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Asymptotic formula for the conjunction probability of smooth
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Abstract. Let {Xi(t) : t ∈ S ⊂ Rd}i=1,2,...,n be independent copies of a stationary centered
Gaussian field with almost surely smooth sample paths. In this paper, we are interested in the con-
junction probability defined as P (∃t ∈ S : Xi(t) ≥ u, ∀i = 1, 2, . . . , n) for a given threshold level u.
As u→∞, we will provide an asymptotic formula for the conjunction probability. This asymptotic
formula is derived from the behaviour of the volume of the set of local maximum points. The proof
relies on a result of Azaïs and Wschebor (2014) describing the shape of the excursion set of a sta-
tionary centered Gaussian field. Our result partially confirms the validity of the Euler characteristic
method.

1. Introduction

Let X be a real-valued stationary centered Gaussian field with unit variance and almost surely
smooth sample paths. Assume more that it is defined on a compact set S ⊂ Rd. Consider n
independent copies {Xi(t); i = 1, 2, . . . , n} of X. In this paper, we are interested in the behaviour
of conjunction probability,

P
(
∃t ∈ S : Xi(t) ≥ u, ∀i ∈ 1, n

)
, (1.1)

where u is a threshold level. The probability above can also be expressed in different manners:
equivalently, it can be rewritten as the probability that the conjunction set (excursion set)

Cu = {t ∈ S : Xi(t) ≥ u, ∀i ∈ 1, n}
is non-empty or that the maximum of the smallest value among the fields exceeds u

P
(

sup
t∈S

min
1≤i≤n

Xi(t) ≥ u
)
. (1.2)

When n = 1, the expression (1.2) is simply the tail distribution of the maximum of a stationary
Gaussian field. Even in this simple case, finding the exact value of the tail distribution is very
challenging, see Azaïs and Wschebor (2009). Hence, an interesting approach is to provide the
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asymptotic estimates for the tail distribution when u → +∞. This problem has been studied
extensively in the literature. One could mention three main techniques to deal with it: Double-sum
method (see (Pickands, 1969; Piterbarg, 1996)), Euler characteristic method (see (Adler and Taylor,
2007; Taylor, 2006; Taylor et al., 2005)) and Rice method (see (Azaïs and Delmas, 2002; Azaïs and
Wschebor, 2008, 2009)). See also (Sun, 1993; Takemura and Kuriki, 2002).

The first method was introduced by Pickands (1969) for stationary Gaussian “α processes" and
later was extended to non-stationary processes and to non-Gaussian ones by Piterbarg (1996). Here
the authors provide the estimates containing some non-explicit constants: the Pickands constant
that depends on the local self-similarity exponent α of the process.

The second method was provided by Adler and Taylor (2007) and concerns differentiable pro-
cesses. It is an important tool for studying the geometry of random surfaces. Given S a compact
convex (for instance) subset of Rd and a positive constant ε, the ε- neighborhood of S, denoted by
S+ε, is defined as

S+ε = {t ∈ Rd : dist(t, S) ≤ ε}.
Then Steiner formula, see Gray (2004), states that the volume of S+ε can be expressed as a poly-
nomial of the variable ε,

λd
(
S+ε

)
=

S∑
j=0

ωd−jµj(S)εd−j , (1.3)

where ωd−j is the volume of a (d−j)-dimensional unit ball, and µj(S)’s are the geometric Minkowski
functionals (or the Killing-Lipschitz curvatures) of S. In particular, µd(S) is equal to the volume
of S; and µ0(S) is the Euler characteristic of S, for example, it is equal to the number of connected
components minus the number of holes inside when d = 2 (see Adler and Taylor (2007)). In general,
one can define the Killing-Lipschitz curvatures of a manifold with positive reach through Weyl tube
formula (see (4.8)).

The main idea of the Euler characteristic method is that the excursion probability could be
approximated by the expectation of the Euler characteristic of the random excursion set Cu. The
heuristic argument is as follows: when the level u is large, if the excursion set is non-empty, then it
is usually a simply-connected domain corresponding to a unique local maximum point. Under the
condition that the random field X is an isotropic centered Gaussian field with unit variance and
unit covariance matrix of the derivatives, Adler and Taylor (2007) proposed the Gaussian kinematic
formula to calculate the expectation of the Euler characteristic of the excursion set as

E(µ0(Cu)) =
d∑
i=0

ρiµi(S), (1.4)

where ρi’s are the Euler characteristic densities defined as

ρ0 = Φ(u) =

∫ ∞
u

e−x
2/2

√
2π

dx,

ρi = (2π)−(i+1)/2Hi−1(u)e−u
2/2 = (2π)−i/2Hi−1(u)ϕ(u),∀i > 0,

with ϕ(u) = e−u
2/2/
√

2π, and Hj(x) = (−1)ne
x2

2
dj

dxj
e
−x2

2 is the Hermite polynomial of degree j;
and µj(S)’s are the geometric functionals of S, defined as above.

The third method, the Rice method, is based on local maxima and leads to the same approxima-
tion as in RHS of (1.4). It gives also an upper bound. The first proof of validity is due to Piterbarg
(1981). The expectation given in (1.4) is proved to be a very accurate approximation when the
domain S is “nice" in the sense that it is a tamed and locally convex subset of Rd (see Adler and
Taylor (2007, Theorem 14.3.3)). Note that in the case both methods apply, the Euler characteristic
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method gives extra terms with respect to the Double-sum method, and thus it is more accurate, see
Azaïs and Mourareau (2019).

In this paper, we are interested in the case n ≥ 2. The motivation of this problem comes
from the statistical applications in neurology, for example, to determine whether the functional
organization of the brain for language differs according to sex (see Worsley and Friston (2000)). In
this application, Xi(t) is the value of image i at the location t ∈ Rd representing the intensity with
respect to some actions. Here both the Double-sum method and Euler characteristic method are
still useful.

By the Double-sum method, (Dȩbicki et al., 2014, 2015) considered the one-dimensional processes
and proved that

P

(
sup
t∈[0,T ]

min
1≤i≤n

Xi(t) > u

)
= Hn,2TuΦ

n
(u)(1 + o(1)),

where Hn,2 is so-called the generalized Pickands constant defined as

Hn,2 = lim
a↓0

1

a
P
(

max
k≥1

Z(ak) ≤ 0

)
,

with
Z(t) = min

1≤i≤n

(√
2Yi(t)− t2 + Ei

)
,

here Yi’s are independent copies of a centered Gaussian process Y (t) with covariance function
Cov(Y (t), Y (s)) = |ts|, ∀t, s ≥ 0, and Ei’s are mutually independent unit mean exponential random
variables being further independent of Yi’s. The expansion above must be understood, as in the
rest of the paper, as u→ +∞.

