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Abstract. The Dirichlet-Ferguson measure is a cornerstone in nonparametric Bayesian statistics
and the study of the distributional properties of expectations with respect to such measure is an
important line of research initiated in Cifarelli and Regazzini (1979a,b) and still very active, see Letac
and Piccioni (2018) and Lijoi and Prünster (2009). In this paper we provide explicit upper bounds
for the d3, the d2 and the convex distances between random vectors whose components are means
of the Dirichlet-Ferguson measure and a random vector distributed according to the multivariate
Gaussian law. These results are applied to the Gaussian approximation of linear transformations
of random vectors with the Dirichlet distribution, yielding presumably optimal rates on the d3 and
the d2 distances and presumably suboptimal rates on the convex and the Kolmogorov distances.

1. Introduction

Let X be a Polish space equipped with the Borel sigma-field B(X) and let U ≡ {Un}n≥1 be a
sequence of exchangeable random variables defined on some probability space (Ω,F ,P) and taking
values on X. Let P(X) be the set of probability measures on (X,B(X)) endowed with the smallest
sigma-field making the mappings P(X) 3 µ 7→ µ(B), B ∈ B(X), measurable. According to de
Finetti’s Representation Theorem, there exists a probability measure π ∈ P(X) such that

P(U1 ∈ B1, . . . , Un ∈ Bn) =

∫
P(X)

n∏
i=1

p(Bi)π(dp), ∀ B1, . . . , Bn ∈ B(X), n ≥ 1.

Therefore there exists a random probability measure Π : Ω → P(X) such that, given Π, the Ui’s
are independent and identically distributed with law Π. The distribution of Π coincides with π
and it acts as a nonparametric prior in Bayesian inference. The Dirichlet-Ferguson measure is a
cornerstone in Bayesian Nonparametrics since it is the most notable example of prior Π, see the
seminal paper Ferguson (1973) and the review article Lijoi and Prünster (2009) (see also Lemma
2.1).
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Let σ be a finite and positive measure on (X,B(X)) with total mass

β := σ(X) ∈ (0,∞).

Throughout this work we denote by η the Dirichlet-Ferguson measure with parameter σ, see Section
2 for a formal definition. The measure σ completely determines the law of η and, in a Bayesian
context, has to be interpreted as a mathematical representation of the a priori information of the
observer. It is well-known that Dirichlet-Ferguson measures are conjugate, see Ferguson (1973) and
James et al. (2006). Indeed, for any n ≥ 1 and u1, . . . , un ∈ X, under the conditional probability
measure P(· |U1 = u1, . . . , Un = un), the law of η is that of a Dirichlet-Ferguson measure ηun with
parameter σun := σ +

∑n
k=1 εuk . Here εx denotes the Dirac measure at x ∈ X and the parameter

σun describes the a posteriori information of the observer after n samples U1 = u1, . . . , Un = un.
Within this framework, natural questions to address concern the distributional properties of

means with respect to η, i.e., the distributional properties of random variables of the form

I(η, h) :=

∫
X
h(x)η(dx), (1.1)

for some measurable function (or kernel) h : X → R. This important line of research was initiated
in Cifarelli and Regazzini (1979a,b). An appealing aspect of this topic is that distributional results
concerning I(η, h) are also of interest in research areas not related to Bayesian nonparametric
inference, such as, for example, the growth of Young diagrams or the exponential representations
of functions of negative imaginary parts. This fact was emphasized in Diaconis and Kemperman
(1996) and further discussed in Kerov (1998). We remark that, thanks to the conjugacy property of
the Dirichlet-Ferguson measures, the distributional properties of the a priori random mean I(η, h)
may be transferred to the a posteriori random mean

I(ηun , h)
L
= I(η, h) | {U1 = u1, . . . , Un = un},

where the symbol L= denotes equality in law.
In Cifarelli and Regazzini (1979b) the authors introduced a series of tools and techniques that,

later in Cifarelli and Regazzini (1994), turned out to be fundamental to determine the probability
distribution of I(η, h). Some conditions formerly required in Cifarelli and Regazzini (1994) were
successively relaxed in the papers Lijoi and Regazzini (2004) and Regazzini et al. (2002). Various
moments formulas for I(η, h) were obtained in Cifarelli and Melilli (2000), Hjort and Ongaro (2005)
and Yamato (1980, 1984), and formulas for the covariance of functionals of η, even more general
than I(η, h), were proved in Flint and Torrisi (2023) and Peccati (2008). Let t > 0, σ̃ a probability
measure on X := Rd, ηt the Dirichlet-Ferguson measure with parameter tσ̃ and µt the law of the
random mean I(ηt, h). In Letac and Piccioni (2018) the authors determine sufficient conditions on
tσ̃ and the kernel h which guarantee that the mapping t 7→ µt is decreasing for the Strassen convex
order on (0,∞).

All these achievements are exact results about functionals of the Dirichlet-Ferguson measure. It
has to be noticed that the probability density (with respect to the Lebesgue measure) and the cu-
mulative distribution function of I(η, h), computed in Regazzini et al. (2002), are quite complicated
to handle for practical purposes. Hence, it is of great interest to provide approximations of the law
of I(η, h). There have been various proposals in the literature. In Feigin and Tweedie (1989) the
authors constructed a Harris ergodic Markov chain whose unique invariant probability measure is
the law of I(η, h). Later, it was proved in Guglielmi and Tweedie (2001) that such Markov chain,
say {Yn}n≥1, is geometrically ergodic if

∫
X |h(x)|σ(dx) < ∞ and uniform ergodic if the support of

σ ◦ h−1 is bounded. Interestingly, the authors are also able to provide upper bounds on the total
variation distance between the law of I(η, h) and the law of Yn. An algorithm for exact sampling
from I(η, h) has been formulated in Guglielmi et al. (2002). Another method to approximate the
law of I(η, h) has been proposed in Muliere and Tardella (1998). The idea relies on truncating the
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series representation of η at some random point in such a way that the (random) Prokhorov distance
between η and its truncated version, say η(ε), is less than ε > 0 almost surely. In some cases it
is possible to show that the closeness, with respect to the Prokhorov distance, between η and η(ε)
induces closeness between the laws of

∫
X h(x)η(ε)(dx) and I(η, h). Numerical methods for approxi-

mating the distribution of I(η, h) can be found in Regazzini et al. (2002) and Tamura (1988). The
method provided in Tamura (1988) is based on the numerical inversion of the Laplace functional of
the Gamma process which generates η (see Ferguson (1973) for details on this construction of η).
Another numerical method is described in Regazzini et al. (2002). It consists in approximating, on
a sufficiently large interval of the real line and with respect to the uniform metric, the cumulative
distribution function of I(η, h) when σ ◦ h−1 has a finite support.

To the best of our knowledge, the first Quantitative One-dimensional Central Limit Theorem for
means with respect to the Dirichlet-Ferguson measure has been proved in Flint and Torrisi (2023).
Since the purpose of this paper is to extend such result to d-dimensional, d ∈ N := {1, 2, . . .},
random vectors, whose components are expectations with respect to η, it is worthwhile to state the
Gaussian approximation of I(η, h) established in Flint and Torrisi (2023). Hereon, we denote by dW
the Wasserstein distance, by Lip(1) the set of Lipschitz functions g : R→ R with Lipschitz constant
at most 1 and by N(0, ν2) a random variable with Gaussian law with mean 0 and variance ν2.

Theorem 1.1 (Flint and Torrisi (2023)). Let h : X→ R be a measurable function such that∫
X
h(x)σ(dx) = 0. (1.2)

Then:
(i)

dW (I(η, h), N(0, 1)) := sup
g∈Lip(1)

|E[g(I(η, h))]− E[g(N)]|

≤
√

2/π
∣∣∣1− 1

β(β + 1)

∫
X
h(x)2σ(dx)

∣∣∣+
2

β(β + 1)(β + 2)

∫
X
|h(x)|3 σ(dx)

+
2

β2(β + 1)2(β + 2)

∫
X
|h(x)|σ(dx)

∫
X
h(x)2 σ(dx). (1.3)

(ii) Let {ηM}M∈N be a sequence of Dirichlet-Ferguson measures such that, for any M ∈ N, ηM has
parameter σM and βM := σM (X)→ +∞, as M → +∞. For each M ∈ N, let hM be a function in
L3(X, σM ), which satisfies (1.2) with hM in place of h and σM in place of σ, and suppose that

1

β2M

∫
X
hM (x)2σM (dx)→ 1 and

1

β3M

∫
X
|hM (x)|3σM (dx)→ 0, as M → +∞.

