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Abstract. We present an assessment of the distance in total variation of arbitrary collections of
prime factor multiplicities of a random number in [n] = {1, . . . , n} and a collection of independent
geometric random variables. More precisely, we impose mild conditions on the probability law of the
random sample and the aforementioned collection of prime multiplicities, for which a fast decaying
bound on the distance towards a tuple of geometric variables holds. Our results generalize and
complement those from Kubilius (1964) and Barban and Vinogradov (1964) which consider the
particular case of uniform samples in [n] and collection of “small primes”. As applications, we show
a generalized version of the celebrated Erdös Kac theorem for not necessarily uniform samples of
numbers.

1. Introduction

1.1. Overview. Let P denote the set of prime numbers. For a given n ∈ N = {1, 2, ...}, we consider
a random variable Jn supported on [n]. The goal of this paper is to study asymptotic properties
(as n tends to infinity) of the p-adic valuations of Jn, denoted by {vnp ; p ∈ P} and characterized
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by the identity

Jn =
∏
p∈P

pv
n
p .

More precisely, we will determine general conditions over Jn that will allow us to approximate
the law of a random vector of the form vvvn = (vnp ; p ∈ Γn), where Γn is a finite subset of P,
whose cardinality satisfies suitable growth conditions. As applications of our results, we will prove a
version of Erdös-Kac theorem, valid for non-necessarily uniform samples, as well as a Poisson point
process approximation for the configuration of non-trivial multiplicities of small primes (see Section
3 for details). Our approach relies on very simple probabilistic and combinatorial arguments, which
makes the proof remarkably accessible; although the the applications will typically make use of
elementary results from number theory, such as Mertens’ formula. It is worth mentioning that one
of the three main steps in our proof (see Lemma 2.3) relies on the celebrated Bonferroni inequalities,
which are a tool that is close in spirit to classical number theoretical arguments from sieve method.
The rest of the proof uses ideas from large deviation estimates, such as the Chernoff bounds.

Thoughout the paper, [x] denotes the set {1, ..., bxc} for any x > 0 and {a|b} denotes the event
that a divides b for a, b ∈ N. We write vp = vnp for simplicity.

Motivations and the uniform distribution case
Since the influential manuscript Kubilius (1964), the use of the random vector vvvn as a tool for
studying divisibility properties of Jn has gained particular traction in probabilistic number theory,
as these objects naturally emerge in the study of arithmetic additive functions of uniform samples.
Our manuscript takes Kubilius (1964) as starting point. There it was proved that in the particular
case where Jn has uniform distribution over [n] and Γn = P ∩ [n1/βn ] for a sequence βn > 0
converging to infinity, there exist constants C, δ > 0 such that

dTV(vvvn, gggn) ≤ Ce−δβn , (1.1)

where gggn = (gp ; p ∈ Γn) is a random vector whose entries are independent geometric random
variables with

P[gp = k] = p−k(1− p−1),

for k ∈ N0 := N ∪ {0}. The aforementioned bound for dTV(vvvn, gggn), combined with elementary
probabilistic tools, leads to very powerful results in probabilistic number theory. To exemplify this,
we would like to mention that (1.1) can be used to obtain a quantitative assessment of the rate
of convergence in the celebrated Erdös-Kac theorem, which establishes the asymptotic normality
for the number of prime divisors of a uniform sample of [n]. The precise statement of Erdös-Kac
theorem, as well as its link to the inequality (1.1) and some further generalizations will be presented
in Section 3.

Since their publication, the results from Kubilius (1964) have been extended and generalized in
several directions. Next we briefly mention some of them. In Barban and Vinogradov (1964) (see
also Elliott (1980, Chapter 3)), the bound (1.1) was improved to

dTV(vvvn, gggn) ≤ C(e−
1
8
βn log(βn) + n−

1
15 ), (1.2)

for some (possibly different) constant C > 0. In the subsequent papers Elliott (1980) and Arratia
et al. (1999) it was proved that if the sequence {βn}n≥1 is bounded, then the left hand side of (1.2)
can not go to zero. We would also like to refer the reader to Arratia and Tavaré (1992) and Arratia
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and Stark (1999) where an analysis of the case of the case where βn ≡ u for all n ∈ N was carried
out. In such instance it was shown that

lim
n
dTV(vvvn, gggn) = H(u) ∈ (0,∞), (1.3)

where H is defined by

H(u) :=
1

2

∫
R
|B(v)− e−γ |%(u− v)dv +

1

2
%(u),

and B, %, γ denote the Buschstav’s function, Dickman’s function and Euler’s constant respectively.
Finally, we would like to mention the paper Tenenbaum (1999), where it was proved that for every
ε > 0, there exists a constant Cε > 0 such that

dTV(vvvn, gggn) ≤ Cε(%(βn)2(1+ε)βn + n−1+ε).

It was proved as well in Tenenbaum (1999) that in the particular case where exp{(log log(n))5/3 +
ε} ≤ βn ≤ n, the exact rate

|dTV(vvvn, gggn)−H(βn)| = o(H(βn)), (1.4)

holds, and for every ε > 0,

dTV(vvvn, gggn) ≤ Cε(e−βn log(βn) + n−1+ε).

The above results give a very complete picture of the behavior of dTV(vvvn, gggn), for the case where
Jn is uniform in [n] and the primes under consideration are all small, in the sense that Γn =

P ∩ [n1/βn ]. There has however been only little investigation into the problem of giving explicit
rates of dTV(vvvn, gggn) for more general choices for Γn and Jn. In this paper we give a partial answer
to this, as we address the following questions

- Up to what extent, the above results remain valid for different choices of Γn?
- How much flexibility do we have for choosing the distribution of Jn?

