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Abstract. Aiming to understand the distribution of fitness levels of individuals in a large population
undergoing selection, we study the particle configurations of branching Brownian motion where each
particle independently moves as Brownian motion with negative drift, particles can die or undergo
dyadic fission, and the difference between the birth rate and the death rate is proportional to the
particle’s location. Under some assumptions, we obtain the limit in probability of the number of
particles in any given interval and an explicit formula for the asymptotic empirical density of the
fitness distribution. We show that after a sufficiently long time, the fitness distribution from the
lowest to the highest fitness levels approximately evolves as a traveling wave with a profile which
is asymptotically related to the Airy function. Our work complements the results in Roberts and
Schweinsberg (2021), giving a fuller picture of the fitness distribution.

1. Introduction

To understand the evolution of populations undergoing selection, we study the distribution of
fitness levels of individuals in the population. There is a well-known observation in the biology and
physics literature, going back to the work of Tsimring et al. (1996), that in a large population where
various beneficial mutations compete for fixation simultaneously, the fitness distribution over time
can be well approximated by a traveling wave. Roberts and Schweinsberg (2021) used branching
Brownian motion with an inhomogeneous branching rate to model a population undergoing selec-
tion. They showed rigorously that, in their model, the empirical distribution of the fitness levels of
individuals is approximately Gaussian. Our work complements the results in Roberts and Schweins-
berg (2021), giving a fuller picture of the fitness distribution. Using the same model as in Roberts
and Schweinsberg (2021), we show that after a sufficiently long time, the fitness distribution from
the lowest to the highest fitness levels approximately evolves as a traveling wave. The profile of this
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traveling wave is asymptotically equivalent to the profile obtained using nonrigorous methods in
Tsimring et al. (1996), Cohen et al. (2005), Neher and Hallatschek (2013) and Melissa et al. (2022),
which is expressed in terms of the Airy function.

The most intuitive model of fitness is the fitness landscape, which is a mapping from the mul-
tidimensional genotype space to a real-valued fitness space. This model is constructed in a high-
dimensional space where the number of dimensions is equal to the number of nucleotides in the
genome. Each point in the genotype space corresponds to a particular genome, and each genome
is assigned a fitness level. Although the fitness landscape captures fully the relationship between
genotypes and fitness, only limited quantitative analysis can be done in this model due to its high
dimensional construction, see e.g. Szendro et al. (2013). To study evolution on a smooth fitness
landscape, Tsimring et al. (1996) introduced a model with a one-dimensional fitness space and char-
acterized the population density as a function of time and the fitness level. They found that the
fitness distribution evolves over time like a traveling wave. Since then, the traveling wave model
of fitness has been studied for more than two decades with different model assumptions, see e.g.
Beerenwinkel et al. (2007); Desai and Fisher (2007); Durrett and Mayberry (2011); Fisher (2013);
Good et al. (2012); Hallatschek (2011); Kessler et al. (1997); Melissa et al. (2022); Neher and Hal-
latschek (2013); Park et al. (2010); Park and Krug (2013); Rouzine et al. (2008). For a summary
of the dynamical behavior of traveling wave fitness models in different settings, see Hallatschek and
Geyrhofer (2016).

In the mathematics literature, most of the work related to the dynamical behavior of fitness
has been done under the framework of the Moran model, where the number of individuals in the
population is N at all times and individuals acquire beneficial mutations at a certain rate. Durrett
and Mayberry (2011) first rigorously established the traveling wave behavior of fitness when the
selection rate is constant and the mutation rate is N™® for 0 < o < 1. Schweinsberg (2017)
considered slightly faster mutation rates and showed that the distribution of fitness has a Gaussian-
like tail behavior, though it does not actually converge to a Gaussian distribution because at a typical
time, the vast majority of individuals have the same number of mutations. Schweinsberg (2017)
made rigorous the earlier work of Desai and Fisher (2007). In the work of Durrett and Mayberry
(2011), Schweinsberg (2017) and Desai and Fisher (2007), mutations are sufficiently rare that one
studies the process by considering the effects of individual mutations. Yu et al. (2010), followed by
Kelly (2013) considered the case of strong selection and a very fast mutation rate and established
upper and lower bounds for the rate at which the mean fitness of the population increases.

When the rate of beneficial mutations is large but the selective advantage resulting from each
mutation is small, each individual acquires many mutations with a small selective advantage, and
an individual’s fitness level will evolve like a random walk. After proper scaling, the fitness of
each individual will move according to Brownian motion. It is therefore natural to model such
populations using branching Brownian motion, an idea which goes back to Brunet et al. (20006,
2007). Mathematically rigorous work was later carried out in Berestycki et al. (2013, 2015a) and
Maillard (2016). In these works, the branching rate is homogeneous in space but particles move
according to one-dimensional Brownian motion on the positive real line and are killed at the origin.
The absorption at the origin models the deaths of individuals with low fitness. Recently, Roberts and
Schweinsberg (2021) studied the evolution of a large population undergoing selection using branching
Brownian motion with an inhomogeneous branching rate, so that particles with higher fitness are
more likely to have offspring. We will work under the same setup and assumptions as Roberts and
Schweinsberg (2021). We are interested in understanding the distribution of individual fitness levels
from the least fit individuals to the most fit individuals, or in other words, the configuration of
particles from the left edge to the right edge. We note that a detailed nonrigorous analysis of this
model was provided in Neher and Hallatschek (2013). We note also the work Fisher (2013) and
Melissa et al. (2022), which aims to fill in the gap between the analysis in Desai and Fisher (2007)
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in which it is assumed that mutations are relatively rare, and the work in Neher and Hallatschek
(2013), which handles the case of very fast mutation rates.

Branching Brownian motion with a space-dependent branching rate was introduced by Harris and
Harris (2009). In their model, a particle at location y € R will split into two particles at rate S|y|P,
where > 0 and p € [0,2]. They did not include the case p > 2 because the process will explode in
finite time if p > 2. They studied the location of the right-most particle using martingales and the
related spine changes of measure. They proved that for p € [0,2), the maximal displacement grows
polynomially while for p = 2, the maximal displacement grows exponentially. Later, Berestycki
et al. (2015b) studied the particle configurations in this model for all p € [0,2). By considering
the large deviations probabilities for particles following certain rescaled paths, they obtained the
logarithmic order for both the expected number and the typical number of particles whose rescaled
trajectories follow paths in some set. Tourniaire (2021) considered branching Brownian motion
with a space-dependent branching rate in which particles are killed at the origin, particles in [0, 1]
branch at rate p/2, where p > 1, and particles in (1,00) branch at rate 1/2. This process models
the so-called semi-pushed traveling waves that can appear, for example, when a population invades
a new habitat.

The particle configurations for branching Brownian motion with absorption at the origin are
well understood. Berestycki et al. (2015a) proved, roughly speaking, that if the process settles
into an equilibrium configuration with N particles in total, then the density of particles near y is
proportional to e~ V2 sin(v/2my/log N). This is very different from the behavior that we observe in
our model, in which the density of particles near the origin where the bulk of particles are located
follows approximately a Gaussian distribution, as shown in Roberts and Schweinsberg (2021).

1.1. The model. We consider a sequence of branching Brownian motion processes indexed by n. In
this sequence of models, the basic evolutionary mechanisms are the same, but the parameters are
adjusted so that as n gets larger, the number of particles that will be in the system after a long
time also gets larger. We aim to prove limit theorems as n goes to infinity, which corresponds to
the case when the size of the population tends to infinity. In the n-th process, each particle moves
independently as one-dimensional Brownian motion with drift —p,. A particle at position x will
die at rate d,,(z) and branch into two particles at rate b,(x), where

bn(z) — dp(z) = Bz (1.1)
Here, each particle corresponds to an individual in the population. The positions of particles
represent fitness levels of individuals, and the movement of particles models changes in fitness levels
over generations. Branching events represent births. Note that (1.1) indicates that the difference
between the birth and death rates will be larger for particles with higher fitness. As indicated
in Section 1.5 of Roberts and Schweinsberg (2021), this model has the potential to describe the
evolution of populations undergoing selection under a fairly wide range of conditions. It is therefore
of interest to obtain a detailed and mathematically rigorous understanding of this model.

We assume that

P

: no_

nl;rglo 3. 00, (1.2)
lim p, =0, (1.3)
n—oo

and there exists o € (0,1) such that
dp(x) > aforallz € R, ne N and by(z) <1l/aforallz <1/5,,neN. (1.4)

We will see later that after a sufficiently long time, the fittest particle will be located near p2 /23,
while the standard deviation of the empirical distribution of the particle locations will be approxi-
mately \/pn/Bn. Therefore, roughly speaking, condition (1.2) requires that the standard deviation
of the fitness levels of individuals in the population is much smaller than the extremal fitness level,
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and condition (1.3) requires that the difference between the branching rate and the death rate for
individuals with the highest fitness level is relatively small. Conditions (1.2) and (1.3) also guarantee
that the number of particles on the time scale of interest goes to infinity as n — oo. Condition (1.4)
ensures that the birth and death rates are bounded away from zero and infinity over the portion
of the space where particles are likely to be located. We assume that the conditions (1.2), (1.3)
and (1.4) hold true throughout the rest of this paper, even when they are not explicitly stated.

We will also make some assumptions on the initial configuration of particles at time zero. First,
we introduce some notation. In the n-th process, we denote by Vi, the total number of particles
at time ¢t. We also let N, be the set of particles alive at time ¢, and N;,(Z) will denote the
number of particles in the interval Z at time ¢. The set of positions of particles at time ¢ is written
as {X;n(t),i € Nin}. For i € Niy, we denote by {X;,(r),0 < r < t} the past trajectory of the
particle ¢ which is alive at time ¢. Denote the Airy function by

1 o) 3
Ai(x) = 71_/0 cos <y3 + my) dy.

The Airy function has an infinite number of zeros, all of which are negative. We denote the zeros
of the Airy function by (y);2; such that --- < 2 <1 < 0. It is known according to DLME that
to three decimal places,

v ~ —2.338. (1.5)
We define ) )
* Pn t 5pn

L=t gt = e 1.6

Roughly speaking, most particles will stay within [L;[L, L?] on the time scale O(p,/fBy). We call L
the right edge of the process and LL the left edge. We define L,, by
2
L= 25— o) o, 0
which is slightly larger than L} because v; < 0. We refer to L,, as the right boundary because only
rarely will particles exceed L,, and we will often use truncation arguments in which particles are
killed at L,. Let
Yo(t)= Y ern¥in®), (1.8)
i€Ntn
and
Zn(t) = > e XM Ai((28,) 7 (Ln — Xin(t)) +71)) X0 (t)< L0} (1.9)
i€Ntn
It is explained in Roberts and Schweinsberg (2021) that Z,(t) provides a natural measure of the
“size" of the process at time ¢ when particles above L, are ignored. Moreover, it is stated in
Roberts and Schweinsberg (2021) that for the process in which particles are killed upon hitting L,
the process (Z,(t),t > 0) is a martingale.
We make the following assumptions regarding the initial configuration expressed in terms of Y, (0)
and Z,(0). We assume that
p2e Prlny, (0) =, 0, (1.10)
where here and throughout the paper we use the notation —, to denote convergence in probability
as n — 00. We also assume that for all € > 0, there exists a § > 0 such that for n sufficiently large,

1/3 1 gL/3
P(d;e’)nL" < Z,(0) < 6;36ann> S1-e (1L11)
n n

Roughly speaking, the assumption (1.10) requires that the “size" of the process at early times will
not be dominated by the descendants of a single particle in the initial configuration or by particles
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that are far from L,, at time 0. The assumption (1.11) is roughly saying that the “size" of the initial

configuration will be around 571/ SgpnLn /p3.

1.2. Main results. We will first introduce some notation that will be used throughout the paper.
For two sequences of positive numbers (z,) ; and (y,)o2;, if 5 /yn is bounded above by a positive
constant, we write =, < y, and if lim, o x,/y, = 0, we write z,, < y,. We define z,, 2 y, and
Xy > yp correspondingly. Moreover, the notation z,, < y, means that x, /y, is bounded above and
below by positive constants, and the notation z, ~ y, means that lim, . x,/y, = 1. We write
xn, = O(yp) if the sequence (x,,/yn)5>; is bounded and x,, = o(yy,) if limp 00 Zp/yn = 0.

Before stating our new results, we briefly recall the main results that Roberts and Schweinsberg
(2021) established for this model. Under assumptions (1.2), (1.3), (1.4), (1.10) and (1.11), they

showed that if p /58/9 Lty — pn/Bn S pn/Bn, then most particles are near the origin at time ¢,
and the scaled empirical distribution of particles at time ¢,, is Gaussian. More precisely, define the
random probability measure which represents the empirical distribution of the particle locations at
time t,, scaled in space, to be

1
Cn(tn) = N, Z 6Xz‘,n(tn) /B om (1'12)

o N,

They showed as n — oo, that the random measures (,(t,) converge weakly to the standard normal
distribution in the Polish space of probability measures on R equipped with the weak topology.
From the scaling in (1.12), this result implies that the empirical distribution of particle locations
at time ¢ is approximately normal with mean 0 and large variance p,/8,. In particular, this result
describes the configuration of particles whose distance to the origin is O(+/pn/5Bn)-

Roberts and Schweinsberg (2021) also provided an explicit characterization of the empirical dis-
tribution of particles close to the right edge. They considered the empirical measure where a particle
at x is weighted by e”»*. Define the random probability measure

Z epn 1”7« 6(2Bn) 1/3(Ln Xi,n(tn)) (113)
ZeMnn

&n(tn)

TL

Thus, particles with a higher fitness level will contribute more to &,(¢,). Let u be the probability
measure on (0, 00) with probability density function

Ai(y +m)
fooo Ai(z -+ ’Yl)dZ‘

Roberts and Schweinsberg (2021) proved that under assumptions (1.2), (1.3), (1.4), (1.10) and
(1.11), if

h(y) =

—2/37..1/3 Pn

then as n — 0o, we have
&nltn) = 1, (1.14)
where = refers to weak convergence in the Polish space of probability measures on R equipped with
the weak topology. From the scaling in (1.13), we see that this convergence result describes the
configuration of particles whose distance from the right edge L} is O(S3, Y 3).
Our goal in this paper is to obtain a fuller understanding of the particle configurations from the

left edge L} to the right edge L. In other words, for this model, we aim to characterize the long-run
empirical distribution of the fitness levels of individuals in a large population.
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Consider a sequence of intervals {[an, by]}72 1, where —oco < a,, < b, < 00, satisfying the following
three conditions:

by — ap > 1 (1.15)
LY —a, > 3;/° (1.16)
by, — LI > g1/, (1.17)

We are interested in the number of particles in the intervals [ay,by]. We include the conditions
(1.16) and (1.17) because we do not expect our results to describe the configuration of particles

which are within distance O(f, Y 3) of the right edge L;, or the left edge L}. Also, the particles
within O(5, v 3) distance of the right edge were studied in Theorem 1.2 in Roberts and Schweinsberg
(2021). Define z, to be the point in the interval [a,,b,] that is closest to the origin. To be more
precise,

an, if a, >0,
Zn =140 if a, <0, by, >0, (1.18)
bn if b, <O0.
Note that z, € (L}, L?), and the restrictions (1.16) and (1.17) are equivalent to
LY —z> B3, 2, — L > p1/3 (1.19)

Later, we will see that the asymptotic density of the number of particles in [ay,b,] reaches its
maximum at z,. As a result, the number of particles near z, dominates the total number of
particles in [ay,, by).

For every n, we will define two important functions in the domain (—oo, L]. First, we let

nly) = ,/ﬂi@: —y). (1.20)

We will later see that particles near y are most likely descended from ancestors that were near
the right edge approximately ¢,(y) time units in the past. For every n, we observe that t,(y) is a

decreasing function of y. We have ¢,(0) = p, /0. If L — 2z, > B3 then
tn(zn) > 823, (1.21)
Also, for y € (—o0, L}], we define

00 (0) = pu L — ) — 2200 1y (122

We will see shortly that in the long-run, the number of particles located near y is roughly propor-
tional to e9(¥). Note that g,(y) is decreasing in [0, L*] and increasing in (—o0,0]. The functions
gn(y) and t,(y) were previously obtained in Roberts and Schweinsberg (2021).

We now state our main result, which describes the configuration of particles from the left edge
to the right edge.

Theorem 1.1. Suppose assumptions (1.2), (1.3), (1./), (1.10) and (1.11) hold. For every sequence
of intervals {[an, bp]}02 satisfying (1.15)-(1.17), define z, according to (1.18). If

o P

n

s <tn— th(zn) < FZ (1.23)
n

then as n — o0,

1 . 1
N, n([an, bn - 7.(0 ‘P"Ln/ —— _eonlWg ) 1. 1.24
([0 D/(Az’(’h)2 (e [an,bn]N(—00,L%] 27Ttn(y)e Y b (1.24)
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If

tn — ta(zn) = 20 (1.25)

B’

then as n — o0,

6Qn(y)dy> —, 1.
(1.26)

1 : L
Nty ([an, 0n]) [ | 575 Zn (tn — tn(2n “’”L"/ N
([ D/<Az/(%)2 ( (zn))e fan baln(—o0,L3] /2t (y)

Theorem 1.1 describes the number of particles in any given interval in the long run. The ran-
domness is characterized by the stochastic process {Z,(t),t > 0}, which measures how the overall
“size" of the process changes over time. The deterministic part has a density formula proportional
to e9»®) /\ /2t (y). To be more precise, shortly after time t,(z,), the number of particles in the
interval [ay, b,| depends on the initial configuration of particles through the value of Z,(0). For
much later times t,,, when t,, — t,(2y) is of the order p,/3,, the number of particles in the interval
[an, by] depends on Z,,(t,, — t,(2y)), which is the “size" of the process t,(z,) time units in the past.
Here z, is the point where the density of the number of particles in [ay,b,] is maximized. Later
it will be shown (see the proof of Proposition 2.2) that the number of particles in any interval
[an, by] is dominated by the number of particles that are close to z,. Furthermore, the proof of
Proposition 2.1 shows that most of the particles in the interval [a,, b,] at time t,, are descendants
of particles that are close to the right edge t,(z,) time units in the past. Moreover, particles in
the interval [ay,by] at time ¢, typically follow the trajectory along the right edge L} until time
tn, — tn(2n) and then move towards z,, as a parabola; this will be explained in more detail in Section
1.3 and illustrated in Figure 1.2 below. This also explains why the number of particles in [ay, by]
depends on Z,,(t, — tn(2n)).

Corollary 1.2. Suppose assumptions (1.2), (1.3), (1.4), (1.10) and (1.11) hold. For every sequence
of intervals {[an, bp]}02 satisfying (1.15)-(1.17), define z, according to (1.18). Suppose

2/3

gg/g <ty — max {ty(2), ta (0)} S Z*"- (1.27)
For y € (—o0, L], define
1 3
n = 7egn(y)7pn/6ﬁn
fny) o)

The sequence

Pl i= {W/ </[an,bn]ﬂ(oo,L*l fn(y)dy> }:o

=1
is tight. If 0 € [an, by] for all n, then D,, converges to 1 in probability as n — oo.

Corollary 1.2 shows that the ratio of the number of particles in any given interval to the total
number of particles is comparable to the integral of f,(y) over the given interval. We can therefore
regard f,(y) as the density of the limiting empirical distribution of the process, or in other words, the
asymptotic empirical density of the fitness levels of individuals. We note that f,(y) for y € (—oo, L]
approaches a probability density function as n goes to infinity, but it is not a probability density
function for fixed n because it does not integrate to 1. Indeed, by comparing f,, with the Gaussian
density function with mean 0 and variance p, /3, one can easily show that for any n > 0, if n is
sufficiently large, then

L
1—n < e P/ / fu(y)dy < 1+mn. (1.28)
—00
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More precise information about D, can be found in Remark 2.6 below, following the proof of
Corollary 1.2.

To understand the connection with results on traveling waves in the biology and physics literature,
consider a translation of the model where each particle independently moves as standard Brownian
motion without drift. A particle at location y can either die or split into two particles, and the
difference between the birth rate and the death rate is 8,(y — pnt). Corollary 1.2 shows that after
a sufficiently long time, the empirical density of individual fitness levels is

It y) = faly — pnt) = L I W=pnt)=p0/6n  for € (LE + put, L% + put),
27tn(y — pnt)

which is a traveling wave with profile f,(y).
The asymptotic empirical density f,,(y) is closely related to the Airy function. For y < L}, define

Fily) = (260) e Pt /30 Ai((2B,) (L5 — ). (1-29)
According to (2.45) in Vallée and Soares (2010),
lim 2v/7z/ 4@ 4i(z) = 1. (1.30)
T—00

Therefore, if L} — y, > @71/37 then as n — oo,

Fa(yn) ~ F2(yn).

Note that the restriction L} —y, > (Bn 1/3 is consistent with our requirement (1.16) on the interval.
The idea that the traveling wave profile should have a shape given by the Airy function goes back
to the early work of Tsimring et al. (1996), and this Airy shape also appears, for example, in Cohen
et al. (2005); Neher and Hallatschek (2013); Melissa et al. (2022). Theorem 1.1 and Corollary 1.2
therefore provide rigorous justification for this result in the biology and physics literature.

We also observe that the shape of f,,(y) near 0 is very much like the Gaussian density function
with standard deviation \/py/B,. Let

£y = (1.31)

1 ( _ /Bnyz)
Vo P\ 20, )

As noted in Roberts and Schweinsberg (2021), the Taylor expansions of g, (y) and ¢,(y) around 0

give
3 2
Pn  Bny [Pn
~ — — , t ~ o, —.
In (y) 605n 2pn n(y) Bn

Therefore, the asymptotic empirical density f,(y) can be approximated by the Gaussian density
formula f&(y). This is consistent with Theorem 1.1 in Roberts and Schweinsberg (2021).
Figure 1.1 illustrates the graphs of the asymptotic empirical density fy,(y), the Airy density

formula f2(y) and the Gaussian density formula f$(y) from L to L} when p, = 107* and 8, =
1013, We see that all three functions have similar shapes. The asymptotic empirical density is
very close to the Airy density formula in the bulk, especially in the negative real line where y is far
away from the right boundary L) . However, the asymptotic empirical density deviates away from
the airy density formula near the right edge. One reason is that the distributions of particles which
are within distance O(f,, Y 3) of the right edge L} or the left edge L}, are different from the bulk of
the distribution of particles and f,(y) is a good approximation of the empirical density only in the
bulk. Note also that f,,(y) is not well defined at the right edge L} because t, (L) = 0.