Debicki et al also considered non-stationary processes and mentioned that their result could be
extended to Gaussian fields but at the cost of heavy notations. Note that their work deals with a
wider class of random processes than those considered here that are smooth stationary ones.

By the Euler characteristic method, Worsley and Friston (2000) considered the upper-triangular
Toeplitz matrix R defined as

R =


ρ0/b0 ρ1/b1 . . . ρd/bd

0 ρ0/b0 . . . ρd−1/bd−1
...

...
. . .

...
0 0 . . . ρ0/b0

 , (1.5)

where bi = Γ((i + 1)/2)/Γ(1/2) with Γ(.) the Euler gamma function, and the ρi’s are the Euler
characteristic densities as defined above. They gave the heuristic argument that

P(Cu 6= ∅) = P
(

sup
t∈S

min
1≤i≤n

Xi(t) ≥ u
)
≈ E(µ0(Cu)) = (1, 0, . . . , 0)Rnµ(S), (1.6)

where µ(S) = (µ0(S)b0, µ1(S)b1, . . . , µd(S)bd) is the column vector of the scaled Minkowski func-
tionals of S. However, to prove that E(µ0(Cu)) is a good approximation is still an open question.
For further discussion, see also (Alodat, 2011; Alodat et al., 2010; Worsley, 1994).

Let us consider the particular case of random processes (i.e. d = 1). Then the matrix R defined
in (1.5) becomes

R =

(
ρ0 ρ1/b1
0 ρ0

)
, Rn =

(
ρn0 nρn−10 ρ1/b1
0 ρn0

)
.

Also note that in this case the domain S is the interval [0, T ] with µ0([0, T ]) = 1 and µ1([0, T ]) = T .
Therefore, the validity of the Euler characteristic, is equivalent to

P
(

sup
t∈S

min
1≤i≤n

Xi(t) ≥ u
)
≈ ρn0 + nρn−10 ρ1T = Φ

n
(u) + nΦ

n−1
(u)ϕ(u).T/

√
2π.
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That would give an extra term in comparing with Double-sum method. And since

Φ(u) = ϕ(u)

(
1

u
+ o

(
1

u

))
,

it could imply that
Hn,2 =

n√
2π
. (1.7)

In a recent paper Pham (2020), the equality in (1.7) has been proved to be true. The proof exploits
the one-dimensional structure of the processes, and uses Rice formula to calculate the expected
number of “up-crossing" of the level u while the other processes are all greater than u. However,
this idea seems hard to extend to higher dimensions.

In this paper, we consider the conjunction problem from another point of view. Our approach
relies on a result of Azaïs and Wschebor (2014) describing the geometry of the excursion set. There
they established a relation between the tail distribution of the maximum and the volume and the
perimeter of the index set. In Azaïs and Pham (2016), this idea has been used to provide the
asymptotic formula of the tail of the maximum corresponding to the coefficients of the volume of
the ε-neighborhood of a non-locally convex index set. With the same spirit, we will give a one-
term asymptotic formula for the conjunction probability where the coefficient comes from the local
geometry (or local volume) of the conjunction set (see Proposition 2.2).

Before stating the main result of this paper, we present here the technical assumptions on the
considered fields.

Assumption A: Assume X a random field defined on a ball B ⊂ Rd containing the domain S
such that X satisfies:

i. S is a compact subset of Rd satisfying that it is the closure of its interior, and its boundary
is the union of a finite number of C2 and d− 1 dimensional compact domains.

ii. X is a stationary centered Gaussian field with unit variance and Var(X ′(t)) is the identity
matrix.

iii. Almost surely the paths of X(t) are of class C3.
iv. For all s 6= t ∈ B, the distribution of (X(s), X(t), X ′(s), X ′(t)) does not degenerate.
v. For all t ∈ B and γ in the unit sphere Sd−1, the distribution of (X(t), X ′(t), X ′′(t)γ) does

not degenerate.
Our main result is the following.

Theorem 1.1. Let Xi(t), 1 ≤ i ≤ n, be independent copies of a Gaussian field X satisfying As-
sumption (A). Then as u tends to infinity,

P
(

max
t∈S

min
1≤i≤n

Xi(t) ≥ u
)

=ud−nϕn(u)

 λd(S)

(2π)d/2

d∑
kn=0

d∑
kn−1=d−kn

. . .

d∑
k2=(n−2)d−(kn+kn−1+...+k3)

ωd
ω∑n

i=2 ki−(n−2)d
∏n
i=2 ωd−ki

× d!

[
∑n

i=2 ki − (n− 2)d]!.
∏n
i=2(d− ki)!

+ o(1)

]
, (1.8)

where ωk stands for the volume of a k-dimensional unit ball.

The proof of the main theorem consists of two propositions presented in Section 2. We prove
these propositions and consider some special examples in Sections 3 and 4. In Section 5, we compare
our result with the corresponding term in the prediction given by the Euler characteristic method.
Although the two formulas seem to be different, their values coincide. Therefore, in some sense, our
result partially confirms the validity of the Euler characteristic method.

Throughout this paper, we will use the following notation.
- λk(.) stands for the usual k-dimensional Lebesgue measure.
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- B(t, r) stands for the ball of radius r at center t.
- For an n-dimensional vector r = (r1, . . . , rn) and an n-tuple of non-negative integers m =

(m1, . . . ,mn), the notations rm stands for

rm = rm1
1 rm2

2 . . . rmn
n ,

and ‖m‖ is the l1-norm of the vector.
- For a given set S ⊂ Rd and a positive constant ε, the ε- neighborhood of S, denoted by S+ε,
is defined as

S+ε = {t ∈ Rd : dist(t, S) ≤ ε}.

- For a given set S ⊂ Rd and a small enough positive constant ε, the set S−ε is defined as

S−ε = {t ∈ Rd : B(t, ε) ⊂ S}.

- ωk is the volume of a k-dimensional unit ball.
- ϕ(.) and Φ(.) are the density and tail distribution functions of a standard normal random
variable.

2. Proof of the main theorem

The main result can be easily deduced from following two propositions.

Proposition 2.1. Let Xi(t), 1 ≤ i ≤ n, be n independent copies of a Gaussian field X satisfy-
ing Assumption (A). Assume that for a fixed point t1 and small enough r1, r2, . . . , rn, there exist
constants k > 0 and Cm such that

λ(n−1)d

(
(t2, . . . , tn) : ∩

1≤i≤n
B(ti, ri) 6= ∅

)
=

∑
‖m‖=k

Cmrm. (2.1)

Then, as u tends to infinity,

P
(

max
t∈S

min
1≤i≤n

Xi(t) ≥ u
)

= und−n−kϕn(u)

2k/2λd(S)

(2π)nd/2

∑
‖m‖=k

Cm

n∏
i=1

Γ(1 +mi/2) + o(1)

 .