We would like to emphasize that the cases where Γn contains large primes are of special interest,
as the complementary case is nearly completely described by the relation (1.4). We would like to
bring the reader’s attention to the manuscripts Arratia (2002) and Chen et al. (2022), where the
study of divisibility properties for non-uniform samples Jn arise quite naturally in the investigation of
probabilistic number theory problems. In both the papers Arratia (2002) and Chen et al. (2022), the
sequence Jn is approximated with high degree of accuracy by a sequence of variables Yn with simpler
distributional laws, where the “simplicity in the law” is described by its embedding into a Poisson
point process functional in Arratia (2002) and by regarding it as a realization from a sequence of
independent variables conditioned over an adequate event in Chen et al. (2022). The approach taken
in the current manuscript balances differently the simplicity-accuracy tradeoff, as we compare the
multiplicities of the sample with fully independent variables with geometric distribution. The price
we pay for obtaining such a strong simplification is an increase on the discrepancy between variables
emerging from divisibility properties of Jn and those arising from independent geometric variables,
which can be modulated (depending on the problem) by exploiting the flexibility on the choice of
Γn.

Some heuristic considerations
In order to give an exploratory description of the nature of bounds of the type (1.1), we introduce
some suitable notation. For any D ⊂ Γn and m = (mp ; p ∈ D) ∈ ND, set |m| :=

∑
p∈Dmp,

|D| := ]D, m+ 1 := (mp + 1 ; p ∈ D) and

pD =
∏
p∈D

p, pmD =
∏
p∈D

pmp
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with the convention that pD = pmD = 1 if D = ∅. Define as well the events

A(D,m) = {vp = mp for all p ∈ D and vq = 0 for all q ∈ Γn \D},

Ã(D,m) = {gp = mp for all p ∈ D and gq = 0 for all q ∈ Γn \D}.
This way, we can write

dTV(vvvn, gggn) =
1

2

∑
D⊂Γn

∑
m∈ND

|P[A(D,m)]− P[Ã(D,m)]|. (1.5)

Formula (1.5) reduces the problem to estimating P[A(D,m)] and P[Ã(D,m)]. One way of doing this,
is decomposing the events A(D,m) and Ã(D,m) as unions and intersections of “elemental events”,
having the property that their probabilities are easy to approximate. Throughout this paper, the
elemental events that will serve for approximating P[A(D,m)] will consist of the elements of the
π-system

E := {{vp1 ≥ m1, . . . , vpr ≥ mr}; p1, . . . , pr ∈ P and m1, . . . ,mr ∈ N}
= {{pm1

1 · · · p
mr
r |Jn}; p1, . . . , pr ∈ P and m1, . . . ,mr ∈ N},

while those used to approximate P[Ã(D,m)] will consist on the elements of the π-system

Ẽ := {{gp1 ≥ m1, . . . , gpr ≥ mr}; p1, . . . , pr ∈ P and m1, . . . ,mr ∈ N}.
This choice is justified by the fact that for every p1, . . . , pr ∈ P satsifying pi 6= pj and m1, . . . ,mr ∈
N,

P[gp1 ≥ m1, . . . , gpr ≥ mr] =
1

d
, (1.6)

where d :=
∏r
i=1 p

mi
i . In order for our heuristic to be accurate, we are required to impose a condition

that guarantees that when the variables gp appearing in (1.6) are replaced by vp, the associated
probability remains approximately equal to 1

d . Motivated by this, we will assume that Jn and
{gp ; p ∈ P} are defined in a common probability space (Ω,F ,P) and the following hypothesis
holds:

(Ht) There exist finite constants κ ≥ 1, t > 0 independent of n, such that Jn is supported in [0, n]
and for every a ∈ N,

|P[a | Jn]− 1

a
| ≤ κ

nt
and P[a | Jn] ≤ 1 + κ

a
. (1.7)

Despite the fact that condition (Ht) imposes a mildly rigid condition over the law of Jn, it does
include the following rich family of probability laws as particular instances.

Example 1.1. Consider the truncated “Pareto type” distribution

πn,s(k) =
1

Zn,s
k−s k ∈ [n], and s ∈ [0, 1),

where Zn,s =
∑

k∈[n] k
−s. We claim that Jn ∼ πn,s satisfies (H1−s) with κ = 3, for all n large.

Indeed, we have

|P[a|Jn]− a−1| = 1

Zn,s

∣∣∣ bn/ac∑
k=1

(ak)−s − a−1
n∑
k=1

k−s
∣∣∣ (1.8)

Notice that for any a ∈ [n],
bn/ac∑
k=1

(ak)−s − a−1
n∑
k=1

k−s ≤
∫ n/a

0
(ax)−sdx− a−1

∫ n+1

1
x−sdx ≤ a−1

∫ 1

0
x−sdx ≤ (1− s)−1.
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Similarly, for any a ∈ [n],

a−1
n∑
k=1

k−s −
bn/ac∑
k=1

(ak)−s ≤ a−1

∫ n−1

0
x−sds−

∫ n/a

1
(ax)−sdx ≤ a−1

∫ a

0
x−sdx ≤ 1 + (1− s)−1.

It remains to bound from below Zn,s. We have

Zn,s ≥
∫ n+1

1
x−sds = (1− s)−1(n1−s − 1)

Plugging these estimates in (1.8) proves that the first bound of (H1−s) holds. The other bound
follows from analogous integral approximation arguments.

Remark 1.2. Distributions considered in the previous example are not asymptotically uniform in
the sense that their total variation distance as n → ∞ does not converge to 0. To verify this, we
simply compute the sum ∑

k∈[n/M ]

∣∣∣ k−s
Zn,s

− 1

n

∣∣∣, M > 1.

For any s ∈ [0, 1), by choosing M large enough, we see that the summands are bounded from below
by c/n, where c > 0 depends only on s and M . This gives a lower bound c/M > 0 for the total
variation distance between the truncated Pareto distributions and the uniform distribution over [n].
Therefore, the conclusions of our main result cannot be derived from those in the literature for a
uniform distribution in [n].