Let M, = max{X;,(t),i € Ny} be the position of the right-most particle at time ¢ and
my,n, = min{X; ,(t),i € M} be the position of the left-most particle at time ¢. Propositions 1.3
and 1.4 show that, under certain assumptions, with high probability the right-most particle is close



Particle configurations for inhomogeneous BBM 739

— asymptotic empirical density
—— Airy density formula

—— Gaussian density formula

~60 000 =40 000 =20000 r 20000 40000

F1GURE 1.1. Graph of the asymptotic empirical density, Airy density formula and
Gaussian density formula when p, = 1074 and 8, = 10713

to Ly and the left-most particle is close to Ll. This explains why we are able to refer to L} as the
right edge and LIL as the left edge of the process.

Proposition 1.3. Suppose assumptions (1.2), (1.3), (1.4), (1.10) and (1.11) hold and (t,)52,

satisfies
823 10g1/3 <61/3> < tn < Bn (1.32)
For any positive constant C, we have
C
lim P( M, > Ly — —— ) =1. (1.33)
n—00 /8%/3

If in addition, the birth rate b, (x) is non-decreasing and the death rate d,(z) is non-increasing, then
for any constant Cy € R,

C
lim P(Mtnn < L,+ 2) =1. (1.34)
n—oo pn
Therefore, we have as n — oo,
Mt n
—= —, 1. (1.35)
Ly 7
Define
= 5pk ~1/3
Ly = =220 +228,) m, (1.36)
8 Bn

which is slightly smaller than Ll. The following proposition shows that L, is the approximate
position of the left-most particle.

Proposition 1.4. Suppose assumptions (1.2), (1.3), (1.4), (1.10) and (1.11) hold and (t,)52,
satisfies
2/3
ta(Ln) S 2. (1.37)
Bn

For any k > 0, there exists a positive constant Cs such that for n large enough,

8/9

P(mtm < L,+ (17/3> >1-— k. (1.38)
B
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If in addition, the birth rate b, (x) is non-decreasing and the death rate d,(z) is non-increasing, then
for any k > 0, there exists a positive constant Cy such that for n large enough,

= C
P<mtmn > L, — 4> >1-— k. (1.39)
Pn
Therefore, we have as n — oo,
mtn?
LT” —p 1. (1.40)
n

A key step in the proof of equations (1.34) and (1.39) involves coupling the process with a
homogeneous branching Brownian motion with constant birth rate and death rate. The coupling
requires the additional monotonicity assumption on the birth rate and the death rate.

1.3. Heuristics for understanding the density formula. The large deviations heuristics proposed in
Berestycki et al. (2015b) inspired the derivation of the functions g, (z,) and ¢,(zy,) in Roberts and
Schweinsberg (2021), although the techniques used in Berestycki et al. (2015b) are not sufficient to
derive the exact asymptotic rate of the number of particles as we did in Theorem 1.1. Roberts and
Schweinsberg (2021) conjectured that the number of particles near z, in the long run is proportional
to e9"(*>») and proved this conjecture when |z,| < \/pn/Bn. Because these heuristics are essential
for understanding the behavior of the process and the main strategy of the proof, we will briefly
recall their calculations.

For every n, consider a large time ¢,, and a path f, : [0,¢,] — R. Suppose the process starts with
one particle at f,,(0). Since conditions (1.10) and (1.11) cannot be satisfied by a single particle at
any location, to have this single ancestor process fit in our setup, we roughly assume that f,(0)
cannot be too far away from L,. By Schilder’s theorem and the many-to-one lemma, the expected
number of particles that stay “close” to f, during [0, ¢,] is approximately

v ([ (Busate) — 30+ p)?)a). (141

Note that if f,(u) = p2/28,, then the integrand is 0. Thus, the right-most particle should stay
close to p2 /2y, which is the right edge L*. We next consider the optimal trajectory f2» followed
by particles that are near z,, at time ¢,,. This path is optimal in the sense that particles which end
up near z, must follow this trajectory to achieve the maximum almost sure growth rate. According
to Theorem 7 in Berestycki et al. (2015b), there exists a cutoff time t,(z,) such that the optimal
path will follow the trajectory of the right-most particle up to some time t,, —t,(z,) and then move
towards z,, by following a path that satisfies a certain differential equation. Therefore, f?* satisfies

a(u) = pi/2ﬂn for u € [0, — tn(2n)],
(fa)"(u) = =B for u € [tn — tn(zn), tnl,
far(tn) = 2n.
Solving the above equations, we get the expression (1.20) for t,,(z,), as well as the formula

n B 2
Forlu) = 22— P — (= t0(20)))° for u € [tn — tn(2n), o).
26, 2
Combining these results with (1.41), we get that the number of particles near z, at time ¢, is

approximately

expln(en)) = exp ([ (Bufiz ) = (U0 + p2)*) ).

which gives (1.22) for all z,,. Figure 1.2 is an illustration of the trajectory of f".
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Space

P2

2Bn

7

FI1GURE 1.2. Trajectory of f7»

It is also worth mentioning that the expressions for the left edge LIL and the right edge L emerge
from g, (z,). Solving g,(z,) = 0, we get two solutions

5 2 2
P Pn’ 2 = Pn :
80n, 26n

which correspond to LL and Lj, respectively.

These heuristics also explain why we need assumptions (1.2) and (1.3). Note that the Taylor
expansion of €9() is proportional to the Gaussian density with mean 0 and variance Pn/Bn. The
standard deviation of the Gaussian distribution should be much smaller than the right-most position,
which leads to (1.2). Moreover, the branching rate should be small around the right edge p2 /23,,
which leads to (1.3).

We can also get some insight into the formula for g¢,(z,) by considering the density for the
branching Brownian motion process. We denote by p}'(z,y) the density at location y and time ¢ for
the process when it starts from a single particle at x at time 0. This means that if there is a single
particle located at x at time 0, then the expected number of particles in the measurable set U at

time ¢ is
/ py (z,y)dy.
U

According to formula (2.11) in Roberts and Schweinsberg (2021), by the many-to-one lemma,

1 r—y)? pit Palz+y)t B3
p?(x’y):\/ﬁexp<p”x_p”y_(2t)_§+ . 2 Ly 21 )’

In general, the density formula p}(x,y) may not yield a good estimate of the actual number of
particles near y at time t because the expectation may be dominated by rare events in which one
particle drifts very far to the right and generates a large number of descendants around y. For
example, if x = p2 /23, and t,, is much larger than t,(z,), then p;, (z, 2,) is dominated by particles
whose trajectories start out by going above the trajectory f:» that is pictured in Figure 1.2. Because
it is rare that any particle follows this trajectory, py, (z,z,) will overestimate the actual number
of particles near z,. On the other hand, the density formula reflects well how the process evolves
between times t, — t,(z,) and time ¢,. In particular, it is possible to calculate that for z, < L},
we have the exact equality

(1.42)

1
27ty (2n)

One way to obtain a density which approximates well the actual number of particles near y at
larger times is to use a truncation argument. Suppose we modify our branching Brownian motion

p?n(zn)(L:’ Zn) = eIn(zn)
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process by killing any particle that reaches L,. Lemma 2.5 in Roberts and Schweinsberg (2021)
shows that if ¢ is large enough, then as a function of y, the density for this modified process is
approximately proportional to

PV Ai((280) "/ (Ln — y) + ), (1.43)

which closely resembles (1.29).

To prove Theorem 1.1, we use first and second moment estimates. We note that Ny, ([an, by]) is
dominated by the number of particles that are close to z,. We therefore look back to time t, —t,(zy).
According to the large deviations estimates, particles that are near z, at time ¢, will be descended
from particles that are near the right edge at time ¢, — ¢, (25), and we can use (1.14) to understand
what the configuration of particles near the right edge looks like at time ¢, — ¢,(2,). Conditional
on the configuration at time ¢, — t,(z,), we can estimate the expected value of Ny, ([an,by]) by
expressing pi (7, z,) in terms of g,(z,) and some other error terms that can be controlled. To
bound the variance of Ny, ([an, by]), we use a truncated second moment estimate in which we kill
particles when they reach L,. We show that the dominant contribution to N, ,([an,b,]) comes
from particles which are close to L,, at time t,, —t,,(z,,) and do not hit the right boundary L,, during
the time interval [t, — t,,(zn), tn).

1.4. Connections with the traveling wave literature. According to the discussion after Corollary 1.2,
the asymptotic empirical density f,(y) is closely related to the Airy density formula fA(y) in
(1.29). The Airy function for the shape of the traveling wave was previously derived nonrigorously
in Tsimring et al. (1996); Cohen et al. (2005); Melissa et al. (2022); Neher and Hallatschek (2013).
Here we review this nonrigorous derivation and explain in more detail the connections with our
work.

Suppose there are N individuals in a population. Each individual is subject to new mutations
at rate u, and the selective advantage s of each mutation is random and has a distribution with
probability density function p(s). Let g(x,t) be the “density" of particles with fitness = at time
t. Define m(t) to be the average fitness at time ¢, with m(0) = 0. Let v(s) = pp(s). Then (see
equation (4) in Melissa et al. (2022) or equation (2) in the supplementary information to Neher and
Hallatschek (2013)), g(z,t) can be approximated by the equation

aatq(:z:,t) = (x —m(t))q(z,t) + / (q(m —s,t) — q(:c,t))y(s)ds + Q(f\f’t)n(a:,t), (1.44)

where 7 is Gaussian white noise. Note that the first term models selection, the second term models
mutation, and the third term models the noise from the randomness in the births and deaths. One
can look for traveling wave solutions to (1.44) of the form

q(z,t) = w(z — vt),

where v = m(t)/t denotes the velocity of the traveling wave, or the average rate at which the mean
fitness of the population changes. Writing y = x — vt for the relative fitness and neglecting the noise
term, equation (1.44) becomes

i (y) = wo0) + [ (o = 9) = w(w)o(s)ds.

Assuming the selective advantage s is small, we can use a Taylor expansion to approximate

wly = 5) — wly) = —s/(g) + 55" ().

which leads to .
—vw/(y) = yw(y) — pBlslw'(y) + SuE [s*]w” ().



Particle configurations for inhomogeneous BBM 743

Now letting D = uFE[s?]/2 and 02 = v — pE[s], we get
D" (y) + 0w (y) + yw(y) = 0. (1.45)

Recalling that the Airy function satisfies the differential equation Ai”(y) = yAi(y), we see that a
solution to this differential equation is given by

o2 ot Y
w(y) = Ce y/szz<W . W>’ (1.46)

which matches equation (6) in the supplementary information to Neher and Hallatschek (2013) and
equations (25) and (28) in Melissa et al. (2022). We note that the above equation will lead to a
solution which takes negative values for some large y, which is impossible for a fitness distribution.
To avoid this, it is assumed in Neher and Hallatschek (2013), Melissa et al. (2022) and Tsimring
et al. (1996) that there is a cutoff value yeys, which can be understood as the maximum fitness of
the individuals in the population, such that w(y) is given by (1.46) for y < yeu and w(y) = 0 for
Y > Yeut-

We now relate the parameters ¢? and D with p, and 3, in our model. The parameter o
represents the variance of the fitness distribution. Recall from (1.12) and (1.31) that the long-run
empirical distribution of particles in our model is approximately normal with variance p,/3,. In
view of (1.1), one unit of space in our model corresponds to (3, units of fitness. Thus the variance
of the fitness distribution in our model is 52(p,/Bn) = pnBn, leading to the correspondence

2

02 = ppBn.
Also, as explained in equation (1.20) in Roberts and Schweinsberg (2021), we expect 32 to corre-
spond to pE[s?], which implies that
p=tn
2

Plugging the above two formulas into (1.46) and taking the scaling into consideration, we get

2
w(ﬂny) = CepnyAi<(2ﬁp)2/3 B (25)1/3y>7

matching (1.29). Indeed, the derivation above which was adapted from Neher and Hallatschek (2013)
and Melissa et al. (2022) is quite similar to the derivation of (1.43) in Roberts and Schweinsberg
(2021). The derivation of (1.43) leaned on work of Salminen (1988), which involved solving a
differential equation for the density.

1.5. Table of notation. We summarize some of the notation that is used throughout the rest of the
paper in the following table.

Table 1.1: Index of notation

n Index of a sequence of processes.

Pn Particles move according to Brownian motion with drift —p,.

Bn Selection parameter. The difference between the birth rate and the death rate for
a particle at x is S,x.

Nin Total number of particles at time ¢.

Nin The set of particles alive at time ¢.

Nin(Z) Number of particles in the interval Z at time ¢.

Xin(t) Positions of the particle i at time ¢ for i € N,.

] The largest zero of the Airy function.

Ly The approximate position of right-most particle, L, = p2 /8, — (26,) " /3~1.

LA Defined to equal L,, — A/p,, for A € R.
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L, The approximate position of left-most particle, L, = —5p2 /88, — 2(2ﬂn)_1/ 3.

Ly The position that is near the position of the right-most particle. We call it the
right edge. Explicitly, L = p2 /8.

LL The position that is near the position of the left-most particle. We call it the left
edge. Explicitly, L= —502 /88,.

Y, (1) Sum of ePrXin(® for all i = 1, ..., Ny ,,. Defined in (1.8).

Zn(t) Weighted sum used to characterize the size of the configuration at time ¢. Defined
in (1.9).

< Write =, < yp if 2,/y, is bounded above by a positive constant. Define 2>
similarly.

< Write x,, < yp, if limy, 00 1, /yn, = 0. Define > similarly.

= Write x,, < yp, if 2, /y, is bounded above and below by positive constants.

O Write z,, = O(yy,) if the sequence (zy,/yn)52 is bounded.

0 Write z,, = o(yy) if lim, 00 T /yn = 0.

{lan, bn]}5% 1 | A sequence of intervals satisfying (1.15)-(1.17).

Zn Roughly speaking, the asymptotic density of the number of particles in [ay,, b,] is
maximized at z,. Defined in (1.18).

Iy Measures the length of the interval in which we are counting the number of par-
ticles.

tn(y) For particles near y at time t,, t, — t,(y) is the time when their ancestors start
to leave the right boundary and drift toward y. Defined in (1.20).

gn(Yy) Function used to approximate the density of particles. Defined in (1.22).

M; ., Position of the left-most particle at time .

pi(z,y) Density at location y and time ¢ for the process which starts from a single particle
at x at time 0. Defined in (1.42).

ptL" (z,9) Density at location y and time ¢ for the process where there is only one particle
at x at time 0 and particles are killed upon hitting L,.

Co.n The ratio between z, and L. Defined in (2.3).

Cn Measures the distance between z, and L. Defined in (3.16).

rin(v) Rate at which particles hit L,, at time v. Defined in 3.1.4.

NtL" (2) Number of particles in the interval Z at time ¢ for the process in which particles
are killed at L,,.

(Fe,t > 0) Natural filtration associated with the branching Brownian motion process.

d Used to divide the length of the interval in the proof of Proposition 2.2. Defined
in (3.63).

S Constants used to adjust time. In the proof of Propositions 2.1 and 2.2, we define

—2/3

s = Cl ﬁn .

Sy Constants used to adjust time for each y € [z — [, z 4 {] based on the choice of s.
Defined to be t(y) — t(z) + s.

Uy The first cutoff time in the second moment calculation. See Lemma 5.2.

U2 The second cutoff time in the second moment calculation. Defined in (5.36).

1.6. Organization of the paper. The rest of this paper is organized as follows. In Section 2, we show
how to obtain Theorem 1.1 and Corollary 1.2 from two other propositions, one of which controls the
number of particles in narrow intervals and one of which controls the number of particles in longer
intervals. In Section 3, we prove Propositions 1.3 and 1.4, and give the most important arguments
for the proofs of the two propositions that lead to Theorem 1.1. Proofs of some technical lemmas
are postponed until Section 4, and the second moment calculations are presented in Section 5.
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2. Structure of the proof of the main results

In this section, we show how Theorem 1.1 and Corollary 1.2 follow from Propositions 2.1 and 2.2
below. We also introduce some notation that will be used throughout the paper.

2.1. Division into larger and smaller intervals. The proof of Theorem 1.1 will be divided into two
cases. First, we will deal with intervals with smaller length. In such intervals, we will control the
number of particles using a second moment argument. Indeed, we will show that most particles
that end up near z, at time t, stay close to L, up to time t,, — t,,(z,) and then drift towards z,.
Trajectories of such particles are illustrated in Figure 1.2. Second, we will consider longer intervals.
We will show that the number of particles in the interval [a,,b,] that are far away from z, is
negligible using a first moment argument, allowing us to estimate the number of particles in the
entire interval by the number of particles in a smaller interval around z,. The first step will lead to
Proposition 2.1 while the second step will lead to Proposition 2.2.
Consider a sequence (z,,)2%  satisfying (1.19) such that

l2n| 2 \/gf or |2n| < \/; (2.1)

We further assume that

zn >0 foralln or zn <0 for all n. (2.2)
Denote .
=T 2.3
Co’n L:L ( )
We consider intervals of the forms [z, 2, + ] and [z, — I, 2] where [,, is the length of the interval.
By convention, if [,, = oo, then [z, zn, + ln] = [2n,00) and [z, — L, 2] = (—00, 25).

Proposition 2.1. Suppose assumptions (1.2), (1.3), (1.4), (1.10) and (1.11) hold. For every
sequence (zy,)5 satisfying (1.19), (2.1) and (2.2), choose (1,)32, such that

; [pn

1 <K ln ~ |co nlpn Zf|2‘vn| z Bn’ (24)

l<in S/ 5" if [2n| < 4/ B~
Consider intervals of the form

[Zn —lp, Zn] Zfzn <0.
If t,, satisfies
P2/3 P
’;/9 Lty —ta(z) < ﬁ—" (2.6)
n

then for any k > 0, we have

1- x
lim P( e —pnln 7.(0)

eg” Ydy < Ny (L,
n—oo AZ (’)/1) Y= tn, ( )

To /27t (y

1+k  _, 1« >
———e M Z,(0) n(W) g 2.7
S FIENE . o) y (2.7)

Proposition 2.2. Suppose assumptions (1.2), (1.3), (1.4), (1.10) and (1.11) hold. For every
sequence of (zp)22 satisfying (1.19), (2.1) and (2.2), choose (1,,)5; such that

; > /oo
In > |COn|P if [zl 2 Bn’ (2.8)

N if |znl < (/2.
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Consider intervals of the form

T = {[zn,zn + 1) if zp >0, (2.9)

(2 — ln, 2n] if zp <O0.

If t,, satisfies (2.0), then for any k > 0, we have

1-— *
lim P(He_p"L"Zn eg" )dy < Nt n(Tn)

n—oo Ai/(’yl)2 (O)/ —o00,L%] A /27rt

14+Kk  _, px / 1
< ———=ePrlnz,(0 eg"(y)dy) =1. (210
Ai'(m)? ©) Tan(~o0,L5) \/ 2Ttn(y) (210

Next, we will explain heuristically why the interval length [,, is divided into the above two cases
(2.4) and (2.8). Let us take the case z, > 0 as an example. The case when z, < 0 is essentially the
same. Our hope is to find a cutoff length [/,, depending on z, such that the number of particles in
[2n,00) is dominated by the number of particles in [z, z, + l,]. Since the number of particles near
2, is approximately proportional to e9(*») /+/ 27ty (2y), this boils down to finding a cutoff length 1,
such that for any n > 0, if n is sufﬁciently large, then

Zn+in

69“ Vdy < (1+41n) R m

1
/ V27t (y n V27t ()
It turns out that if z, > \/pn/ﬁn, then we can take I, < 1/¢o npp, as shown in Lemma 3.7, while if

2n € 1/ pn/Bn, then we take 1, < \/ppn/Bn-

2.2. Proof of Theorem 1.1. In this subsection, we deduce Theorem 1.1 from Propositions 2.1 and
2.2. We first review an important result from Roberts and Schweinsberg (2021) which will be needed
in the proof.

Remark 2.3. Proposition 2.3 in Roberts and Schweinsberg (2021) states that if 8,t,/pn converges
to a positive real number as n goes to infinity, then with probability tending to 1 as n — oo,
conditions (1.10) and (1.11) hold with Y,,(¢,) and Z,(¢,) in place of Z,(0) and Y;,(0) respectively.
Furthermore, if t,, < pp/Bn, then for every subsequence (n;)52,, there exists a sub-subsequence
(nj, )72, such that

Jj=b
lim s (0, 00).

k—o0 pnik
Consequently, by Proposition 2.3 in Roberts and Schweinsberg (2021), with probability tending to
1 as k — oo, conditions (1.10) and (1.11) hold with Yy, (¢, ) and Zy; (ts;, ) in place of Z,(0) and
Y,,(0) respectively.

Proof of Theorem 1.1. First, we consider the case when t,, satisfies (1.23). To prove (1.24), it suffices
to show that for every subsequence (n;)72,, there exists a sub-subsequence (n;, )72, such that for
any 0 < kK < 1,

lim P( ” a e TP Ln]k an (0) / 76%71@ (y)dy
koo \ Ail(71)2 0 lang, by (o0 L ) f2mt, (y)

Jk’
< Ntnj My, ([anjk 5 bnjk])

1 o LY 1 .
< A.,J”i e’ ﬂkL”Janjk(o)/ eg"Jk(y)dy> = 1. (211)
i (71)? [an, bnj (=00 L 1 /27t (y)

Ik’
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Given a subsequence (n;)°
following holds:

321, there exists a further subsequence (n;, )72, such that one of the

(1) We have an;, >0 for all k. Let Zn; = Gn, and l"jk = b”jk — ap,, - The subsequence
(2n;, )iz satisfies (1.19), (2.1) and (2.2), and the subsequence (I, )32, satisfies (2.1) or
(2.8).

