a simple point process, to a uniformly
chosen location in the mass of ξ. (These interpretations are motivated by limit theorems.)

From (2.9) we obtain the following shift-coupling result. If τ is an allocation balancing ξ and η,
then a shift of the origin to τ(0) turns a Palm version of X w.r.t. ξ into a Palm version of X w.r.t.
η,

Pξ(θτ(0)X ∈ ·) = Pη(X ∈ ·). (2.10)

In particular, from (2.5) and (2.10) with X = η, we obtain the following result. If τ balances the
Lebesgue-measure multiple ληλd and η, then a shift of the origin to τ(0) turns the stationary η into
a Palm version η◦ of η,

θτ(0)η
D
= η◦. (2.11)

On the other hand, from (2.5) and (2.10) with X = ξ, we obtain the reverse result. If τ balances ξ
and the Lebesgue-measure multiple λξλd, then a shift of the origin to τ(0) turns the a Palm version
ξ◦ of ξ into the stationary ξ,

θτ(0)ξ
◦ D

= ξ. (2.12)

If ξ is the only source of randomness, then, as a rule, allocations balancing ξ and a multiple of
Lebesgue measure do not exist, see Holroyd and Peres (2005) and also Section 8.

3. Allocations to Discrete Random Measures

Let ξ and η be two jointly stationary and ergodic random measures on Rd; see Section 2. For
the remainder of this paper we assume λξ > 0 and λη > 0. Assume that η is a discrete random
measure with locally finite support. Let η∗ be the simple point process with the same support as
η. Assume also that ξ, η and η∗ have positive and finite intensities λξ, λη and λη∗ respectively.
(The assumptions λη∗ <∞ has been made by convenience and could be removed.) We consider an
allocation τ with the property

ξ({z ∈ Rd : τ(z) /∈ η∗ ∪ {∞}}) = 0, P-a.s. (3.1)

Define

Cτ (z) := {y ∈ Rd : τ(y) = z}, z ∈ Rd.

Note that Cτ (z) is random.
Let α ∈ (0,∞). The allocation τ is said to have appetite α (w.r.t. (ξ, η)) if (3.1) and the following

two properties hold. First we have almost surely that

η∗({x ∈ Rd : ξ(Cτ (x)) > αη{x}}) = 0. (3.2)

Second the probability that

ξ({z ∈ Rd : τ(z) =∞}) > 0 and η∗({x ∈ Rd : ξ(Cτ (x)) < αη{x}}) > 0 (3.3)

is zero.

Proposition 3.1. Assume that the allocation τ has appetite α for some α ∈ (0, λξλ
−1
η ]. Then τ is

α-balanced, that is we have a.s. that η({x ∈ Rd : ξ(Cτ (x)) 6= αη{x}}) = 0. Moreover, we have that
λξP0

ξ(τ(0) 6=∞) = αλη.
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Proof: We generalise the proof of Last and Penrose (2018, Theorem 10.9). We start with a general
result, that might be of independent interest. Let g : Ω× Ω→ [0,∞). Then

λξEξ1{τ(0) 6=∞}g(θ0, θτ(0)) = λη∗Eη∗
∫
C(0)

g(θx, θ0) ξ(dx), (3.4)

where we abbreviate C(z) := Cτ (z), z ∈ Rd. This follows from Neveu’s exchange formula (see e.g.
Last and Penrose (2018, Remark 3.7)) applied to the function h(ω, x) := g(ω, θxω)1{τ(ω, 0) = x}
(and replacing (η, ξ) by (ξ, η∗)).

Let

A := {there exists x ∈ η such that ξ(C(x)) < αη{x}}.

This event is invariant. It follows from (3.3) that

Pξ(A) = Pξ({τ(0) 6=∞} ∩A).

Therefore we obtain from (3.4) that

λξPξ(A) = λη∗ Eη∗1Aξ(C(0)).