Then the bound (1.3) holds, with ηM in place of η, hM in place of h, σM in place of σ and βM in
place of β, and the upper bound goes to zero as M → +∞. Therefore

dW (I(ηM , hM ), N(0, 1))→ 0, as M → +∞

and ∫
X
hM (x) ηM (dx)→ N(0, 1) in law, as M → +∞.

The aim of the paper is to measure how much the law of a d-dimensional random vector of the
form

I(η,h) := (I(η, h1), . . . , I(η, hd)), h := (h1, . . . , hd)

is far from a centered d-dimensional Gaussian random vector with covariance matrix Σ, denoted by

N := (N1, . . . , Nd).
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Throughout this paper Σ can be positive semi-definite or positive definite. We quantify the distance
between I(η,h) and N providing explicit upper bounds on d(I(η,h),N) for three different metrics
d: the d3, the d2 and the convex distance dc. Such metrics differ among each other for the degree of
regularity required on the test functions involved in their definitions. Specifically, both the d3 and
the d2 distances are defined in terms of smooth test functions g, but the definition of d3 requires
g ∈ C3(Rd) while the definition of d2 requires g ∈ C2(Rd). Here Ck(Rd), k ∈ N, denotes the set
of functions g : Rd → R which admit continuous partial derivatives up to the order k. The convex
distance dc is instead based on test functions which are indicators of measurable convex sets, and
it has to be considered as a standard multivariate counterpart of the Kolmogorov distance dK . In
fact, the convex distance is often preferable to the Kolmogorov distance since dc enjoys a number of
invariance properties not satisfied by dK . For instance, dc(LX, LY) = dc(X,Y), for any invertible
affine operator L : Rd → Rd and d-dimensional random vectors X, Y, see Bentkus (2003), Nourdin
et al. (2022) and Schulte and Yukich (2019).

We emphasize that, although the d2 distance requires less regularity than the d3 distance, the
Quantitative Multidimensional Central Limit Theorem in the d2 distance (see Theorem 4.2) holds
under the more restrictive assumption that the covariance matrix Σ is positive definite, while the
Quantitative Multidimensional Central Limit Theorem in the d3 distance (see Theorem 4.1) holds,
more generally, for a positive semi-definite covariance matrix Σ. Applying Theorems 4.1 and Theo-
rem 4.2 to linear transformations of random vectors distributed according to the Dirichlet law, we
obtain presumably optimal rates which, roughly speaking, are of order O(C−1M ), asM → +∞, where
CM is a normalizing sequence (see Theorem 5.3 and the Examples 1 and 2). The convex distance
dc is arguably more interesting than the d3 and the d2 distances since, as already mentioned, it has
very nice properties. However, it is harder to deal with dc because the underlying test functions are
discontinuous. Consequently, the application of the Quantitative Multidimensional Central Limit
Theorem in the dc distance (see Theorem 4.4) to linear transformations of random vectors distributed
according to the Dirichlet law yields a presumably suboptimal rate which, roughly speaking, is of
order O(C

−1/2
M ), as M → +∞, where CM is a normalizing sequence (see again Theorem 5.3 and

the Examples 1 and 2).
The generalization of Theorem 1.1 to the multidimensional setting is far from being trivial. To

enlight this fact, we mention that the proof of Theorem 1.1 is based on the Malliavin-Stein method
(we refer the reader to the book Nourdin and Peccati (2012) for an introduction on this method
and to the seminal papers Nourdin and Peccati (2009) and Peccati et al. (2010) for the Gaussian
approximation of functionals of the Wiener and the Poisson measures by this method). Indeed, the
proof of Theorem 1.1 combines a Mecke-type formula for η (proved in Ferguson (1973) and later
extended in Last (2020)) with the celebrated Stein equation (see Stein (1972)), according to which,
given a Lipschitz function g with Lipschitz constant at most 1, there exists a twice differentiable
function f such that

g(x)− E[g(N)] = xf(x)− f ′(x), x ∈ R
and

‖f‖∞ := sup
x∈R
|f(x)| ≤ 2‖g′‖∞, ‖f ′‖∞ ≤

√
2/π‖g′‖∞, ‖f ′′‖∞ ≤ 2‖g′‖∞.

In the multivariate setting, the (partial) differential equation involved in the Stein equation is of
second order (see formula (3.3)), increasing the needed degree of smoothness by one, over what
is required in the one-dimensional case. For this reason, when combining the multivariate Stein
equation with a suitable “corrected” integration by parts formula for functionals of I(η,h) (see
Lemma 3.8) we need to replace dW with the smoother d2 distance. The proof of the Quantitative
Multidimensional Central Limit Theorem in the d3 distance is based on the so-called “smart path”
method and again the afore-mentioned “corrected” integration by parts formula for functionals of
I(η,h). The proof of the Quantitative Multidimensional Central Limit Theorem in the dc distance
essentially combines a version of Stein’s method for the multidimensional Gaussian approximation
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(which is different from that one considered in the proof of Theorem 4.2, see Lemma 3.6) with
an integration by parts formula for functionals of η (see Lemma 3.1) and a remarkable smoothing
lemma for the convex distance (see Lemma 3.9).

The article is organized as follows. In Section 2 we define the Dirichlet-Ferguson measure and
recall some of its properties. In Section 3 we give some preliminaries, e.g., we state an integration
by parts formula related to a suitable gradient operator, which plays an important role in the
proofs of our main results, we define the d3, the d2 and the convex distances, we describe the
multidimensional Stein method and we state a crucial “corrected” integration by parts formula for
functionals of I(η,h). The Quantitative Multidimensional Central Limit Theorems are stated and
proved in Section 4. Applications of these theorems to affine trasformations of random vectors with
the Dirichlet law are provided in Section 5. We include an Appendix where we report a number of
technical proofs.

2. The Dirichlet-Ferguson measure

A random probability measure is a measurable mapping from an underlying probability space
(Ω,F ,P) to P(X). Let k ≥ 2 be a positive integer and

∆k−1 := {(x1, . . . , xk) : x1, . . . , xk ≥ 0, x1 + · · ·+ xk = 1}
the (k − 1)-dimensional simplex in Rk. For α = (α1, . . . , αk) ∈ (0,∞)k, the Dirichlet distribution
with parameter α is the probability measure on ∆k−1 defined by

Dir[α](A) :=
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

∫
Rk−1

1A(x1, . . . , xk)

(
k∏
i=1

xαi−1
i

)
dx1 · · · dxk−1,

for each Borel set A ∈ B(∆k−1). Here Γ(·) is the Euler gamma function.
For an integer k ≥ 2, we denote by Pk(X) the set of partitions {X1, . . . , Xk} of X with Xi ∈ B(X)

and σ(Xi) > 0, for any i ∈ [k], where, for ease of notation, for n ∈ N, we set [n] := {1, . . . , n}. We say
that a random probability measure η : Ω → P(X) is a Dirichlet-Ferguson measure with parameter
σ (see Feng (2010) and Ferguson (1973)) if, for each integer k ≥ 2 and {X1, . . . , Xk} ∈ Pk(X),

(η(X1), . . . , η(Xk))
L
= Dir[(σ(X1), . . . , σ(Xk))].