(2) We have by, k < Oforall k. Let z;,; = by, andly; = by, —an, . Thesubsequence (2, )32,
satisfies (1.19), (2.1) and (2.2), and the subsequence (I, )72, satisfies (2.4) or (2.8).

(3) We have n;, < 0 and b"jk > 0 for all £. Let Zn;, = 0, ll,n]k = —a,, and lgmjk =b
Both the subsequences (I1,5;, )72, and (la,n;, )32, satisty (2.4) or (2.8).

Ik My
In cases 1 and 2, since [an].k , b"]'k] satisfies the hypotheses of either Proposition 2.1 or Proposition 2.2,
equation (2.11) follows from (2.7) or (2.10). As for case 3, we see that both [an, ,0] and [0, by, ]
satisfy the hypotheses of Proposition 2.1 or Proposition 2.2. Thus, both [a”jk ,0] and |0, bnjk] satisfy
(2.11) with [ay;, ,0] and [0, by, ] in place of [an, ,bn,;, | respectively. Consequently, equation (2.11)
also holds in this case. Therefore, equation (1.24) follows.

Next, consider the case when ¢, satisfies (1.25). Choose a sequence (h, )52 for which

/)2/3 Pn
[3?/9 <L hp, € — 5, (2.12)
Let
Tn =ty — tn(zn) — hn. (2.13)

Note that r, =< p,/B,. By Remark 2.3, for every subsequence ()32 521, we can choose a sub-
subsequence (nj, )32, such that assumptions (1.10) and (1.11) hold when Y,(0) and Z,(0) are
replaced by Yy, (ry,; ) and Zy, (rp, ). By using the Markov property at time r,, and applying
the previous argument, there exists a further sub-subsequence (n;, )5_; such that equation (2.11)
holds with Z,, (rn].km) in place of Z(0). As a result, we have for any 0 < k < 1,

lim P

1 1
_pn nZ / _—
n—00 <Az( 1)2 (ra) [an,bn]N(—00,Lx] \/m

1+x ) 7 1
< e n "Zn(rn)/ egn(y)dy> =1.  (2.14)
At (m)? fan bal(—00,L5] v/ 27t (y)

Note that equation (2.14) holds for all choices of (t,)5% satisfying (1.25) and (h,)52, satisfying
(2.12). Thus for every (z,); satisfying (1.19), (¢,)52, satisfying (1.25) and any two sequences
(h1n)s21, (hopn)oe, satisfying (2.12), we have

egn(y)dy S Ntmn([an, bn])

. 11—k 14+ k&
lim P(l n KZn(Tl,n) < Zn(ran) < . Zn(rl,n)> =1, (2.15)

n—o0

where r;, = t, — tp(2n) — hip for i = 1,2. Choose (z;)02; satisfying (1.19), (¢)52, satisfying
(1.25) and (h1,n)5%,

(hon)o2, satisfying (2.12) such that
tn — tn(zn) =t — tn(z) — hin, tn — tn(zn) — hn =t —tn(2)) — hon.
For example, for any sequence of (hy )52 ; satisfying (2.12), we can take 2} = 2z, t& =t + hi,
and hg, = hiy, + hy. By (2.13) and (2.15), we have

(o)) =1 (219

n—oo

. 11—k
lim P(l — —Zn(tn = tn(2n)) < Zn(ra) <

Finally, equation (1.26) follows from (2.14) and (2.16). O
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Remark 2.4. The argument leading to (2.16) can be modified to show that for t, < p,/8, and
hn < pn/Bn, as n — 00,
Zultn)
Zn(tn + hn) P
To see this, note that we can choose (2;)°° ; satisfying (1.19), (¢})52; satisfying (1.25), and (h1,,)02
and (hg)22, satisfying (2.12) such that

=t —tn(25) = himy byt hn =5 — tn(25) — hop.
For example, we can take (h2,)o2; to be any sequence satisfying (2.12) and (z;)72; to be any

sequence satisfying (1.19) such that ¢,(2;;) < pn/Bn. Then we let hy, = hgy + by and t) =
tn +tn(2)) + hip. Letting 7y, =t —t, (%) — hipn for i = 1,2, equation (2.17) follows from (2.15).

n

1. (2.17)

As a byproduct of the proof of Theorem 1.1, the following lemma shows that the number of
particles in any given interval will not change much on a time scale shorter than p,,/f,.

Lemma 2.5. Suppose (1.2), (1.3), (1.4), (1.10) and (1.11) hold. For every sequence {[an,bn]}72
satisfying (1.15)-(1.17), define zy, according to (1.18). Suppose

o Pn ol Pn
570 L tp —tn(zn) S 3 555/9 <L t, —tn(zn) S B (2.18)
If
o — 1| < £ Bn (2.19)
then as n — o0,
Nopanllan b)), -y (2.20)

Ny, n([@n; bn])

Proof of Lemma 2.5. First, we consider the case py /58/9 Lty — tn(zn) < pn/Bn. From (2.19)

we also have p2/3/,38/9 < ty, — tn(2n) < pn/Pn. Therefore, both Ny, ,([an, bs]) and Ny ([an, by))
satisfy (1.24) and equation (2.20) follows.

It remains to consider the case t,, — t,(2,) < pn/Bn. By (2.19), we also have t], —t,,(z,) < pn/Bn-
Then both Ny, »([an, bs]) and Ny ,,([an, by]) satisty (1.26). As a result, equation (2.20) follows from
(1.26) and (2.17). O

2.3. Proof of Corollary 1.2. In this subsection, we show how to obtain Corollary 1.2 from Theo-
rem 1.1.

Proof of Corollary 1.2. Condition (1.27) can be divided into four cases:
( ) 2/3/58/9 Ltp — tn(zn) < pn/ﬁn and 02/3/58/9 Lty — tn(o) < pn/ﬁn;
8/9
(2) tn = ta(2n) =< pu/Bo and g * (33" <ty = t(0) < pu/Bus
b
( ) /3/58/9 Ltp — tn(zn) < pn/ﬁn and t, — tn(o) = pn/ﬂm
(4) tn, — tn(2zn) < pn/Bn and t, — t,(0) < pn/Bn.
To prove case 1, we first note that by equation (1.24) with a,, = —oco and b, = co and equation
(1.28), if /)2/3/ﬂ8/9 Lty — 5 (0) < pp/Bn, then for all k > 0,
11—k 3 14+ kK 3

lim P ———e P/ Z,(0) <N, e/ Z,(0)) = 1. 2.21

PG 0 < N < e 0 2
Equation (2.21) also follows from Proposition 2.2 in Roberts and Schweinsberg (2021). By (1.24)
and (2.21), we have for any x > 0

1—x 1+ k&
lim P D =1. 2.22
s P(f < o< 1) 22
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Thus, the sequence (D)2 is tight. If case 2 holds, then by (1.26) and (2.21), we have for any
k>0,

_ 1— kK Zp(ty — tn(zn)) 14K Zy(ty — tn(zn))
lim P(l—i—/@ 70(0) <D, < - Z0(0) > =1 (2.23)
Note that Z,(0) satisfies (1.11) and Z,,(t,, — tn(25)) also satisfies (1.11) by Remark 2.3. Equation
(2.23) thus implies that (D)2, is tight.

For the remaining two cases, we need result that is parallel to (2.21) when ¢,, —t,(0) < p,/Bn. By
equation (1.26) with a,, = —o0 and b,, = oo and equation (1.28), we have that if ¢, —¢,(0) < py,/fBn,
then

11—k _.3 1+ _ 3
lim P ———e #/3n 7, (£, — £,(0)) < Ny, .y < — e Pal3n 7, (1, — t, =1 (2.4
e (Ai'(’)/1)26 ( (0)) = Vtpn = Ai/(’yl)Qe ( (0)) ( )
If case 3 holds, then by (1.24) and (2.24), we have for any x > 0,
, 11—k Zn(0) 1+ k Zn(0)
lim P D, — 1.
oo <1+/<;Zn(tn—tn(0)) = 1=k Zy(tn — ta(0))

Together with the fact that both Z,(0) and Z, (¢, — t,(0)) satisfy (1.11), the sequence (D)% is

n=1
tight. If case 4 holds, then by (1.26) and (2.24), we have for any xk > 0,

) 1 — Rk Zp(tn — tn(zn)) 1+ K Zy(tn — tn(zn))
lim P D, =1 2.25
360 <1+H Zn(tn — tn(0)) STk Zu(tn — ta(0)) (229)
Since both Z, (t, — tn(2y)) and Z,(t, — t,(0)) satisfy (1.11) by Remark 2.3, the sequence (D,)5 4
is tight.

In particular, if 0 € [ay, by,], either (2.22) or (2.25) holds true. Since z, = 0, we have that D,, — 1
in probability as n — oo in both cases. O

Remark 2.6. From the proof of Corollary 1.2, we can obtain a more detailed description of the
limiting behavior of D,, as n — oo.

(1) In case 1, the sequence D,, converges to 1 in probability as n — cc.

(2) In case 2, the sequence D,,Z,,(0)/Zy,(tn, — tn(2n)) converges to 1 in probability as n — oo.

(3) In case 3, the sequence D, Z,(t,, — t,(0))/Z,(0) converges to 1 in probability as n — oco.

(4) In case 4, the sequence Dy, Z,(tn, — tn(0))/Zn(tn — tn(2n)) converges to 1 in probability
as n — 0o.

3. Proof of Propositions 1.3, 1.4, 2.1, and 2.2

In this section, we give the main arguments in the proofs of Propositions 1.3, 1.4, 2.1, and 2.2.
We defer the proofs of several technical lemmas until Section 4 and the proof of the second moment
estimates until Section 5.

3.1. A review of results from Roberts and Schweinsberg (2021). In this subsection, we will collect
some of the results in Roberts and Schweinsberg (2021) that will be used in the proofs. Suppose
(1.10) and (1.11) hold.
3.1.1 Lemma 6.1 in Roberts and Schweinsberg (2021) shows that
o0
hm€$m/ ") Aj(yy + 2)dz = 1. (3.1)
0

T—00

Based on equations (6.5), (6.6) and Lemma 6.1 in Roberts and Schweinsberg (2021), for any
n > 0, there exists a constant C5 > 2 sufficiently large such that

(1 _ g)eog/ﬁ < / 6271/305(71+y)14i(71 +y)dy < (1+ 77)605?/67 (3.2)
0
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and
1 )V 2
_03/6( )V Az (71 +y)dy <n (3.3)
At (m)?
hold. Furthermore, there exists a constant CG > —271/34, sufficiently large such that
o0
/ 6271/305(71+9)Ai(71 +y)dy < 2 03/48, (3.4)
21/306 2
3.1.2 Fix A € R. Define
A
LA=1L,-—. (3.5)
Pn

Lemma 5.1 in Roberts and Schweinsberg (2021) proves that there exists a constant C7 such
that the probability that some particle that is to the right of L at time 0 has a descendant
alive in the population at time C7p,? tends to 0 as n — co. Moreover, according to the
argument leading to (5.9) in Roberts and Schweinsberg (2021), for ¢, < pn/Bn, it follows
that with probability tending to 1 as n — oo, no particle that hits L2 before time t,, — C7p;, 2
has descendants alive at time t,,.

3.1.3 Consider the process in which particles are killed upon hitting L,. If this process starts

from a single particle at z, we denote the density of this process at time ¢ by ptL” (z,y).
Lemma 2.5 in Roberts and Schweinsberg (2021) implies that if x,y < L, and

(260)"/0((Ln = 2)V2 + (Lo = 9)1/?) = 27237t — —oo, (3.6)
then there exits a constant Cg such that
P (2,y) < CaBy/ e Ai((26,)"* (L — @) +m1)e Y Ai((264) "/ (Ln — y) + ). (3.7)
Define
Hﬁ@):l@;—ﬁ§2. (3.8)

Equation (5.5) in Roberts and Schweinsberg (2021) states that if x < Hy(t,), 0 < ¢, <
Butn/2 and o> < t, < pu/Bn, then

Ln
/ pt[;;n (z, y)e(pn—cn)ydy < eane_BELt%/m. (3.9)

— 00
Equation (5.6) in Roberts and Schweinsberg (2021) states that if @ < Ly, 0 < {, < Bptn/2
and /8;2/3 < ty, < pp/Pn, then

Hy(tn)
/ pthn (z,y)ePr =S vdy < ePn®e=Prtn/T3, (3.10)

—00

3.1.4 Consider the process in which particles are killed upon hitting K. If the process starts with

a single particle at * < K, we denote by TK »(v) the rate at which particles hit K at time v

and rk 'n(u,t) the expected number of partlcles that are killed at K between times u and ¢.
Then

t
rifn(u,t) = / rgn(v)dv.
u
If K = L,, then by (6.29) in Roberts and Schweinsberg (2021), there exists a constant Cy
such that
Co(Ly, — x)

Ly < _ L _ (Ln—flj)2 _271/3 2/3 311
7ngc,n(v)— 1)3/2 €Xp | PnT Pnlim 721) /Bn Y10 |. ( . )
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Furthermore, for K = L#, define A_ = max{—A,0}. By Lemma 2.13 in Roberts and
Schweinsberg (2021), we have for all < L,, and 0 < u < ¢,

rﬁfh(u,t) < ep”xe_”"Lée_BEUS/g+Bz/3(t—u)e_p"LﬁeﬁnA*t/p”ep"xAi((ZBn)1/3(Ln—:L‘)—1—71). (3.12)
3.1.5 Suppose

—2/31.1/3( P Pn
B log (51/3> <ty K B, (3.13)
Let f: R — [0, oo) be a bounded measurable function. Define
= 3 e ) £ (28,03 (L — Xin(ta)): (3.14)
7,€Mn n

According to (5.8) in Roberts and Schweinsberg (2021), we have for any k > 0,

lim p(%< [ 1t Aml+z>)zn<0><<1>n<f>

h Aigf </ F(z)Ai( 1+Z>> (0)>=1. (3.15)

3.1.6 For ﬂn < o, < B, 1, consider the process started from a single particle at x,,. According
to Lemma 2.14 in Roberts and Schweinsberg (2021), there is a positive constant C1g such
that for large enough n, the probability that the process survives until time Cio/(Bnzy) is
bounded above by 23,2, /a. Here, « is the constant appearing in assumption (1.4).

3.2. Notation. Here we introduce one more piece of notation which will be used throughout the rest
of this paper. Recall that ¢g , = 2,/L},. We denote

cn =+/1—con. (3.16)

We can now write

2 2
tn(en) = 5, L= = g (3.17)
n n

The notation ¢g,, and ¢, will be useful in simplifying expressions involving z,, L} — z, and t,(zy).
Therefore, we list some of the most useful formulas involving ¢g, and ¢, below. We see that for
€ (Lh, Ly),

5 3
— 5 <Con < 1, 0<e, < 7 (3.18)
We also have the following equivalent asymptotic expressions:
|con|
l—cp|l=—"—x 3.19
1— el = 122 (319
D 1/2
lzn| 2 "= |con| 2 , (3.20)
Bn 3/2
Pn
1 1/3
Ly — 2z, > 1/3 = > (3.21)
n
5 2/3 2/3 3 2/3
=Ll > - =t > = T > = D >
1/3 "4 2 T 2 "7 2
Moreover, if |z,| 2 \/pn/Bn and z, satisfies assumption (1.19), then
1/2
= (3.22)

2 3/2°
Pn
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Also if |z,| < \/pn/Bn, then

1/2
< e (3.23)

Table 3.2 might be helpful in keeping track of the asymptotic behavior of ¢o, and c,.

cn < 1, lco.n

TABLE 3.2. Asymptotic behavior of con and c, for different values of z,

Zn ‘ Co,n ‘ Cn ‘ Other
|zn| < \/pn/Bn |con| < Brlz ? p?z ? =<1

2n 2P By Ly — 20> B " | con 2 8521002 | B Jpn < en <1 | encom 282 /o0

—2n 2, V Pn/Bn, Zn — LIL > 5771/3 ‘CO,n‘ 2 5711/2/p§z/2 3/2 —Cp > 5721/3//0721 ‘CnCO,n’ 2 571/2//)%/2

In the rest of this paper, to lighten the burden of notation, we will usually omit the subscript n
in the notation. For example, we will write 3 in place of §,, p in place of p,, z in place of z,, g(z)
in place of g, (zy), Z(t) in place of Z,(t,), and L* in place of LY. However, it is important to keep
in mind that these quantities do depend on n.

3.3. Proof of Proposition 2.1. In this subsection, we will prove Proposition 2.1 using first and second
moment estimates. First, we have the following lemma which shows that y € [z — [, z 4 [] satisfies
the restriction (1.19) with y in place of z.

Lemma 3.1. For every z satisfying (1.19), (2.1) and (2.2), choose | according to (2./). For all
y € [z —1,z+1], we have

L —y> a3 (3.24)
and

y— Lt > =173, (3.25)

Next, we have the following lemmas which control the difference between ¢(z) and ¢(y), and g(z)

and g(y) fory € [z — 1,z +1].
Lemma 3.2. For every z satisfying (1.19), (2.1) and (2.2), choose | according to (2./). For all
y €[z —1,z+1], we have

It(y) — t(2)| = o(B~2/). (3.26)
Moreover, uniformly for ally € [z — 1,z + 1],
Jim. ig; =1. (3.27)

Lemma 3.3. For every z satisfying (1.19), (2.1) and (2.2), choose l according to (2.]). Then for
ally € [z — 1,z +1], we have
l9(y) —9(2)| S 1. (3.28)

The following lemma controls the first moment.

Lemma 3.4. For every z satisfying (1.19), (2.1) and (2.2), choose | according to (2./). Let s >0
and

t=tz)—s, x=L"—w, s,=1t(y)—t(z)+s.
Forallw e R, s <t(z) and y € R,

ﬁ2
exp (g(y) — pw + Pws, — 32) (3.29)

1
z,y) <
pt( y) \/ﬁ 6



Particle configurations for inhomogeneous BBM 753

Furthermore, if s < $72/3 then for all lw| < 7Y% and y € [z — 1,z +1],

2
(o) = o exp (glo) ~ pu+ s, - st +ol1)). (3.0

A key step in the proof of Proposition 2.1 is the following second moment estimate. Note that it
is rare for a particle to drift to the right of L but once it does so, it will generate a large number
of descendants in the interval Z at time ¢, which ruins the second moment argument. Therefore,
we need to consider a truncated second moment estimate where particles are killed at L. For this
process, we denote by N(Z) the number of particles in the interval Z at time .

Lemma 3.5. Consider the process which starts from a single particle at x such that 0 < L —x <
B3, For every z satisfying (1.19), (2.1) and (2.2), choose 1 according to (2./). Consider intervals
T defined in (2.5). Suppose

s = B72/3, t=1t(z) —

Then for the process in which particles are killed upon hitting L, we have
L7\2 B3 +pL—2pL* ( ?
E[N;(Z)%] S —eP*rPim=p / egyd>.
NP s (L e
To prove Proposition 2.1, we need one more technical lemma. Let n > 0. Choose constants
Cs > 2 and Cg > —271/3~; such that (3.2)-(3.4) hold. Then, C5 and Cg satisty
3 21/30 1/3 3
(1—)e/® < / €220 Ai(yy + y)dy < (14 m)e /O, (3.31)
0

The next lemma is a slight generalization of Lemma 6.2 in Roberts and Schweinsberg (2021).

Lemma 3.6. Suppose (1.10) and (1.11) hold. Let n > 0, and choose positive constants Cs and Cg
such that (3.2)-(3./) and (3.31) hold. Let s = C5872/3 and uw =1t —t(z) + s for all z. If

/672/3 log1/3 (51/3> L uK % (332)
then
. 1-— 27] P23 6253 —Bs)Xj(u
r}I—EEOP(Az "(71)? 72(0) < ep (2 6 zj\:/ el )I{L—C65‘1/3<Xj(")<L}
JENY

1427 -
S A Z(0)> =1 (3.33)

Moreover, for every z satisfying (1.19), (2.1) and (2.2), choose l according to (2./). For every
yez—1,z+1], let sy =t(y) —t(z) +s and

Psy _Psy (p—B52) X; ()
Fy = exp < 9 — 6> Z e P Y/ 1{L7C'6,3*1/3<Xj(u)<L}' (334)
JENu
If (3.32) holds, then uniformly for ally € [z — 1,z +1],
. 1—-3n 14 3n
1 Pl ———Z0)<I, < ————Z(0) ) =1. 3.35

Lemmas 3.2, 3.4 and 3.6 will be proved in Section 4. Since the proof of Lemma 3.5 is rather

technical and tedious, we defer it until Section 5. With the help of the above lemmas, we will follow
the same strategy as the proof of Proposition 2.2 of Roberts and Schweinsberg (2021) to prove
Proposition 2.1.
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Proof of Proposition 2.1. Let
s=C587%3, u=t—t(2)+s. (3.36)
By (1.21), we have t — t(z) < u < t for n sufficiently large. For all y € Z, denote
5y = ty) — H(2) + s

By Lemma 3.2, for all y € Z, we see that s, = (C5 & 0(1))372/3 or equivalently, uniformly for all
yel,
lim 5%/3s, = Cs. (3.37)
n—oo

Figure 3.3 might be helpful for keeping track of notation.
Space

L

FiGurE 3.3. Notation when z > 0
Recall that H(u) = L — fu?/9 by (3.8). For a particle i € A, recall that {X;(v),0 < v < t}
denotes its past trajectory. Define
S1={ieN : X;(u) < H(u), Xi(v) < Lforallv e [0,u]},
S ={i € Ny H(u) < Xi(u) < L — CoB™/%, X,(v) < L for all v € [0,u] |,
Sy = {z eN;: L—Cs73 < X;(u) < L, X;(v) > L for some v € (u,t)},
Sy = {z N, L—Cof 3 < Xy(u) < L, Xi(v) < L for all v € (u,t)},
S5 =N\ (S1US2US5U8y).