By definition (2.4) of the Palm probability measure of η∗ we hence obtain for each Borel set B ⊂ Rd
with 0 < λd(B) <∞ that

λξPξ(A) = λd(B)−1E
∫
B
1{θx ∈ A}ξ ◦ θx(C(0, θx)) η∗(dx)

= λd(B)−1E1A
∫
B
ξ(C(x)) η∗(dx), (3.5)

where we have used the invariance of A and

ξ ◦ θx(C(θx, 0)) =

∫
1{τ(θx, y) = 0} ξ(θxω, dy) =

∫
1{τ(y + x) = x} ξ(θxω, dy)

=

∫
1{τ(y) = x} ξ(dy) = ξ(C(x)).

Using (3.2) and denoting the invariant σ-field by I, this yields

λξPξ(A) ≤ λd(B)−1αE[1Aη(B)] (3.6)

= λd(B)−1αE[1AE[η(B) | I]]

= αλη P(A) ≤ λξP(A) = λξPξ(A),

where we have used ergodicity to get the second equality (almost surely) and the assumption α ≤
λξλ

−1
η to get the second inequality. Therefore the above inequalities are in fact equalities. Hence

(3.5) and the right-hand side of (3.6) coincide, yielding that

E1A
∫
B

(αη{x} − ξ(C(x)) η∗(dx) = 0.

Taking B ↑ Rd and using montone convergence (justified by (3.2)), this yields

1A

∫
(αη{x} − ξ(C(x))) η∗(dx) = 0, P-a.s.

Hence we have P-a.s. on A that ξ(C(x)) = αη{x} for all x ∈ η∗. By definition of A this is possible
only if P(A) = 0. This implies the first assertion.

To prove the second assertion we use (3.4) with g ≡ 1 to obtain that λξPξ(τ(0) 6= ∞) =
λη∗αEη∗η{0}. Since it follows straight from the definitions that λη∗Eη∗η{0} = λη we can con-
clude the assertion. �
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4. Destination Isolated Atoms

The spatial version of the Gale–Shapley allocation introduced in Hoffman et al. (2006) balances
Lebesque measure to a simple point process. The simplified description of it in the introductory
Poisson-Lebesgue example is not an effective way of proving that it actually works, the efficient
way is algorithmic. We now extend this allocation to balance a diffuse ξ to an η consisting of
isolated atoms. The extension is needed because unlike the Lebesgue measure a diffuse measure can
have positive mass on lower dimensional sets like the boundaries of balls. Motivated by the point-
optimal stable allocation introduced in Hoffman et al. (2006), we formulate an algorithm providing
an allocation of appetite α.

The idea behind the algorithm (in the case α = 1) can be sketched as follows. In the first round
of the algorithm assign a preference set to each η-atom, that is, a set of sites in Rd that the atom
proposes to. We do this by a finite recursion (note that the following four items can be reduced to
one item when ξ is Lebesgue measure):

• From each η-atom blow up a "first" closed ball until you have gathered ξ-mass at least equal
to the mass of that atom, m1 say.
• Put m2 = m1 minus the ξ-mass in the interior of the "first" ball. This remaining mass m2

is thus part of a ξ-mass sitting on the boundary of a d dimensional ball.
• Then blow up a "second" closed (d dimensional) ball from (e.g.) the lexicographically lowest
location on the boundary of the "first" ball (think of it as a pole) until you have gathered
ξ-mass on the boundary of the "first" ball that is at least m2. This mass m2 is sitting
on a closed cap of the boundary of the "first" ball. Put m3 = m2 minus the ξ-mass of the
interior of that cap (the relative interior of the cap w.r.t. the boundary, the sphere). This
remaining mass, m3, is a part of a mass sitting on the boundary of a d− 1 dimensional ball.
• Repeat this down the dimensions until the η-atom has a preference set (the union of these
interior sets) of ξ-mass exactly m1 (because the final cap will be a circle segment and its
boundary will have at most two points and their ξ-mass is zero since ξ is diffuse). Note that
the preference sets of different η-atoms may overlap. Note also that a preference set of an
η-atom can contain other η-atoms.