2.1. The Dirichlet-Ferguson measure as de Finetti’s measure of a sequence of exchangeable random
variables. Let U = {Ui}i≥1 be a sequence of X-valued random variables, defined on the probability
space (Ω,F ,P), such that

U1 has law σ/β, U` | {U1 = u1, . . . , U`−1 = u`−1} has law
σ +

∑`−1
s=1 εus

β + `− 1
, ` ≥ 2. (2.1)

In particular, for every n ∈ N and every 1 ≤ j1 < · · · < jn < +∞,

P(Uj1 ∈ dx1, . . . , Ujn ∈ dxn) =
n∏
`=1

σ(dx`) +
∑`−1

s=1 εxs(dx`)

β + `− 1
, (2.2)

where we set
∑0

s=1 := 0. Therefore the sequence U is exchangeable.
The next lemma, which is proved in Blackwell and MacQueen (1973), characterizes the Dirichlet-

Ferguson measure η as the de Finetti measure of U .

Lemma 2.1. Let

Pn(B,ω) :=
1

n

n∑
i=1

1B(Ui(ω)), n ∈ N, B ∈ B(X)

be the empirical measure of the sequence U previously defined. Then:
(i) As n→ +∞, Pn converges P-a.s. to the Dirichlet-Ferguson measure η with parameter σ.
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(ii) Given η, the random variables U1, U2, . . . are independent and identically distributed with law
η, i.e., the law of η is the de Finetti measure of U .

Throughout this paper we shall consider means of the Dirichlet-Ferguson measure η of the form
(1.1) with h satisfying (1.2). By Lemma 2.1 one immediately has that if h ∈ L1(X, σ) then
E[h(U1) | η] = I(η, h), and therefore

E[I(η, h)] =
1

β

∫
X
h(x)σ(dx) = 0. (2.3)

For later purposes, we also remark that by the isometry formula (8) in Peccati (2008) one has

E[I(η, h)2] =
1

β + 1
E[h(U1)

2] =
1

β(β + 1)

∫
X
h(x)2σ(dx), ∀ h ∈ L2(X, σ) satisfying (1.2). (2.4)

3. Preliminaries

In this section we give the following preliminaries. (i) We introduce a gradient operator and
state a related integration by parts formula. (ii) We define the d3, the d2 and the dc distances
between probability laws on Rd. As already mentioned in the introduction, such metrics will be
exploited to measure how much the law of I(η,h) is far from the law of N. (iii) We recall two
slightly different solutions to the multivariate Stein equation, which will be exploited to prove the
Quantitative Multidimensional Central Limit Theorems with respect to the d2 and the dc distances
(see Theorems 4.2 and 4.4). (iv) We give three preliminary lemmas: the multivariate Gaussian
integration by parts formula, a “corrected” integration by parts formula, which plays a key role in
the proofs of Theorems 4.1 and 4.2, a remarkable smoothing formula for the convex distance dc.

It has to be mentioned that in the specialized literature the symbols d3 and d2 usually denote
smooth Wasserstein distances; these metrics are induced by test functions which are different from
the ones involved in the Definitions 3.2 and 3.3. We refer the reader to Gaunt and Li (2023) for
more insight into smooth Wasserstein distances.

3.1. An integration by parts formula. For a measurable mapping G : P(X) → Rd, d ∈ N, G =
(G1, . . . , Gd), (x, t) ∈ X× [0, 1] and µ ∈ P(X), we define the gradient of G as

D(x,t)G(µ) := (G1

(
(1− t)µ+ tεx

)
−G1(µ), . . . , Gd

(
(1− t)µ+ tεx

)
−Gd(µ)). (3.1)

The next lemma states that the operator I(η, ·) is the adjoint of the gradient D.
Hereon, we denote by σ̂ the probability measure on X× [0, 1] defined by

σ̂(dx, dt) := σ(dx)(1− t)β−1dt

and we denote by 〈·, ·〉L2(X×[0,1],σ̂) the inner product on L2(X× [0, 1], σ̂).

Lemma 3.1. Let G : P(X) → R be a measurable function such that G(η) ∈ L2(Ω,P) and assume
that the kernel h ∈ L2(X, σ) satisfies (1.2). Then

E[〈h(·), D·G(η)〉L2(X×[0,1],σ̂)] = E[G(η)I(η, h)]. (3.2)

It is worthwhile to mention that formula (3.2) indeed holds under more general conditions on the
kernel h and the functional G (see Ferguson (1973) and Last (2020)). However, the assumptions of
Lemma 3.1 are the minimal ones for our purposes.
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3.2. Distances between probability measures on Rd. We start introducing some notation. For any
g ∈ C1(Rd), we set

‖g‖Lip := sup
x∈Rd

‖∇g(x)‖,

where ‖ · ‖ is the Euclidean norm on Rd and ∇ is the usual gradient of a smooth function; for any
g ∈ C2(Rd), we set

M2(g) := sup
x∈Rd

‖Hess g(x)‖op,

where Hess g(x) is the Hessian matrix of g at x and the operator norm of a d× d real matrix A is
defined by ‖A‖op := supx: ‖x‖=1 ‖Ax‖; for k ∈ N and g ∈ Ck(Rd), we set

‖g(k)‖∞ := max
1≤i1,...,ik≤d

sup
x∈Rd

∣∣∣ ∂kg(x)

∂xi1 . . . ∂xik

∣∣∣.
Definition 3.2. The distance d3 between the laws of two Rd-valued random vectors X and Y such
that E[‖X‖2],E[‖Y‖2] <∞, written d3(X,Y), is given by

d3(X,Y) := sup
g∈H3

|E[g(X)]− E[g(Y)]|,

whereH3 indicates the collection of all functions g ∈ C3(Rd) such that ‖g(2)‖∞ ≤ 1 and ‖g(3)‖∞ ≤ 1.

Definition 3.3. The distance d2 between the laws of two Rd-valued random vectors X and Y such
that E[‖X‖],E[‖Y‖] <∞, written d2(X,Y), is given by

d2(X,Y) := sup
g∈H2

|E[g(X)]− E[g(Y)]|,

where H2 indicates the collection of all functions g ∈ C2(Rd) such that ‖g‖Lip ≤ 1 and M2(g) ≤ 1.

Note that both the d3 and the d2 distances are defined in terms of smooth test functions. In
contrast, the convex distance dc, that we are going to define soon, is based on test functions which
are indicators of measurable convex sets.

Definition 3.4. The convex distance dc between the laws of two Rd-valued random vectors X and
Y, written dc(X,Y), is given by

dc(X,Y) := sup
g∈I
|E[g(X)]− E[g(Y)]|,

where I denotes the collection of all indicator functions of measurable convex sets in Rd.

We conclude this subsection emphasizing that, if dj(Xn,X) → 0, as n → +∞, where j = 2, 3, c

and Xn, X are random vectors with values in Rd, then Xn converges in law to X, as n→ +∞, see
Peccati and Zheng (2010) and Schulte and Yukich (2019).

3.3. The multidimensional Stein equation. Hereon, we consider the Hilbert-Schmidt inner product
and the Hilbert-Schmidt norm on the class of d × d real matrices, which are defined, respectively,
by

〈A,B〉H.S. := Tr(ABT ) =

d∑
i,j=1

aijbij and ‖A‖H.S. =
√
〈A,A〉H.S.

for every pair of matrices A = (aij)1≤i,j≤j and B = (bij)1≤i,j≤d, where the symbols Tr(A) and AT

denote, respectively, the trace and the transpose of the matrix A. For any g ∈ C2(Rd), we define
the quantity

M3(g) := sup
x 6=y

‖Hess g(x)−Hess g(y)‖op
‖x− y‖

.
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The following lemma gives a solution to the multidimensional Stein’s equation which comes in handy
in the proof of Theorem 4.2. We refer the reader to Peccati and Zheng (2010) (see Lemma 2.17)
and the references cited therein for a proof. We note that the bounds (3.4) and (3.5) improve
the corresponding estimates in Peccati and Zheng (2010); the proofs of these improved bounds are
provided in Gaunt (2016) (see Proposition 2.1).

Throughout this paper we denote by 〈·, ·〉 the inner product on Rd.