For j =1,...,5, write
0, =) lixwer

Z'ESJ'
Then

We are going to show that the major contribution comes from O4, and 04 is concentrated around
its mean. Define (F;,¢ > 0) to be the natural filtration associated with the branching Brownian
motion process.
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Let us first consider ©1. By inequality (3.29) and Tonelli’s theorem, we have

BlewlFu] = 3 / Pru(X5 (1), Y) L voe 0., X (0) <L} X () <1 )} Y
JENY
2 /82 3
< _— -
- /z «/27r(t —0 T (g W) 2 6 )

X Z e(p_ﬁsy)Xj(u)1{Vy€[0,u],Xj(U)<L}1{Xj(U)SH(U)}dy' (338)
JENu

We denote by H; the summation on the last line of (3.38). By (2.6), we have 872/3 < u < p/g.
Furthermore, by equation (3.26), we see that 0 < s, < fu for all y € Z. Therefore, by (3.10), we
have for all y € 7,

E[H|Fo] < e P /T3y(0). (3.39)

Since t —u =t(z) — s> 572/3 equation (3.27) implies that uniformly for all y € Z,

lim AW (3.40)

n—oot —u

Also, for all y € Z, we see from (2.6) that
p?sy /2 < BPu. (3.41)

Thus, from (3.38)—(3.41), we have

E[01|Fo) < e Pl W ay.

,82u3/74Y(0) /I 2711-t(y) e9

Then by the conditional Markov’s inequality, we can deduce that for any n > 0, if n is sufficiently
large,

—pL* 1 Y(0) _g2.8
PlO; > epLZO/eg(y)d ‘}-)< o PuP /T4
(1 ! UI\/W Y170 ) = 5200

Based on assumptions (1.10) and (1.11), we have that for any n > 0,

(3.42)

n—oo

lim P<®1 >ne Lz

/W dy)

We next consider ©9. By (3.29) and Tonelli’s theorem again, we get

E[©s|Fo] <

/I\/%;ti_u)exp (g(y)—

x FE

Z e(P—=Bsy) Xj(u) Livoe(0,u],X; (v)<L}1{H(u)<Xj (u)<L—Cop-1/%)
JEN,

]-"0] dy. (3.43)
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We can separate the expectation in the integrand into two parts by writing

B Z e(p_ﬁsy)Xj(u)1{‘v”u€[0,u]7Xj(’U)<L}1{H(u)<Xj(u)§L—Cﬁﬁ_l/3} ./_"()]
JENY
=F Z PP XM 0.0, (0 )<L (0)<H W) {1 (w)<X; ()< L—CoB-1/3} ]:o]
JGN’LL
+ F Z e(p_ﬁsy)Xj(u)1{VUE[O,U],XJ-(U)<L}1{H(u)<X]-(O)<L}I{H(u)<Xj(u)§Lfc’6ﬁ—1/3} ]-"0]
JENY
=: E[H,|Fo] + E[Hs|Fol. (3.44)

Note that when H(u) < z < L and H(u) <y < L — CsB71/3,
B)VO((L — 2)V2 + (L )1/2) < (28)1/5 2 (L - H(u))/? = 2715371823,

Since 27/63=1 < 271/3 and 2/3u > 1, equation (3.6) is satisfied. Thus, in (3.44), we can upper
bound the first expectation by (3.9) and upper bound the second expectation by (3.7). We have
that for all y € Z,

L_Csﬁfl/S

Bl + 13| Fo) < eIy (0) + Co20) [

e—ﬂswﬁl/%((m)l/?’@ )+ wl)du.

(3.45)
Substituting v with L — (23)~/3r, by (3.4) and (3.37), we have for n sufficiently large, for all y € Z,
L 061871/3
e P LB A (283 (L — v) + 1 ) dv
B (28)"( M
H(u)

oo - P
< 21/36”287’/2/ 62—1/552/55y(v1+r)Ai(,Yl + T)dT‘
21/306

< (1 + n)2—1/36_p23y/2 /OO 62*1/305("/1-%7‘)142'(71 4 T)d?“
N 21/3C¢
<(1+ n)2—1/3e—925y/2g605’/48. (3.46)

Combining the above formula with (3.43) and (3.45), we have

E[6|F] < e P/ By (0

2 283
)+@—6 y>dy

_pL*/ m (

2 6
Csn(1+1) , 1 By
—_ dy.
+ 24/3 om(t — eXp () - 6 48 Y
By (3.41), if n is sufficiently large, then for all y € Z,
p25y B 52u3 - _/32u3 (3 47)
2 3T T4 '

Also note that for n large enough, 5282/6 > C3/48 for all y € Z. Then by (3.40), we obtain that
for n sufficiently large

>e—pL* / 1 e9
24/3 T /27t (y)

E[02]Fo) < <€_ﬂ Y (0) + Wy,
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By (2.6), we have u > p2/3/8%/9 and therefore (1.10) and (1.11) imply that e=#*«*/74y (0)/Z(0) —
0. Thus, by the conditional Markov’s inequality,

p

lim supP<92 > nt2e=PL" Z(0 (3.48)

( )/169(11)
n—oo T \/27‘(’15 y

We now consider O3 and O4. According to (3.30), (3.40) and Tonelli’s theorem, there is a sequence
of Fy-measurable random variables {6,}>°; which converges uniformly to 0 as n goes to infinity

such that
2 2,3
exp< )—pL*—i-p—S‘y—B y)

< Csn'/?(1 + )
- 24/3 ’

E[@g + @4|./r 5 5

1+el/vﬁy

% Z ep ,BSy) j(u)l{L_CGB—1/3<X]-(u)<L}dy'
jENu

We can deduce from (3.35) that

lim P(l,_MePL*Z(O) / ;eg(y)dy < E[O3 + 04| F,]
27t (y)

1+4n oL 7

= A t/v@n

Next, we will estimate ©3 and ©4 individually. Note that ©3 accounts for particles that reach L
between times u and t and then drift back to Z. Consider a process which starts from a single
particle at L — Cg87Y/3 < 2 < L. Suppose we kill particles upon hitting L. For v € [0,t — u],
recall 7£(v) is the rate at which particles hit L at time v. We further denote by m?(v) the expected
number of descendants in Z at time ¢ of a particle that reaches L at time u+v. Consider the process
in which there is one particle at x at time u without killing. Then the expected number of particles
in Z at time ¢t whose trajectories cross L between times w and ¢ is

/Otu rE(w)ym?®(v)dv.

eIW) dy) =1. (3.49)

From the definition of m?(v), we have

mz(v) :/Ipt—u—v(Lay)dy‘

Setting w = (28)~'/34; and substituting s + v in place of s in equation (3.29), we have

/ o < y) = p(28) "1 + B(2B) P (ty) — (t —u—v)
t—u—v

ﬁf—

-5 (ty) =t —u—v)) )dy. (3.50)

Note that ¢t(y) — (t — u — v) = s, +v. Combining (3.50) with (3.11), we have

—x — x)?
o) < YT L [ (g prt - BT g

V2r(t—u—w)Jz 2v

2
+ 2_1/352/3715y — %(sy + v)s) dy.

We are going to deal with the terms involving s, by using an argument similar to the one leading
o (3.46). Notice that (s, +v)3 > 52. By (3.37), the dominated convergence theorem and Tonelli’s
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theorem, for n large enough, we obtain
t—u
/ L (v)ym® (v)dv
0

23
ch(l—i_n)exp< — pL* + 2713323 5 — 56 )/eg(y)
T

V2T
(t=w)/2 1 _ 4 1 (L — z)? t—u [ o 1
———\d dv ).
X(A 1)3/2 (t_u_fu)exp< 2v > U+/(tu)/2 7}3/2 t—u—0 U)
(3.51)

Lemma 4.1 in Roberts and Schweinsberg (2021) states that for a > 0 and b > 0,

> 1 \/
/ e~V /e gy — 7ra.
0

v3/2 b

Thus we have

/<t—u>/2 L—=x 1 (L-=)? / / (L—=)? p
0 32t —u— ) P t—u 1)3/2 P 2v !

(3.52)

:\/m

Noticing that L — 2 < CsB~1/3 <« /T — u, we sce that for n sufficiently large

tu L—z 2B/2(L —x) [t 1 A(L — x) 1
dv < dv = < . (3.53)
(t—u)/2 V32t —u—v (t—u)3/2 (t—w)/2 VI —u—v t—u Vi—u

By equations (3.40), (3.51), (3.52) and (3.53), since y; < 0, we have for n large enough,

/Otu rL(v)ym* (v)dv

< (2v/m +1)Cy(1 + 1) exp <paf — pL* + 27133235 — W)y

523>/W

< (V7 + )Col1 + myexp (=L - Wy,

Summing over all particles at time u, we have for n large enough

E[03]F,] < (2v/7 +1)Cy(1 4+ n)Y (u) exp ( pL* — Vdy. (3.54)

T)

Furthermore, equation (6.31) in Roberts and Schweinsberg (2021) states that

: L+m _
n11_>1r010P<Yn( ) < A7 ()2 =75 Znl( / Ai(y + 2)d > =1. (3.55)

Recall that s = C54~2/3. Combining (3.54) with (3.3) and (3.55), we have

11113;013<E[@3|fu] > (f+ \/127)0977(1%7 e P’z /W dy> 0. (3.56)

By the conditional Markov’s inequality,

hmsupP(@3 > /2Pt 7

n—oo

dy) <f +)09771/2(1+n). (3.57)
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Next, we are going to show that G4 is concentrated around its mean. By (3.49) and (3.56), letting

Clpy=dn+ (V2 + i)cgnu AT (1)?,

V2T
we see that
limP( [©4]F] > 1_0 e’z / d>—1 (3.58)
n—o00 4 A ( /27Tt Y ) '

Considering the process in which particles are killed upon hitting L, we can bound the conditional
variance of ©4 by Lemma 3.5. We get

Var(©4]Fy,) Z EX (7) ]1{L—066*1/3<Xj(u)<L}
JENY
Z g3 pX;(u)+pL—2pL* 1 9(v) 4 21
N, pt s z \/We V) Tcente X<ty
j€

B ore ’
,ZpL +pLY < / dy) )
p \/W

Then by Chebyshev’s inequality,

ore 1 B*3ert Y (u)
P( |04 — E[04F,)| > ne X" Z(0 /eg<y>d }}'u> < 3.59
(‘ 4 [ 4| ] n ) I\/W Y = 772,04 Z(0)2 ( )
On account of (1.11) and (3.55), as n — oo,
2/3,pL y
fe (“)2 —, 0. (3.60)

pt o Z(0)
As a result, by equations (3.49), (3.58), (3.59) d (3.60), we obtain
1 *
lim P(|© ez
1un (‘ 4 — A4

vd
A A ()2 / e y‘

< <n+M> Lt g / \/W >dy> =1.  (3.61)

It remains to consider ©5. Define S5 to be the set consists of particles whose trajectories cross L
before time u, so
= {i € Ny : Xi(v) > L for some v € [0,u]}.
We observe that S5 C S5. Note that u 4 2C7p~2 < t since t —u = t(z) — s > B2/3 by (1.21).
According to 3.1.2, the probability that particles that either are to the right of L at time 0 or hit L
before time u have descendants alive at time ¢ goes to 0 as n goes to infinity. Therefore,

lim P(O5 = 0) = 1. (3.62)

Consequently, for any x > 0, by choosing 7 appropriately, equation (2.7) follows from (3.42),
(3.48), (3.57), (3.61) and (3.62). O

3.4. Proof of Proposition 2.2. In this subsection, we will prove Proposition 2.2 with the help of
Proposition 2.1. Before startlng the proof, we need two more lemmas to control the number of
particles that are far away from z.

Lemma 3.7. Consider z such that (1.19) holds and |z| 2, \/p/B. For any n > 0, there exists a

constant Ch1 large enough such that for
Cn

~ Jeolp’

(3.63)
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the following hold:
(1) The constant satisfies
Ci1 >4, 6_011/2 <. (3.64)
(2) If z > 0 for all n, then for n sufficiently large
- ;eg(y)dy < 77/2+d #eg(y)

(8) If z < 0 for all n, then for n sufficiently large
z—d
1

dy. (3.65)

)dy. (3.66)

9(y) ’ ! 9(y
o Variw) S an Vo)
Since we expect that the density of the number of particles near y is roughly proportional to
e9W) /\/27t(y), Lemma 3.7 indicates that most particles in [z, L*] are in [z,z + d], while most
particles in (—o0, 2| are in [z — d, z].
Suppose (1.19) holds and |z| 2 y/p/B. For any n > 0, choose d according to Lemma 3.7. Note
that (2.4) holds with d in place of [, and for [ satisfying (2.8), we have 2d < [ for n sufficiently large.
Denote

¢ = z+2d if z >0,
Clz—2d if z <0,

Lemma 3.8. Consider z such that (2.2) holds and |z| 2 +/p/B. Let

s = B3, t=t(z)—s, x<L.

(1) Suppose z > 0 for all n, and z satisfies (1.19). Choose d according to (5.63). For all
y € [¢,00), we have for n sufficiently large,

o) < e Qexp (= 51 -0) ). (3.67)

(2) Suppose z < 0 for all n. Write x = L* —w. For all y, we have for n sufficiently large,

283
ple) < e <g<z> (e~ plz—y) — po+ Bsw — ) (3.68)

Furthermore, let s = t(¢) —t(z) +s. If y < ¢, then for n sufficiently large,

253
(o) < ——exp (50) — = Vol ~3) = g+ Bscur = ). (369

Proof of Proposition 2.2. Let us first consider the case |z| 2 \/p/B. Define s, u and H(u) as in
(3.36) and (3.8). Denote

K:{[Z,C] %fz>0,
¢, 2] if z <0.

Define
S1={ie N, : X;(t) € K},
Sy ={i € Ny \ S1: Xi(v) > L for some v € [0,u]},
Ss={i e N;\ (S1USs) : Xi(u) < L —Ce7/3},
Si={ie N;\ (S1USs): L—Cep™ " < X;(u) < L}.
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For j =1,...,4, write

Then

4
Z:J

Q
,_.

We will show that compared with =, the terms =9, 23 and Z4 are negligible.
We first consider =;. Since 2d satisfies the restriction (2.4) in Proposition 2.1, according to (2.7),
(3.65) and (3.66)

. 1—n —pL* / 1 —_

lim P ————————=¢ "~ Z(0 — Iy <=

n—oo ((1+77)Az’('n)2 © V27t (y) v==1
147 S

< ) / W dy> =1.  (3.70)

For =, since u + C7p~2 < t, according to 3.1.2, the probability that particles that either are to
the right of L at time 0 or hit L before time u have descendants alive at time ¢ goes to 0 as n goes
to infinity. Therefore,

lim P(5,=0)=1. (3.71)
n—oo

It remains to consider Z3 and Z4. Let us first consider the case when z > 0. Recall the definition
of Hy in (3.38) and Hy, Hj in (3.44). Since (2.4) holds with 2d in place of [, by inequalities (3.29),
(3.67) and Tonelli’s theorem, for n large enough, we have

E[=3]F.) = Z/ P—u (X (), Y) Liwe(o,u], x; (0)< Ly X, (w) < L—Cop-1/33 0Y

JEN,
< D Pl X (), Ol gvueio ] x; )<Ly L, (w1 Co- 1/3}/ P1=0=0/2qy
JENu
L, P Sc g2 5c> /Z” —p(1-¢)(y=0)/2
S —/—eX — ol + — — e P Y d
o= w) p(Q(C) p ) ). y
X (Hl + Hy + Hg) (372)
According to the choice of d, since ¢ € (0,1) when z > 0, we have
2 2(1+¢) < 4 <d
p(l—c) pCo pCo

Also, by (3.27), uniformly for all y € [z,(], we have t —u > t(y)/(1 + n) for sufficiently large n.
Combining this observation with the fact that g(y) is decreasing on (0, L*) and (3.65), we have

z+l
e e=P1=0 =012 gy, < 1 2
V27t —u) Je  /2n(t —u) p(1 —c)
¢ /
ﬂeg(y)dy

¢—d \/27t(y

<oy |
K JN(—o0,L*] \/27Tt

Since (2.4) in Proposition 2.1 holds with 2d in place of [, equations (3.39), (3.4;)) and (3.46) hold
with s¢ in place of s,. By (3.39), (3.45), (3.46), (3.72) and (3.73), along with (3.47) with ¢ in place

e9(0)

eg(y)dy. (3.73)



762 Jiaqi Liu and Jason Schweinsberg

of y, we get
_ o (o Csn(1+n) 1
E[23|F0) < ny/1+ ne= Pt (26 52“3/741/(0) + ——=—>2(0) / S
215 0 o01] v/ 27E(Y)
(3.74)
Therefore, equations (1.10), (1.11), (3.74) and the conditional Markov’s inequality imply
. 1 3/2(1
limsupP(Eg > /(L + n)e " 2(0) / eg(y)dy> < 08"4—(“7) (3.75)
n—00 TN (—o00,L*] / 27Tt(y) 24/3

As for Z4, according to the argument leading to (3.72), we have
1 z+1
E[E4|F,) < eg(C)pL*/ e PA=W=0/2qy x T,
27 (t — u) ¢

where I'c was defined in (3.34). By equations (3.35) and (3.73), and the conditional Markov’s
inequality, we get

. _ e 1 (1+3n)yn
hmsupP(: > /n(1+n)e P Z(0 / ) > < —2¥ 0
n—00 ! l " (©) TN(—o00,L*] \/27t(y) Y Ai! (y1)?

As a result, when z > 0, for any x > 0, by choosing n appropriately, equation (2.10) follows from
(3.70), (3.71), (3.75) and (3.76).
When z < 0, by (3.69) and Tonelli’s theorem, for n large enough, we have

(3.76)

ElZslFu] = Z / Pr—u( s Y) L voelo,u), X, )<L x;(u y<L—Csp-1/33dY
JENu
1 pzsC 6282) /< —ple—1)(¢—
< ———ex —pL* + — — e~ Ple=1)(C—y) g
BVGT R (g(C) P > 6 ) /). v
X (H1+H2+H3), (377)

where Hy, Hs, and Hj3 are defined as in (3.38) and (3.44) but with ¢ in place of y. By (3.27),
uniformly for all y € [(, 2], we have t — u > t(y)/(1 + n) for sufficiently large n. Combining this
observation with the fact that g(y) is increasing on (—o0,0), we have

¢ ¢+d
e)/ e Pl D=y gy < ! e < 1 / 7Meg(y)dy'
V2m(t —u) Jam T /2r(t —u)ple—1) T dp(c—1) J¢ 27t (y)
(3.78)
By (3.18), (3.19) and (3.64), we see that
(C — 1)011 CH 4 8
—1)pd = = = —. 3.79
(c=1)p o] 1+c 1+32 5 (3:79)
Also, by (3.66), we have
C+d 1
v) dy. 3.80
¢ 27rt(y dy < / 27Tt dy < 77/ \/27Tt Y (3.80)

Therefore, by (3.78) (3.79) and (3.80), we obtain that for n sufficiently large,

/ < vl 1 ] L gy, (3.81)
\/27r t—u) TN (—00,L*] \/27Tt
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Since 2d satisfies the restriction (2.4) in Proposition 2.1, equations (3.39), (3.45) and (3.46) hold
with s¢ in place of s,. By (3.39), (3.45), (3.46), (3.77) and (3.81), we get

1 * 1 1
E[23]F] < 577\/8Tn6—pL (2e‘52u3/74Y(0) + CMZ(O)) / . ——anm
JN(—o0,L*]

24/3 V27t (y)
(3.82)
Therefore, equations (1.10), (1.11), (3.82) and the conditional Markov’s inequality imply
5v/n(1 ‘ 1 3/2(1
hmsupP(Eg > Me*pL Z(O)/ eg(y)dy> < 08774—(3—“7) (3.83)
n—00 8 TN (—c0,L*] /27t (y) 24/

As for 24, according to the argument leading to (3.77), we have
¢
E[24|F) < 1 eg(C)—pL*/ e Pl DE=Y) gy T;.
T\ 27(t —u) 21
By equations (3.35) and (3.81), and the conditional Markov’s inequality, we get
5y/n(1 . 1 1+3
<E4 > Me—pL Z(O)/ €g(y)dy> < % (3.84)
8 TN(—o0,L*] /27t (y) Ai'(71)

As a result, when z < 0, for any £ > 0, by choosing 1 appropriately, equation (2.10) follows from
(3.70), (3.71), (3.83) and (3.84).

It remains to consider the case |z| < y/p/B. Below we will only prove the result under the
scenario z > 0. The scenario when z < 0 can be proved using the same argument. The interval
[2, 2z + ] can be divided into two intervals

(2,2 + 1] = [z,er\/g} U [z+ g,erl}.

It is obvious that the first interval fits in the setting of Proposition 2.1. We further claim that the
second interval fits in the setting of the previous case. Indeed, according to Lemma 3.2, we know

that
#(z) — t(z + \/g) — o(5723).

Thus (2.6) holds with z+ +/p/f in place of z. Also, letting ¢f, = (2 ++/p/B)/L*, which is the same
as ¢g but with z 4 \/p/7 in place of z, the length of the second interval satisfies

P p_ 1
-/ => /== .
\/; \/; cHp

According to Proposition 2.1 and the previous case, equation (2.7) holds with [z, 2+ +/p/f] in place

lim sup P

n—oo

of Z and equation (2.10) holds with [z 4+ +/p/53, z+1] in place of J. Combining these two equations,
(2.10) follows. O

3.5. Proof of Proposition 1.5. In this subection, we will prove Proposition 1.3, which gives the
maximal displacement of the process. For any constant Cy € R, define

0 Cy>0 Co Cy >0
A={1 Co=0 and Ch={1 (=0 (3.85)
—2C Cy <0 —Cy Oy <.

The proof of Proposition 1.3 requires the following lemma which concerns the maximal displacement
of a slightly supercritical branching Brownian motion with constant branching rate.
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Lemma 3.9. Consider a branching Brownian motion started from a single particle at L. Each
particle moves as standard Brownian motion. Each particle independently dies at rate d(2L), and
splits into two particles at rate b(2L). Let M; be the mazimal position that is ever reached by a
particle before time t. For any constant Cy € R, define C% > 0 as in (5.85). There exists a constant
Cha such that if n is sufficiently large, then for all t,

Cl
P(Mt* > LA + ;) < Chop®. (3.86)

Proof of Lemma 3.9. In this process, each individual lives for an exponentially distributed time with
parameter b(2L)+d(2L), and then gives birth to 0 offspring with probability d(2L)/(b(2L)+d(2L))
and 2 offspring with probability b(2L)/(b(2L) + d(2L)). Therefore, the generating function for the
offspring distribution is
d(2L b(2L
f(S) — ( ) + ( ) 82.
b(2L) +d(2L)  b(2L) + d(2L)
Let B be the event of survival. By (1.4) and the formula for the survival probability of the Galton-
Watson process, there exists a constant C13 such that for all n,
b(2L) — d(2L)

P(B) = T weh) < Ci3p°.