Now let each site that lies in at least one preference set of an η-atom put the closest of those atoms on
a shortlist, using lexicographic order to break ties. The atoms associated with the other preference
sets are rejected. Each atom has now a rejection set, a subset of its preference set containing sites
that rejected the proposal.

Repeat the above procedure recursively by blowing up a ball around each η-atom restricted to
the complement of its associated rejection set (thus extending its preference set) and, after each
round, add the new rejections to its rejection set. One of two things can happen for a site z ∈ Rd.
Either it never appears in one of the preference sets. Then z has no partner and is allocated to ∞.
Or it eventually shortlists a single point x. Then z is allocated to x.

In the algorithm we will use the notation D(t−) :=
⋃
s<tD(s) for an increasing family of sets

D(s) ⊂ Rd, s > 0. If µ is a measure on Rd and µ{x} > 0 we write x ∈ µ.

Algorithm 4.1. Let α > 0, µ 6= 0 be discrete with isolated atoms and ν be diffuse with infinite mass.
For n ∈ N, x ∈ µ and z ∈ Rd, define the sets

Cn(x) ⊂ Rd (the set of sites claimed, or preferred, by x at stage n),

Rn(x) ⊂ Rd (the set of sites rejecting x during the first n stages),
An(z) ⊂ µ (the set of points of µ claiming site z in the first n stages),

via the following recursion in n. Start with setting R0(x) := ∅.
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(1) This first step is a recursion within the recursion. Fix x ∈ µ and mostly suppress it in the
notation until step (1) is over. Define

Sn,1(s) := B(x, s) = the ball with center x and radius s > 0,
βn,1 := αµ{x},
sn,1 := inf{s ≥ 0 : ν

(
Sn,1(s) \Rn−1

)
≥ βn,1},

∆n,1 := Sn,1(sn,1) \ Sn,1(sn,1−) note that ∆n,1 := ∂B(x, sn,1).

For k = 1, . . . , d − 1, proceed recursively as follows. Let yn,k ∈ Rd be the lexicographically
lowest element of ∆n,k and set

Sn,k+1(s) := B(yn,k, s) ∩∆n,k

βn,k+1 := βn,k − ν
(
Sn,k(sn,k−) \Rn−1

)
sn,k+1 := inf{s ≥ 0 : ν

(
Sn,k+1(s) \Rn−1

)
≥ βn,k+1}

∆n,k+1 := Sn,k+1(sn,k+1) \ Sn,k+1(sn,k+1−).

Then ∆n,d contains at most two elements. Since ν is diffuse this implies that

ν
(
Sn,d(sn,d) \Rn−1

)
= ν

(
Sn,d(sn,d−) \Rn−1

)
= βn,d.

Now set

Cn := Sn,1(sn,1−) ∪ · · · ∪ Sn,d(sn,d−).

Since Cn is a disjoint union we have

ν(Cn \Rn−1) = ν(Sn,1(sn,1−) \Rn−1) + · · ·+ ν(Sn,d(sn,d−) \Rn−1).

Since

βn,k+1 := βn,k − ν
(
Sn,k(sn,k−) \Rn−1

)
and ν

(
Sn,d(sn,d−) \Rn−1)

)
= βn,d

this yields

ν(Cn \Rn−1) = (βn,1 − βn,2) + · · ·+ (βn,d−1 − βn,d) + βn,d = βn,1.

Thus, due to βn,1 = αµ{x}, we obtain

ν(Cn \Rn−1) = αµ{x}.

(2) Recall that x was suppressed in the above step. We now make it explicit and write Cn(x)
instead of only Cn. For z ∈ Rd, define

An(z) := {x ∈ µ : z ∈ Cn(x)}.

If An(z) 6= ∅ then define

τn(z) := l({x ∈ An(z) : ‖z − x‖ = d(z,An(z))})

as the point shortlisted by site z at stage n, where l(B) denotes the lexicographic minimum
of a finite non-empty set B ⊂ Rd and where d(z,An(z)) is the distance of z from the set
An(z). If An(z) = ∅ then define τn(z) :=∞.