Lemma 3.5. Fix d ∈ N and let Σ = (Σij)1≤i,j≤d be a d× d positive definite symmetric real matrix.
Then, for g ∈ C2(Rd) with bounded first and second derivatives, we have that the function

fg(x) :=
1

2

∫ 1

0

1

1− s
E[g(
√
sN +

√
1− sx)− g(N)] ds

is solution to the following partial differential equation (with unknown f):

g(x)− E[g(N)] = 〈x,∇f(x)〉 − 〈Σ,Hess f(x)〉H.S., x ∈ Rd. (3.3)

Moreover, one has that

M2(fg) ≤
√

2

π
‖Σ−1/2‖op‖g‖Lip (3.4)

and

M3(fg) ≤
√

2π

4
‖Σ−1/2‖opM2(g). (3.5)

Since it appears unclear how to deal with solutions fg to the Stein equation (3.3) when g is non-
smooth (such as the test functions involved in the definition of dc) in order to prove Theorem 4.4
we need a slightly different version of the multidimentional Stein’s method. The idea is to provide a
solution to (3.3) considering in place of a non-smooth g an its regular version, say gt, which depends
on a smoothing parameter t ∈ (0, 1). Of course one makes some error by replacing the test functions
defining dc by their regular versions, but a smoothing lemma (see Lemma 3.9) allows us to bound
this error by some constant multiple of

√
t/(1− t).

Lemma 3.6. Fix d ∈ N and let Σ = (Σij)1≤i,j≤d be a d× d positive definite symmetric real matrix.
Given g : Rd → R measurable and bounded and t ∈ (0, 1), we introduce the smoothed function

gt(x) := E[g(
√
tN +

√
1− tx)], x ∈ Rd. (3.6)

Then:
(i) The function

ft,g(x) :=
1

2

∫ 1

t

1

1− s
E[g(
√
sN +

√
1− sx)− g(N)] ds, x ∈ Rd

is solution to the partial differential equation (3.3) with gt in place of g (and with unknown f).
(ii)

sup
x∈Rd

∣∣∣∂ft,g(x)

∂xi

∣∣∣ ≤ ‖g‖∞√1− t√
t

d∑
`,j=1

|(Σ−1/2)`j(Σ−1/2)`i|
√

Σjj , for any i ∈ [d] and t ∈ (0, 1).

(iii) For any d-dimensional random vector X it holds

sup
g∈I

E

 d∑
i,j=1

(
∂2ft,g(X)

∂xi∂xj

)2
 ≤ ‖Σ−1‖2op(d2(log t)2dc(X,N) + 530d17/6), for any t ∈ (0, 1).

(iv) For any `, k, j ∈ [d] and x ∈ Rd it holds

sup
x∈Rd

∣∣∣ ∂3ft,g(x)

∂x`∂xk∂xj

∣∣∣ ≤ 6d3‖Σ−1‖3/2op ‖g‖∞
1√
t
, for any t ∈ (0, 1).
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The proof of this lemma is given in the Appendix.

3.4. Preliminary lemmas. We conclude this section by stating some further lemmas. We start with
the multivariate Gaussian integration by parts formula. The proof is elementary and can be found
e.g. in Talagrand (2003) (see Eq. (A.41) therein).

Lemma 3.7. Let g ∈ C1(Rd) with bounded derivatives and such that E[|Nig(N)|] < ∞, for any
i ∈ [d]. Then

E[Nig(N)] =
d∑
j=1

ΣijE
[
∂g(N)

∂xj

]
, for any i ∈ [d].

The next lemma (whose proof is given in the Appendix) provides a “corrected" integration by
parts formula for functionals of I(η,h), which plays a crucial role in the proofs of the Quantitative
Multidimensional Central Limit Theorems in the d3 and the d2 distances.

Lemma 3.8. Suppose that the kernels hi ∈ L2(X, σ), i ∈ [d] ∪ {0}, satisfy (1.2). Then, for any
g ∈ C2(Rd) with bounded first and second derivatives, we have

E[g(I(η,h))I(η, h0)] =
1

β(β + 1)
E

[
d∑
i=1

∂

∂xi
g(I(η,h))

∫
X
h0(x)hi(x)σ(dx)

]
+ c,

where c is a constant such that

|c| ≤ d‖g(2)‖∞
β(β + 1)(β + 2)

[
d∑
i=1

∫
X
|h0(x)||hi(x)|2σ(dx)

+
1

β(β + 1)

∫
X
|h0(x)|σ(dx)

d∑
i=1

∫
X
|hi(x)|2σ(dx)

]
.

Finally we state a remarkable smoothing lemma for the convex distance proved in Schulte and
Yukich (2019), see Lemma 2.2 therein. It plays a crucial role in the proof of the Quantitative
Multidimensional Central Limit Theorem in the metric dc.

Lemma 3.9. Let X be a d-dimensional random vector, t ∈ (0, 1) and Σ a d× d real symmetric and
positive definite matrix. Then

dc(X,N) ≤ 4

3
sup
g∈I
|E[gt(X)− gt(N)]|+ 20√

2
d

√
t

1− t
,

where gt is defined by (3.6).

4. Quantitative Multidimensional Central Limit Theorems

In this section we prove the main results of the paper, i.e., three different Quantitative Mul-
tidimensional Central Limit Theorems for the random vector I(η,h). The first gives an explicit
upper bound on d3(I(η,h),N) and it is proved by exploiting the so-called “smart path" method.
We refer the reader to Theorem 4.2 in Peccati and Zheng (2010) for a similar result on the Poisson
space. The second provides an explicit upper bound on d2(I(η,h),N) and it is proved exploiting
the Malliavin-Stein method. We refer the reader to Theorem 3.3 in Peccati and Zheng (2010) for a
similar result for functionals of the Poisson measure. The third furnishes an explicit upper bound
on dc(I(η,h),N). We refer the reader to Theorem 1.2 in Schulte and Yukich (2019) for a related
result on the Poisson space.
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Hereon, we consider the quantities

γ1 :=
d∑

i,j=1

∣∣∣Σij −
1

β(β + 1)

∫
X
hi(x)hj(x)σ(dx)

∣∣∣,
γ2 :=

d

β(β + 1)(β + 2)

[
d∑

i,j=1

∫
X
|hi(x)||hj(x)|2σ(dx)

+
1

β(β + 1)

d∑
i,j=1

∫
X
|hi(x)|σ(dx)

∫
X
|hj(x)|2σ(dx)

]
,

γ3 :=
d3

β(β + 1)2
max
1≤i≤d

∫
X
|hi(x)|3σ(dx),

γ4 :=
d3

β(β + 1)2

√
max
1≤i≤d

∫
X
|hi(x)|2σ(dx) max

1≤i≤d

∫
X
|hi(x)|4σ(dx),

γ5 := max{γ1,
√
γ7}, γ6 := max{γ1,

√
γ8},

where

γ7 :=
2

3β(β + 1)(β + 2)

[
d∑
j=1

∫
X
|hj(x)|3σ(dx)

+ 2

√√√√β + 2

β + 1

d∑
k=1

∫
X
hk(x)2σ(dx)

d∑
k=1

(
2

∫
X
hk(x)4σ(dx) +

6

β(β + 1)

(∫
X
hk(x)2σ(dx)

)2
)]

and

γ8 :=
2

3β(β + 1)(β + 2)

[√√√√ d∑
i=1

∫
X
|hi(x)|2σ(dx)

d∑
i=1

∫
X
|hi(x)|4σ(dx)

+ 2

√√√√β + 2

β + 1

d∑
k=1

∫
X
hk(x)2σ(dx)

d∑
k=1

(
2

∫
X
hk(x)4σ(dx) +

6

β(β + 1)

(∫
X
hk(x)2σ(dx)

)2
)]

.

Hereafter, we denote by γi,M , i ∈ [8], M ∈ N, the quantity obtained replacing hk, k ∈ [d], σ and
β in the definition of γi with a sequence of kernels hk,M , a sequence of measures σM and a sequence
of total masses βM := σM (X), respectively. We also set hM := (h1,M , . . . , hd,M ).