Proposition 2.2. For a fixed point t1 in the parameter space and for r1, r2, . . . , rn > 0 small enough,
we have:

λ(n−1)d

(
(t2, . . . , tn) ∈ Rd(n−1) : ∩

1≤i≤n
B(ti, ri) 6= ∅

)
=

d∑
kn=0

d∑
kn−1=d−kn

. . .
d∑

k2=(n−2)d−(kn+kn−1+...+k3)

r
(n−1)d−

∑n
i=2 ki

1 ×

n∏
i=2

(
rkii ωki

) ωdω(n−1)d−
∑n

i=2 ki

ω∑n
i=2 ki−(n−2)d

∏n
i=2 ωd−ki

× d!

[
∑n

i=2 ki − (n− 2)d]!.
∏n
i=2(d− ki)!

. (2.2)

Indeed, the explicit values of k = (n − 1)d and Cm’s are provided in Proposition 2.2. Then
substituting them in Proposition 2.1, we get the asymptotic formula for the conjunction probability
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as

P
(

max
t∈S

min
1≤i≤n

Xi(t) ≥ u
)

=ud−nϕn(u)

2(n−1)d/2λd(S)

(2π)nd/2

d∑
kn=0

d∑
kn−1=d−kn

. . .
d∑

k2=(n−2)d−(kn+kn−1+...+k3)

Γ

(
(n− 1)d−

∑n
i=2 ki

2
+ 1

)
ω(n−1)d−

∑n
i=2 ki

n∏
i=2

Γ

(
ki
2

+ 1

)
ωki×

ωd
ω∑n

i=2 ki−(n−2)d
∏n
i=2 ωd−ki

× d!

[
∑n

i=2 ki − (n− 2)d]!.
∏n
i=2(d− ki)!

+ o(1)

]
.

Using the fact that ωk =
πk/2

Γ(1 + k/2)
, the proof is completed.

3. Proof of Proposition 2.1

In the proof of Proposition 2.1, we need the following two lemmas. The first lemma describes
the role of (2.1).

Lemma 3.1. Assume that there exist constants k and Cm’s such that the equality in (2.1) holds.
Then for small enough r1, r2, . . . , rn, we have

λnd

(
(t1, . . . , tn) : t1 ∈ S+r1 , ∩

1≤i≤n
B(ti, ri) 6= ∅

)
≤ λd(S)

∑
‖m‖=k

Cmrm +O(
∑

‖m‖=k+1

rm), (3.1)

and

λnd

(
(t1, . . . , tn) : t1 ∈ S−r1 , ∀i ; ∩

1≤i≤n
B(ti, ri) 6= ∅

)
≥ λd(S)

∑
‖m‖=k

Cmrm+O(
∑

‖m‖=k+1

rm). (3.2)

Proof : It is clear that

λnd

(
(t1, . . . , tn) : t1 ∈ S+r1 , ∩

1≤i≤n
B(ti, ri) 6= ∅

)
=

∫
I{t1∈S+r1}dt1

∫
I{ ∩

1≤i≤n
B(ti,ri)6=∅}dt2 . . . dtn = λd(S

+r1)
∑
‖m‖=k

Cmrm.

Then (3.1) follows from the facts that

λd(S
+r1) ≤ λd(S) + λd(∂S

+r1),

where ∂S stands for the boundary of S that is the union of a finite number of C2 and d−1 dimensional
compact domains Tj ’s; and for each domain Tj , one has the tube formula that (see Gray (2004))

λd(T
+r1
j ) = O(r1).

Similarly, to prove (3.2), we have

λnd

(
(t1, . . . , tn) : t1 ∈ S−r1 , ∩

1≤i≤n
B(ti, ri) 6= ∅

)
=λd(S

−r1)
∑
‖m‖=k

Cmr
m ≥

(
λd(S)− λd(∂S+r1)

) ∑
‖m‖=k

Cmrm,

and the proof follows easily. �
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The second lemma is due to Azaïs and Wschebor (2014).

Lemma 3.2. Let X be a random field satisfying Assumption (A) and α be a real number, 0 < α < 1.
Then the following event occurs with high probability, in the sense that there exist two constants
C, c > 1 such that its probability is at least equal to 1− Ce−cu2/2. The event is described by :

+ The field has only one local maximum point t0 ∈
◦
B with value X(t0) ∈ [u, u+ 1],

+ and the excursion set

Ku := {s ∈ B : X(s) ≥ u}

consists of only one connected component, and moreover,

B(t0, r) ⊂ Ku ⊂ B(t0, r),

where r =

√
2
X(t0)− u
X(t0) + uα

and r =

√
2
X(t0)− u
X(t0)− uα

.

From Lemma 3.2, for each i = 1, . . . , n, with high probability, the following event Hi occurs:

there exists only one local maximum of Xi(t) at the location ti ∈
◦
Bi =

◦
B with value in [u, u + 1],

and the corresponding excursion set Ku,i := {s ∈ Bi : Xi(s) ≥ u} satisfies that

B(t, ri) ⊂ Ku,i ⊂ B(ti, ri),

where ri =

√
2
Xi(ti)− u
Xi(ti) + uα

and ri =

√
2
Xi(ti)− u
Xi(ti)− uα

.

Moreover, if for some i ∈ {1, . . . , n}, the complement of the above event Hi occurs, then

P
(
H̄i ∩ {sup

t∈S
min

1≤k≤n
Xk(t) ≥ u}

)
≤P

(
H̄i

)
P
(

sup
t∈S

min
1≤k≤n,k 6=i

Xk(t) ≥ u
)

≤(const)e−cu
2/2
(
λd(S)ud−1ϕ(u)

)n−1
= o(und−n−kϕn(u)).

Here we use the following inequality (see Piterbarg (1996))

P(max
t∈S

Xi(t) ≥ u) ≤ (const)λd(S)ud−1ϕ(u).