(3) For x ∈ µ, define
Rn(x) := {z ∈ Cn(x) : τn(z) 6= x}.
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Now define a mapping τα(ν, µ, ·) : Rd → Rd ∪ {∞} as follows. If τn(z) = ∞ for all n ∈ N put
τα(ν, µ, z) := ∞. Otherwise, set τα(ν, µ, z) := limn→∞ τn(z). We argue as follows that this limit
exists. Defining C0(x) := {x} for all x ∈ µ, we assert that for all n ∈ N the following holds:

Cn(x) ⊃ Cn−1(x), x ∈ µ, (4.1)

An(z) ⊃ An−1(z), z ∈ Rd, (4.2)
Rn(x) ⊃ Rn−1(x), x ∈ µ. (4.3)

This is proved by induction; clearly (4.1) implies (4.2) and (4.2) implies (4.3), while (4.3) implies
that (4.1) holds for the next value of n. By (4.2), ‖τn(z) − z‖ is decreasing in n, and hence, since
µ is locally finite, there exist x ∈ µ and n0 ∈ N such that τn(z) = x for all n ≥ n0. In this case we
define τα(ν, µ, z) := x. If ν(Rd) < ∞ or µ(Rd) = 0 we set τα(ν, µ, z) := ∞. We shall now prove
that τα (applied with ξ and η instead of ν and µ) has the following property defined in Section 3.

Lemma 4.2. Assume that ξ and η are jointly stationary and ergodic random measures on Rd such
that ξ is diffuse, η is discrete with locally finite support and λξλη > 0. Let α > 0. Then τ defined
on Ω× Rd by τ(ω, x) := τα(ξ(ω), η(ω), x) is an allocation with appetite α.

Proof : It follows by induction over the stages of Algorithm 4.1 that the mappings τn are measurable
as functions of ν, µ and z, where measurability in ν and µ refers to the standard σ-field on the
space of locally finite measures; see e.g. Last and Penrose (2018). (The proof of this fact is left to
the reader.) Hence τα is measurable. Moreover it is clear that τα and hence also τ has the required
covariance property. Next we note that P(ξ(Rd) = η(Rd) = ∞) = 1, a consequence of ergodicity
and λξλη > 0.

In the remainder of the proof we fix two locally finite measures ν and µ 6= 0. We assume that
ν is diffuse and satisfies ν(Rd) =∞, while µ is assumed to be discrete with purely isolated atoms.
Upon defining τα(ν, µ, ·) we noted that for each z ∈ Rd, either τα(ν, µ, z) = ∞ or τn(z) = x for
some x ∈ µ and all sufficiently large n ∈ N. Therefore

1{τα(ν, µ, z) = x} = lim
n→∞

1{z ∈ Cn(x) \Rn−1(x)}, z ∈ Rd. (4.4)

On the other hand, by Algorithm 4.1(1) we have ν(Cn(x) \Rn−1(x)) ≤ αµ{x}, so that (3.2) follows
from Fatou’s lemma.

As in Section 3 we set

Cτ
α
(x) := {z ∈ Rd : τα(ν, µ, z) = x}.

We now show that {z ∈ Rd : τα(ν, µ, z) = ∞} 6= ∅ and {x ∈ µ : ν(Cτ
α
(x)) < αµ{x}} 6= ∅ cannot

hold simultaneously, implying the event at (3.3) to have probability zero. For that purpose we
assume the strict inequality ν(Cτ

α
(x)) < αµ{x} for some x ∈ µ. By (4.4) this implies that there

exist n0 ∈ N and α1 < α such that ν(Cn(x) \ Rn−1(x)) ≤ α1µ{x} for n ≥ n0. Let C∞(x) :=
∪∞n=1Cn(x). We assert that C∞(x) = Rd. Assume on the contrary this is not the case. By
construction, there exist rn(x) > 0, n ∈ N, such that B0(x, rn(x)) ⊂ Cn(x) ⊂ B(x, rn(x)), where
B0(x, rn(x)) is the interior of B(x, rn(x)). Since C∞(x) 6= Rd and the sets Cn are increasing, we
have r∞(x) := limn→∞ rn(x) <∞. Then C∞(x) ⊂ B(x, r∞(x)) is bounded and there exists n ≥ n0
such that ν(C∞(x) \ Cn(x)) ≤ µ{x}(α− α1)/2. Hence we obtain (since Rn−1(x) ⊂ Cn(x))