Hereon, if not otherwise stated, the covariance matrix Σ is assumed to be positive semi-definite.

4.1. A Quantitative Multidimensional Central Limit Theorem in the d3 distance.

Theorem 4.1. Let d ∈ N be fixed and suppose that

For any i ∈ [d], hi : X→ R is a measurable function which satisfies (1.2) with hi in place of h.
(4.1)

Then:
(i)

d3(I(η,h),N) ≤ 1

2
(γ1 + γ2) ≤

1

2
(γ1 + γ3) ≤

1

2
(γ1 + γ4). (4.2)

(ii) Let {ηM}M∈N be a sequence of Dirichlet-Ferguson measures such that, for any M ∈ N, ηM has
parameter σM and βM := σM (X) → +∞, as M → +∞. For each M ∈ N, let {hi,M}i∈[d] be a
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family of kernels in L3(X, σM ) which satisfy (1.2), with hi,M in place of h and σM in place of σ,
and are such that

For any i, j ∈ [d],
1

β2M

∫
X
hi,M (x)hj,M (x)σM (dx)→ Σij , as M → +∞ (4.3)

and
For any i ∈ [d],

1

β3M

∫
X
|hi,M (x)|3σM (dx)→ 0, as M → +∞. (4.4)

Then, for each M ∈ N, the relation (4.2) is satisfied, with ηM in place of η, hM in place of h and
γi,M in place of γi, i = 1, 2, 3, 4, and γ1,M , γ3,M → 0, as M → +∞. Therefore

d3(I(ηM ,hM ),N)→ 0, as M → +∞ (4.5)

and
I(ηM ,hM )→ N in law, as M → +∞. (4.6)

(iii) Let the sequence {ηM}M∈N be as in (ii). For any M ∈ N, let {hi,M}i∈[d] be a family of kernels
in L4(X, σM ) which satisfy (1.2), with hi,M in place of h and σM in place of σ, (4.3) and

For any i ∈ [d],
1

β4M

∫
X
|hi,M (x)|4σM (dx)→ 0, as M → +∞. (4.7)

Then, for each M ∈ N, the relation (4.2) is satisfied, with ηM in place of η, hM in place of h and
γi,M in place of γi, i = 1, 2, 3, 4, and γ1,M , γ4,M → 0, as M → +∞. Therefore the relations (4.5)
and (4.6) hold.

Note that, under the foregoing assumptions, if Σ is a diagonal matrix, then the (dependent)
random variables I(ηM , hi,M ), i ∈ [d], are, as M grows large, asymptotically independent with (one-
dimensional) Gaussian law with mean zero and variance Σii, i ∈ [d].

Proof : Proof of Part (i). We start noticing that if hi /∈ L3(X, σ) for some i ∈ [d] then γ2 = γ3 =
γ4 = +∞ and the bounds are trivially true. Therefore, we suppose that the functions |hi|3, i ∈ [d],
are all integrable with respect to σ. Moreover, without loss of generality, we may assume that η and
N are independent. Throughout this proof for ease of notation we put I := I(η,h). Take g ∈ H3

and set
G(t) := E[g(

√
1− tI +

√
tN)], t ∈ [0, 1].

We have

|E[g(N)]− E[g(I)]| = |G(1)−G(0)| =
∣∣∣ ∫ 1

0
G′(t)dt

∣∣∣ ≤ ∫ 1

0
|G′(t)|dt. (4.8)

By the properties of g we have that G is differentiable on (0, 1) with derivative

G′(t) =
d∑
i=1

E
[
∂

∂xi
g(
√

1− tI +
√
tN)

(
1

2
√
t
Ni −

1

2
√

1− t
I(η, hi)

)]
=

1

2
√
t
N− 1

2
√
t− 1

I, (4.9)

where

N :=

d∑
i=1

E
[
∂

∂xi
g(
√

1− tI +
√
tN)Ni

]
and I :=

d∑
i=1

E
[
∂

∂xi
g(
√

1− tI +
√
tN)I(η, hi)

]
.

In what follows we denote by LZ the law of a random variable Z, and integrals with respect to LZ
are implicitly realized over the support of Z. For fixed i ∈ [d], t ∈ [0, 1] and z ∈ Rd, set

γt,zi (x) :=
∂

∂xi
g(
√

1− tz +
√
tx), x ∈ Rd
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and note that, for any j ∈ [d],

∂

∂xj
γt,zi (x) =

√
t

∂2

∂xi∂xj
g(
√

1− tz +
√
tx), x ∈ Rd. (4.10)

So, due to the fact that g ∈ H3, we have that γt,zi ∈ C1(Rd) with bounded derivatives. Since η is
independent of N, we have

E
[
∂

∂xi
g(
√

1− tI +
√
tN)Ni

]
=

∫
E[γt,zi (N)Ni]LI(dz). (4.11)

We shall check later on that, for any i ∈ [d], t ∈ [0, 1] and z ∈ Rd,

E[|γt,zi (N)Ni|] <∞. (4.12)

Therefore by Lemma 3.7, for any i ∈ [d], t ∈ [0, 1] and z ∈ Rd, we have

E[γt,zi (N)Ni] =
√
t

d∑
j=1

ΣijE
[

∂2

∂xi∂xj
g(
√

1− tz +
√
tN)

]
.

Combining this relation with (4.11) and using again the independence between η and N, we have

E
[
∂

∂xi
g(
√

1− tI +
√
tN)Ni

]
=
√
t

d∑
j=1

ΣijE
[

∂2

∂xi∂xj
g(
√

1− tI +
√
tN)

]
.

Therefore

N =
√
t

d∑
i,j=1

ΣijE
[

∂2

∂xi∂xj
g(
√

1− tI +
√
tN)

]
. (4.13)

For fixed i ∈ [d], t ∈ [0, 1] and z ∈ Rd, define

γ̃t,zi (x) :=
∂

∂xi
g(
√

1− tx+
√
tz) = γt,xi (z).

Since g ∈ H3, we have that γ̃t,zi ∈ C2(Rd) with bounded first and second derivatives. Indeed,

∂

∂xj
γ̃t,zi (x) =

√
1− t ∂2

∂xi∂xj
g(
√

1− tx+
√
tz), (4.14)

∂2

∂xk∂xj
γ̃t,zi (x) = (1− t) ∂3

∂xi∂xj∂xk
g(
√

1− tx+
√
tz),

‖(γ̃t,zi )(1)‖∞ ≤
√

1− t‖g(2)‖∞ and ‖(γ̃t,zi )(2)‖∞ ≤ (1− t)‖g(3)‖∞.
Using the independence between η and N, Lemma 3.8 and relation (4.14), we have

E
[
∂

∂xi
g(
√

1− tI +
√
tN)I(η, hi)

]
=

∫
E
[
∂

∂xi
g(
√

1− tI +
√
tz)I(η, hi)

]
LN(dz)

=

∫
E[γ̃t,zi (I)I(η, hi)]LN(dz)

=

∫ {
1

β(β + 1)
E

 d∑
j=1

∂

∂xj
γ̃t,zi (I)

∫
X
hi(x)hj(x)σ(dx)

+ c(i, t, z)

}
LN(dz)

=

√
1− t

β(β + 1)
E

 d∑
j=1

∂2

∂xi∂xj
g(
√

1− tI +
√
tN)

∫
X
hi(x)hj(x)σ(dx)

+ c̃(i, t),
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where c̃(i, t) :=
∫
c(i, t, z)LN(dz). Therefore

I =

√
1− t

β(β + 1)
E

 d∑
i,j=1

∂2

∂xi∂xj
g(
√

1− tI +
√
tN)

∫
X
hi(x)hj(x)σ(dx)

+
d∑
i=1

c̃(i, t). (4.15)

By (4.9), (4.13) and (4.15) we have

G′(t) =
1

2

d∑
i,j=1

E

[
∂2

∂xi∂xj
g(
√

1− tI +
√
tN)

(
Σij −

1

β(β + 1)