Example 1.3. Let υ : [0,∞) → R+ be a continuously differentiable function that is monotone over
an interval of the form [M,∞), for some M ∈ N, with

sup
n>M

nt
∫ 1

0
|υ(sn)− L|ds <∞,

for some L > 0 and t > 0. If the law of Jn is supported in {1, . . . , n} and satisfies

P[Jn = k] := cnυ(k),

for some k = 1, . . . , n and cn > 0, then the variables Jn satisfy condition (Ht) for n sufficiently
large. To verify this, observe that for every natural number a ∈ N,

P[a | Jn] = ntcn

 1

nt

bn/ac∑
j=1

υ(aj)

 . (1.9)

By elementary algebraic manipulations,

1

nt

bn/ac∑
j=1

υ(aj) = O(1/nt) +
1

nt

bn/ac∑
j=M

υ(aj) = O(1/nt) +
1

n

∫ n/a

M
υ(as)ds = O(1/nt) + L/a,

where O(1/nt) denote error functions bounded in absolute value by a constant multiple of 1/nt,
independent of a. By choosing a = 1, we get that ntcn = L+O(1/nt). Condition (Ht) then follows
from (1.9). Some particular instances in which the above conditions hold are the case where Jn has
uniform distribution over {1, . . . , n} and more generally, the case where there exist a non-increasing
function θ : R+ → R+, with

sup
n≥1

ktθ(k) <∞,

as well as constants ε > 0 and cn > 0 such that P[Jn = k] = cα,n(ε+ θ(k)) for all k = 1, . . . , n and
P[Jn = k] = 0 otherwise.
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Example 1.4. A generalization of the above two examples gives rise the following large family of
probability distributions satisfying (Ht). Let υ : [0,∞) → R+ be a continuously differentiable
function that is monotone over an interval of the form [M,∞), for some M ∈ N, with

sup
n>M

1

cn

∫ 1

0
|υ(sn)|ds <∞,

for some L > 0 and t ∈ (0, 1), where

cn :=

(
n∑
k=1

υ(k)

)−1

.

If the law of Jn is supported in {1, . . . , n}, cn has a decay of the order n−t and

P[Jn = k] := cnυ(k),

for some k = 1, . . . , n and cn > 0, then the variables Jn satisfy condition (Ht) for n sufficiently
large. The proof of this claim is identical to that of Example 1.3, with the exception that nt should
be replaced by c−1

n and L should be replaced by zero.

Notice that

A(D,m) = {vp ≥ mp ; p ∈ D}\
⋃
p∈P
{vp ≥ mp + 1 ; p ∈ D} ∪ {vq ≥ 1 ; q ∈ Dc}

Ã(D,m) = {gp ≥ mp ; p ∈ D}\
⋃
p∈P
{gp ≥ mp + 1 ; p ∈ D} ∪ {gq ≥ 1 ; q ∈ Dc},

where Dc denotes the complement relative to Γn, namely, Dc := Γn\D. Consequently, by an
elementary application of the inclusion-exclusion principle,

P[A(D,m)] =
∑
I⊂Γn

(−1)|I|P[{pmD |Jn} ∩ {pm+1
D∩I pDc∩I |Jn}]

=
∑
I⊂Γn

(−1)|I|P[pmD∩Icp
m+1
D∩I pDc∩I |Jn] =

∑
I⊂Γn

(−1)|I|P[pmDpI |Jn]

for any D ⊂ Γn and m ∈ ND. Similarly,

P[Ã(D,m)] =
∑
I⊂Γn

(−1)|I|

pmDpI
.

Thus, by using the hypothesis (Ht), we obtain the bound

dTV(vvvn, gggn) ≤ 1

2

∑
D⊂Γn

∑
m∈ND+

∑
I⊂Γn

(1{pmDpI≤n}
1

n
+ 1{pmDpI>n}

1

pmDpI
).

By using the geometric sum formula for the second term and the fact that there are at most
1
2 log(n) values for m for which pmDpI ≤ n, we deduce that there exists a universal constant C > 0,
independent of Γn or n, such that

dTV(vvvn, gggn) ≤ C
∑
D⊂Γn

∑
I⊂Γn

log(n)

n
≤ C4|Γn|

log(n)

n
. (1.10)

In particular, when supn |Γn| <∞, one deduces that dTV(vvvn, gggn) is of the order log(n)
n . Naturally,

one wonders if in the case where |Γn| converges to infinity, the above argument leads to a “good”
bound for dTV(vvvn, gggn). Unfortunately, the right hand side of (1.10) diverges if |Γn| is asymptotically
larger than log(n)

log(4) , which restricts significantly the possible choices of Γn.
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In this paper, we make suitable adjustments to the argument above, so that we obtain a bound
that converges to zero even when |Γn| is polynomial of any degree in log(n), see Remark 1.8 for
more details. The main idea consists of replacing the use of the inclusion-exclusion principle by
Bonferonni-type bounds. This, combined with a careful combinatorial analysis of the resulting
terms, leads to a near to optimal bound for dTV(vvvn, gggn).

1.2. Statement of the main result. Recall that Jn is assumed to satisfy the condition (Ht). To state
the main theorem, we introduce the quantities

τn :=
∑
p∈Γn

1

p
and ρn :=

log n

log |Γn|
.

Theorem 1.5. Suppose that limn→∞ ρn =∞ and that there exists ε ∈ (0, 1), such that |Γn| ≤ nτ
−1−ε
n

for all n ∈ N. Suppose that (Ht) holds with t > 0. Then for n sufficiently large, we have

dTV(vvvn, gggn) ≤ (4 + 2κ) exp
(
− cmin

(
ρn log ρn, log(n)

))
(1.11)

with c = ε∧(t/4)
2(1+ε) .

Remark 1.6. In the case where Γn = P ∩ [n
1
βn ] for βn > 1 converging to infinity, we have that

limn n
− 1
βn log(n

1
βn )|Γn| = 1 due to the prime number theorem. From here it follows that limn

ρn
βn

=

1. Consequently, up to a change in the constant c, Theorem 1.5 improves Barban’s bound (1.2)
when ε is small enough and

βn log(βn) ≤ log(n),

for n sufficiently large.