Therefore, from the fact that

P
(

sup
t∈S

min
1≤i≤n

Xi(t) ≥ u
)

= P(∃t ∈ S : t ∈ Ku,i∀i = 1, . . . , n)

= P(S ∩Ku,1 ∩ . . . ∩Ku,n 6= ∅),

we obtain the upper bound

P
(

sup
t∈S

min
1≤i≤n

Xi(t) ≥ u
)
≤ P(S ∩B(t1, r1) ∩ . . . ∩B(tn, rn) 6= ∅) + o(und−n−kϕn(u)),

and the lower bound

P
(

sup
t∈S

min
1≤i≤n

Xi(t) ≥ u
)
≥ P(S ∩B(t1, r1) ∩ . . . ∩B(tn, rn) 6= ∅) + o(und−n−kϕn(u)).
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• At first, we deal with the upper bound. By the Markov inequality, it is at most equal to

P(∃t = (t1, . . . , tn) ∈ B⊗n : ∀i = 1, . . . , n, Xi(t) has a local maximum at ti,

Xi(ti) ∈ [u, u+ 1], t1 ∈ S+r1 and ∩
1≤i≤n

B(ti, ri) 6= ∅) + o(und−n−kϕn(u))

≤E(card{t = (t1, . . . , tn) ∈ B⊗n : ∀i = 1, . . . , n, Xi(t) has a local maximum at ti,

Xi(ti) ∈ [u, u+ 1], t1 ∈ S+r1 and ∩
1≤i≤n

B(ti, ri) 6= ∅}) + o(und−n−kϕn(u)),

where B⊗n stands for the Cartesian product set B × . . .×B.
By applying of Rice formula to the vector-valued Gaussian field Z(t) = (X ′1(t1), . . . , X

′
n(tn)) with

t = (t1, . . . , tn) ∈ B⊗n, the above expectation is equal to

E =

∫
[u,u+1]⊗n

du1 . . . dun

∫
B⊗n

dt pX1(t1),...,Xn(tn),X′1(t1),...,X
′
n(tn)

(u1, . . . , un, 0, . . . , 0)

× E

(∣∣∣∣∣
n∏
i=1

det
(
X
′′
i (ti)

)
I{X′′i (ti)�0}

∣∣∣∣∣ I{t1∈S+r1}I{ ∩
1≤i≤n

B(ti,ri)6=∅} | Xi(ti) = ui, X
′
i(ti) = 0∀i

)
,

where pX1(t1),...,Xn(tn),X′1(t1),...,X
′
n(tn)

(.) is the joint density function of the random vector

(X1(t1), . . . , Xn(tn), X ′1(t1), ..., X
′
n(tn)).

Using (3.1) and the fact that the fields Xi’s are independent and X ′i(ti) is independent to Xi(ti)

and X ′′i (ti), we have

E =
λd(S)

(2π)nd/2

∫
[u,u+1]⊗n

n∏
i=1

E
(∣∣∣det

(
X
′′
i (ti)

)
I{X′′i (ti)�0}

∣∣∣ | Xi(ti) = ui

)
ϕ(ui)

×

 ∑
‖m‖=k

Cmrm +O(
∑

‖m‖=k+1

rm)

 du1 . . . dun. (3.3)

Note that under the condition Xi(ti) = ui then ri is no more random and is equal to

ri =

√
2
ui − u
ui − uα

.

Using the fact that (see Azaïs and Delmas (2002))

E
(
|det(X ′i(t))|I{X′′i (t)�0} | Xi(t) = ui, X

′
i(t) = 0

)
= udi +O

(
ud−2i

)
as ui →∞,

then ∫ u+1

u
ri
miE

(∣∣∣det
(
X
′′
i (ti)

)
I{X′′i (ti)�0}

∣∣∣ | Xi(ti) = ui, X
′
i(ti) = 0

)
ϕ(ui)dui

'
∫ u+1

u
udi

(
2
ui − u
ui − uα

)mi/2

ϕ(ui)dui.

By the change of variable ui = u+ x/u, the above integral is equal to∫ u+1

u
(u+ x/u)d

(
2x/u

u+ x/u− uα

)mi/2

ϕ(u+ x/u)dx/u

'2mi/2ud−(mi+1)ϕ(u)

∫ u

0
xmi/2e−xdx ' 2mi/2ud−(mi+1)ϕ(u)Γ(1 +mi/2).
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Therefore, for each vector m = (m1, . . . ,mn) with l1-norm k,

∫
[u,u+1]⊗n

n∏
i=1

E
(∣∣∣det

(
X
′′
i (ti)

)
I{X′′i (ti)�0}

∣∣∣ | Xi(ti) = ui

)
ϕ(ui)rmdu1 . . . dun

=

n∏
i=1

∫ u+1

u
ri
miE

(∣∣∣det
(
X
′′
i (ti)

)
I{X′′i (ti)�0}

∣∣∣ | Xi(ti) = ui

)
ϕ(ui)dui

'
n∏
i=1

2mi/2ud−(mi+1)ϕ(u)Γ(1 +mi/2)

=2k/2und−n−kϕn(u)
n∏
i=1

Γ(1 + ji/2).

Hence, by substituting this into (3.3),

E = und−n−kϕn(u)

2k/2λd(S)

(2π)nd/2

∑
‖m‖=k

Cm

n∏
i=1

Γ(1 +mi/2) + o(1)

 .

• For the lower bound, recall that

S−r1 = {t ∈ S : B(t, r1) ⊂ S}.

Then the lower bound is at least equal to

P

(
∃t ∈ B⊗n : t1 ∈ S−r1 , ∀i :

Xi(t) has a local maximum at ti,
Xi(ti) ∈ [u, u+ 1], and ∩

1≤i≤n
B(ti, ri) 6= ∅

)
+ o(und−n−kϕn(u))

= P(Mr ≥ 1) + o(und−n−kϕn(u))

≥ E(Mr)− E(Mr(Mr − 1))/2 + o(und−n−kϕn(u))

where

Mr =card

{
t ∈ B⊗n : t1 ∈ S−r1 , ∩

1≤i≤n
B(ti, ri) 6= ∅, and∀i :

Xi(t) has a local maximum at ti, Xi(ti) ∈ [u, u+ 1]

}
.

It is clear that

Mr ≤M = card{t = (t1, . . . , tn) ∈ B⊗n : Xi(t) has a local maximum at ti, Xi(ti) ≥ u,∀i}.
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Then applying the Rice formula and using the independent property of the given fields, we have

E(Mr(Mr − 1)) ≤ E(M.(M − 1))

=

∫
[u,∞)⊗n×[u,∞)⊗n

dydz

∫
B⊗n×B⊗n

dtds

× E
(∣∣∣ n∏
i=1

det
(
X
′′
i (ti)

)
I{X′′i (ti)�0} det

(
X
′′
i (si)

)
I{X′′i (si)�0}

∣∣∣
| Xi(ti) = yi, X

′
i(ti) = 0, Xi(si) = zi, X

′
i(si) = 0, ∀i

)
× pX1(t1),...,Xn(tn),X′1(t1),...,X

′
n(tn),X1(s1),...,Xn(sn),X′1(s1),...,X

′
n(sn)

(y, 0, z, 0)

=
n∏
i=1

∫
[u,∞)×[u,∞)

dyidzi

∫
B×B

dtidsi × pXi(ti),X′i(ti),Xi(si),X′i(si)
(yi, 0, zi, 0)

× E
(∣∣∣det

(
X
′′
i (ti)

)
I{X′′i (ti)�0} det

(
X
′′
i (si)

)
I{X′′i (si)�0}

∣∣∣
| Xi(ti) = yi, X

′
i(ti) = 0, Xi(si) = zi, X

′
i(si) = 0

)
=

n∏
i=1

E(Mi.(Mi − 1)),

where

Mi = card
{
ti ∈

◦
Bi : Xi(.) has a local maximum at ti, X(t) ≥ u

}
.