ν(C∞(x) \Rn−1(x)) = ν(C∞(x) \ Cn(x)) + ν(Cn(x) \Rn−1(x)) ≤ α2µ{x},

where α2 := (α + α1)/2 < α. By definition of the algorithm this implies that C∞(x) is a strict
subset of Cn(x). This contradiction shows that C∞(x) = Rd. Now taking z ∈ Rd, we hence have
z ∈ Cn(x) for some n ≥ 1, so that z shortlists either x or some closer point of µ. In either case,
τα(ν, µ, z) 6=∞. �
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Proposition 4.3. Assume that ξ and η are jointly stationary and ergodic random measures on Rd
such that ξ is diffuse, η is discrete with locally finite support (isolated atoms) and 0 < λξ = λη <∞.
Then τ defined on Ω× Rd by τ(ω, x) := τ1(ξ(ω), η(ω), x) is an allocation balancing ξ and η.

Proof: By Lemma 4.2 τ is an allocation of appetite 1. Since λξ = λη we can apply Proposition
3.1 to see that η({x ∈ Rd : ξ(Cτ (x)) 6= η{x}}) = 0 holds almost surely and moreover that Pξ(τ(0) 6=
∞) = 1. These two facts imply the desired balancing property of τ . �

The allocation in Proposition 4.3 is stable. In Section 5 we shall consider a general discrete η.
But the balancing allocation will not be stable anymore.

Remark 4.4. Proposition 4.3 can already be found as Proposition 4.37 in Haji-Mirsadeghi and
Khezeli (2016). There the authors used a site-optimal version of a stable allocation while ours is
point-optimal.

5. Destination a discrete random measure

In this section we deal with a random measure η which is discrete but not necessarily with a
locally finite support (isolated atoms). We need to introduce some notation. If A ⊂ Ω × Rd is
measurable then we identify A with the mapping ω 7→ A(ω) := {x ∈ Rd : (ω, x) ∈ A}. If ξ
is a random measure on Rd, then we define for each ω ∈ Ω the restriction of ξ(ω) to A(ω) by
ξA(ω) :=

∫
1{x ∈ ·, (ω, x) ∈ A}ξ(ω, dx). Clearly ξA is again a random measure.

Proposition 5.1. Assume that ξ and η are jointly stationary and ergodic random measures on
Rd such that ξ is diffuse, η is discrete and ∞ > λξ ≥ λη > 0. Then there exists a measurable
A ⊂ Ω× Rd and an allocation τ balancing ξA and η. If λξ = λη, then τ balances ξ and η.

Proof: Write η =
∑∞

n=1 ηn, where η1, η2, . . . are the mutually singular discrete random measures

ηn =
∑
x

1{1/n ≤ η{x} < 1/(n− 1)}η({x})δx

which all have non-accumulating (isolated) points. (In the definition of η1 we use the convention
1/0 :=∞.)

Throughout this proof we consider the stable allocation τ1 with appetite 1; see the definition
preceding Lemma 4.2. Starting with ξ1 := ξ we define sequences of measurable sets An ⊂ Ω× Rd,
n ∈ N, and of stationary random measures (ξn)n≥1 and (ξn)n≥1 recursively, by setting for each
n ∈ N,

An := {x ∈ Rd : τ1(ξn, ηn, x) 6=∞},
ξn := ξnAn ,

ξn+1 := ξnRd\An .

Set Bn := A1 ∪ · · · ∪An. Using Proposition 3.1 one can prove by induction that ξ(An+1 ∩Bn) = 0,
and λξn = ληn . Note that

∑∞
n=1 ξn = ξA, where A := ∪∞n=1An.