For any time t, we get
C/
BC> P(B°) + P(B) < P(Mt* >LA+ 2 B"’) + Ci5p°.
p
(3.87)
We are interested in the behavior of the process conditioned on the event B¢ of extinction. According
to equation (4) of Gadag and Rajarshi (1992), the conditioned process is equivalent to a subcritical
branching process with generating function
f( ) = b(2L)f(sd(2L)/b(2L)) b(2L) N d(2L) 9
o= d(2L) T d(2L) +b(2L) " d(2L) +b(2L)"

! !
P(Mt* > LA+CZ> < P(Mt* Ae &
P p

Thus, in the conditioned process, there is a single particle at L# at the beginning. Each individual
moves as standard Brownian motion. It lives for an exponentially distributed time with parameter
b(2L) + d(2L), and then gives birth to 0 offspring with probability b(2L)/(b(2L) + d(2L)) and 2
offspring with probability d(2L)/(b(2L)+d(2L)). Consider a critical branching process started from
a single particle at L“. Each individual moves as standard Brownian motion. Each particle lives for
an exponentially distributed time with parameter b(2L) 4 d(2L), and then gives birth to 0 offspring
with probability 1/2 and 2 offspring with probability 1/2. We observe that the right-most position
that is ever reached by particles up to time t in the conditioned process is stochastically dominated
by the right-most position that is ever reached by particles up to time ¢ in the critical process.
Letting M be the all-time maximal displacement of the critical process, we have for all Co > 0 and
all time ¢,

Cl
P<Mt* > LA+72

Cl

BC> < P(M > LA+ 2) (3.88)
p

According to equation (1.7) of Sawyer and Fleischman (1979), we have for n large enough,

c 6
PM>1L+22)< 2,
( s p>—<05>2p

Letting C12 = C13 + 6/(C5)?, equations (3.87)-(3.89) imply (3.86). O

(3.89)
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Proof of Proposition 1.3. Let us first consider the case when

B3 0g!/3 (51/)/3> <t< 2.

We start with the proof of equation (1.33), which follows directly from results in Roberts and
Schweinsberg (2021). For any constant C > 0, define

{1 T < 21/301

0 otherwise.

fz) =

Define ®(f) as in (3.14). By 3.1.5, we see that ®(f) satisfies (3.15). For all C; >0 and 0 < k < 1,
if n is sufficiently large, then

! - /
P<Mt > L — ﬁ1/3> = P<q>(f) > epL Cip/B! 3)
1—-k 1/3 K
> pL—=Cip/p'/% ) _ v .
> P<Az ) </ f(2)Ai(y + z)dz> (0)>e 5 (3.90)
By (1.11), we have for n sufficiently large
-k o . _ 1/3 KR
—_— ~ oPL—Cip/B >1_ 2 '
P<Ai’(’yl)2 (/0 f(2)Ai(n + z)dz) Z(0) > e ) >1 5 (3.91)

Equation (1.33) follows from (3.90) and (3.91).

We next prove equation (1.34) under the additional assumption that the birth rate function b(z)
is non-decreasing and the death rate function d(x) is non-increasing. For any constant Cy, define A
and C} as in (3.85). We divide particles at time ¢ into the following categories:

= {i € Ny : X;(v) < L* for all v € [0, ]},
={ie N\ S1: X;(v) > LA for some v € [0,t — Crp~ 213,
—M\(51U52)-
For 7 = 1,2, 3, write

Mtsj = max {Xi(t),i S Sj}
Note that
_ S1 Sa S3
My = max { M, M, M2}, (3.92)
For Sy, it is obvious that for all constants Co,

C CY
P<Mfl<L+2):P<Mtsl<LA+2>:1- (3'93)

p p

For Sy, according to 3.1.2, with probability tending to 1, particles that either are to the right of
LA at time 0 or hit LA before time ¢t — C7p~2 will not have descendants alive at time ¢. Thus for
all constant Cj,

Co
lim P<MS2 <L+ > > lim P(Sy;=0)=1. (3.94)
n—oo p n—oo
It remains to deal with Ss, which consists of particles whose trajectories cross L? in the last
Cr7p~? units of time. Consider the process in which particles are killed upon hitting L4. Let R
be the number of particles that first hit L4 between t — C7p~2 and ¢t. We denote by {r;}2, the

sequence of hitting times. For the process started from a single particle at x, recall that rxA(u, t)
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is the expected number of particles hitting L? between time u and t. By (3.12), taking all the
particles at time 0 into consideration, we have

2, —2\3
E[R|Fy) = Z T ( Zg,t) < exp ( — pLA — —6 (t—Crp") )Y(O) + S;BQ/%MAZ(O).

lGNo 9

From (1.10) and (1.11), it now follows that for any x > 0, there exists a constant Cj4 such that for
n sufficiently large,
K

61
P<E[R|]:0] < 014,03 P2 >1 1

Thus by the conditional Markov’s inequality, we have for n sufficiently large,

B3 1 E[R|Fo] 81 K
<R > C147p72 S E Wl{E[R‘}—O]<CI45/P5} +P [R|.F0] > Cl4p p < 5 (395)

Therefore, with probability at least 1 — /2, the number of particles that hit LA in the last C7p—2
unit of time is at most C148%3/p*, which is o(p~2).

For every i = 1, ..., R, we consider three branching Brownian motions. All three processes start
from a single particle at L at time r;. The first process has inhomogeneous birth rate b(z) and
death rate d(z). Each particle moves as Brownian motion with drift —p. The second process
is constructed based on the first process with the extra restriction that particles are killed upon
hitting 2L. To be more precise, in the second process, particles give birth at rate b(z) and die at
rate d(x). Particles move as Brownian motion with drift —p and are absorbed at 2L. In the third
process, the birth rate is the constant b(2L) and the death rate is the constant d(2L). Each particle
moves as standard Brownian motion. We denote by M;_,, ME_L” and M;" . the maximal positions
that are ever reached by particles before time ¢ in the three processes respectively. Because of the
monotonicity of b(x) and d(z), we observe that M}, stochastically dominates M?%. . By Lemma
3.9, we have for sufficiently large n,

!

_ C} C
P<ME_%1. > LA+ p2> < P<Mt*_” > LA + ;) < Chap.

Note that LA + Ch/p < 2L for n sufficiently large. Thus, if M2 < LA + Chp~!, then the first
process is identical to the second process up to time ¢ — r;. Therefore for sufficiently large n,

C: _ CY _ C}
P(Mt r > L+ :) = P<Mt_n > La+ ;) = P(ME_LH > LA+ ;) < Chap®.  (3.96)
Combining (3.95) with (3.96), for any x > 0, we have for n sufficiently large,

Co 231 3
P<MS‘°’ > L+ > < — + 0146 012,0 < j (3.97)
p 2 p* p? 4
As a result, equation (1.34) follows from (3.92), (3.93), (3.94) and (3.97).
Now let us consider the case when ¢ satisfies (1.32). It suffices to show that for every subsequence
(n;)32,, there exists a sub-subsequence (nj, )2, such that

C1
klgg()P(Mtn ny, = Loy, — B,i/3> =1 (3.98)
i
and under the additional assumption on the birth rate and the death rate,
lim P( M, <Ln o+ o1 (3.99)
k:i)Ilgo tnjkz ,’ﬂjk — njk pnjk — 4. .
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By (1.32), given a subsequence (n;)32;, we can choose a sub-subsequence (n;, )72, for which

Bos
lim —2& "% — 7 ¢ [0, 00).
k—o0 pnjk

If 7 = 0, then according to the previous argument, (3.98) and (3.99) hold. If 7 > 0, choose times
(U, )g2y for which

’I’L]k

P,
B-2/310 1/3< ) < Uy, <’
g ﬁ1/3 Ik Bn]k

TL]k

Let ;= t”jk — Un;, . By Remark 2.3, assumptions (1.10) and (1.11) hold with Yy (rn; ) and
an (Tn;, ) in place of Z(0) and Y (0) respectively. Replacing ¥'(0) and Z(0) by Yy, (rn, ) and
Zn,, (rn]k) the previous argument also works. Therefore, equations (3.98) and (3.99) also hold in

this case. Equation (1.35) follows from (1.33) and (1.34). O

3.6. Proof of Proposition 1./. In this subsection, we will prove Proposition 1.4, which gives the
position of the left-most particle of the process. Denote

20 20
th=t— "0 t=t+ 0,
p

where C1g is defined in 3.1.6. We have the following lemma which controls the number of particles
below L at any time between t; and t».

Lemma 3.10. Suppose
2/3

P 7 P
5575 < t—t(L) < 5 (3.100)
For any € > 0, if n is sufficiently large, then
53/4
P<Nt1(( 00, L)) < e p9/4> >1—¢. (3.101)
Moreover, for any € > 0, if n is sufficiently large, then there exists an event B € F, satisfying
P(B)>1-¢ (3.102)
such that
t2 _ ,33/4
E[/ Ny ((—o0, L))dr - 13} < S (3.103)
t1 p 1Y
Proof of Lemma 5.10. Define s as in (3.36) and
- 2C10  Cs

Since 2C10p~2 4+ C5672/% < p/B, by (3.100), we have p*/3/88/° « u <« p/B. For any r € [ty,ts],
define
Sr =8 —1+to.
Note that
5, X 8, r—u=t(L)— s (3.104)

For every r € [t1,t2], denote

Si(r)y={i e N, : 3w e0,u],X;(v) > L},

So(r) ={i € N, : X;(u) < L — Cs87Y3, X;(v) < L for all v € [0,u]},

Ss(r)={i e N, : L — Cs873 < X;(u) < L, X;(v) < L for all v € [0, u]}.
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For j = 1,2, 3, write
i) = > Lx<iy
i€S;(r)
Then
NT((—oo, E)) = X1(r) + 3a(r) + X3(r). (3.105)
We first consider X1(r). Let B; be the event that particles that are to the right of L before time

u have descendants alive at time ¢;. Then B; € F4,. Since u + C’7p_2 < t1, by 3.1.2, we have that
for any n > 0, if n is sufficiently large, then

P(Bl) <

Note that {31(r) # 0} is a subset of By for all r € [t1,t2]. Therefore, we have for sufficiently large
n, for all r € [t1, 9],

P(S1(r) £ 0) < P(By) < 1. (3.106)
We now consider ¥a(r). Denote
L
R 1-— —
Cy, L*

By (3.104), we see that for all r € [t1,t2], equation (3.68) holds with r — u in place of ¢, L in place
of z, ¢; in place of ¢ and s, in place of s. By (3.68) and Tonelli’s theorem, for n large enough, we
have for all r € [t1, 2],

2 2.3 L B
EXa(r)|Fu] < __ exp <g(E) — pL* + P B S”) / e=Pler=DE=y) gy
27 (r — u) 2 6 e
X (H1+H2+H3), (3107)

where Hy, Hy and Hg are defined as in (3.38) and (3.44) but with s, in place of s,. Since s, < s,
the upper bounds on Hy, Hy and Hz in (3.39), (3.45), (3.46) also hold here. For any n > 0,
since r —u ~ t(L) ~ 3p/20 and c; ~ 3/2, we have for n sufficiently large,

1 1 2(1 +n) pY/?
ﬁ/ ey = s T (mn) im (3.108)
Also, because (1 — x)%/2 > 1 — 32/2, we have
o(D) = p(r* ~ L) - 22 - Ly
_9P3_22/3V1p_9p3<1 8 2%/3y, )3/2
83 51/3 8/3 51/3
< p(28) "y (3.109)

We get from equations (3.39), (3.45), (3.46), (3.107)—=(3.109) that for all r € [t, t2], if n is sufficiently
large, then

20+m) B2 (o gy Csn(1+n)
E[3s(r)|Fo] < RV T —€ 2e Y (0) + TZ(O) . (3.110)
By (1.10) and (1.11), for any n > 0, there exists a ¢ > 0 such that for n sufficiently large

P({Y(O) > plzePL} U {Z(o) > ;B;fe }) < (3.111)
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Define By to be the union of the previous two events. We see that By € Fy C Ft,. Note that
e~ P’/ « BY3 /5 From equation (3.110), we have for all 7 € [ty, to],

1 55/6 1 53/4

BSa1e) S 55 < ' o (3.112)
Specifically, for r = ¢;, by (3.111) and (3.112), we have for n large enough
P<22(t]_) > 153/4) < 2. (3.113)
3p2 P9/4

Similarly for ¥3(r), by (3.68), (3.108), (3.109) and Tonelli’s theorem, we have for n sufficiently
large

2(1+mn) »31/2 L PQ 3
E[Xs(r)|Fu < “PRexp elP=Bsr)X;(u)g / .
/31 p3/2 Jg\;ﬂ {L—-Cep~1/3<X;(u)<L}

Because s < s, < s +4C1o/p? for all r € [ty,13], we have

61/2 B ,028 5283 B X
E[Xs(r)|Fu] < pS/Qe PL exp 5 g Z o(P—=B3) X ( )1{L706,3*1/3<Xj(u)<L}‘ (3.114)
JEN

By (1.11) and (3.33), for any € > 0, there exists a § > 0 such that for n sufficiently large,

2 2.3 1/3
p°s s 88X (u 11+2np
P<exp< 2 6 > Z PP )l{L—CGB—1/3<Xj(u)<L} 5 Ai (71) s et ) <n. (3.115)
JENU

Define Bs to be the event in the previous equation. Then Bs € F,, C Fy,. From (3.114), we have
for all r € [t1,1q],

65/6 63/4
E[X3(r)ps] S 7 57 S 2 T (3.116)
Specifically, for r = ¢, by (3.115) and (3.116), we have for n sufficiently large,
1 B3/4
P<23(t1) > WW) < 2. (3.117)

As a result, for any € > 0, by choosing 1 appropriately, equation (3.101) follows from (3.105),
(3.106), (3.113) and (3.117). Let
B = BN BS N B
Then B € F;,, and by (3.106), (3.111) and (3.115), for n large enough,
P(B) = I—P(BlUBQUBg) >1—3n.

From (3.105), (3.106), (3.112) and (3.116), we have for n sufficiently large

E[/: NT((—oo,L))dr-lB]

to to t2
SE[/ El(r)dr-lgf} +E[/ Eg(r)dr‘lBg] —i—E[/ 23(7°)d7’-13§}
t1 t1 t
1 ,83/4

=t o
Letting n = /3, equations (3.102) and (3.103) follow. O
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Proof of Proposition 1./. Let us first consider the case when p%/3/%/9 « t —t(L) < p/f. We start
with the proof of equation (1.38). For any sequence (d,,)22 ; satisfying B3 < d < p? /3, we claim
that

lim P(m; < L+d) =1 (3.118)

n—o0
To prove the claim, we first note that L + d satisfies assumptions (1.19), (2.1) and (2.2) in Propo-
sition 2.2. Furthermore, according to the Taylor expansion v/1 — 2 = 1 — 2/2 + O(z?), we get

t(L) —t(L+d) = ;(L*—E)(l— 1— d)

L — L
2 _ d d?
et (i)
. — O<d2> (3.119)
C V28(L - L) VB(L* = L)32 ) '
Since d < p?/B3, we have
i < d <?
VB(L* — L)3/2 23(L* —L) B
Therefore,
P/ . - S r p
57 Lt—t(L+d)=t—t(L)+ (t(L)—t(L+d)) < 5

which is assumption (2.6). Since for 0 < < 1, (1 — 2)%2 =1 — 32/2 + O(z?), we have for n large
enough,

g(LT+;l>:p<L*_LT_d>_W(L*_LT)?)/Q(l_M,Z_LT))sm

2 3
d 228 3 d d?
(L — Y PE VAP 3224 e
4 ) =3 3 ) 22 —oh T\ =
pd  3pd (6(12)
=——=+—+0| —
2 4 p
o
-8
Thus for n sufficiently large,
/ #eg(y)dy > / #eg(y)dy > ePd/16, (3.120)
(—o0,L+d) \/27t(y) [Lt+d/2,L+d) \/27t(y)

By Proposition 2.2 and equations (1.11) and (3.120), for any € > 0, if n is sufficiently large, then
P(m¢ > L+d) —P(Nt((—oo,Eer]) —0) <e, (3.121)

which implies (3.118). Now we use (3.118) to prove (1.38). Suppose (1.38) is not true. Then there
exists k > 0, such that for any constant C5 > 0, we have for infinitely many n,

= C5

We can therefore choose a sequence of positive integers (nj)‘]?‘;l and another sequence of positive
constants (C15,7)72, satisfying

nj <1 and 1< Cis; < pl /BY°
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such that for all 7,

= Cis,
P<mtnj N S Lnj 51/3]> S 1— k. (3122)

Let dp; = C'15vjﬁ;j1/3. Note that 57:].1/3 <L dy, K p?lj /Bn;- Then (3.122) contradicts (3.118), and
(1.38) follows.

We next prove equation (1.39) under the additional assumption that for all n, the birth rate
function b(z) is non-decreasing and the death rate function d(z) is non-increasing. Define

:{ie/\/t' i(t1) < L},
={ie N\ S1:X;(v) > Lforallv € [ty,t0]},
fj\/t\(SlLJSg).

For j = 1,2, 3, we further denote
my = min{X;(t),i € S;}.
We have
my = mln{mt ,mf2,mt53}. (3.123)

For S;, we will show that particles below L at time ¢; will not have descendants survive until
time ¢. For = < L, consider one process starting from a single particle at = at time ¢;, and another
process starting from a single particle at L* at time t;. Because of the monotonicity of the birth
rate and the death rate, the probability that the first process will survive until time ¢ is dominated
by the probability that the second process will survive until time ¢, which is at most p?/a by 3.1.6.
Thus by (3.101), for any € > 0 and all positive constant Cy, if n is sufficiently large,

Cy P 1 ﬁ3/4
P( 1<L—p><P(Sl7é®) p2 9/4+€<25 (3.124)
For Ss, it is obvious that for all Cy,
P<mf2 <L- C”‘) =0. (3.125)
)

We next deal with S3. Consider the process in which particles are killed when they hit L between
times t; and t. Let R be the number of particles that are killed at L between times ¢; and t. For
i€1,2,..,R, let r; € [t1,t] be the time that this particle is killed at L. For the ith particle that
hits L between t; and t, consider a process without killing starts from this particle and let K;(v)
be the number of descendants of this particle to the left of L at time r; + v. Define

2C10/p?
K; = / K;(v)dv.
0

Then

R ts
> K, g/ N, ((—o0, L))dr. (3.126)
i=1 t
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For all i = 1,2, ..., R, by Tonelli’s theorem and (1.42), and interchanging the roles of y and L —y in
the last step, we have for n large enough,

2C10/p?
E[K;] :/0 ’ E[K;(v)]dv

2C10/p? L B
= /0 / po(L,y)dydv

2C10/p* L 1 B (E Y 2 7 2,3
y)* pv B(L+yv B
/0 /_oo N (p 4 % o T gt )
2C10/p? foo 1 2 T _
y B(2L y)U)
> ex — L O+ PV ) dydw. 3.127
/0 /0 5y OXP <py 5, ~ Co 5 Yy ( )

Since p > C108/p?, for n sufficiently large, we have for all y > 0 and v < 2C1o/p?,

2L — 5
Thus by (3.127) and (3.128), we get for n sufficiently large,
2C10/p?
E[KZ] > / 10/p %679010/4+0(1)d1j > 07120675010/2_ (3.129)
0 P

Note that random variables {K;}*, are independently and identically distributed. Moreover, con-
ditioned on F%,, the random variables R and K; are independent. Let B € F;, be the event defined
in Lemma 3.10. By (3.126), we have

R
E[R|F,|E[Ki|Fi,)lp = E [ZK
=1

~7'—t1:| 1p < E[/t2 N, ((—o0, L))dr - 1p

t1

]—‘tl] . (3.130)

Note that E[K;|F,] = E[K;]. By (3.103), (3.129) and (3.130), we have for n sufficiently large,

1 scuz LB

ER1p| < —7
[R1p] < C1o p? p9/4

(3.131)

For every i = 1, ..., R, we consider three branching Brownian motions. All three processes start
from a single particle at L at time r;. The first process has inhomogeneous birth rate b(x) and
death rate d(x). Each particle moves as Brownian motion with drift —p. The second process is
constructed based on the first process with the extra restriction that particles are killed upon hitting
0. In the third process, the birth rate is the constant b(0) and the death rate is the constant d(0).
Each particle moves as standard Brownian motion without drift. We denote by m;_,, and m?_ri
the minimal displacement at time ¢ in the first and second processes respectively. We let Mto—r,-
be the maximal position that is ever reached by a particle before time ¢ in the second process.
Furthermore, for the third process, we denote by m the all-time minimum and M the all-time
maximum. Because of the monotonicity of b(z) and d(z), we can couple the second and third
processes such that M stochastically dominates Mf_m. Taking the drift into consideration, we
also have that m?,ri + p(t — r;) stochastically dominates m. Note that in the third process, since
b(0) = d(0), the branching is critical and the process dies out eventually. According to equation
(1.7) of Sawyer and Fleischman (1979), we have for z large enough

Pim<L—1x)< 6

ot P(M>L+z)<

6
= (3.132)
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Thus, by the construction of the first and the second processes, we have

P(mt r <L—C> <P<{mt” <L—C4}O{Mt0_n_ <L+C4}> +P<Mt v >L+C4>
p p p p

—P(mt N L—C>+P<Mt . >L+C>
p p

Note that t — r; < 2C10/p? for all r;. By the stochastic dominance relations and equation (3.132),

for Cy > 2C4p, we have for n large enough,
Cy - C4—2010> ( - C4> 12 9
Plmy,, <L-——)<Plm<L-——""—|+PIM>L+— | < ———>p° (3133
( . p> ( p p (G —2C1022” (313

From (3.102), (3.131) and (3.133), we can choose constant Cy large enough such that for n large
enough,

V) =Elr( o)) e
PlmB<L-=2)<E Plmi, <L—"2)1g|+e< PCo/ +e < 2.
< P ; o p) " C10(Cy — 2C10)? P4

(3.134)
For any k > 0, by choosing & appropriately, equation (1.39) follows from (3.123), (3.124), (3.125)
and (3.134).
Next we consider the case when B(t —t(L))/p — 7 € (0,00) as n — oo. Choose time v < t for
which
2/3
p p
L <v—tL) <K 5
Let r = t —v. By Remark 2.3, the previous argument still holds with Z(r) in place of Z(0) and
Y (r) in place of Y(0). As a result, equations (1.38) and (1.39) follow in this case.