In Azaïs and Delmas (2002), it is proved that there exist two constants C, c > 1 such that

E(Mi.(Mi − 1)) ≤ Ce−cu2/2.
Hence we have

E(M.(M − 1)) = o(und−n−kϕn(u)).

The calculation of the expectation E(Mr) can be done similarly as in the upper bound part and
we obtain the same asymptotic formula. Then the result follows.

4. Proof of Proposition 2.2 and some examples

Before giving the proof of Proposition 2.2, we would like to consider three interesting examples
where we can give a much simpler formula for the volume in (2.1), and therefore a simpler asymptotic
formula for the conjunction probability thanks to Proposition 2.1. We hope that through these
examples, the readers can get the intuition about the basic ideas of the detailed proof.

4.1. First example: n = 2. This example corresponds to the practical application mentioned in
the introduction. It is clear that

{t2 : B(t1, r1) ∩B(t2, r2) 6= ∅} = B(t1, r1 + r2).

Therefore

λd (t2 : B(t1, r1) ∩B(t2, r2) 6= ∅) = λd (B(t1, r1 + r2))

=
πd/2

Γ(1 + d/2)
(r1 + r2)

d =
πd/2

Γ(1 + d/2)

d∑
j=0

(
d

j

)
rj1r

d−j
2 ,

here we use again the fact that the volume of a d-dimensional unit ball is πd/2/Γ(1 + d/2).
Then we have an immediate consequence of Proposition 2.1 as follows.
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Corollary 4.1. Consider Xi(t), 1 ≤ i ≤ 2, two independent copies of a Gaussian field X satisfying
Assumption (A). Then as u tends to infinity,

P
(

max
t∈S
{min(X1(t), X2(t))} ≥ u

)

=
ud−2ϕ2(u)λd(S)

(2π)d/2Γ(1 + d/2)

 d∑
j=0

(
d

j

)
Γ(1 + j/2)Γ(1 + (d− j)/2) + o(1)

 . (4.1)

Proof : We substitute the following parameters in the statement of the main theorem

k = d, m = (j, d− j), and Cm =
πd/2

(
d
j

)
Γ(1 + d/2)

.

�

Remark. Let us now consider the estimation given by the Euler characteristic method. It is
clear that (1.6) becomes

(1, 0, . . . , 0)R2µ(S).

Here the term corresponding to µd(S) (or λd(S)) is

λd(S)bd

d∑
i=0

ρi
bi

ρd−i
bd−i

.

From the definition of the Euler characteristic densities ρi’s, this term is equivalent to

λd(S)ud−2ϕ2(u)

(2π)d/2
Γ((d+ 1)/2)Γ(1/2)

d∑
i=0

1

Γ((i+ 1)/2)Γ((d− i+ 1)/2)
.

Comparing with the asymptotic formula given in (4.1), it is surprising to see that

Γ((d+ 1)/2)Γ(1/2)
d∑
i=0

1

Γ((i+ 1)/2)Γ((d− i+ 1)/2)

=
1

Γ(1 + d/2)

d∑
i=0

(
d

i

)
Γ(1 + i/2)Γ(1 + (d− i)/2).

Indeed, we will prove that for every i = 0, . . . , d,

Γ((d+ 1)/2)Γ(1/2)

Γ((i+ 1)/2)Γ((d− i+ 1)/2)
=

1

Γ(1 + d/2)

(
d

i

)
Γ(1 + i/2)Γ(1 + (d− i)/2). (4.2)

The equality (4.2) is equivalent to

Γ(d/2 + 1/2)Γ(d/2 + 1)Γ(1/2)

=

(
d

i

)
Γ(i/2 + 1/2)Γ(i/2 + 1)Γ((d− i)/2 + 1/2)Γ((d− i)/2 + 1),

that is true from the Legendre duplication formula

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z), (4.3)

and from Γ(n+ 1) = n!, Γ(1/2) =
√
π.
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4.2. Second example: d = 1. In this subsection, we would like to revisit the conjunction proba-
bility of stationary centered Gaussian processes. Although that the corresponding result given in
Pham (2020) is more powerful and more informative than the asymptotic formula given in Theorem
1.1, it would be nice to reprove that

Hn,2 =
n√
2π
.

The affirmative answer is deduced by the following lemma.

Lemma 4.2. For a fixed point t1 on the real axis and small enough fixed radii r1, r2, . . . , rn, we
have

λn−1

(
(t2, . . . , tn) ∈ Rn−1 : ∩

1≤i≤n
B(ti, ri) 6= ∅

)
= 2n−1

n∑
i=1

∏
j 6=i

rj

 . (4.4)

Proof : We will prove by induction on n.
• For n = 2, it is obvious as in the above subsection.
• Assume that the statement is true from 2 to n− 1.
• For n-tuple (t1, t2, . . . , tn), we would like to calculate the volume as the following integral

∫
Rn−1

I{ ∩
1≤i≤n

B(ti,ri)6=∅}dt2 . . . dtn

=

∫
Rn−2

I{ ∩
1≤i≤n−1

B(ti,ri)6=∅}dt2 . . . dtn−1

∫
R
I
{B(tn,rn)∩

(
∩

1≤i≤n−1
B(ti,ri)

)
6=∅}

dtn. (4.5)

Again by induction, it is clear that if the intersection ∩
1≤i≤n−1

B(ti, ri) is non-empty, it is an interval.

Therefore ∫
R
I
{B(tn,rn)∩

(
∩

1≤i≤n−1
B(ti,ri)

)
6=∅}

dtn = λ1

(
∩

1≤i≤n−1
B(ti, ri)

)
+ 2rn,

and the considering volume is equal to

∫
Rn−2

I{ ∩
1≤i≤n−1

B(ti,ri)6=∅}

(
λ1

(
∩

1≤i≤n−1
B(ti, ri)

)
+ 2rn

)
dt2 . . . dtn−1. (4.6)

By inductive hyphothesis,

2rn

∫
Rn−2

I{ ∩
1≤i≤n−1

B(ti,ri) 6=∅} . . . dtn−1 = 2rn.2
n−2

n−1∑
i=1

 ∏
1≤j≤n−1, j 6=i

rj

 .
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For the rest term in the integral (4.6), let us introduce a new variable y corresponding to the point
in the intersection, and we have∫

Rn−2

I{ ∩
1≤i≤n−1

B(ti,ri)6=∅}λ1

(
∩

1≤i≤n−1
B(ti, ri)

)
dt2 . . . dtn−1

=

∫
Rn−2

∫
R
I{ ∩

1≤i≤n−1
B(ti,ri) 6=∅}I{y∈ ∩

1≤i≤n−1
B(ti,ri)}dt2 . . . dtn−1dy

=

∫
B(t1,r1)

dy

(∫
Rn−2

I{y∈ ∩
1≤i≤n−1

B(ti,ri)}dt2 . . . dtn−1

)
=

∫
B(t1,r1)

dy

(∫
B(y,r2)

dy2 . . .