Remark 1.7. If ρn is uniformly bounded over n, then |Γn| ≥ na for some fixed a ∈ (0, 1) independent
of n. In this case, by (1.3), in order for a bound for the left hand side of (1.11) to converge to zero
at the time that it generalizes the bounds presented by Kubilius and Barban bounds, we have to
restrict ourselves to the regime limn→∞ ρn = ∞. This justifies the appearance of the condition
limn→∞ ρn = ∞ as a hypothesis in Theorem 1.5. However, a bound for case supn ρn < ∞ can be
obtained by means of Equation (1.10).

Remark 1.8. By Mertens’ formula (see Tenenbaum (1999, page 14)), we have that for n sufficiently
large, τn ≤ log log(n) + 1. Consequently, for any K > 0, we have that

nτ
−1−ε
n ≥ e

log(n)

(1+log log(n))1+ε ≥ [log(n)]K ,

provided that n is sufficiently large. Thus, our condition on the cardinality of Γn is mild, as one
only requires the condition |Γn| ≤ n

1
(1+log log(n))1+ε to be satisfied.

Remark 1.9. By considering Γn of small cardinality, we observe that one cannot surpass the barrier
log(n) in the exponent. For instance, if

|Γn| ≤ log log(n),

then we have ρn log(ρn) ≥ log(n) log log(n) for n sufficiently large, and any estimate of the type
c1 exp(−c2ρn log(ρn)) decays faster than c1e

−c2 log(n) log log(n). The former quantity can’t bound
dTV(vvvn, gggn) since for every p ∈ P,

dTV(vvvn, gggn) =
1

2

∑
m∈NΓn

0

|P[vvvn = m]− P[gggn = m]| ≥ 1

2
P
[
gp ≥

log(n)

log(p)

]
,
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so that

dTV(vvvn, gggn) ≥ p−1−(log(n)/ log(p)) =
1

pn
.

2. Proof of theorem 1.5

The main idea consists on decomposing the right hand side of (1.5) into three pieces, which
heuristically correspond to the following instances

- The set D ⊂ Γn of prime divisors has large cardinality, see Section 2.1.
- The set D ⊂ Γn is small, but the associated multiplicities m ∈ ND are large, see Section 2.2.
- Both the set D ⊂ Γn and the multiplicities m ∈ ND are small, see Section 2.3.

A suitable control for each of these instances will be considered in Lemmas 2.1,2.2, 2.3. Once we
finish the proofs of such lemmas, they will be combined at the end of the section, to yield a complete
proof of Theorem 1.5.

2.1. Many distinct prime divisors. First we consider D with large cardinality. We define the thresh-
old αn of the form

αn := δρn, (2.1)

where δ > 0 is a positive constant independent of n. The constants αn also depends on δ, but we
omit it from the notation.

Lemma 2.1. Suppose that the second bound of (Ht) holds. For any δ > 0 and n ∈ N, we have∑
D⊂Γn
|D|≥αn

∑
m∈ND

|P[A(D,m)]− P[Ã(D,m)]|

≤ (2 + κ) exp
(
− δε

1 + ε
ρn log(ρn) + δ(1− log(δ))ρn

)
. (2.2)

In particular, the condition ρn → ∞ implies that there exists a constant N ∈ N depending on ε, δ,
such that for n ≥ N ,

δε

1 + ε
ρn log(ρn) ≥ 2|δ(1− log(δ))|ρn,

so that inequality (2.2) implies that for such n,∑
D⊂Γn
|D|≥αn

∑
m∈ND

|P[A(D,m)]− P[Ã(D,m)]| ≤ (2 + κ) exp
(
− δε

2(1 + ε)
ρn log(ρn)

)
.

Proof : The sum on the left-hand side is empty if αn > |Γn| in which case the claim is trivial.
Suppose that αn ≤ |Γn|. We simply bound

|P[Ã(D,m)]− P[A(D,m)]| ≤ P[Ã(D,m)] + P[A(D,m)]

and estimate the sum of probabilities separately. Notice that∑
D⊂Γn
|D|≥αn

∑
m∈ND

P[A(D,m)] =
∑
D⊂Γn
|D|≥αn

P[vp ≥ 1, ∀p ∈ D, vq = 0, ∀q ∈ Γn \D]

≤
∑
D⊂Γn
|D|≥αn

P[vp ≥ 1, ∀p ∈ D] =
∑
D⊂Γn
|D|≥αn

P[pD|Jn] ≤
∑
D⊂Γn
|D|≥αn

1 + κ

pD
,
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where the last inequality follows from hypothesis (Ht). Observe that the condition |Γn| ≤ nτ
−(1+ε)
n

implies that log(|Γn|) ≤ log(n)

τ1+ε
n

, which leads to the bound

ρn ≥ τ1+ε
n . (2.3)

Thus, by using Chernoff’s bound (see Lemma A.2),

∑
D⊂Γn
|D|≥αn

1

pD
=

|Γn|∑
j=αn

1

j!

∑
(p1,...,pj)∈(Γn)j6=

1

p1 · · · pj
≤

∞∑
j=αn

τ jn
j!
≤
(eτn
αn

)αn
, (2.4)

where (Γn)j6= is the set of j-tuples of elements in Γn with distinct coordinates. We observe by (2.3)
that

log
((eτn

αn

)αn)
≤ δρn

(
1 +

1

1 + ε
log(ρn)− log(δ)− log(ρn)

)
≤ − δε

1 + ε
ρn log(ρn) + δ(1− log(δ))ρn,

yielding the desired estimate for the sum of P[A(D,m)]. The same argument gives an analogous
bound for the sum of P[Ã(D,m)], ending the proof. �

2.2. Fewer prime divisors with overall high multiplicities. Now we consider the case of fewer prime
divisors |D| ≤ αn. Recall that |m| ≥ |D| since m ∈ ND. We are interested in the situation where
the prime divisors D have overall high multiplicities in the sense that |m| ≥ βn with βn much larger
than αn.