∫
X
hi(x)hj(x)σ(dx)

)]

− 1

2
√

1− t

d∑
i=1

c̃(i, t). (4.16)

By Lemma 3.8 we also have that, for any i ∈ [d], t ∈ [0, 1] and z ∈ Rd,

|c(i, t, z)| ≤
d‖(γ̃t,zi )(2)‖∞
β(β + 1)(β + 2)

[
d∑
j=1

∫
X
|hi(x)||hj(x)|2σ(dx)

+
1

β(β + 1)

∫
X
|hi(x)|σ(dx)

d∑
j=1

∫
X
|hj(x)|2σ(dx)

]

≤ (1− t)d‖g(3)‖∞
β(β + 1)(β + 2)

[
d∑
j=1

∫
X
|hi(x)||hj(x)|2σ(dx)

+
1

β(β + 1)

∫
X
|hi(x)|σ(dx)

d∑
j=1

∫
X
|hj(x)|2σ(dx)

]
=: c(i, t)

and so |c̃(i, t)| ≤ c(i, t). The first inequality in (4.2) follows by this latter inequality, (4.8), (4.16)
and the fact that ‖g(2)‖∞, ‖g(3)‖∞ ≤ 1. The second inequality in (4.2) follows from noticing that
γ2 ≤ γ3. Indeed, by Hölder’s inequality we have

γ2 ≤
d

β(β + 1)(β + 2)

[
d∑

i,j=1

(∫
X
|hi(x)|3σ(dx)

)1/3(∫
X
|hj(x)|3σ(dx)

)2/3

+
1

β(β + 1)
β

d∑
i,j=1

(∫
X
|hi(x)|3σ(dx)

)1/3(∫
X
|hj(x)|3σ(dx)

)2/3
]

≤ d

β(β + 1)(β + 2)

[
d∑

i,j=1

max
1≤i≤d

∫
X
|hi(x)|3σ(dx) +

1

β + 1

d∑
i,j=1

max
1≤i≤d

∫
X
|hi(x)|3σ(dx)

]
= γ3.

As far as the third upper bound in (4.2) is concerned, it suffices to note that the Cauchy-Schwarz
inequality yields ∫

X
|hi(x)|3σ(dx) ≤

√∫
X
|hi(x)|2σ(dx)

∫
X
|hi(x)|4σ(dx) (4.17)

and therefore γ3 ≤ γ4. It remains to check (4.12). By the Cauchy-Schwarz inequality it suffices to
check

For any t ∈ (0, 1), z ∈ Rd and i ∈ [d], E[|γt,zi (N)|2] <∞.
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By the Multivariate Mean Value Theorem and (4.10), we have

|γt,zi (N)− γt,zi (0)| ≤

 sup
y∈Rd

√√√√ d∑
i=1

∣∣∣ ∂
∂xi

γt,zi (y)
∣∣∣2

√√√√ d∑

i=1

|Ni|2 ≤
√
d‖g(2)‖∞

√√√√ d∑
i=1

|Ni|2,

and so

|γt,zi (N)| ≤
√
d‖g(2)‖∞

√√√√ d∑
i=1

|Ni|2 + |γt,zi (0)|.

The square integrability of γt,zi (N) then follows by the integrability properties of N.
Proof of Part (ii) and Part (iii). The proofs of these parts of the claim are rather obvious (they
directly follow by Part (i) and the assumptions), and therefore omitted. �

4.2. A Quantitative Multidimensional Central Limit Theorem in the d2 distance. Denote by Lipd(1)
the set of Lipschitz functions g : Rd → R, d ∈ N, with Lipschitz constant at most 1, and by dW the
Wasserstein distance. Since H2 ⊂ Lipd(1) it immediately follows that

d2(X,Y) ≤ dW (X,Y) := sup
g∈Lipd(1)

|E[g(X)]− E[g(Y)]|

for Rd-valued random vectors X and Y such that E[‖X‖],E[‖Y‖] <∞. Consequently, in the one-
dimensional case, a Quantitative Central Limit Theorem in the d2 distance is immediately given by
Theorem 1.1. As already discussed in the introduction, in the multivariate case it appears unclear
how to deal with solutions to the multidimensional Stein equation and the Wasserstein distance.
Indeed, the degree of smoothness of the solution to the Stein equation is increased by one, over
what is required in the one-dimensional case. As far as the d-dimensional case is concerned we have
the following Quantitative Central Limit Theorem in the d2 distance.

Theorem 4.2. Let d ∈ N be fixed and suppose that the kernels hi, i ∈ [d], satisfy (4.1) and that the
covariance matrix Σ is positive definite. Then:
(i)

d2(I(η,h),N) ≤
√

2

π
‖Σ−1/2‖opγ1 +

√
2π‖Σ−1/2‖op

4
γ2

≤
√

2

π
‖Σ−1/2‖opγ1 +

√
2π‖Σ−1/2‖op

4
γ3

≤
√

2

π
‖Σ−1/2‖opγ1 +

√
2π‖Σ−1/2‖op

4
γ4. (4.18)

(ii) Let {ηM}M∈N be a sequence of Dirichlet-Ferguson measures such that, for any M ∈ N, ηM has
parameter σM and βM := σM (X) → +∞, as M → +∞. For each M ∈ N, let {hi,M}i∈[d] be a
family of kernels in L3(X, σM ) which satisfy (1.2), with hi,M in place of h and σM in place of σ,
(4.3) and (4.4). Then, for each M ∈ N, the relation (4.18) is satisfied, with ηM in place of η, hM
in place of h and γi,M in place of γi, i = 1, 2, 3, 4, and γ1,M , γ3,M → 0, as M → +∞. Therefore

d2(I(ηM ,hM ),N)→ 0, as M → +∞. (4.19)

(iii) Let the sequence {ηM}M∈N be as in (ii). For any M ∈ N, let {hi,M}i∈[d] be a family of kernels
in L4(X, σM ) which satisfy (1.2), with hi,M in place of h and σM in place of σ, (4.3) and (4.7).
Then, for each M ∈ N, the relation (4.18) is satisfied, with ηM in place of η, hM in place of h and
γi,M in place of γi, i = 1, 2, 3, 4, and γ1,M , γ4,M → 0, as M → +∞. Therefore the relation (4.19)
holds.

Before proving Theorem 4.2, we briefly compare it with Theorem 4.1.
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Remark 4.3. The bounds on d3(I(η,h),N) and d2(I(η,h),N) differ only for the multiplicative
constants in front of γ1, γ2, γ3 and γ4. So the Parts (ii) and (iii) of Theorem 4.2 are an immediate
consequence of the Part (i) of Theorem 4.2 and the Parts (ii) and (iii) of Theorem 4.1. The main
difference between Theorems 4.1 and 4.2 is that, although the d2 distance requires less regularity
on the test functions than the d3 distance, the bounds on the d2 distance hold under the more
restrictive assumption that the covariance matrix Σ is positive definite.