Finally, when ¢ satisfies (1.37), we prove equations (1.38) and (1.39) by contradiction. Since
the proofs of equations (1.38) and (1.39) are essentially the same, we only prove equation (1.38).
Suppose equation (1.38) does not hold true. Then there exists £ > 0 such that for all positive
constants C's, we have for infinitely many n,

Cs
P(mtn <L +1>§1—/€
;1 /B /3
We can therefore choose a sequence of positive integers (nj)Jo-‘;l and another sequence of positive
constants (Cs;)52;, both of which tend to infinity as j — oo, such that

_ 03
P(mtnj,nj <Ly, + 1/3) <l-k (3.135)
nj

For every subsequence (n;)32,, there exists a sub-subsequence (n;, )72 such that

lim ank (tn]k - tnjk (Enjk ))

k—o0 pnjk

=7 €[0,00). (3.136)

Fix any positive constant C3. Then C3 < Cs3j, for k sufficiently large. From (3.135), we have for k
large enough,

P(mtnj g, < I_Lnjk + ?%) <1-x&. (3.137)
On the other hand, note that (tnjk)?’:1 satisfies the assumptions of one of the previous two cases
by (3.136). Therefore, equation (1.38) holds with n;, in place of n, which contradicts (3.137). As a
result, equation (1.38) holds true. Equation (1.40) follows from (1.38) and (1.39). O
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4. Proofs of lemmas

In this section, we will prove all the lemmas except Lemma 3.5, whose proof is deferred until
Section 5.

Proof of Lemma 3.1. First, let us prove equation (3.24). When z < 0, equation (3.24) holds
automatically. It remains to consider the case z > 0. If z < /p/f, then

2
P _P .
1< JE<B < —2
BB

If z 2 \/p/B, then according to (3.17), (3.21) and (3.22)

1 2 2
1< — <« 2P
cop B

For z satisfying (1.19) and y € [z — I,z + ], we have L* —y > L* — 2z — 1 > B~'/3, which proves
equation (3.24).

We next prove equation (3.25). When z > 0, equation (3.25) is obvious. It remains to consider
the case z < 0. If —z < /p/f3, then

2
l,ﬁ\/g<<p6xz—LT.

If \/p/B < —2z < p?/B, then according to (3.20),
<

1
I < S P <1t
lcolp ™V B

SerEs<g
lcolp ﬂl/?’

For z satisfying (1.19) and y € [z — [,z + l], we have y — LT > 2z — LT — 1 > A71/3, which proves

equation (3.25). O

= L*— 2.

If —z < p?/B, then
< z— L%

Proof of Lemma 3.2. Following sunllar calculations to those in (3.119), with the help of the Taylor
expansion /1 —xz =1 —2/2+ O(z*), we have for all y € [z — [, 2+ ],

A A

< s ()

Expressing the above formula in terms of ¢ according to (3.16), we obtain for all y € [z, z + ],

) - )l < =+ 0(55).

cp 3p
If |z2| Z \/p/B, then I < 1/(|colp). By formulas (3.21) and (3.22), we get
l 1 _ BI? B _
I 2/3 2/3
P e <P EE S cge? 55 <P
If |2| < \/p/B, then I < \/p/B and ¢ < 1. We get
2
Lo b g SO 1 e
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Combining the above three formulas, equation (3.26) follows. Moreover, by (3.24), we have t(y) >
B2/3 for all y € [z — 1,z + 1] and equation (3.26) implies (3.27). O

Proof of Lemma 3.3. Note that for 0 < z < 1, we have (1 —z)32 =1 — 32/2 + 322/8 + O(z®). For
all y,

o0 —a) =t 0+ 20 (1 (1))

3 2(L* —z)  8(L*—=2) (L* — 2)3
B2z —y?
—p(z—y) = V2B(L* —2)(z—y) — 4| (2 —y)? PlEZd),
Pl =) = VIR =)z =) — gt 0P+ O
Because L* — z = c2p%/(2/3), the above equation can be expressed in terms of ¢ as
B 2 Bz —y|?
g(y)—g(z):P(l—c)(z—y)—%(z—y) +0 T ap ) (4.1)
For all y € [z — 1,z + ], we have
BlZ 62[3
— < pl|1 — — - |- 4.2
l9(y) — g(2)| < pl|1 —c| + 20 + O Y (4.2)
If |z| Z \/p/B, then according to (3.19), (3.20) and (3.22), we see that
12 1— 1 273 2 1/2
BEcpp—qed_ L oy Bl O Py (43)
2cp lcol  1+ec 3p3 ™ fecol3pS ~ pP/2
If |z| < +/p/f, then according to (3.19) and (3.23), we see that
3/2 273 2
p 541 6l 1
el < - L <~ =
plll —c| < 51/2\00\ < 1, Y < 20y V0 = 1. (4.4)
The lemma follows from (4.2), (4.3), and (4.4). O

Proof of Lemma 3./. We are going to express p;(x,y) in terms of s, and w. Writing ¢ = t(y) — sy
and using (1.42), we have

_ 1 ) (L —y—w? sy \* PP
pe(x,y) = \/ﬁ €xXp <P(L —w) — py — 2(y) kzo <t(y)) - g(t(y) - Sy)
By + L* — w)(t(y) - 3y> ﬂQ(t(y) - sy)3
* 2 * 24 >
B . (L* —y)*  p*tly) | Bly+ Ly) | Bt(y)®
= Ve P <”L T Ty 2 2 Y )
* 283 2 82 s
X exp < — pw— 5“1;(11) + B(L 2_3/)5?; + ﬁlgsy . 524?/ + s t(gy) y th(g)z y

L=y sy sy v ), wLr—y) 5y
2t(y) <t(y) " t(y)? " t(y)3> " t(y) (1 " t(y)>

U () e () St () ) e

k=4




776 Jiaqi Liu and Jason Schweinsberg

Using that t(y) = \/2(L* —y)/B and y + L* = p?/B — (L* — y), we get

: (L* —y)*  p’tly) | Bly+L)y) | Bty)?
R O R 2 MY
e BYAW =) PPy) | (PPtly) BRI —y)PPY | SR —y)P
A (5 ) A
= ol ) 2w
=9(y). (4.6)

k=

(635 —2w)?
=t (4.7)

For all w, according to (4.5), (4.6) and (4.7), replacing t(y) with \/2(L* — y)/, we have

. 2.3
pe(z,y) = ;Tt exp <g(y) —pw — ﬁw;(y) + oL 5 v + &l;y B 52?

+@m%_wm%%1v—w<% s§+82>

8 8 2t(y) \tly) t)?* t)?
w(L* —y) s (Bsy — 2w)?
() )
2 2 92 2
= \/% exp (g(y) — pw + fwsy — %82 - (s, ™ ) ) (4.8)

For all w € R, s < t(z) and y € R, since —(5512/ —2w)?/8t < 0, formula (3.29) follows. Furthermore,

if s < 872/3 then by Lemma 3.2, we have Sy < B=%/3 for all y € [z —1, z+1]. Then for |w| < =3,
we get

s2 — 2w)?
(5y8t2)_0(1).

and therefore (4.8) implies (3.30). O

Proof of Lemma 5.0. Equation (3.33) follows from Lemma 6.2 in Roberts and Schweinsberg (2021)
directly. We use a similar strategy as in the proof of Lemma 6.2 in Roberts and Schweinsberg (2021)
to prove (3.35). For every y € [z — [, z + 1], define

and

2-1/382/35, ¢ 1/3
e v 0 <z < 2°C
fy(x) = {O

otherwise

2P0 < g < 213¢
f(z) = .
0 otherwise.
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We can express I'y in terms of the function f, by writing

— /8283 i(w) Bsy(L—X;(u
T, = exp (2 1/3ﬂ2/38y’y1 _ 6y> Z ePXi () oBsy (L—X;5( ))1{L—Csﬂ*1/3<Xj(u)<L}

JEN,
—1/3 n2/3 Bs, X (u) 1/3
—exp (2735 sym = =) S N (28) (L - X)) ). (49)
JEN,
According to Lemma 3.2, we see that 32/3s, — Cs uniformly for y € [z — I,z +1]. Thus
2.3 3
exp (21/362/3sy71 — 66’Sy> — exp (21/37105 — C6’5>, asn — 0o. (4.10)

Also, for every n > 0, if n is sufficiently large, then for all z,

sup [ fy(z) = f(z)] <nf(x).

y€(z,z+]
Therefore, for every n > 0, if n is large enough, then for all y € [z — [, z + ],

> (200 - X)) = 3 e g (28 (L - X(w) ‘

JEN, JENL

< 3 e (8L - X;(w)). (4.11)

JEN

Furthermore, since u satisfies (3.13), equation (3.15) implies that
X5 ( 1/3 1 2B i
Z e ¥i < 28)3(L — X;(u ))) —p fW/o e TV Ai(y +y)dy. (4.12)
As a result, equation (3.35) follows from (3.31), (4.9)—(4.12). O

Proof of Lemma 3.7. First, let us summarize properties of the function g(y) that will be useful
throughout the proof. For y € (—oo0, L*), we have

,y):—P‘f’m’ g”(y):_ Q(L*ﬂ_y)<0'

The function ¢(y) is increasing in the interval (—oo,0) and decreasing in the interval [0, L*). The
derivative of g(y) is decreasing and g(y) is a concave function. Thus g(y) is bounded above by its
first order Taylor approximation. We have for all 1, z9 € (—o0, L*],

g9(z2) < g(z1) + ¢’ (1) (22 — 21). (4.13)

First consider the case z > 0. By (4.13) and the fact that the derivative of g is decreasing, we
have for all y € [z, z + d],

9(y) > g(2) + 9 W)y —2) > g(2) + ¢ (z + d)(y — 2).

Also noticing that t(y) is a decreasing function of y, we have

1w L o [T geram—2
— € d > ——¢€ z e z -z d
/z /27t (y) V= /27t (z) /z Y

1 1 ,
— e9(2) 1 — 49’ (z+d)y.
ORI )



778 Jiaqi Liu and Jason Schweinsberg

According to the definitions of ¢y in (2.3) and ¢ in (3.16), we get
_On . Cn

dg'(z+d) < dg'(z) = e e

Therefore,

9 q

z+d 1 1 1
——e > e9®) 1—e /2, 4.14

=/ 27t(y) V= \/2mt(2) l9'(= + d)’( ) 414
Moreover, since t(z) = ¢p/f and |¢'(z + d)| < p, we see that

Bl/?

9(Y) gy >
€ dy~C1/2p3/26

z4+d 1 )
_— 9=, (4.15)
/z V/2mt(y)
On the other hand, we will separate the integral on the left hand side of (3.65) into two parts
and upper bound each of them. Define
h=p Yyl ==L 116
8 = (4.16)
We claim that d < h and h < L* — z. Indeed, since z 2 \/p/[3, equation (3.22) gives
51/2 /82/3
CcoC z W > 7,
which implies
1 cp

h= P <« s (4.17)

We denote

* *

z+h
1 9V dy = / ;eg(y)dy + ;eg(y)
2+d \/ 27t (y) 2+d A/ 27t(y) 2+h £/ 27t(y)
We first consider K. By (4.13), we have g(y) < g(z+d)+ ¢/ (2 +d)(y —z—d) for y € [z+d, z+ h].
Hence,

dy =: K1 + Ko. (418)

1 o [T L 1 1
K, < e9(z+d) o9 (z+d)(y—= d)dy< e9(z+d) (4.19)

1< < —_
V27t (z + h) +d V27t (z + h) 9'(z + d)|
Since z 2 \/p/B, by (3.19) and (3.22), we have
ﬂQdS
ErEh
According to equations (3.19) and (4.1), we have for n sufficiently large,

2 273
g(z+d>=g<z>—pd<1—c)—ﬁd+0(M)

2cp c3p3
d(l —c
<g(2) - [)(2)
—g(z) - 51

2(14¢) —
Also by (4.17), we have for n large

pd(1—¢) > (4.20)

(4.21)

A\
Q
—~

N
~—

|

t(z+h)=14/1-
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Combining the above two observations with (4.19), we have for n large enough,

1 1
K| < e Cn/4 e9(2) . 4.22
t= mt(z) |9 (z+d)] 422

We next consider Ks. Recalling that the function g(y) is decreasing when y € [0, L*] and t(y) =

V2/BVL* —y, we get

L*
Ky < eg(z—i—h)/
z

61/4 25/451/4
23/4, /7 3T
We are going to apply the same argument that led to (4.21). Because z 2 +/p/3, we have pcy >
B2/3 /(¢ep) by (3.22). Thus by (3.19) and (4.16), we get

2/3 2,3
ph(1 — ¢) < phcy > ?h = b

(L* —y) Y4y = (L* — z)3/4e9z+h), (4.23)

3p3
According to (4.1) and (4.16), since cco > B7/12/p7/* by (3.22), we have for n sufficiently large,

oz +m) < g(z) - 02D g

cenp? 1/4
N 2030 <9(z) - p1/12'
2v/282/3(1 + ¢) B
Combining this result with (4.23), we get for n large,
95/4g1/4 » 1/ 312 53/ pl/4
K, < ﬁ(L — 2)3*exp (g(z) - 51/12> = G172 exp <g(z) - ﬂ1/12>. (4.24)

Furthermore, since ¢ < 1 and p? > /3, we notice that

312 /2 pl/4 gL/2 .
i exp (g(z) - 51/12> < T2 eI, (4.25)

As a result, equations (4.15), (4.24) and (4.25) imply

z+d 1 @)
Ky, < / —=e9Wdy. (4.26)
: /2mi(y)
For any 7 > 0, choosing C1; large enough such that n(1 — e=¢11/2)/1/2 > e~ C11/4 equation (3.65)
follows from (4.14), (4.18), (4.22) and (4.26).
Next consider the case z < 0. The proof is similar to the previous case. By (4.13) and the fact
that the derivative of g is decreasing, we have for all y € [z — d, 2],

9(y) = 9(2) —g' () (z — ) > g(2) — g'(z — d) (= — y).
Also, note that ¢(y) is a decreasing function of y. Thus,

e~ 9 () z=y) gy,

/z ¥69(y)dy > 169(Z)/
z—d £/ 2mt(y) \27t(z — d) od

= ! e9(2) 1 (1 — e ' (z=d)),

V2rt(z—d)  g'(z—d)
According to the definitions of ¢y in (2.3) and ¢ in (3.16), since ¢ € [1,3/2), we get
~ Cu 2C1

—dg'(z —d) < —dg'(2) = 1—|—c§_ 5

Therefore,
9(2)

/ ;eg(y)dy > 1 e )
2—d /27t(y) V/2mt(z — d) g'(z —d)

(1 — e 20u/3), (4.27)
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On the other hand, since g(y) < g(z —d) + ¢'(z — d)(y — 2 + d) by (1.13) and t(y) is decreasing,
we get

z—d 1 1 z—d ,
769(y)d < 769(2—@ / ed (z—d)(y—z—',—d)d
/_oo Vi) T etz —d) . v

< 1 e9(z—d) 1

SN G (4.28)

We will apply the argument that led to (4.21) again. Note that under the current scenario ¢y < 0
and 1 < ¢ < 3/2. From (3.19), (4.1) and (4.20), we get for n sufficiently large,

pd(1 —c¢) C11 Cn
—d) < otk Sl — < _
9(z —d) < g(2) + — 96) 55 =93 — 5
Combining the above formula with (1.28), we get for n large
z—d
1 1 1

= Iy < e9(2) e—C1/5 4.99
oo /27t(y) = V2rt(z —d) ¢z —d) (4.29)

For any n > 0, choosing Cj; large enough such that n(1 — e=2611/5) > ¢=C11/5 equation (3.66)
follows from (4.27) and (4.29). Therefore, for any n > 0, we can choose Cj; large enough such that
(3.64)—(3.66) all hold and the lemma follows. O

Proof of Lemma 3.5. First consider the case z > 0. For z < L and y € [(, 00), from (1.42),

g =or (o5 -5) o

Using that x < L and y > (, we have
t 2zx—(— t(z s 2(L—z-—2d
S Bt 2mCoy o BIE) | fs )

2 2t - 2 2 2t
* —-1/35-1/3
B o gy
2 2 t t

Note that we can expand 1/t as a geometric sum and thus

L*—z L*—z (L*—2)s (L*—2)s’ « s kﬁL*—z (L* —2)s  (L* — 2)s?
O N O N (C §<t<z>> T e e

Recall from (3.17) that t(z) = cp/B and L* — z = ¢?p?/(2B). Therefore, from the above two
formulas, we get

Bt 2w—(—y _Bs? 27Ty
P= 2t 2t ¢ '

Since z 2 +/p/B, we have p(1 — c) > 5%3/(cp) by (3.19) and (3.22). Thus,

B /8782 271/3571/3,)/1 _ 62/3
2t t “oep

= p(l—c)

< p(1—c).

Therefore, for n sufficiently large, we have for all z < L and y € [(, 00),

pt 2z—-C—y _p

Equation (3.67) follows from (4.30) and (4.31).
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Next consider the case z < 0. We are going to apply an argument that is similar to the proof of
(3.29). Writing r = z — y and expressing p;(z,y) in terms of s, w, r and z, we have

2

1 . (L — 2471 —w)? & s\* p
o) = e (pl2 = w) otz - 1) - 50 kzo(t()> () -9
L BE T () ) | ) o) )

2 24

_ 1 : (L* —2)*  p’t(z) | Bz +L2)  B*t(2)°
_\/ﬁeXp<pL TP Ty T 2 2 LY )
r+w)t(z *—2)s r+w)s 2g3 2t(2)s?
o (—purgr - AL B o0 fotus 0 )
B B2t(2)2s - 22 s 52 3 (r=w)(L"—2) s
s %) (t(z) T TG 3> i) (1 * t(z))
_(L*—z)200 s k_(r—w)200 s k_(r—w)(L*—z)OO s \"
o ) e i) o (@) )
(4.32)

7

By a computation similar to the one leading to (4.7), we get

(Bs* + 2r — 2w)?

8t

<0.

Combining the previous two formulas with (3.17) and (4.6), we have

r+w)i(z *—2)s r+w)s 263
pe(z,y) < \/;Trtexp (9(2)—,010-1-;)7“— B( +2 )t(2) I B(L ; ) n B( 42‘ )s 524
Bt(2)s*  BP(2)’s  (L*—2)*( s 52 3
+ 8 - 8 B 2t(z) (t(z) T t(z)2 + t(z)3>
B (r—w)(L* - z) s
o (rG)

1 253
\/ﬁexp (g(z)—(c—l)pr—pw—hﬁsw— >7

Cczﬂl—%.

Note that that t = ¢(¢) — s¢ and s¢ < B=2/3 by (3.26). Thus for y < ¢, equation (3.68) holds with
¢ in place of z, ¢¢ in place of ¢ and s¢ in place of s, so we have

which is (3.68). Furthermore, let

1

283
pi(z,y) < o P <g(C) —(c¢ = Dp(C —y) — pw + Bscw — 56C> (4.33)

Since ¢ < z < 0, we have ¢ > ¢ > 1. Therefore, equation (3.69) follows from (4.33). O
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5. Second moment estimate

5.1. Proof of Lemma 5.5. A key step in the proof of Lemma 3.5 is the following second moment
estimate, which will be proved in Section 5.2. Recall that ptL (z,y) is the density of the process in
which particles are killed at L.

Lemma 5.1. For every z satisfying (1.19), (2.1) and (2.2), let
0<s< 723, t=t(z) —
Suppose 0 < L —x < B~Y3. Then
2/3 4+/2
/ / pE(x,r) pt u(Ts z)) drdu < (5 i 1 6Xp <p;1: —2pz+ pL — TB(L* - z)3/2>. (5.1)

Note that equation (5.1) means that the ratio between the left hand side and the right hand side
is bounded above by a positive constant uniformly for all n and all z satisfying (1.19), (2.1) and
(2.2).