Lemma 2.2. Suppose that the second bound of (Ht) holds. Let αn be given by (2.1) and define

βn :=
2δ

(1 + ε) log(1.5)
ρn log(ρn). (2.5)

Then we have for all n ∈ N,∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≥βn

|P[Ã(D,m)]− P[A(D,m)]|

≤ (2 + κ) exp
(
− δ

1 + ε
ρn log(ρn) + 5 log(1.5)δρn + log(δρn)

)
. (2.6)

In particular, the condition ρn → ∞ guarantees the existence of a constant N ∈ N depending on
ε, δ, such that that for n ≥ N ,

δ

1 + ε
ρn log(ρn) ≥ 2|5 log(1.5)δρn + log(δρn)|,

so that inequality (2.6) implies that for such n,∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≥βn

|P[Ã(D,m)]− P[A(D,m)]| ≤ (2 + κ) exp
(
− δ

2(1 + ε)
ρn log(ρn)

)
.
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Proof : As in the proof of Lemma 2.2, we simply estimate the difference of probabilities by their
sum. We start by handling the terms involving the quantities P[Ã(D,m)]. Notice that∑

D⊂Γn
|D|≤αn

∑
m∈ND
|m|≥βn

P[Ã(D,m)] ≤
∑
D⊂Γn
|D|≤αn

P
[∑
p∈D

gp ≥ βn | gp ≥ 1, p ∈ D
]
P
[
gp ≥ 1, p ∈ D

]

=
∑
D⊂Γn
|D|≤αn

P
[∑
p∈D

ĝp ≥ βn
] 1

pD
,

where L(ĝp, p ∈ D) = L(gp, p ∈ D | gp ≥ 1, p ∈ D). One readily checks that (ĝp, p ∈ D) is a family
of independent N-valued geometric random variables with

P[ĝp = k] = p−(k−1)(1− p−1), k ∈ N, p ∈ D. (2.7)

For any p ∈ D, a direct computation leads to the uniform bound E[(1.5)ĝp ] ≤ 3 and the following
concentration bound

P
[∑
p∈D

ĝp ≥ βn
]
≤ (1.5)−βn3|D| ≤ (1.5)−(βn−3αn)

holds by Markov’s inequality. This leads to∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≥βn

P[Ã(D,m)] ≤ (1.5)−(βn−3αn)

αn∧|Γn|∑
j=0

1

j!

∑
(p1,...,pj)∈(Γn)j6=

1

p1 · · · pj

≤ (1.5)−(βn−3αn)

αn∧|Γn|∑
j=0

τ jn
j!
≤ αn(1.5)−(βn−3αn)(τn)αn . (2.8)

Now we move to the analysis of the sums involving P[A(D,m)]. As before, we write∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≥βn

P[A(D,m)] ≤
∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≥βn

P[vp ≥ mp,∀p ∈ D]

≤
∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≥βn

1 + κ

pmD

=
∑
D⊂Γn
|D|≤αn

P
[∑
p∈D

ĝp ≥ βn
]1 + κ

pD

∏
p∈D

1

1− p−1
. (2.9)

where (2.9) follows from the definition of ĝp at (2.7). Bounding the product in (2.9) by 2|D| ≤
(1.5)2αn and then using the argument leading to (2.8), we obtain∑

D⊂Γn
|D|≤αn

∑
m∈ND
|m|≥βn

P[A(D,m)] ≤ (1 + κ)αn(1.5)−(βn−5αn)(τn)αn .

To summarize, both sums have analogous upper bounds. It follows from (2.1)-(2.5) that

log
(
αn(1.5)−(βn−5αn)(τn)αn

)
≤ log(δρn)− (βn − 5δρn) log(1.5) +

δ

1 + ε
ρn log(ρn)

≤ − δ

1 + ε
ρn log(ρn) + 5 log(1.5)δρn + log(δρn).

The conclusion follows immediately. �
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2.3. Fewer prime divisors with moderate multiplicities. Now we handle the remaining case where
|D| ≤ αn and |m| ≤ βn. This is the only part where we seek cancellations between the probability
mass functions of independent (i.e. gggn) and dependent (i.e. vvvn) vectors.

Lemma 2.3. Let αn and βn be given by (2.1) and (2.5) with δ ∈ (0, t/3). Suppose (Ht) holds with
t > 0. For n sufficiently large, we have∑

D⊂Γn
|D|≤αn

∑
m∈ND
|m|≤βn

|P[A(D,m)]− P[Ã(D,m)] ≤ (3 + 2κ) exp(−cmin[log(n), ρn log(ρn)]) (2.10)

with c = min(t− 3δ, δε
2(1+ε)). In particular, the condition ε ∈ (0, 1) implies that δε

2(1+ε) ≤
δ
4 , so that

t− 3δ ≥ δε
2(1+ε) for δ ≤ 0.3t, thus yielding the inequality∑

D⊂Γn
|D|≤αn

∑
m∈ND
|m|≤βn

|P[A(D,m)]− P[Ã(D,m)] ≤ (3 + 2κ) exp(− δε

2(1 + ε)
min[log(n), ρn log(ρn)])

Proof : We claim that for any positive odd integer γ, the following estimate holds:∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≤βn

|P[A(D,m)]− P[Ã(D,m)]|

≤ 3
√
γ

(eτn
γ

)γ
αn(2e)2τn +


2(1+κ)|Γn|γ+1

n αne
2αn if

√
βn|Γn| ≤ αn,

2(1+κ)|Γn|γ+1

n αn

(
e2βn|Γn|

α2
n

)αn
else.