The calculation below shows that it is no restriction of generality to assume that the sets An are
disjoint. Therefore we can define an allocation τ by

τ(x) :=

{
τ1(ξn, ηn, x), if x ∈ An for some n ∈ N,
∞, otherwise.

(5.1)
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Then we obtain for each Borel set C ⊂ Rd that∫
1{τ(x) ∈ C}ξA(dx) =

∞∑
n=1

∫
1{τ(x) ∈ C}ξn(dx)

=
∞∑
n=1

∫
1{τ1(ξn, ηn, x) ∈ C}ξn(dx)

=

∞∑
n=1

ηn(C) = η(C).

Therefore τ is balancing ξA and η.
Assume now that λξ = λη. Then we obtain for each Borel set C ⊂ Rd that

EξA(C) =
∞∑
n=1

Eξn(C) =
∞∑
n=1

λξnλd(C) =
∞∑
n=1

ληnλd(C) = ληλd(C) = λξλd(C).

Therefore, EξA(C) = Eξ(C). Since ξA ≤ ξ, this implies that ξA = ξ P-a.s. �

6. Destination a Diffuse Random Measure

In this section we deal with a diffuse destination η in the case when there exists an auxiliary simple
point process χ. The key idea is to use the allocation from the isolated-atoms case (Proposition 4.3)
to map both ξ and η to χ creating pairs of ξ-cells and η-cells of mass one associated with each
point of χ, and then to transport the ξ-mass of the ξ-cells into the η-mass of the η-cells by passing
through Lebesgue measure on [0, 1].

Proposition 6.1. Assume that ξ and η are jointly stationary and ergodic random measures on Rd
such that 0 < λξ = λη < ∞. Assume further that ξ and η are both diffuse and that there exists an
auxiliary simple point process χ with finite intensity λχ. Then there exists an allocation τ balancing
ξ and η.

Proof: Note that an allocation balances the diffuse ξ and η if and only if it balances aξ and aη
for any positive constant a, in particular for a = λχ/λξ = λχ/λη. So it is no restriction to assume
that the common intensity of ξ and η is the same as that of χ, that is, λξ = λη = λχ. We can then
apply Proposition 4.3 to the pair ξ and χ and to the pair η and χ.

For each point s of χ let As and Bs, respectively, be the resulting allocation cells of ξ and η that
are mapped to s. Fix t ∈ Rd and let St be the point of χ such that t ∈ ASt . Let ξt = ξ(· ∩ ASt)
be the restriction of ξ to ASt and let ηt = η(· ∩ BSt) be the restriction of η to BSt . Since χ is a
simple point process (with mass one at each of its points) both ξt and ηt are (random) probability
measures.

Let φ be a measurable bijection from Rd to R such that φ−1 is also measurable. Shift the origin 0
to St to obtain (random) probability measures θStξt and θStηt that are concentrated on the shifted
cells ASt−St and BSt−St. Let Ft and Gt be the (random) distribution functions of φ under these
probability measures, that is, for x ∈ R

Ft(x) = θStξt(φ ≤ x),

Gt(x) = θStηt(φ ≤ x).
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Note that Ft is a continuous function since ξ does not have any atoms and since φ is a bijection.
Thus

the distribution of Ft(φ) under θStξt is uniform on [0, 1].

With G−1t the generalized inverse (quantile function) of Gt, this in turn implies that G−1t (Ft(φ))
under θStξt has the distribution function Gt. Finally, since φ is a bijection this implies that

the distribution of φ−1(G−1t (Ft(φ))) under θStξt is θStηt.