Proof of Theorem 4.2: Due to Remark 4.3, we only need to prove the Part (i). Note that if hi /∈
L3(X, σ) for some i ∈ [d] then γ2 = γ3 = γ4 = +∞ and the bounds are trivially true. Therefore,
we suppose that the functions |hi|3, i ∈ [d], are all integrable with respect to σ. Since γ2 ≤ γ3 ≤ γ4
(see the proof of Theorem 4.1), we only need to show the first inequality in (4.18). Throughout
this proof, for ease of notation, we set I := I(η,h). Let g ∈ C∞(Rd) with first and second bounded
derivatives. Then it is easily seen that ∂fg/∂xj ∈ C2(Rd) with first and second bounded derivatives
(see e.g. Lemma 3.3 in Nourdin et al. (2010)). By Lemma 3.5 and Lemma 3.8, we have

|E[g(I)]− E[g(N)]|

=
∣∣∣ d∑
i,j=1

E
[
Σij

∂2fg(I)

∂xi∂xj

]
−

d∑
j=1

E
[
I(η, hj)

∂fg(I)

∂xj

] ∣∣∣
=
∣∣∣ d∑
i,j=1

E
[
Σij

∂2fg(I)

∂xi∂xj

]
− 1

β(β + 1)

d∑
i,j=1

E
[
∂2fg(I)

∂xi∂xj

∫
X
hj(x)hi(x)σ(dx)

]
+

d∑
j=1

cj

∣∣∣
≤

d∑
i,j=1

E
[∣∣∣∂2fg(I)
∂xi∂xj

∣∣∣∣∣∣Σij −
1

β(β + 1)

∫
X
hj(x)hi(x)σ(dx)

∣∣∣]+
d∑
j=1

|cj |, (4.20)

where cj is a constant such that

|cj | ≤
d‖
(
∂fg
∂xj

)(2)
‖∞

β(β + 1)(β + 2)

[
d∑
i=1

∫
X
|hj(x)||hi(x)|2σ(dx)

+
1

β(β + 1)

∫
X
|hj(x)|σ(dx)

d∑
i=1

∫
X
|hi(x)|2σ(dx)

]
. (4.21)

By (3.4) we have that, for any i, j ∈ [d], it holds∣∣∣∂2fg(I)
∂xi∂xj

∣∣∣ ≤ ‖Hess fg(I)‖H.S. ≤ sup
x∈Rd

‖Hessfg(x)‖H.S. ≤
√

2

π
‖Σ−1/2‖op‖g‖Lip, P-a.s.. (4.22)

Moreover, a straightforward computation yields

‖
(
∂fg
∂xj

)(2)

‖∞ ≤ ‖f (3)g ‖∞ ≤M3(fg), for any j ∈ [d]

and so by (4.21) and (3.5) we have
d∑
j=1

|cj | ≤
√

2π‖Σ−1/2‖op
4

M2(g)γ2. (4.23)

Combining (4.20), (4.22) and (4.23), we have that for any g ∈ C∞(Rd) with first and second bounded
derivatives,

|E[g(I)]− E[g(N)]| ≤
√

2

π
‖Σ−1/2‖op‖g‖Lipγ1 +

√
2π‖Σ−1/2‖op

4
M2(g)γ2. (4.24)
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At this point, we note that for any g ∈ H2 there exists a family {gε}ε>0 of functions in C∞(Rd) with
bounded first and second derivatives such that gε → g uniformly, ‖gε‖Lip ≤ ‖g‖Lip and M2(gε) ≤
M2(g), for any ε > 0 (see the first lines of the proof of Theorem 2.3 in Chatterjee and Meckes
(2008)). Then applying (4.24) to the approximating function gε, bounding ‖gε‖Lip and M2(gε) by
1, and finally taking the limit as ε→ 0, one has

|E[g(I)]− E[g(N)]| ≤
√

2

π
‖Σ−1/2‖opγ1 +

√
2π‖Σ−1/2‖op

4
γ2, for any g ∈ H2.

The claim follows taking the supremum over H2 on this latter inequality. �

4.3. A Quantitative Multidimensional Central Limit Theorem in the dc distance.

Theorem 4.4. Let d ∈ N be a fixed integer and suppose that the kernels hi, i ∈ [d], satisfy (4.1)
and that the covariance matrix Σ is positive definite. Then:
(i)

dc(I(η,h),N) ≤

[(
16d3/2

3

√
80

21/4
+ 64d17/12 + 8d6

)
‖Σ−1‖op +

80d√
2
‖Σ−1‖1/2op

]
γ5

≤

[(
16d3/2

3

√
80

21/4
+ 64d17/12 + 8d6

)
‖Σ−1‖op +

80d√
2
‖Σ−1‖1/2op

]
γ6. (4.25)

(ii) Let {ηM}M∈N be a sequence of Dirichlet-Ferguson measures such that, for any M ∈ N, ηM has
intensity σM and βM := σM (X)→ +∞, as M → +∞. For each M ∈ N, let {hi,M}i∈[d] be a family
of kernels in L4(X, σM ) which satisfy (1.2), with hi,M in place of h and σM in place of σ, (4.3) and
(4.7). Then, for each M ∈ N, the relation (4.25) is satisfied, with ηM in place of η, hM in place of
h and γi,M in place of γi, i = 5, 6, and γ6,M → 0, as M → +∞. Therefore

dc(I(ηM ,hM ),N)→ 0, as M → +∞. (4.26)

Proof : Proof of Part (i). We start by noticing that if hi /∈ L4(X, σ) for some i ∈ [d], then γ5 =
γ6 = +∞ (since γ7 = γ8 = +∞) and the bounds are trivially true. Therefore, throughout this
proof we suppose hi ∈ L4(X, σ) for any i ∈ [d]. Note that the second inequality in (4.25) follows by
the inequality γ7 ≤ γ8, which, in turn, is a consequence of the Cauchy-Schwarz inequality (applied
to the product measure σ(dx) ⊗ κ(j), where κ(j) is the counting measure on [d]). It remains
to prove the first inequality in (4.25). Hereafter, for ease of notation we set I := I(η,h). Let
t ∈ (0, 1/2) and g ∈ I be arbitrarily fixed. The rough idea of the proof is first to bound the
quantity |E[gt(I)] − E[gt(N)]| and then to obtain a bound for dc(I,N) combining the smoothing
Lemma 3.9 with a suitable choice of t. By Lemma 3.6(i)-(ii) and (3.2) (note that, for any i ∈ [d]
and t ∈ (0, 1/2), the function ∂ft,g/∂xi is bounded and therefore ∂ft,g(I)/∂xi ∈ L2(Ω,P)), we have

|E[gt(I)]− E[gt(N)]| =
∣∣∣ d∑
i,j=1

E
[
Σij

∂2ft,g(I)

∂xi∂xj

]
−

d∑
j=1

E
[
I(η, hj)

∂ft,g(I)

∂xj

] ∣∣∣
=
∣∣∣ d∑
i,j=1

E
[
Σij

∂2ft,g(I)

∂xi∂xj

]
−

d∑
j=1

E

[∫
X×[0,1]

hj(x)D(x,u)
∂ft,g(I)

∂xj
σ̂(dx, du)

] ∣∣∣.
(4.27)
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By the Fundamental Theorem of Calculus we have

D(x,u)
∂

∂xj
ft,g(I) =

∫ 1

0

d

dz

∂

∂xj
ft,g(I + zD(x,u)I) dz

=

∫ 1

0
dz

d∑
k=1

∂2

∂xk∂xj
ft,g(I + zD(x,u)I)D(x,u)I(η, hk),

and so
d∑
j=1

E

[∫
X×[0,1]

hj(x)D(x,u)
∂ft,g(I)

∂xj
σ̂(dx,du)

]

=

d∑
j,k=1

E

[∫
X×[0,1]

hj(x)

∫ 1

0

∂2

∂xk∂xj
ft,g(I + zD(x,u)I)D(x,u)I(η, hk)dzσ̂(dx, du)

]

=

d∑
j,k=1

E

[∫
X×[0,1]

hj(x)
∂2ft,g(I)

∂xk∂xj
D(x,u)I(η, hk)σ̂(dx,du)

]

+

d∑
j,k=1

E

[∫
X×[0,1]

hj(x)

∫ 1

0

(
∂2

∂xk∂xj
ft,g(I + zD(x,u)I)

− ∂2ft,g(I)

∂xk∂xj

)
D(x,u)I(η, hk)dzσ̂(dx, du)

]
=: τ1 + τ2. (4.28)

Defining

τ := τ1 −
d∑

j,k=1

ΣjkE
[
∂2ft,g(I)

∂xk∂xj

]
,

by (4.27) and (4.28) we have

|E[gt(I)]− E[gt(N)]| ≤ |τ |+ |τ2|. (4.29)

We continue dividing the proof of Part (i) in three steps. In the first step we upper bound |τ |, in
the second step we upper bound |τ2|, in the third step we conclude the proof.
Step 1: Bounding |τ |.
We start by noticing that by the definition of the gradient D and the relation