(2.11)

In order to show this, we apply Bonferonni-type estimates in Lemma A.1 for any positive odd integer
1 ≤ γ ≤ |Γn|, as well as the condition (Ht), yielding

|P[A(D,m)]− P[Ã(D,m)]| ≤
∑
I⊂Γn
|I|≤γ

∣∣∣P[pmDpI |Jn]− 1

pmDpI

∣∣∣+ 4κ
∑
I⊂Γn
|I|=γ+1

1

pmDpI

≤ 2|Γn|γ+1

nt
+

4κ

pmD

τγn
γ!

≤ 2|Γn|γ+1

nt
+

6κ

pmD

1√
2πγ

(eτn
γ

)γ
,

where we used Stirling’s estimate n! ≥
√

2πn(n/e)n in the last inequality. We first show

∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≤βn

2|Γn|γ+1

nt
≤


4|Γn|γ+1

nt αne
2αn if

√
βn|Γn| ≤ αn,

4|Γn|γ+1

nt αn

(
e2βn|Γn|

α2
n

)αn
else.

(2.12)

Notice that

|{m ∈ ND : |m| ≤ βn}| =
βn∑

a=|D|

(
a− 1

|D| − 1

)
≤ (βn)|D|

|D|!
.

Thus, using Stirling’s formula in the last inequality, we have∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≤βn

1 ≤ 1 +

αn∑
j=1

(
Γn
j

)
βjn
j!
≤ 1 +

αn∑
j=1

(βn|Γn|)j

(j!)2
≤ 1 +

αn∑
j=1

(e2βn|Γn|
j2

)j
.
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Observe that the summand of the last sum as a function of j increases then decreases as j grows
from 1 to ∞, and it attains the maximum at j =

√
βn|Γn|. If

√
βn|Γn| ≤ αn, we bound the

summands from above by e2
√
βn|Γn| ≤ e2αn , otherwise, the summands are bounded by ( e

2βn|Γn|
α2
n

)αn ,
thus yielding (2.12).

Next we show ∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≤βn

6κ

pmD

1√
2πγ

(eτn
γ

)γ
≤ 6κ
√
γ

(eτn
γ

)γ
αn(2e)2τn . (2.13)

Manipulating the sum over m as in (2.9) gives∑
m∈ND
|m|≤βn

1

pmD
=
∏
p∈D

1

1− p−1
P
[∑
p∈D

gp ≤ βn, gp ≥ 1, p ∈ D
]
≤ 2|D|P[gp ≥ 1, p ∈ D] =

2|D|

pD
.

Hence, handling the sum of (pD)−1 as in (2.4) yields∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≤βn

6κ

pmD
≤ 6κ

αn∑
j=0

2j
∑
D⊂Γn
|D|=j

1

pD
≤ 6κ

αn∑
j=0

(2τn)j

j!
≤ 6κ

√
2π

αn∑
j=0

(2eτn
j

)j
,

where we used again Stirling’s estimate the last inequality. Observe that the summands, regarded
as a function of j, attains its maximum at j = b2τnc. Hence,∑

D⊂Γn
|D|≤αn

∑
m∈ND
|m|≤βn

6κ

pmD
≤ 6κ

√
2παn(2e)2τn ,

leading to (2.13). Combining (2.12) and (2.13) gives (2.11).

It remains to prove (2.10). To this end, we apply (2.11) with γ = γn given by

γn = max{k ≤ αn : k is an odd integer}.

We distinguish i)
√
βn|Γn| ≤ αn and ii)

√
βn|Γn| > αn. In case i),

log
( |Γn|γn+1

nt
αne

2αn
)

= (δρn + 1)
log(n)

ρn
+ log(δρn) + 2δρn − t log(n)

≤ −
[
t− δ + (ρn)−1 − 2δ[log(|Γn|)]−1 − log(δ log(n))

log(n)

]
log(n)

≤ −(t− 3δ) log(n)

for all n sufficiently large, where we used the condition |Γn| ≥ e2. On the other hand, by ρn ≥ τ1+ε
n ,

we have

log
((eτn

γn

)γnαn(2e)2τn
)

= δρn

(
1− log(δ)− ε

1 + ε
log(ρn)

)
+ log(δρn) + 4ρ(1+ε)−1

n

≤ − δε

1 + ε
ρn log(ρn) +

(
1− log(δ) + 4δ−1ρ

− ε
1+ε

n

)
δρn + log(δρn)

≤ − δε

2(1 + ε)
ρn log(ρn) (2.14)
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for n sufficiently large, ending the proof of (2.10) for case i). In case ii), we have

log
( |Γn|γn+1

nt
αn

(e2βn|Γn|
α2
n

)αn)
= (2δρn + 1)

log(n)

ρn
+ log(δρn)

+ δρn

(
2 + log

[ 2δ

(1 + ε) log(1.5)

]
+ log(ρn log(ρn))− 2 log(δρn)

)
− t log(n)

≤ −[t− 2δ + (ρn)−1] log(n)− δρn log(ρn) + δρn log log(ρn)

+
(

2 + log
[ 2δ

(1 + ε) log(1.5)

]
− 2 log(δ)

)
δρn + log(δρn)

≤ −(t− 3δ) log(n)

for n sufficiently large. This, together with (2.14), ends the proof of (2.10) for case ii), thereby
ending the proof of the lemma. �

Proof of Theorem 1.5: Let δ ∈ (0, 0.3t) with t given at (1.7). Recall the definitions of αn, βn at
(2.1) and (2.5), which depend on δ and ε in the statement of Theorem 1.5. Using the expression
(1.5) for the total variance distance, there exists a constant N ∈ N depending on ε, δ, such that

dTV(vvvn, gggn) =
1

2

∑
D⊂Γn
|D|>αn

∑
m∈ND

|P[A(D,m)]− P[Ã(D,m)]|

+
1

2

∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≥βn

|P[A(D,m)]− P[Ã(D,m)]|

+
1

2

∑
D⊂Γn
|D|≤αn

∑
m∈ND
|m|≤βn

|P[A(D,m)]− P[Ã(D,m)]|.