∫
B(y,rn−1)

dtn−1

)

=

∫
B(t1,r1)

(
n−1∏
i=2

(2ri)

)
dy = 2n−1

n−1∏
i=1

ri,

where the equality in the third line follows from Fubini theorem. The result follows easily. �

Applying Proposition 2.1 in this case with respect to k = n − 1, m is an n-dimensional vector
with n− 1 unit entries and only one zero entry and Cm = 2n−1, we obtain the following corollary.

Corollary 4.3. Let Xi(t), 1 ≤ i ≤ n, be the independent copies of a Gaussian process X satisfying
Assumption (A). Then as u tends to infinity,

P
(

max
t∈[0,T ]

min
1≤i≤n

Xi(t) ≥ u
)

= u−(n−1)ϕn(u)

(
nT√
2π

+ o(1)

)
.

4.3. Third example: d = 2.

Lemma 4.4. For a fixed point t1 in the plane and small enough fixed radii r1, r2, . . . , rn, we have

λ2(n−1)

(
(t2, . . . , tn) ∈ R2(n−1) : ∩

1≤i≤n
B(ti, ri) 6= ∅

)

=πn−1
n∑
i=1

∏
j 6=i

r2j

+ 2πn−1
∑

1≤i<j≤n

rirj ∏
k 6=i,j

r2k

 .

Proof : We will prove by induction on n.
• Case n = 2 has been considered in Subsection 4.1.
• For general n ≥ 3, we have

λ2(n−1)

(
(t2, t3, . . . , tn) ∈ R2(n−1) : ∩

1≤i≤n
B(ti, ri) 6= ∅

)

=

∫
R2(n−2)

dt2 . . . dtn−1

I{ ∩
1≤i≤n−1

B(ti,ri)6=∅}

∫
R2

I
{B(tn,rn)∩

(
∩

1≤i≤n−1
B(ti,ri)

)
6=∅}

dtn


=

∫
R2(n−2)

dt2 . . . dtn−1

[
I{ ∩

1≤i≤n−1
B(ti,ri)6=∅}λ2

((
∩

1≤i≤n−1
B(ti, ri)

)+rn
)]

.
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Since the intersection
(

∩
1≤i≤n−1

B(ti, ri)

)
is a convex set then by Steiner formula,

λ2

((
∩

1≤i≤n−1
B(ti, ri)

)+rn
)

= πr2n + rn.peri
(

∩
1≤i≤n−1

B(ti, ri)

)
+ λ2

(
∩

1≤i≤n−1
B(ti, ri)

)
,

where peri(.) stands for the perimeter of the set.
Therefore, the considering volume is equal to

∫
R2(n−2)

dt2 . . . dtn−1I{ ∩
1≤i≤n−1

B(ti,ri)6=∅} (4.7)[
πr2n + rn.peri

(
∩

1≤i≤n−1
B(ti, ri)

)
+ λ2

(
∩

1≤i≤n−1
B(ti, ri)

)]
.

− For the first term in (4.7), by the inductive hypothesis,

πr2n

∫
R2(n−2)

dt2 . . . dtn−1I{ ∩
1≤i≤n−1

B(ti,ri) 6=∅}

=πr2n

πn−2 n−1∑
i=1

∏
j 6=i

r2j

+ 2πn−2
∑

1≤i<j≤n−1

rirj ∏
k 6=i,j

r2k

 .
− For the third term in (4.7), we introduce a new variable y corresponding to the point in the

intersection, and we use Fubini theorem to obtain that

∫
R2(n−2)

dt2 . . . dtn−1λ2

(
∩

1≤i≤n−1
B(ti, ri)

)
=

∫
R2(n−2)

dt2 . . . dtn−1

∫
∩

1≤i≤n−1
B(ti,ri)

dy


=

∫
B(t1,r1)

dy

[∫
R2(n−2)

dt2 . . . dtn−1

n−1∏
i=2

I{ti∈B(y,ri)}

]
= πn−1

n−1∏
i=1

r2i .

− For the second term in (4.7), let us denote S(t, r) the circle with radius r at center point t, i.e.

the boundary of the disk B(t, r). It is clear that the perimeter of the intersection
(

∩
1≤i≤n−1

B(ti, ri)

)
is the sum of the lengths of the arcs on each circle S(ti, ri), i = 1, n− 1. For the first kind with
respect to the arc on S(t1, r1), again by Fubini theorem, we have

rn

∫
R2(n−2)

dt2 . . . dtn−1

[∫
S(t1,r1)

I{y∈ ∩
2≤i≤n−1

B(ti,ri)}dy

]

=rn

∫
S(t1,r1)

dy

[∫
R2(n−2)

dt2 . . . dtn−1

n−1∏
i=2

I{ti∈B(y,ri)}

]
= 2πn−1r1rn

n−1∏
i=2

r2i .
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For the second kind with respect to the arc on S(ti, ri) with i = 2, . . . , n − 1. Without loss of
generality, we consider the arc on S(t2, r2). We have

rn

∫
R2(n−2)

dt2 . . . dtn−1

[∫
S(t2,r2)

I{y∈ ∩
i6=2

B(ti,ri)}dy

]

=rn

∫
B(t1,r1+r2)

dt2

∫
S(t2,r2)

dyI{y∈B(t1,r1)}

[∫
R2(n−3)

dt3 . . . dtn−1

n−1∏
i=3

I{ti∈B(y,ri)}

]

=rnπ
n−3

n−1∏
i=3

r2i

∫
B(t1,r1+r2)

dt2

∫
S(t2,r2)

I{y∈B(t1,r1)}dy = rnπ
n−3

n−1∏
i=3

r2i

∫
B(t1,r1)

dy

∫
S(y,r2)

dt2

=2πn−1rnr
2
1r2

n−1∏
i=3

r2i .

The result follows by summing up three terms in (4.7). �

From the above lemma, we can apply Proposition 2.1 to deduce the following corollary.

Corollary 4.5. Consider Xi(t), 1 ≤ i ≤ n, being independent copies of a two-dimensional Gaussian
field X satisfying Assumption (A). Then as u tends to infinity,

P
(

max
t∈S

min
1≤i≤n

Xi(t) ≥ u
)

= u2−nϕn(u)

[
λ2(S)

2π

(
n+

n(n− 1)π

4

)
+ o(1)

]
.