In other words, the mapping x 7→ φ−1(G−1t (Ft(φ(x)))) transports the measure θStξt on ASt−St into
the measure θStηt on BSt−St. Shifting back to the original origin, this means that the mapping
x 7→ St + φ−1(G−1t (Ft(φ(x − St))) transports the measure ξt on ASt into the measure ηt on BSt .
Thus, the allocation rule τ defined by

τ(t) = St + φ−1(G−1t (Ft(φ(t− St)))), t ∈ Rd,

balances ξ and η. �

Remark 6.2. The above construction, using a point process to split space into pairs of cells and
then allocate mass through Lebesgue measure, dates back to an informal note from 2012. It was a
part of a brief attempt of the authors to extend the Brownian motion results of Last et al. (2014) to
higher dimensional random fields. The obvious question is when this ‘auxiliary’ process does exist.
We discussed this with several colleagues and the existence problem did become part of the PhD
topic of Ali Khezeli, see Remark 8.1. In his thesis he used a result on optimal transport to balance
the finite masses of the pairs of allocation cells, under certain restrictions on the diffuse source.

7. Destination having Discrete and Diffuse Parts

In this section we finish the proof of Theorem 1.1 by dealing with the case when the destination
η contains both discrete and diffuse parts.

Proposition 7.1. Assume that ξ and η are jointly stationary and ergodic random measures on Rd
such that λξ = λη <∞. Assume further that ξ is diffuse and that η is mixed, that is,

η = ηdisc + ηdiff

where ηdisc and ηdiff are nonzero random measures that are discrete and diffuse respectively. Then
there exists an allocation τ balancing ξ and η.

Proof: Note that the measures ξ, η, ηdisc, ηdiff are jointly stationary and ergodic since ηdisc and
ηdiff can be obtained from η in an translation invariant way. Now apply Proposition 5.1 to ξ and
ηdisc using λξ ≥ ληdisc to obtain a measurable A ⊂ Ω×Rd and an allocation τdisc balancing ξA and
ηdisc. Then, with χ the auxiliary simple point process defined at (1.3), apply Proposition 6.1 to ξAc
and ηdiff using λξAc = ληdiff to obtain an allocation τdiff balancing ξAc and ηdiff. Finally, define an
allocation τ by

τ(ω, x) =

{
τdisc(ω, x), if (ω, x) ∈ A,
τdiff(ω, x), if (ω, x) ∈ Ac.

It is easy to see that τ balances ξ and η. �

8. Counterexample

In this section we show that the auxiliary χ cannot simply be removed from Theorem 1.1. There
are diffuse ξ and η such that an allocation transporting ξ to η does not exist (without external
randomisation).
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Here is a specific example in two dimensions, R2. Let N be a canonical stationary Poisson process
on the y-axis with intensity 1; canonical means that N is the only source of randomness. Let ξ be
formed by the one-dimensional Lebesgue measure on the lines parallel to the x-axis going through
the points of N . Let η = λ2 = the Lebesgue measure on R2. The measures ξ and η are diffuse,
jointly stationary and ergodic, and have the same intensity 1.

Suppose there exists a balancing allocation τN which maps R2 to R2 for each fixed value of N in
such a way that the image measure of ξ under τN is η. The Palm version of N is N◦ = N + δ0 and
the Palm version of ξ is ξ◦ = ξ + λ1, where λ1 denotes one-dimensional Lebesgue measure on the
x-axis. According to (2.12), the existence of the allocation τN balancing ξ and the two-dimensional
Lebesgue measure η = λ2 would yield the following shift-coupling of ξ◦ and ξ,

θτN (0)ξ
◦ D

= ξ.

With TN the y-axis coordinate of τN (0), this implies that

θTNN
◦ D

= N.

But, according to Holroyd and Peres (2005), such a TN does not exist when the only sorce of
randomness is N .

Remark 8.1. When reading a preliminary version of this paper, Ali Khezeli pointed out to the
authors the following interesting problem, formulated in his PhD-thesis from 2016 (in Persian).
Suppose that ξ is a diffuse random measure with no invariant directions. This means that there
is (almost surely) no vector x 6= 0 such ξ = θtxξ for all t ∈ R. Does ξ have a stationary point
process factor? A positive answer would bring us much closer to a complete characterisation of the
existence of balancing factor allocations (for a diffuse source). Note that our counterexample has
an invariant direction.