Proof of Lemma 5.5. According to the standard second moment formula (see e.g. Theorem 2.2 in
Sawyer (1976)), we have

EINHT)?] S /Z PE(z, y)dy + 2 /0 t / Loo p5<x,r>( /I Pl y)dy)erdu. (5.2)

Regarding the first term in (5.2), we upper bound pf(z,y) by pi(x,y) and then apply (3.29) to
get

2
[ty < [ e (st0) - o0~ a) 4 5L = 2)00) - 0) - T 0) ~ 0 )

On account of (3.26), we observe that 0 < t(y) —t =< 5~2/3 for y € Z. Also notice that |L* — z| <
3~1/3. Therefore, we get

/Ipf(%y)dy S /I\/Q;w exp (g(y) —pL* + pw) dy

ﬂ2/3
_ epa:erLprL* (

_p4

p

L )2 L+ L*( >1
/z\/27rt(y)egyd [32/36 o /\/27# Vi)

(5.3)

For z satisfying (1.19), we see that g(z) > 0 and t(y) < 2t(z) for all y € Z when n is large enough.
Also note that ¢ < 3/2, p/ﬁl/3 > 1 and 71 < 0. By (3.17), we get for n large,

p —pL+pL*

-1 —1
< dy> ie—pLerL* ( ! )
,82/3 \/27Tt B2/3 2¢/mt(z)

2w o p \TP np
= I 3173 eXp 21/351/3
< 1. (5.4)

By (5.3) and (5.4), we have

L B/ px+pL—2pL* 1 g(y) ’
Jy)dy < el dy | . 5.5
/Ipt (x y) Y p4 ‘ </I V 27rty ‘ y) ( )



Particle configurations for inhomogeneous BBM 783

Regarding the second part of (5.2), by the Cauchy-Schwarz inequality and Tonelli’s theorem, we
have

/t /L pﬁ(x,r)(/]?fu(r, y)dy>2drdu < l/ /t /L Pﬁ(xar)(pf,u(r, y))2d7“dudy. (5.6)

We want to apply Lemma 5.1 to upper bound the above expression. First, by Lemma 3.1, we know
that (1.19) holds with y in place of z. Also, by Lemma 3.2, for all y € Z,

t(y) = t(z) £ o(87%7).

As a result, the assumptions in Lemma 5.1 are satisfied, and we can apply Lemma 5.1 to get

[ ke ok ) druay

g2 1 428,
S ﬂ4 /y)exp(pm—pr—l—pL_m(L _y)3/2>dy

P T 27Tt( 3
62/3 pr+pL—2pL* / 1 2
=1 __¢eP? I | ———e2Wgy. 5.7
o  2mt(y) 57)

According to Lemma 3.3, we have for all y € Z,

e9(2) — c9(y)

From the previous equation and (3.27), we get

1 1 2
l/ezg(y)dyx (/eg(y)dy> . 5.8
7 2mt(y) 7 \/2mt(y) o

By equations (5.6), (5.7) and (5.8), we obtain

Lt L ’ B et pL—2pL* ?
/ /_ pu(a:,r)</pt_u(r,y)dy) drdu < pT@Px pL—2p (/ W dy) : (5.9)

The lemma follows from (5.2), (5.5) and (5.9). O

5.2. Proof of Lemma 5.1. The proof of Lemma 5.1 will be divided into the following three lemmas.
Lemma 5.2. For every z satisfying (1.19), (2.1) and (2.2), let

0<s<p 23, t=1t(z) —s, uy = B2 — )V,
Suppose 0 < L —x < ﬁ_l/?’ Then

/ / Py (x,7) pt u(7 Z)) drdu S ’(6)/ exp (px— 2pz 4+ pL — £ z)3/2).

Lemma 5.3. For every z satisfying
L* =z B30g"3(p/p'?),  z—Lt> g3 (5.11)
let
0<s<p 23, t=1t(z) —s, uy = B2 — )Y
Suppose 0 < L —x < 5_1/3. Then

2/3
Iy / / pu X, 7" pt u(T’ Z)) d’rdu /(8) exp (pg; — 2pZ + pL _ @(L* o 2)3/2>.
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Lemma 5.4. For every positive z satisfying
B <L — 2 < 7P 0g (o) 511, (5.13)
let
0<s<p 23, t=1t(z) —s, uy = B2 — )V
Suppose 0 < L —x < f71/3. Then (5.12) holds.

Proof of Lemma 5.1. 1t suffices to show that for every subsequence (n;)72,, there exists a sub-
subsequence (n;, )52, such that

tn. Ly . L L 2
Ik Ik n]-k njk
Du (mnjk,r) (ptn‘ . (1, ank) drdu
0 —00 J Tk

k

%3 4\/ 2Bn;, % 3/2
S m exp (Pnjk Tnj, = 20n5, %5+ Png, Ly, — f@mk = Zn;,) ) (5.14)

o0

Given a subsequence (nj)jzl,

following holds:

there exists a further subsequence (n;, )2, such that one of the

> /67;1/3'

Tk

* —1/3 1/3

(1) Lnjk — Zng, > /Bn]k/ 10g4/3(pnjk /ﬁnék) and Zng, LIij
—1/3 % —1/3 1/3

@) Bl < Ly =, S BB 10g3 (pn, /BY).

k

In case 1, equation (5.14) follows from Lemmas 5.2 and 5.3. In case 2, equation (5.14) follows from
Lemmas 5.2 and 5.4. u

The second moment estimate relies on delicate estimates of the density. Different approximations
to the density pf(x,y) were obtained in Roberts and Schweinsberg (2021). The following results
come from Lemmas 2.6, 2.7 and 2.8 in Roberts and Schweinsberg (2021).

Lemma 5.5. For allt > 0 and x,y < L, we have

) 1 (L—z)(L—y) (y—x)® p%
L < _ _ _ _
py(z,y) < min {t1/27 137 exp | px — py 57 5 + BLt ). (5.15)

Moreover, whent >2872/3, 0< L —x < 8713 and y < L, we have

/31, — 1 9
pt[/(.T?y)g’B(\/»]fx)maX{l,M(L—y—ﬁ;)}

(y—a)> %t Bla+yt B 1 512

T_7+ 2 24 2B1/3t<L_ >>

It remains now to prove Lemmas 5.2, 5.3 and 5.4.
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Proof of Lemma 5.2. For all u € [0,u1], we see that t —u > t/2 > B2/3 for n sufficiently large.
We will bound pZ(x,r) by equation (5.15) and pf_,(r, z) by equations (1.42) and (5.16). We have

nL< //mln{ 1/2,(L_iggg_r)}exp<pm—pr—(2r)2 p2“+51;>
O A 1

1 Bt —u)?
X exp <51/3(t_u)(L -z— 2“))1{0<LT<[31/3}>

X €xp <2pr —2pz — (7;:'2)2 — At —u) + B+ 2)(t —u) + W)drdu.

Denote

M(u,r,x) = min{ 1 (L —ZL‘)T}’

ul/2’ y3/2

and

1 B(t_ )2 2
N(u,r, z) = 1{r>571/3} + 52/3r2<max {17 m <L — = 2”) })

1 Bt — u)?
X exp <51/3(t_u) <L — 2 — 2u>> 1{OST.§6—1/3}.

Interchanging the roles of r and L — r, we have

ns )

204 _ )3
—i—%—pt—i—ﬁLu—i—ﬁ( —r)(t—u)—&-ﬁz(t—u)—i—W)drdu.

— L 2 L—r— 2
u7",:13)]\7(u,7°,z)exp<paz—2pz—}—pL—pr—(aC 2u+r) _ tiuZ)

Since t =t(z) —s, L = L* — (2,3)_1/3’71 and

1 i <u+s> (5.17)

k::O

we can express —(L —r — 2)%/(t — u) as

(L =22 X (u+s\* (28)" Y3y +1)2  2(L* —2)r  2(L* — 2)(28)" 3y
_Z_%(t ) B t—u T T t—u
(L* —2)?  (L* — 2)? (L* — 2)? (L* — 2)? 2(L* — 2)r
< — ) — e (u—i—s)—W(u—Fs)Q— ) (u+s)” + -
LA - 228y (5.18)

t—u
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Rearranging all the terms, I; can be further bounded as follows:

2
I Sexp <pm — 2pz + pL — p*t(z) + BL*t(2) + B2t(2) + P 1(2 - > / /
(L—=2)—r)? (L*—2)?
><M(u,r,x)N(u,r,z)exp(—pr— B BT (u+s)— W(u—i—s)
*—2)? f—2)r — 2z 1/3~, 2u
g A 2O P i
— Bt —u)r — fz(u+s) — BL*s — p2(u+ s)° — P (u+ 5) + FHe)(u + 5)" drdu.
12 4 4
(5.19)
Note that
24(2)3 £ _ )2
— p*t(2) + BL*t(2) + Bet(z) + b t1(2 S (Lt(z) S _ —4\{))%(L* —2)3/2. (5.20)
Also,
*_ oy / — 2 /
= t)fzf) 0 gyt < A t)((j)ﬂ) TN 08y oi(z) + B(28) s
= B(28) s
<0,
and

p2U 2 * *
Ter s—pPz(u+s)— BL*s = B(L* — z)(u + s).

Combining the above four formulas, we get

1 44/2
6L < 7 €XP (pm —2pz + pL — J(L* - z)3/2)

3
ul o) . o )
/0 /0 M(u,r,x)N(u,r,z)eXp(_T(p+ﬁ(t_u)_ 2(f_u )) _ (L 21)L )
*_22 *_22 *_22
_ (Lt(Z)Q) (u+s)— (Lt(z)3) (u+s)?— (Lt(z)4) (u+ 5) + BL* — 2)(u+s)
,32(u+3)3 th(z)Q(u—f—s) ﬁzt(z)(u+s)2
B 12 B 4 + 1 >d7“du.
Observe that (T — o
_ t(z)Z) (u+s)+ B(L* — 2)(u+s) — )4(u s)_07
¥ —2)? 24 () (1w + 5)2
(Lt(z)g)(u+5)2+6t()(4+):0,
L* — 2)? 20y - 5)3 2,3
_( t(z)4) (u+s)3_6(1;‘ ) S_BS '
Therefore,
I1<1exp<px—2pz+p[,_ L* 3/2)/ / M(u,r,2)N(u,r, 2)
~t

t—u 2u

exp<—r<p+ﬁ(t—u) (L*_z)>—(( — ) —r)? 5233>drdu (5.21)
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Denote the double integral as J. Write J = J; + Js where J; is the portion of the double integral
for which » > $71/3 and J, is the portion of the double integral for which 0 < r < ~1/3. We

first estimate J;. Since u < up = 6*7/12(L* — z)1/4 and s < ug, we see that S(u + s) < p. Thus,
according to (5.17), for n sufficiently large we get

*_ g ) o= (uts\”
p+5(t—u)—2(f—u):p”(z)ﬂ_ﬂ(u“)_z(ﬁ@ )Z<t<+z)>
k=0

gy 2L =) o~ (ut s\
_ Bt(z)(u+s)

t—u

p—Bu+s)
P
5

v

(5.22)

Therefore,

u1l 00
Ji ,S/ / M(u,r,z)N(u,r, z)e_”r/zdrdu
0 /371/3

—2

P 1 [e’] ul o0 L —
§/ 12/ e_pr/gdrdu+/ / %eﬁwﬂdrdu
0 u / 5—1/3 p—2 /371/3 u3/

. e_p/251/3< 4 AL—z)  8(L— a:)>.

2T EE T,
Since L —x < 713, for n sufficiently large,

e_p/wl/s(zx A(L - 2) 8(L—:r)>

2/3 2/3
< 6_9/261/35_2/3 _ B / ( P )46_/)/251/3 < ﬁ /

p? gY/3 " p ~ ot \ 13 A
Combining the above two equations, we have
/82/3
<= (5.23)
Next, we estimate Jy. Note that
! Blt—w?*\ _ 1 ~1/3 Bu+ s)?
BY3(t — u) (L_Z_ 2 = BBt —w) —(28)" " — 5 + Bt(2)(u + s)
1 B(u+s 2
- B3t —u) (‘ ( 5 ) +5t(z)(u+5)> +o(1). (5.24)

We will expand 1/(t — u) as a geometric sum. Using that t = t(2) — s, u < uy = f~7/12(L* — 2)Y/*
5

M(L - W) < 52/3(u+s)§: (Z(J;)‘S)k +o(1)
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Equation (5.22) and the previous formula imply that

Jo N/ / o (u r,x)ﬁ2/3r2(max{l,ﬁZ/gu})Q

a2 2,3
xexp(—m—(L z=7) —ﬁ; +ﬂ2/3u)drdu

2 2u

2 —1/3

| B
< / .Y / B23r2e=P 2 drduy,
0 U 0

3672/3 1 671/3 L . . 2
+ — (L—x)8*3r3exp | — pr_(L-z=r)] drdu
A

o2 2 2u
vl 1 g r (L—z— r)2
7 I — 2)52/3,3 _pr BT rmr)
+/36‘2/3 u3/2/O ( )7 exp 2 2u

2/3,\3
X exp ( - (53“) + BBy + 2log(52/3u))drdu.

When z > 3, we have —:U3/3 + x + 2logx < 0. Therefore,

) ~1/3

P 1 2/3.2 —pr/2
Jo < / u1/2/ B2/3p2e=P 12 drdy,
1/3 2
r L—z—r
/ u3/2/ 52/3r3exp< p2_( 2u )>d7"du

2/3 o r (L—z—1)?
< ﬂ )%/ /2 —7 / r3 exp < _ % - (2u)>drdu. (5.25)

Note that u; < p'/23-5/6. By applying exactly the same calculation as in equations (8.54), (8.55)
and (8.56) of Roberts and Schweinsberg (2021), we see that

—1/3 2 2/3
2/3 _pr (Lmz—r)” < P
x)p / B / 3 exp < 5 50 drdu < P (5.26)

Combining equations (5.21), (5.23), (5.25) and (5.26), we have

o B 4m(L* _ z)3/2>,

I
1S tp4

exp <px —2pz+ pL — 3

which implies (5.10). O

Proof of Lemma 5.5. The restriction (5.11) is equivalent to

B 1/3 23 p 3 ﬁ2/5
5 log 5175 ) 3~ c> e (5.27)

In particular, ¢ > SY/3p~! and 0 < ¢ < 3/2. For u; < u < t, we will bound both pZ(z,r) and
pF . (r,z) by equation (1.42). Similar to the calculation for I, interchanging the roles of  and
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L — r, we have

I, < exp <px —2pz + pL — p*t + BLt + ﬁzt)

g /t w2t — ) exp (”2“ p B g BLu B B u>3>

2 2 2 24 12
o0 Bu (L—z—7)2 (L—2z-r)?
- t—— | — — drdu. 5.28
/0 exp( r(p—i—ﬁ 2) o — rdu (5.28)
Using (3.17), to prove (5.12), it is equivalent to show that
5/3 2¢3 3
I < o exp <p33 —2pz+ pL — 3%) (5.29)

To simplify Is, we are going to estimate K in two ways depending on the value of u. This cutoff
value us will be defined based on y. introduced below. Denote

9¢2 301 1
A== 1 =S4 --ZA .
Tt we=gto oo (5.30)

Note that y. < 1 since for 0 < ¢ < 3/2,
1 (A-1)(A+1)

L= a1
_ 9c _ 1 _ 1
C4(A+1) 2 A+1
B 9c (A-1)(A+1)
C4(A+1) 2(A+1)2
B 9c B c _ 9c?
S 4(A+1) 2(A+1)2 8(A+1)2
1 (9% _c_9
“(A+1)2\ 2 2 8
> 0. (5.31)
Choose a constant C'1g > 0 small enough such that the following hold:
1 3016
- — .32
3 5 > Ce, (5.32)
— 1 +2C < —C (5.33)
33+ VIN(L+V17/2) 0 1o '
7 3
- + =Ci6+6C16 <0, 5.34
-8
i +9C16 < —Cls. (5.35)

93-3+2- (L +1)

3 1 1 /9¢
==+ -—=—1/— 1-— . .
U9 <2 + PR 1 +c+ Clﬁc>t (5 36)

Since y. < 1 by (5.31), we see that us < t. Also, when 0 < ¢ < 3/2, one can show that 3/2+ 1/¢c —
A/c — Cyge is a decreasing function of ¢. Thus by (5.32),

3 2 2[99 3 3C16 1 3C
gl [ Ry TR [t 17 _
“2—<2 3 3V4 472 2 )t (3 2 >t>016t (5:37)

Then define
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and ug > u; for sufficiently large n.
Denote the inner integral in (5.28) as K. When u; < u < ug, letting a = (p + St — fu/2)(t — u)
and b = L — z, K can be written as

Kkiéwmp<_Ou{b—W$f+ahﬂﬂM_ﬁL—m—rF)W. (5.38)

t—u 2u

For uy < u < ug, we claim that b — a/2 < 0. Because b — a/2 is an increasing function of w, it is
sufficient to show that for u = ug, we have b — a/2 < 0. Recall from (3.17) that t = cp/f — s and
L* — z = c?p?/283. Writing

U2

Y2 = =Y Ciec, (5.39)

we have that
2

b— 2= (1- 00)575 — (28) V3 - ;((1 +c)p— Bs — L 5y25)(1 — yg)(cg — s>

2 2 2
2 2,2 2
p 5 3¢ ¢ c 1 cy2 ~1/3
= — _ —_— — —_ = 1_ - - T . 4
ﬂ( 1 +y2(4 +2> 2)+p5( y2)<2+c 5 )+O(B ) (5.40)

We observe that y. is one root of

2,2
C
_7y+y<7+

. )—%:0 (5.41)
4

Therefore, according to (5.39) and (5.41), equation (5.

a p? (Ci? CrgA 1 cyo 1/
_ = 1— S 4e— 22 —1/3y.
b 5 3 ( 4 + 5 )—l—ps( yc+0160)<2+c 2)4—0(5 )

Because 1 — y. < 9¢/4(A + 1) by the second line of (5.31) and 1/2+ ¢ —cy2/2 <2 for 0 < ¢ < 3/2,
it follows that

a Ci6Ac?p? 9 _1/3

<P L opse| ———+C O(B~?3).

2= "o P\ qagy TOe) OB

Since ¢ > Y3p=1 by (5.11) and s < 72/3, we see that 2p?/B > psc and 2p?/B > B3, As a
result, for u = ug, and thus for all u; < u < ug, for n sufficiently large,

b—

b— 2 <. (5.42)
2
From (5.38) and (5.42), we obtain that for u; < u < ug,

Kf;Am@m<—(LZy—(LxTF>Mf§fhump<—(LZF). (5.43)

t—u 2u t—u

When us < u < t, we bound K by the formula for the moment generating function of the normal
distribution to get

Ké/wexp(—r(p+5t_m_l’_$_Q(L—Z)> r? t4u _(L_x)Q—(L_Z)2>d7~

oo 2 u t—u /2 u(t—u) 2u t—u
[ 2mu(t — u) u(t — u) Bu L—z 2(L—2)\2 (L-x)2 (L-2)?
N t+u exp<2(t+u)(p+ﬁt—2— v t—u > 2w t—u )

(5.44)



Particle configurations for inhomogeneous BBM 791

According to (5.28), (5.43) and (5.44), we have

Ir < exp (px —2pz + pL — p*t + BLt + ﬁzt)

2 _ Bru BLu 2 Bt —wu)® (L — 2)?
t—u)"? — t— - — — d
></u1( u) exp(2 + 5 2u 5 + 2 + B — u

+ exp (pm —2pz + pL — p*t + BLt + th)

pu Bmu BLu [ Bt —wu)3
/\/t—u B s S YR T )

Xexp@éiﬂx pole Loz Moay (osd (Lo,

R4 R (5.45)

We first estimate R;. Let y; = w1/t and yo = ug/t. After making the change of variables u = yt
and writing z = ¢gL* and t = ¢p/f — s, we obtain

Rl—exp<pw—2p2+pL—p2(c;—8>+B<B (28)71/% )(Z )+560pﬁ(cg—s>)

: ’ — T 2 23
[ e (510 - 5 G - ) s (e - o 5 ()
1y’ —co)p? _ —1/3, 12
LT e e D T

_l’_

g
Observing that

((1 = co)p?/2B — (28)/3y)? < (= c0)’p

> (o)

3
(cp/B—s)(1—y) T 4Bl -y) =
C(1-c)?®  (L—co)’p®s  (1—co)’pBs?
4eB(1 —y)  4c2(1— ) 43(1 —y)
we get
3 3 2 2
Rl,Sexp(p:E—sz—i—pL—czpB—1—0;8—2 1/3ylcﬁ1/3>
vz 1 pdrey  ccoy Ay S1-9y)? (1-c)? B(L—x)y/ p
/yl 1—y Xp<5(2 2 Tt T 12 _4c(l—y))_ 2 (CB_S)
y cy Sy Al-y)?  (1-c)? y | (1—y)?
+p23(_§+7_ g 4 _4c2(1—y))+0”582<§+ 1 )
v (=9’ (1 co)’pPs®
-8 (Gt ) - 13(1—y) )dy' (5.46)

Note that for s < B2/ and all y € (Y1, Y],

0< —2*1/3710B1p/3 + cpfs? <y83 + (1= y)3) = O(i)
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Since /1 — ¢p = ¢, the upper bound of R; in (5.46) can further be expressed as

203 p? cp 21 cpBs?
< _9 L2 P _ PP
fi S exp (px PETPET R +O<ﬁ1/3>> /yl 1—yexp< 4(1—y)>

¢ p? y® 2 1 22 (L y ¥ (1-yp)’ 1
- L 1—— ) +p?s(-—2 L — - .
eXp<45< 6 TV YT 1—y)+0p8(2 2 8 4 4(1—y))>dy
(5.47)
Let
1y P 1—y)3 1
h(y)__z_s_( 4) T a1 -
y)
Since for y € [0, 1],
1 3y*  3(1—y)? 1 1 1 3y [y
") = —= — 29 _ —(1-— )+ (21 <
M) =—5-5+"3 A1—y2 4 i—y2) 2\ =0,

we get h(y) < h(0) = 0. Also for all y € [y1, ya],

3 3 3,3 3,3
c 1 c 1 1 c
S-S+ ryr1-—) =L (c+—) -5
4 1—y

6
Thus,

3
1

cp Ay p? 21 cpBs?
51/3) 248 > /yl Ty " <_ 4(1 - y)>dy' (54

23 3
R; Sexp <px—2pz+pL—§pﬂ—|—O(

By (5.27), we have that

SiBpd Bpd BT2(LF — )4\ Bp3 677/12(0%2/26)1/4 3 312 53/2 cp
248 245( t ) - 245( cp/B ) =123 g2 > B

Also, because cpf3s? > 1, after changing variables twice, we get
v2 1 cpBs? ) /1 1 < cpﬂsQ)
exp| — ——— |dy < —exp | — dy
/y1 1—y < 41 —y) 0 Y 4y
_ / >1 ( Cp682y>
= ~exp| — dy
1Y 4