Since ρn →∞, by choosing δ = (0.3t) ∧ ε, we derive by using Lemmas 2.1-2.3 that

dTV(vvvn, gggn) ≤ (4 + 2κ) exp(−ε ∧ (t/4)

2(1 + ε)
min(log n, ρn log ρn)).

This completes the proof. �

3. Applications

The total variation bound obtained in the paper allows to transfer distributional approximation
results valid in the realm of independent random variables to the dependent prime multiplicities of
a random sample Jn, at the price of an extra error term that appears in Theorem 1.5.

In this section, we mention two such possibilities: a generalized Erdös-Kac theorem, and a Poisson
process approximation result. The first result (Theorem 3.1) generalise considerably the classical
Erdös-Kac theorem for additive functions of a uniform random variable in [n]. The second result
(Theorem 3.2) seems to be new even when Jn is uniform. We stress that these results are manifes-
tations of the non-trivial fact that a large subset of prime multiplicities of a rather general random
sample in [n] are very close to be independent random variables. This non-trivial fact is the main
message of this paper, proved in Theorem 1.5. Once the fact is established, either normal approxi-
mation (in Theorem 3.1) or Poisson approximation (in Theorem 3.2) for sum of weakly dependent
random variables is not hard to prove.
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3.1. Generalized Erdös-Kac theorem. Consider the prime factor counting function

ω(k) =
∑
p∈P

1{p|k},

and the law of w(Jn) with Jn satisfies (Ht) with t > 0. In the special case where Jn is uniformly
distributed in [n] (which satisfies (Ht) with t = 1 by Example 1.1), the celebrated Erdös-Kac theorem
(see Erdös and Kac (1940)) states that (ω(Jn)− log log(n))/

√
log log(n) converges in distribution to

a standard Gaussian random variable. To assess the rate of convergence of the Erdös-Kac theorem,
one can use the Wasserstein distance given by

dW (X,Y ) = sup
g∈Lip1

|E[g(X)]− E[g(Y )]|,

where X,Y are real-valued random variables and Lip1 denotes the set of 1-Lipchitz functions.

There are several probabilistic proofs for obtaining assessments of the distance between ω(Jn) sub-
ject to normalization and a standard Gaussian random variable. We refer to Harper (2009) for
two proofs relying on Stein’s method in the Kolmogorov metric. We would like to highlight the
intention of Harper (2009): it aims to present arguments which are highly accessible, in the sense
that they do not rely on sophisticated machinery from number theory. Theorem 3.1 below has a
similar feature, as it only makes use of Theorem 1.5, which is based simply on some Bonferroni-type
estimates and elementary large deviation bounds. The inequality (1.11) provides a rather simple
scheme for achieving the rate (3.1) which is the same as Harper (2009), not only for the case in
which Jm is uniform, but for a wide range of variables satisfying (Ht). Obtaining an optimal rate
of convergence in the Erdos Kac theorem is a highly non-trivial task that escapes the reach of
our techniques. However, the Charlier expansions for the law of ω(Jn) presented in Barbour et al.
(2014), imply that the optimal rate is of the order log log(n)−1/2, which differs from our bound just
by a term of the order log log log(n).

Theorem 3.1. Suppose that the law of Jn is such that there is a constant κ > 0 independent of n,
such that {Jn}n≥1 satisfies the condition (Ht). Then there exists a constant C > 0, such that

dW

(
ω(Jn)− log log(n)√

log log(n)
, N

)
≤ C log log log(n)√

log log(n)
, (3.1)

where N is a standard Gaussian random variable denotes the Wasserstein distance.

Proof : We observe that

ω(Jn) =
∑

p∈P∩[1,n]

1{vp≥1}.

Define the arithmetic function

ω̃n(k) :=
∑

p∈P∩[1,n
1

3 log log(n)2 ]

1{p divides k}.

By Merten’s formula (see Tenenbaum (1999, Theorem 9)), we have that

|
∑

p∈P∩[1,n]

1

p
− log log(n)| ≤ 1,

for n large. Combining this inequality with (Ht), we deduce the existence of a constant C > 0 such
that

E[ω(Jn)− ωn(Jn)] + Var[ω(Jn)− ω̃n(Jn)] ≤ C log log log(n). (3.2)
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and

|E[ω(Jn)]− log log(n)|+ |Var[ω(Jn)]− log log(n)| ≤ C log log log(n). (3.3)

Observe that

dW (ω(Jn)− E[ω(Jn)],Mn)

≤ dW (ω(Jn)− E[ω(Jn)], ω̃n(Jn)− E[ω̃n(Jn)])

+ dW (ω̃n(Jn)− E[ω̃n(Jn)], ω̃n(Jn)− E[ω̃n(Jn)]1{|ω̃n(Jn)−E[ω̃n(Jn)]|≤log log(n)2})

+ dW ((ω̃n(Jn)− E[ω̃n(Jn)])1|ω̃n(Jn)−E[ω̃n(Jn)]|≤log log(n)2 ,
∑
p∈P

1

{|p|≤n
1

3 log log(n)2 }
gp)

+ dW (
∑
p∈P

1

{|p|≤n
1

3 log log(n)2 }
gp,Mn),

where the gp are independent random variables with geometric law of parameter 1/p andMn denotes
a centered Gaussian random variable with variance log log(n). Using the Berry Esseen estimations,
as well as (3.2) and (3.3), we thus get

dW (ω(Jn)− E[ω(Jn)],Mn)

≤ C log log log(n) + dW ((ω̃n(Jn)− E[ω̃n(Jn)])1|ω̃n(Jn)−E[ω̃n(Jn)]|≤log log(n)2 ,
∑
p∈P

1

{|p|≤n
1

3 log log(n)2 }
gp).

(3.4)

Define
Yn := (ω̃n(Jn)− E[ω̃n(Jn)])1|ω̃n(Jn)−E[ω̃n(Jn)]|≤log log(n)2 .

and
Ỹn :=

∑
p∈P

1

{|p|≤n
1

3 log log(n)2 }
gp.