4.4. Proof of Proposition 2.2. As the readers can see in Subsections 4.2 and 4.3, the basic ideas
of the proofs are Fubini theorem to change the order of the variables in the integrals, and Steiner
formula to calculate the area (length) of the ε- neighborhood of some sets. In general, these ideas
are still useful. Let us introduce Weyl tube formula, that is a generalization of Steiner formula, and
also Crofton formula that will be used later.

4.4.1. Preliminaries on Weyl tube formula and Crofton formula. - Weyl tube formula: Let M
be an m-dimensional manifold with positive reach or critical radius (see Adler and Taylor (2007))
embedded in Rd which is endowed with the canonical Riemannian structure on Rd. Then for any
positive ε less than the critical radius of M , the Lebesgue volume of the ε- neighborhood of M in
Rd is given by

λd
(
M+ε

)
=

m∑
j=0

εd−jωd−jµj(M), (4.8)

where µ0(M), µ1(M), . . . , µd(M) are the intrinsic Killing-Lipschitz curvatures of M , that do not
depend on the ambient space Rd. Note that when M is convex, then its critical radius equals to
infinity, therefore the above Weyl tube fomula holds true for any positive ε and becomes Steiner
formula.

- Crofton formula: Borrowing the notations from Klain and Rota (1997) and Kratz and Vad-
lamani (2018), let Gr(d, k) be the Grassmanian of all k− dimensional linear subspaces of Rd with
the invariant Haar measure νdk . Let Graff(d, k) be the affine Grassmannian of all k-dimensional
affine subspaces of Rd. We define the measure λdk on Graff(d, k) that is invariant under the group
of Euclidean motions as follows.

Given a k-dimensional affine subspaces V ∗ ∈ Graff(d, k). Let V ∗,⊥ be the maximal linear subspace
of Rd orthogonal to V ∗ and containing the origin. There is a unique maximal linear subspace
V ∈ Gr(d, k) orthogonal to V ∗,⊥. It means that V is the k-dimensional linear subspace parallel to
V ∗. Denote p by the intersection point between V ∗ and V ∗,⊥ = V ⊥. Thus, any V ∗ ∈ Graff(d, k)
corresponds one-to-one to a pair (V, p) ∈ Gr(d, k) × V ⊥, in the sense that V ∗ = V + p, where the
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plus symbol stands for the translation.Then, the measure λdk on Graff(d, k) is defined as, for any
real-valued measurable function f on Graff(d, k),∫

Graff(d,k)
f(V ∗)dλdk(V

∗) =

∫
Gr(d,k)

∫
V ⊥

f(V + p)dνdk(V )dp,

where dp denotes the ordinary Lebesgue measure on V ⊥ ∼= Rd−k.
In a special case, letM be a suitable compact subset of Rd and function f be the Killing-Lipschitz

curvatures of the intersection M ∩ V ∗, we have the Crofton formula as∫
Graff(d,k)

µj(M ∩ V ∗)dλdk(V ∗) =

[
d− k + j

j

]
µd−k+j(M), (4.9)

where the flag symbol stands for [
m
n

]
=

ωm
ωnωm−n

(
m

n

)
.

4.4.2. Detailed proof. It is clear that

I = λ(n−1)d

(
(t2, . . . , tn) ∈ Rd(n−1) : ∩

1≤i≤n
B(ti, ri) 6= ∅

)
=

∫
R(n−1)d

I{ ∩
1≤i≤n

B(ti,ri)6=∅}dt2 . . . dtn

=

∫
R(n−2)d

I{ ∩
1≤i≤n−1

B(ti,ri)6=∅}dt2 . . . dtn−1

∫
Rd

I
{B(tn,rn)∩

(
∩

1≤i≤n−1
B(ti,ri)

)
6=∅}

dtn

=

∫
R(n−2)d

I{ ∩
1≤i≤n−1

B(ti,ri)6=∅}λd

((
∩

1≤i≤n−1
B(ti, ri)

)+rn
)
dt2 . . . dtn−1

By Weyl tube formula in (4.8),

λd

((
∩

1≤i≤n−1
B(ti, ri)

)+rn
)

=

d∑
kn=0

rknn ωknµd−kn

(
∩

1≤i≤n−1
B(ti, ri)

)
.

Substituting this expansion in the integral, we have

I =

d∑
kn=0

rknn ωkn

∫
R(n−2)d

µd−kn

(
∩

1≤i≤n−1
B(ti, ri)

)
dt2 . . . dtn−1

=
d∑

kn=0

rknn ωkn

∫
R(n−2)d

dt2 . . . dtn−1

∫
Graff(d,kn)

µ0

(
∩

1≤i≤n−1
B(ti, ri) ∩ V ∗

)
dλdkn(V ∗)

=
d∑

kn=0

rknn ωkn

∫
R(n−2)d

dt2 . . . dtn−1

∫
Gr(d,kn)

dνdkn(V )

∫
V ⊥

µ0

(
∩

1≤i≤n−1
B(ti, ri) ∩ (V + p)

)
dp

=
d∑

kn=0

rknn ωkn

∫
R(n−2)d

dt2 . . . dtn−1

∫
Gr(d,kn)

dνdkn(V )

∫
V ⊥

I{p∈ ∩
1≤i≤n−1

B(ti,ri)|V⊥}dp,

where the second line follows from Crofton formula (4.9) applied to the case j = 0; the third
line follows from the definition of the measure λdkn and the last line follows from the fact that the
intersection ∩

1≤i≤n−1
B(ti, ri) ∩ (V + p) is empty or a non-empty convex, with Euler characteristic 0
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or 1. The value depends on whether the point p is on the orthogonal projection of ∩
1≤i≤n−1

B(ti, ri)

on the subspace V ⊥.
By the Fubini theorem, we continue as

I =

d∑
kn=0

rknn ωkn

∫
R(n−3)d

dt2 . . . dtn−2

∫
Gr(d,kn)

dνdkn(V )×∫
V ⊥

I{p∈ ∩
1≤i≤n−2

B(ti,ri)|V⊥}dp

∫
Rd

I
{B(tn−1,rn−1)∩

(
∩

1≤i≤n−2
B(ti,ri)∩(V+p)

)
6=∅}

dtn−1.