<1 (5.49)

Therefore, in equation (5.48), the term O(cp/B'/3) can be absorbed into —c3y?p® /244 in the expo-
nent and the integral can be neglected. By (5.27), we conclude that

5/3 263 3 5 3/2 3/2
R1§€p5 exp(px—2pz+pL—Cp> v p<—c P >

3 B 65/3 ex 4851/2
5/3 263 p
< o exp (px —2pz+ pL — 35) (5.50)

Here we want to point out that this is the only place in the proof of Lemma 5.3 where we need to
use the assumption ¢ > 813y~ 110g?/3(pB~1/3) instead of the weaker one ¢ > SY/3p~1.
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Next, we estimate Ro. Letting u = yt, by similar computations as for R;, we have

3 3
cp *p’s 1/3
Rg,iexp<p:r—2pz+pl}—2ﬁ+ 5 —27 7051/3)

Py vy (L—y)? y , y*  (1—y)?
/yg\/wexl’< Groit ) -G gra)
y'  (1—y)’ o (1—y)’
+C”ﬁ32(§+T)_5253(7¢+ 12 ))
o (=) _@_L—x_g(L—z) > (L-x)? (L-2)7
p<2(1+y)< o yt t(l—y)> 2yt t(l—y)>dy' (551)
Denote the exponent on the last line of (5.51) as A. For z < L and y € [y, 1], we get
_ty(l—y) By (L—x)* | AL-2)* 2(L-2) By
_2(1+y)K o 2>+ 22 e—y? gt ( Bt_)
A(L — =) Byt\  AML—-2)(L-2)] (L-=x)? (L-2)
_t(l—y)< ﬂt_>+ 2y(1 —y) }_ 2yt t(1-y)
_ty(l—vy) Byt (L—2)* (L—2)? 1l-y Byt
T2 14y <+Bt 2) vy vy Tyt )< +Bt_2)
e R e e
ty(l -y Byt (L—2)* 2 Byt\ | 2(L —a)(L - 2)
=3 1+y<+ﬁt_2> t(1+y)_1+y(L )<p+’8t_2>+ tl+y)

Recalling that ¢t = cp/B — s and L* — 2z = c%p?/2[3, we have

—Y(c c c 2 (2,2/98 — ~1/3.,\2
_ygl+§§(;_s)<p+5(ﬂp_s)_52y(ﬁp S)) _< /zl/iﬁy)(c(j/ﬁg_s)m
2 )2 -1/3
12Eyc2g (p+5<cﬁp_s) _5@/(@_5» +2(L_x()c(:/g /25(_1:35; P ()

Because L — 2 < 8713 and s < f7%/3, we see that for y € [ya, 1],

2(L — 2)(*p*/28 — (28)Pn) _ ep
(cp/B—=5)(1+y) ~ s

We also observe that pBs® < p/BY/3, 52s% < p/BY3 and

(@028 (28)Pn)® _ 4/45253( > St PpPs
(L+y)(ep/B—=5) = (A+y)ep/B cp/B) T AB(1+y) 4(1+y)
Therefore, equation (5.52) implies that
PPy —y) cy)” c? Y s cy 2 c?
A< B[ 2(1+y) <1+C_2> TA(lty) T4y (1+c_2>} e S[_4(1+y)

(D DA R D 0D o)
9.5
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Ry <e x — 2pz + pL 26 p 3—i—O p )
« _ _sF _r
2 S exp | pr = 2pz+pL— 7 73 (17 ”
3 /.3 3 3
PPy Sy Sy Sy y) Y2 c
rFlzLdy g I 47 1 _ gy -
XeXp<5(4+ 4 4+4+2( er)(jLC 2) 4(1+y)
oy 62(1_|_C_7y Py c2y3_62(1—y)3_ c?
l+y 2 2 4 41 +y)
y cayl—y) y(d—-y) cy y Y\ 2
(-3 2) (o= 3 25 0 ) o
< U TS ) Ty TV T ) T U)W
(5.54)
Define 5
2y 10 2y , (2 6) 2
=2 — 4= =+ - — 5.55
W) 3 +<3 +c)y 02+c y+c2’ (5:55)
and )
_ gy (5 2 ER VRPN
) = 5 (2 + ) (20 +3c—|—2>y 2 - 3. (5.56)
After algebraic calculation, equation (5.54) is equivalent to
203p3 >
Ry Sex x — 2pz + L————i—O /
2 p<P p p 3 3 51/3 1_|_y 1 —y
Py 2. Y
X e _ + p°s dy. 5.57
xp< 5 4(1+y)¢(y) p 1+yw(y)> y (5.57)

Below we will obtain the upper bounds for ¢(y) and ¥ (y) in the cases z > 0 and z < 0.

Let us first study ¢(y). Note that for every ¢, we have ¢"(y) > 0 for all y € [y2,1]. Therefore,
for y € [y2, 1], the function ¢(y) reaches its maximum either at 1 or at yo. When y = 1, we have
for all ¢ € (0,3/2),

8 4 8(3/2—¢)
i R
For ¢ € (0,3/2), since 0 < y2 = y. — Cic < 1, after rearranging terms, we have

_ 220 _ 8 2V (2 6y 2
Hy2) = 312(1 yc+0166)+(3+c>y2 (62+C>(yc Cec) +

< 0. (5.58)

2 5 8 2\ o 2 6 2 2C%6c 2016
<= w e (5o 2= (G Do 3 o
_3yc( Ye) + 3+cyc C2+cy+CQ+ 3 + +6C16
20 2C
= ¢(ye) + 3166 + 2235 4 606

Since y. satisfies (5.41), we have y2 = yc(3 +2/¢) — 2/c. Replacing y2 with y.(3 +2/¢) —2/c in the
first step and replacing y. with 3/2 + 1/c — A/c in the second step, we get

2 8 2
gb(yc) =4y, — @yc - % + @

AA 41 2 2A

c * 3¢ 32 33 + 33
_2(9¢% — 4A?) +i_i+ 2(A% - 1)

c(Bc+2A) 3¢ 3¢ 33(A+1)
. 8c—8 4 3 1 2
T Bet2A)e T3¢ T 2e(A¥ D) 3E T3E(A+1)
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For ¢ € (0,3/2), we have A > 1. According to the above two formulas, we have
—8c—38 4 3 2CIGC 2016

< = 6C
Oly2) < (Bc+2A)c T 2¢(A+1) Tt T
—24Ac + 3c — 14A — 48 + 16A%  2C16c = 2C16
= 6C16. 5.59
6c(3c + 2A) (A + 1) Tyt e (559)

If z >0, then ¢ € (0,1] and 1 < A < +/17/2. We have
—24Ac+ 3c < —2le,

and

—14A—48+16A2:14A(A—1)—48+2A2g14~\/2177(\/2177—1> —48+2<

Therefore, combining the above two observations with equations (5.33), (5.34) and (5.59), we obtain

4 1 7 2
<(- + 206 ) - — + 20436+ 6C
Ply2) < ( 33+ VIT) (1 + vV17/2) 16) c 2B+ VINA+VIT/2) 3 0T
<G (5.60)
c
According to equations (5.58) and (5.60), we get when z > 0, or equivalently ¢ € (0, 1],
8(3/2 —c) 016} Cie
yg[l;),(ll o) < max{ 3c c c ( )
If z <0, then ¢ € (1,3/2) and V17/2 < A < 11/4. We have
—24Ac+ 3¢ — 14A — 48 + 16A? < —21Ac + 14A(A — 1) +2A? — 48
V17 11 /11 11 11
1. Y20y 14.7<7_1) 9. 2.0 4
< 2 + 4 \ 4 + 4 4 8

< —8.

Therefore, combining the above two observations with equations (5.35) and (5.59), since ¢ € (0,3/2),
we obtain

-8
¢(y2) < +9C16 < —Chs.

T9(3-3+2- A+
According to equations (5.58) and (5.60), we get when z < 0, or equivalently ¢ € (1,3/2),

max ¢(y) < max{ — w, —016}- (5.62)

y€ly2,1] 3¢

We next study ¢(y). Let us first consider the case z > 0, or equivalently, ¢ € (0,1]. For all
Y € [y2, 1], we have

22 562 ) )
by < S - (7 n c)y + (262 + 0y = e(2c + Dy(1 — y) < 3c. (5.63)
If z < 0, we claim that for all y € [y, 1] and ¢ € (0,3/2), we have
by) < =37 (y) /4. (5.64)
Indeed, for every y, we can view —3c2¢(y)/4 — ¥ (y) as a quadratic function of c:
3c%¢(y)

1 3
—— —Y(y) = —2yc2+c<— 2y2+2y+2> +y—1=:¢(c).
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Note that for every y € (0, 1], the quadratic function ¢(c) for ¢ € [1,3/2] reaches its minimum at
either ¢ =1 or ¢ = 3/2. Since for all y € (0, 1], we have

1 3 1
p(1) = -5 —y-2)>0, 30(5) = =43y +5y—8) >0,
the claim follows.

Now it remains to apply the upper bounds of ¢(y) and ¥ (y) in (5.57). By (5.37), for all y € [y2, 1],
we have

When z > 0, combining (5.57) with (5.61), (5.63) and (5.65), we obtain
2¢% p® O *p?
Ry < exp (pa:—sz+pL—3B—8ﬁ+3cp S+O(61/3>> (5.66)

Recalling that ¢ > 61/3/,0 and s < 872/3, we have

23 2 3 2 5/3
C C
O s P P exp<_wp> 5

g B B3’ 16 p
Consequently,
5/3 9263
Ry < o exp (p:v —2pz+ pL — 35 (5.67)

If z < 0, since ¢3p3/B > c?p?s, according to (5.57), (5.62), (5.64) and (5.65), we have for n
sufficiently large
3 3

26 p® yoly)
RQSexp<Pw—2f)Z+PL‘35+0(ﬂ1/3 >/ 1+y VIt v exP( B 8<1+y>)dy
.

2¢3 3 92—
< oxp <p$_2pz+pL_ 200 wamm{@/c) 016} +O(51 3)).

38 16 8 3¢ /
By (5.27), since ¢ > 1, we have
Ap® . (8(3/2—¢) Spd . [(8(3/2—¢) B5/3
Bmm{i’)cc }>>61/3, exp(— 3 mm{ " ,C16}><<p5
Therefore, equation (5.67) also holds when z < 0.
Finally, combining (5.50) and (5.67), equation (5.29) is proved and the lemma follows. O

Proof of Lemma 5.4. Recall that in the proof of Lemma 5.3, the only place where we used the
assumption L* — z > $71Y310g?3(p/BY/3) is equation (5. r)()) Thus to prove Lemma 5.4, it is
sufficient to prove that for z satisfying /3 <« L* — 2z < g~1/3 log4/3(p/ﬂl/3), or equivalently,
BY3p~1 < e < BY3p1og?3(p/BY/3), we have

5/3

uz L I I 2 B 203 p3
I = / / py(x, ) (pt_u(r, z)) drdu < o exp (pa: —2pz+ pL — 35>' (5.68)
u1 —00

The portion of the double integral in I for which us < u < t has been dealt with in Lemma 5.3.
By (1.5), we can choose constant C7 > 0 such that

1
273y + O+ 1< -5 (5.69)

According to equations (3.17) and (5.39), and the fourth equality in (5.31), we get

9Ic - c*p —-2/3
m + ClﬁC) =—<f . (570)

t—u2:t(l—yg):t(l—yc+016c)St(z)< 3
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Thus ¢t — us < 2672/3 for n large enough. Therefore, for n large enough, we can write
Iy =P+ P, + P,

where P is the part of the double integral for which L — 0176*1/3 <r<Landu; <u< t—2ﬁ*2/3,
P; is the part of the double integral for which L — C’17B_1/3 <r<Landt-— 26‘2/3 < u < ug, and
Pj5 is the part of the double integral for which » < L — 017,8_1/3 and u; < u < us.

To bound Py, we are going to bound pZ(x,r) by (5.15) and pf_,(r, z) by (5.16). We get

t72,3*2/3 L (L . ZE)(L . T) (x B T)2 p2u
R e (R
52/3(14—’/“)2 1 B(t—u)g 2
Xt—u(max{l’gl/?s(t_u)<L22>})
_ )2 20, N3
><exp<2pr—2pz—(7;_z) —Pz(t—u)-kﬂ(?‘—l—z)(t—u)—kw

+Bvﬁi_m<L‘z‘ﬁ&;uy>>Wmh

Note that L — 2 < 8~7'/3 and t = t(z) — s. Interchanging the roles of r and L — r, we have

t—28-2/3 B1/3 1 B(t — u)? 2
.Pls_‘/u1 M(max{l,ﬁ]J?’(t_m(L—Z—2>}> exp(px—?pz—l—pL

pru B (t(z) — s — u)?® 1 Bt —u)®
— T HALu— ) — s *awuuﬂL‘Z‘:z>>
Ci7p~1/3 (L—x—?“)z (L—?“—Z)2
3
/0 r exp(—pr— o Sl +,6’(L—1"—|—z)(t(z)—s—u)>drdu.
(5.71)
We first estimate the term (L — 2z — B(t — u)?/2)/(8'/3(t — u)). For u > uy, we see that
5(“;3)2 > 5;? _ g(ﬂ—wm@* _ 2)1/4)2 - % > 3718 < (25)—1/3‘%’.
Thus by (5.24), we have for n large enough
1 Blt—w?\ _ pl2)(u+ts) _ B2PH(2)(u+s)
e e e (572)

Furthermore, we note that

B234(2) (u + s) S B4z ur 2/3 c!/2pl/2
t—u — t(2)




798 Jiaqi Liu and Jason Schweinsberg

Moreover, we will upper bound the term —(L — 7 — 2)2/(t — u) by (5.18). By (5.18), (5.71) and
(5.72), after rearranging terms, we get for n large

P S e (pw 2zt pL— 1) + BLMU(z) + Bat(z) + DA (L= Z)?)

2

t=2672/3 35/34(.32(0 1+ 5)2 2. 200 4 5)3 2N (4 52
[ SO (g Pt
_ ﬁQt(z)Z(U‘F 5) + 62/3tiz_)(;j+ 3) _ 5L(U—|— S) _ 2_1/352/3’7175(2) _ BZ(U—F S)
@ —2uts) (I —2uts) (L 2Puts)P

t(2)? t(2)? 1(z)2 )/0 r exp< pr
2 * -1/3

— Br(t(z) — 5 — u) — (L —;cu— r? 2L - Z)(7(f25)u /31 + T))(Mw

Notice that since t(z) = \/2/BvVL* — 2z, L = L* — (28)~'/3~1 and s < 87%/3, we observe that

ou B24(2)%(u + s)

* 2
—7+BLu+p2(u+s)— 1 (L” —2)(uts)

t(z)?

— BL(u+8) — Bz(u+s) —

— 7u+p23—ﬁLs—ﬁz(u+8) — B(L* = 2)(u+s)

Also

and
B2u+s)®  (L* —2)*(u+s)3 B%(u + 3)3'

12 t(z)% 3

By the above four equations and (5.20), we can further bound P; as follows:

3

/
< oxp ( _ 62<u3+ s 3t§z_>(z+ s)

ULk — ) (2-1/3 C -1/3 Ci78~1/3
n ( z)( : ’Y;Jr 17)8 ) ></ B g
- 0

428, ., =272 35/34(2)2(u + 5)?
P, Sexp (ﬂ»’U —2pz+pL — L(L o 2)3/2> / : u3/(2()t (— U)3 )

1

o 2—1/362/3,Ylt(z)

Recall that ¢ > 51/3/p. By equation (3.17), for n sufficiently large, for all u; <u <t — 2872/3 we
have

2 3
+ _

_521”? ___nep . 03/2/03/2 . cep _03/2/03/2
= 3 21/351/3 3. 23/451/2 21/351/3 — 6B1/2 )
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Also, by equations (3.17) and (5.69), since u+s < t(z) = cp/3, we have for all u; < u <t—2372/3,

BBH(2)(u+s) 2L —2)(27 3y 4+ Crp)B/3 cp P o1y
= - 2
f—u + f—u Bl/g(t_u) (U—FS)‘FIB( 71+017)
< i(l +271%9 + Cy)
T BBt~ )
C2p2

<——0r
= 25— )
Combining the above three equations with (3.17), after some standard calculations, we get

263 63/2p3/2
exp (p:c —2pz+ pL — 33 682 )

c2
p2ﬁ1/3

t—28-2/3 (u+s)2 22
_\ursm . cr
/u W2t — u)? o ( 254/3<t—u>>d“"

P <

1

Note that for n large, we have u + s < 2u for all uy <wu <t — 2B‘2/3. Let v =t — u. The integral
in the previous equation can be upper bounded by

t—28-2/3 ul/2 2 p? 4c1/2p1/2  pt-w 2 2
14 crp -3 cp
_ < _
4/u (t—u)? o ( 254/3(t—u>>d“— ERE /25—2/3“ exp 264/3v)d”

1
4c/2pl/2 oo 2p?
< — - ___r
SN /0 v exp( 264/3v)dv

4c1/2pl/2 4B8/3

5Lz . e (5.73)
Combining the above two formulas, because cp/ BY3 > 1, we get
11/6 263 pB BI2pB/2
P < —— -2 L— —— —
L 32,112 exp (pa: Pz p 3 3 63172 >
85/3 263 pB
< C—pSexp pr —2pz + pL — 3 5) (5.74)

We next estimate P». We are going to bound both pZ(x,r) and p¥_,(r, 2) by (5.15). Interchanging
the roles of r and L — r, we get

Py <(L—xz)(L—2)%exp (px —2pz + pL — p*t + 2BLt>

u2 1 p2u
S — EZ 8L
. /tww B —up < > 7 “)

017,371/3 I — _ 2 L —r— 2
/ 3 exp < —pr— ( r=r)” | r—2) >d7“du. (5.75)
0 2u t—u

By (5.69), we have for all 0 < r < Cy7571/3,

Lr—P (WP (@8 V) 2L () Pk (L2

t—u - t—u t—u t—u t—u
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Thus for t — 2872/3 < 4 < uy, the inner integral in (5.75) can be upper bounded by

[ee] * 2 1 * )2
/ Tsexp<_pr_<Lz))dr§4eXp<_<LZ>>
0 p

t—u t—u

< 1 (L* —2)?  (L* - 2)?
—ﬁleXp<_ 2(t — ) _2-2ﬁ—2/3>‘

Then equation (5.75) becomes

(L —=)(L—2) 2 BL — 2)?
Py < p exp px—2pz+pL—pt+2ﬁLt—f
ug 1 p2u (L* o 2)2
—_ — — fLu — —— |du.
/t—252/3 u3/2(t — )3 P < 2 PLu 2(t —u) "
Expressing L — z and t in terms of ¢, since L — 2 < 871/3, we get
4 4 4
¢ 2/3.  ¢pP cp
P2§[87/3€Xp<px_2pz+pL_2 71[81/3_16B4/3>

U 1 C4p4
X/ 32€Xp<_2)du.
t—2g-2/3 u3/2(t — u)? 862(t — u)

By applying the same argument as in (5.73), the integral in the previous equation can be upper
bounded by

1 u2 1 c4p4 < 63/2 © q C4p4 p
T s e s S J, o ()

611/2
c19/219/2"

Combining the above two equations, since cp/ B3 > 1, we have

19/6 4.4
P _ _92/3, P €L
LN c11/219/2 exp (pm 2pz +pL —2 71ﬁ1/3 1664/3>
5/3 263 P
< s exp <px —2pz+ pL — 35>. (5.76)

It remains to estimate P3. We are going to bound both pZ(z,7) and pf ,(r,z) by (1.42). By a
similar calculation as in (5.28), we get

P3; < exp (px —2pz + pL — p*t + BLt + ﬁzt)

up 2 2,3 2 3
“1/2 _1 p°u  Pru BLu  [u® Bt —u)
X u (t —u) exp(—i——ﬁzu— + +
/ul 2 2 2 24 12

/OO exp(—r<p+5t—m)—(L_x_T)2— (L_Z_T)2)drdu

017/371/3 2 2u t—u

C
o (m —2pz + pL — p*t + BLt + Bzt — ﬁi‘f)

us 2 2,3 2 3
-1 peu | Bru _ BLu | Bu B2(t — u)
X /u1 (t —u) " exp <2 + — Bzu 5 + 7 + 12 du.
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Note that the above upper bound is very similar to R; defined in (5.45). Therefore, by carrying out
the same calculation as for Ry in (5.47), we obtain

23 3
P3§eXp<px—2pz+pL—Cp—CNp—i-O( i >)

3 B ﬁl/?’ ﬂ1/3
o1 ot oyt 2o (1l y yP (1—y)?
- er(_v 1) +2p2s( -4 Y _ S ZAn S V¥ .
x/yl 1_yexp<45( 6+y +y+)+cps(2 7 g 1 )) y, (5.77)

where y1 = u1/t and yo = ug/t. We see that for ¢ < 8Y/3p~110g?3(p/BY/3) and y € [y1,y2],

3 3.3

Sty p p
A 1) < o
45( 6 TV TVTY ST S
1 3 1— 3 2 2
C2p2s(,_y_£_( y))rsw<< P
2 278 4 3273 S i3

Thus the integral in (5.77) can be bounded by

exp <o<ﬁgg)) / oy < exp <o( Bf/3)> /1; L= exp (o(ﬁgg))log(ljm).

(5.78)
According to (5.30) and (5.36), we see that 1 —yo = 1 —y.+ Cigc > Cigc. Thus, since ¢ > 51/3p_1,
we have
1 1 p
log ( ) <tog (—) Slog (=27 ). .
og (1= ) = og Groc) S og e (5.79)
Combining (5.78) and (5.79) with (5.77), since ¢ < 8/3p~110g?>(p/BY3), we get
p 22 p°  Curp cp P
< — — - r _ T
Py < log (51/3>‘3XP (px 2pz + pL 3 3 BB +O(51/3)+0(51/3)
5/3 263 p
< o exp (pm —2pz+ pL — 3[3> (5.80)

Finally, equation (5.68) follows from (5.74), (5.76) and (5.80) and the lemma follows.
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