9. Remarks

Remark 9.1. The assumption of ergodicity has been made for simplicity and can be relaxed. The
assumption λξ = λη has then to be replaced by

E[ξ[0, 1] | I] = E[η[0, 1] | I], P-a.e.
We refer to Last and Thorisson (2009); Thorisson (1996) for more detail on this point.

Remark 9.2. A natural question (asked in Haji-Mirsadeghi and Khezeli (2016) for instance) is
whether there exists a balancing allocation factor τ if the source ξ is Lebesgue measure or, more
generally, absolutely continuous with respect to Lebesgue measure. We have proved the answer to
be positive whenever the destination η is not diffuse (not purely non-atomic), and also when η is
diffuse if we assume that there exists an auxiliary point process factor χ.

But this assumption is not necessary, a balancing allocation factor τ can exist even when η is
diffuse and no auxiliary point process factor χ exists. An example of this is obtained by swapping
source and destination in Section 8: take ξ = λ2 = the Lebesgue measure on R2 and let η be
formed by the one-dimensional Lebesgue measure on the lines parallel to the x-axis going through
the points of N where N is a one-dimensional Poisson process on the y-axis. If N is the only source
of randomness then, according to Section 8, there exists no auxiliary χ. However, there exists
a balancing allocation factor τ : for example, take τ(x, y) = (x, τ1(y)) where τ1 is an allocation
balancing Lebesgue measure on the line (the y-axis) and the Poisson process N .

Thus, the existence of an auxiliary point process is not a complete characterisation of the existence
of a balancing allocation factor when the source is diffuse.

Remark 9.3. If the source ξ is not diffuse, then the question asked in this paper is in most cases not
very meaningful. If, for instance, the destination η is diffuse, then a balancing allocation cannot
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exist. But even otherwise such allocations can only exist in special cases, for instance, if both ξ and
η are simple point processes.

Remark 9.4. The following slight modification of the construction in Section 6 (where the destination
is diffuse) can be used to obtain allocations in the cases treated in Section 5 and Section 7. Let χ be
the simple point process defined at (1.3). In the proof of Theorem 6.1 remove the first paragraph,
replace the allocation cells Bs of η by the Voronoi cells Vs of χ, and then modify χ by letting it
have mass η(Vs) at each point s. After this modification we have λξ = λη = λχ and can apply
Proposition 4.3 to the pair ξ and χ. Let As be the allocation cell of ξ that is mapped to s. This
yields Ft and Gt that are cumulative mass functions of measures that need not have mass 1 but only
have the same finite mass, Ft(∞) = ξ(ASt) = η(VSt) = Gt(∞). Replace first the word distribution
function by cumulative mass function and then the word distribution by image messure. The rest
of the proof now goes through as it stands.

This method thus yields allocations in all the three cases where η does not consist of isolated
atoms. We have chosen here to treat each of those cases separately because treating discrete
measures as in Section 5 is more explicit then this alternative method.

Remark 9.5. Here are some further historical notes. Allocations finding extra heads in coin tosses
on the d dimensional grid and extra points in the d dimensional Poisson process were constructed
in Holroyd and Liggett (2001); Holroyd and Peres (2005); Hoffman et al. (2006); Chatterjee et al.
(2010) by Liggett, Holroyd, Hoffman, Peres et.al. More generally, the allocations transporting
Lebesgue measure to the points of stationary ergodic finite-intensity point processes produce the
Palm versions of the processes. The construction in Hoffman et al. (2006) involved a Gale-Shapley
algorithm resulting in a ‘stable’ allocation while the construction in Chatterjee et al. (2010) used a
gravitational force field to obtain an ‘economical’ allocation. In Huesmann (2016), unique optimal
allocations between jointly stationary random measures on geodesic manifolds were constructed,
assuming the (Palm) average cost to be finite and the source to be absolutely continuous. Stable
transports between general (jointly stationary) random measures ξ and η on Rd were constructed
and studied in Haji-Mirsadeghi and Khezeli (2016). If ξ is diffuse and η is a point process, then
these transports boil down to allocations, see Remarks 4.4, 6.2 and 8.1.
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