Here using again Weyl tube formula (4.8), we have

I =
d∑

kn=0

rknn ωkn

∫
R(n−3)d

dt2 . . . dtn−2

∫
Gr(d,kn)

dνdkn(V )×

∫
V ⊥

I{p∈ ∩
1≤i≤n−2

B(ti,ri)|V⊥}

d∑
kn−1=d−kn

r
kn−1

n−1 ωkn−1µd−kn−1

(
∩

1≤i≤n−2
B(ti, ri) ∩ (V + p)

)
dp

=
d∑

kn=0

rknn ωkn

d∑
kn−1=d−kn

r
kn−1

n−1 ωkn−1

∫
R(n−3)d

dt2 . . . dtn−2×∫
Gr(d,kn)

dνdkn(V )

∫
V ⊥

µd−kn−1

(
∩

1≤i≤n−2
B(ti, ri) ∩ (V + p)

)
dp

=

d∑
kn=0

rknn ωkn

d∑
kn−1=d−kn

r
kn−1

n−1 ωkn−1

∫
R(n−3)d

dt2 . . . dtn−2×∫
Graff(d,k)

µd−kn−1

(
∩

1≤i≤n−2
B(ti, ri) ∩ V ∗

)
dλdk(V

∗)

=
d∑

kn=0

rknn ωkn

d∑
kn−1=d−kn

r
kn−1

n−1 ωkn−1

[
d− kn + (d− kn−1)

d− kn−1

]
×

∫
R(n−3)d

µd−kn+(d−kn−1)

(
∩

1≤i≤n−2
B(ti, ri)

)
dt2 . . . dtn−2,

where the last line follows from the Crofton formula (4.9).
In summary, we have proved that

∫
R(n−2)d

µd−kn

(
∩

1≤i≤n−1
B(ti, ri)

)
dt2 . . . dtn−1 =

d∑
kn−1=d−kn

r
kn−1

n−1 ωkn−1

[
d− kn + d− kn−1

d− kn−1

]

×
∫
R(n−3)d

µd−(kn+kn−1−d)

(
∩

1≤i≤n−2
B(ti, ri)

)
dt2 . . . dtn−2,
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then using this argument repeatedly, we obtain that

I =
d∑

kn=0

rknn ωkn

d∑
kn−1=d−kn

r
kn−1

n−1 ωkn−1

[
d− kn + d− kn−1

d− kn−1

]
×

d∑
kn−2=d−kn+d−kn−1

r
kn−2

n−2 ωkn−2

[
d− kn + d− kn−1 + d− kn−2

d− kn−2

]
× . . .×

d∑
k2=(n−2)d−(kn+kn−1+...+k3)

rk22 ωk2

[
(d− kn) + . . .+ (d− k2)

d− k2

]
µ(n−1)d−

∑n
i=2 ki

(B(t1, r1)) .

By comparing two formulas

λd
(
B(t1, r1)

+ε
)

=

d∑
j=0

εd−jωd−jµj(M)

and

λd
(
B(t1, r1)

+ε
)

= λd (B(t1, r1 + ε)) = ωd(r1 + ε)d = ωd

d∑
j=0

(
d

j

)
εd−jrj1,

it is clear that
µj (B(t1, r1)) =

ωd
ωd−j

(
d

j

)
rj1.

Thus we have

I =
d∑

kn=0

d∑
kn−1=d−kn

. . .
d∑

k2=(n−2)d−(kn+kn−1+...+k3)

r
(n−1)d−

∑n
i=2 ki

1 ×

n∏
i=2

(
rkii ωki

[
(d− kn) + . . .+ (d− ki)

d− ki

])
ωd

ω∑n
i=2 ki−(n−2)d

(
d

(n− 1)d−
∑n

i=2 ki

)
.

Observe that
ωd

ω∑n
i=2 ki−(n−2)d

(
d

(n− 1)d−
∑n

i=2 ki

) n∏
i=2

[
(d− kn) + . . .+ (d− ki)

d− ki

]

=
ωd

ω∑n
i=2 ki−(n−2)d

(
d

(n− 1)d−
∑n

i=2 ki

) n−1∏
i=2

ω(d−kn)+...+(d−ki)

ω(d−kn)+...+(d−ki+1) × ωd−ki

(
(d− kn) + . . .+ (d− ki)

d− ki

)
=

ωdω(n−1)d−
∑n

i=2 ki

ω∑n
i=2 ki−(n−2)d

∏n
i=2 ωd−ki

× d!

[
∑n

i=2 ki − (n− 2)d]!.
∏n
i=2(d− ki)!

,

this completes the proof.

5. Comparing with Euler characteristic method

In this section, we would like to compare our result given in the main theorem with the
prediction given by the Euler characteristic method. This prediction is defined in (1.6) as

(1, 0, . . . , 0)R2µ(S).

Note that the indexes of the rows and columns of matrix R varies from 0 to d, the term corresponding
to µd(S) (or λd(S)) is

λd(S)bd
∑

0≤h1≤...≤hn−1≤d

ρh1
bh1

ρh2−h1
bh2−h1

. . .
ρd−hn−1

bd−hn−1

,
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and it is equivalent to∑
0≤h1≤...≤hn−1≤d

(2π)−d/2ϕn(u)ud−nλd(S)Γ(1/2)n−1Γ((d+ 1)/2)

Γ((h1 + 1)/2)Γ((h2 − h1 + 1)/2) . . .Γ((d− hn−1 + 1)/2)
.

To prove that the above sum coincides with the asymptotic formula (1.8), we need to show that∑
0≤h1≤...≤hn−1≤d

Γ(1/2)n−1Γ((d+ 1)/2)

Γ((h1 + 1)/2)Γ((h2 − h1 + 1)/2) . . .Γ((d− hn−1 + 1)/2)

=

d∑
kn=0

d∑
kn−1=d−kn

. . .

d∑
k2=(n−2)d−

∑n
i=3 ki

ωd
ω∑n

i=2 ki−(n−2)d
∏n
i=2 ωd−ki

× d!

[
∑n

i=2 ki − (n− 2)d]!
∏n
i=2(d− ki)!

.

Indeed, we rewrite the indices (h1, h2, . . . , hn−1) as

h1 = d− kn, h2 = (d− kn) + (d− kn−1), . . . , hn−1 =
n∑
i=2

(d− ki),

and it can be checked one-by-one that

Γ(1/2)n−1Γ((d+ 1)/2)

Γ((d− kn + 1)/2)Γ((d− kn−1 + 1)/2) . . .Γ((d− k2 + 1)/2)Γ ((d+ 1−
∑n

i=2 (d− ki)) /2)

=
ωd

ωd−
∑n

i=2(d−ki)
∏n
i=2 ωd−ki

× d!

[d−
∑n

i=2(d− ki)]!
∏n
i=2(d− ki)!

.

The equality follows easily from Legendre duplication formula (4.3) as in Subsection 4.1.
In conclusion, we give a one-term expansion for the conjunction probability of smooth Gaussian

fields. It is interesting to see that this expansion coincides with the first term of the heuristic
prediction given by the Euler characteristic method although they look different at first sight. Since
the heuristic prediction consists of d+ 1 terms, it is natural to ask that

“Could we prove the full validity of the Euler characteristic method for the conjunction probability
as for the tail distribution of a smooth Gaussian field?"

We would like to leave this interesting question for future research.
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