Observe that Yn takes values in the set {− log log(n)2, . . . , log log(n)2} and consequently, from a
straighforward examination of the Wasserstein distance,

dW (Yn, Ỹn) ≤ E[|Ỹn|1{log log(n)2≤|Ỹn|}] +

log log(n)2∑
k=− log log(n)2

|k||P[Ỹn = k]− P[Yn = k]|

≤ C + C log log(n)4dTV(Yn, Ỹn).

Observe that by the prime number theorem, log(|P ∩ [1, n
1

3 log log(n)2 ]|) = O( log(n)
3 log log(n)2 ). Therefore,

by Theorem 1.5

dW (Yn, Ỹn) ≤ P[Ỹn ≥ log log(n)2] +

log log(n)2∑
k=− log log(n)2

|k||P[Ỹn = k]− P[Yn = k]|

≤ C + C log log(n)4e− log log(n)4 ≤ C ′.

Combining the above inequality with (3.4), we get

dW (ω(Jn)− E[ω(Jn)],Mn) ≤ C log log log(n).

The above inequality leads to the desired conclusion. �
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3.2. Poisson approximation. Now we show how our general bound is relevant in the case of Poisson
approximation. Consider the counting process

Xn(t) =
∑

p∈P∩[an,ae
t
n ]

1{vp≥1}, t ∈ [0, 1]

where an diverges as n→∞ and there exists ε > 0 such that

an ≤ e
log(n)/e

[log log(n)]1+ε .

Hence the cardinality of Γn := P ∩ [an, a
et
n ] satisfies the condition of Theorem 1.5. Denote by

{X̃n(t), t ∈ [0, 1]} the process obtained by replacing all the vp’s by gp’s. By abuse of language, we
continue to use Xn to denote the counting measure induced by Xn and make the same convention
for X̃n.

Recall that the total variation distance between random measures η and η′ is defined as
dTV(η, η′) = inf P[η1 6= η2] where the infimum is taken over all pair (η1, η2) of random measures
such that its first marginal is equal in law to η and its second marginal equal to η′.

Theorem 3.2. Let ηn be a Poisson point process with the same intensity as that of X̃n. Then

dTV(Xn, ηn) ≤ dTV(vvvn, gggn) +
2

an
.

Proof : Let (vvvn, gggn) be the optimal coupling such that P[vvvn 6= gggn] = dTV(vvvn, gggn). Then

dTV(Xn, X̃n) ≤ P[Xn 6= X̃n] = dTV(vvvn, gggn).

On the other hand, we can obtain an error estimate for marginal distributions of X̃n and that of
ηn. For any fixed t ∈ [0, 1], it follows from classical Poisson limit theorem Durrett (2019, Section
3.6) that

dTV(X̃n(t), ηn([0, t])) ≤
∑

p∈P∩[an,ae
t
n ]

P[gp ≥ 1]2

≤ max
{
p−1 : p ∈ P ∩ [an, a

et

n ]
} ∑
p∈P∩[an,ae

t
n ]

1

p
≤ 2

an
,

where we used Mertens’ formula in the last step. �

Appendix A. Some elementary probabilistic estimates

We prove a Bonferonni-type estimates.

Lemma A.1. For any positive odd integer γ ≤ |Γn|,∑
I⊂Γn
|I|≤γ

(−1)|I|P[pmDpI |Jn] ≤ P[A(D,m)] ≤
∑
I⊂Γn
|I|≤γ+1

(−1)|I|P[pmDpI |Jn], (A.1)

∑
I⊂Γn
|I|≤γ

(−1)|I|
1

pmDpI
≤ P[Ã(D,m)] ≤

∑
I⊂Γn
|I|≤γ+1

(−1)|I|
1

pmDpI
. (A.2)

Proof : Notice that

A(D,m) = {pmD |Jn} ∩
(( ⋃

q∈Γn\D

{q|Jn}
)
∪
( ⋃
q∈D
{qmq+1|Jn}

))c
.
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Hence,

P[A(D,m)] = P[pmD |Jn]− P
[( ⋃

q∈Γn\D

{qpmD |Jn}
)
∪
( ⋃
q∈D
{qpmD |Jn}

)]
= P[pmD |Jn]− P

[ ⋃
q∈Γn

{qpmD |Jn}
]
.

By Bonferonni inequalities Durrett (2019, Exercise 1.6.10), we have for any positive odd integer
γ < |Γn| that∑

∅6=I⊂Γn
|I|≤γ+1

(−1)|I|+1P
[ ⋂
q∈I
{qpmD |Jn}

]
≤ P

[ ⋃
q∈Γn

{qpmD |Jn}
]
≤

∑
∅6=I⊂Γn
|I|≤γ

(−1)|I|+1P
[ ⋂
q∈I
{qpmD |Jn}

]
.

Observe that ∩q∈I{qpmD |Jn} = {pmDpI |Jn}. Thus,

P[A(D,m)] ≤ P[pmD |Jn]−
∑
∅6=I⊂Γn
|I|≤γ+1

(−1)|I|+1P
[ ⋂
q∈I
{qpmD |Jn}

]
=

∑
I⊂Γn
|I|≤γ+1

(−1)|I|P[pmDpI |Jn],

P[A(D,m)] ≥ P[pmD |Jn]−
∑
∅6=I⊂Γn
|I|≤γ

(−1)|I|+1P
[ ⋂
q∈I
{qpmD |Jn}

]
=
∑
I⊂Γn
|I|≤γ

(−1)|I|P[pmDpI |Jn],

ending the proof of (A.1). The same argument, with independence and the exact law of gp, yields
(A.2). We leave the details to the interested reader. �

We record here the Chernoff bound for Poisson random variables.

Lemma A.2. If 0 < λ < x and M is a Poisson random variable with parameter λ > 0, then

P[M ≥ x] ≤ e−λ(eλ)xx−x.

Equivalently, ∑
k≥x

λk

k!
≤
(eλ
x

)x
.
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