I((1− t)η + tεx, h) = th(x) + (1− t)I(η, h), (4.30)

we have
D(x,t)I(η, hi) = t(hi(x)− I(η, hi)), (x, t) ∈ X× [0, 1], i ∈ [d]. (4.31)

Therefore, for any function h0 ∈ L2(X, σ) whose integral against σ is equal to 0, for any i ∈ [d], we
have

〈h0(·), D(x,t)I(η, hi)〉L2(X×[0,1],σ̂) =

∫
X×[0,1]

th0(x)(hi(x)− I(η, hi))σ̂(dx,dt)

=

∫ 1

0
t(1− t)β−1 dt

∫
X
h0(x)hi(x)σ(dx)− I(η, hi)

∫ 1

0
t(1− t)β−1 dt

∫
X
h0(x)σ(dx)

=
1

β(β + 1)

∫
X
h0(x)hi(x)σ(dx). (4.32)
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So

|τ | ≤
d∑

j,k=1

E

[∣∣∣Σjk −
∫
X×[0,1]

hj(x)D(x,u)I(η, hk)σ̂(dx, du)
∣∣∣∣∣∣∂2ft,g(I)
∂xk∂xj

∣∣∣]

=
d∑

j,k=1

∣∣∣Σjk −
1

β(β + 1)

∫
X
hj(x)hk(x)σ(dx)

∣∣∣E [∣∣∣∂2ft,g(I)
∂xk∂xj

∣∣∣]

≤
d∑

j,k=1

∣∣∣Σjk −
1

β(β + 1)

∫
X
hj(x)hk(x)σ(dx)

∣∣∣
√√√√ d∑

j,k=1

E
[∣∣∣∂2ft,g(I)
∂xk∂xj

∣∣∣2],
where we used (4.32) and the Cauchy-Schwarz inequality. Then by Lemma 3.6(iii) we have

|τ | ≤ ‖Σ−1‖op(d| log t|
√
dc(I,N) + 24d17/12)γ1, t ∈ (0, 1/2). (4.33)

Step 2: Bounding |τ2|.
By the Multivariate Mean Value Theorem and Lemma 3.6(iv) (note that g(·) = 1{· ∈ K} for some
measurable convex set K ⊆ Rd and so ‖g‖∞ ≤ 1), for any k, j ∈ [d] we have

∣∣∣ ∂2

∂xk∂xj
ft,g(I + zD(x,u)I)−

∂2

∂xk∂xj
ft,g(I)

∣∣∣ ≤ sup
v∈R

√√√√ d∑
i=1

∣∣∣ ∂3ft,g(v)

∂xi∂xk∂xj

∣∣∣2‖zD(x,u)I‖

≤ 6d4‖Σ−1‖3/2op

1√
t
‖zD(x,u)I‖.

Therefore

|τ2| ≤ 6d4‖Σ−1‖3/2op

1√
t

∫ 1

0
zdz

d∑
j,k=1

E

[∫
X×[0,1]

|hj(x)|‖D(x,u)I‖|D(x,u)I(η, hk)|σ̂(dx, du)

]

= 3d4‖Σ−1‖3/2op

1√
t

d∑
j,k=1

E

∫
X×[0,1]

|hj(x)|

√√√√ d∑
`=1

|D(x,u)I(η, h`)|2|D(x,u)I(η, hk)|σ̂(dx,du)


≤ 3d4‖Σ−1‖3/2op

1√
t

d∑
j,k,`=1

E

[∫
X×[0,1]

|hj(x)||D(x,u)I(η, h`)||D(x,u)I(η, hk)|σ̂(dx,du)

]
, (4.34)

where we used the elementary inequality
√∑d

i=1 |ai|2 ≤
∑d

i=1 |ai|, a1, . . . , ad ∈ R. So

E

[∫
X×[0,1]

|hj(x)||D(x,u)I(η, hk)D(x,u)I(η, h`)|σ̂(dx,du)

]

=
2

β(β + 1)(β + 2)
E

[∫
X
|hj(x)||hk(x)− I(η, hk)||h`(x)− I(η, h`)|σ(dx)

]
.
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By the arithmetic-geometric mean inequality and the convexity of x 7→ |x|3, we have

E

[∫
X×[0,1]

|hj(x)||D(x,u)I(η, hk)D(x,u)I(η, h`)|σ̂(dx,du)

]

≤ 2

β(β + 1)(β + 2)
E

[∫
X

(
|hj(x)|

3
+
|hk(x)− I(η, hk)|

3
+
|h`(x)− I(η, h`)|

3

)3

σ(dx)

]

≤ 2

3β(β + 1)(β + 2)

(∫
X
|hj(x)|3σ(dx) +

∫
X
E[|hk(x)− I(η, hk)|3]σ(dx)

+

∫
X
E[|h`(x)− I(η, h`)|3]σ(dx)

)
.

By this relation and the Cauchy-Schwarz inequality it follows
d∑

j,k,`=1

E

[∫
X×[0,1]

|hj(x)||D(x,u)I(η, hk)D(x,u)I(η, h`)|σ̂(dx, du)

]

≤ 2d2

3β(β + 1)(β + 2)

[
d∑
j=1

∫
X
|hj(x)|3σ(dx)

+ 2

√√√√ d∑
k=1

∫
X
E[|hk(x)− I(η, hk)|2]σ(dx)

d∑
k=1

∫
X
E[|hk(x)− I(η, hk)|4]σ(dx)

]
. (4.35)

By (2.3) and (2.4) we easily have

E[|hk(x)− I(η, hk)|2] = hk(x)2 +
1

β(β + 1)

∫
X
hk(x)2σ(dx) (4.36)

and

E[|hk(x)− I(η, hk)|4]

= E[I(η, hk)
4]− 4hk(x)E[I(η, hk)

3] +
6hk(x)2

β(β + 1)

∫
X
hk(x)2σ(dx) + hk(x)4. (4.37)

By Jensen’s inequality (η(ω) is a probability measure and x 7→ x4 is convex) and Lemma 2.1(ii),
we have

E[I(η, hk)
4] = E

[(∫
X
hk(x)η(dx)

)4
]
≤ E

[∫
X
hk(x)4η(dx)

]
= E[E[hk(U1)

4 | η]]

= E[hk(U1)
4] =

1

β

∫
X
hk(x)4σ(dx), (4.38)

where the latter equality follows by (2.1). Combining (4.37) and (4.38) we have

E[|hk(x)− I(η, hk)|4] ≤
1

β

∫
X
hk(x)4σ(dx)− 4hk(x)E[I(η, hk)

3]

+
6

β(β + 1)
hk(x)2

∫
X
hk(x)2σ(dx) + hk(x)4,

and so, using again (2.3), we get∫
X
E[|hk(x)− I(η, hk)|4]σ(dx) ≤ 2

∫
X
hk(x)4σ(dx) +

6

β(β + 1)

(∫
X
hk(x)2σ(dx)

)2

. (4.39)
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Furthermore, (4.36) yields∫
X
E[|hk(x)− I(η, hk)|2]σ(dx) =

β + 2

β + 1

∫
X
hk(x)2σ(dx). (4.40)

Combining (4.34), (4.35), (4.39) and (4.40), we easily have

|τ2| ≤ 3d6‖Σ−1‖3/2op

1√
t
γ7, t ∈ (0, 1/2). (4.41)

Step 3: Conclusion of the proof of Part (i).
By (4.29), (4.33) and (4.41) we have

|E[gt(I)]− E[gt(N)]| ≤ ‖Σ−1‖op(d| log t|
√
dc(I,N) + 24d17/12)γ1 + 3d6‖Σ−1‖3/2op

1√
t
γ7,

and so Lemma 3.9 yields

dc(I,N) ≤ 4

3
‖Σ−1‖op(d| log t|

√
dc(I,N) + 24d17/12)γ1 + 4d6‖Σ−1‖3/2op

1√
t
γ7 +

20d√
2

√
t

1− t
.

Recall that t ∈ (0, 1/2) is arbitrarily fixed. Therefore t1/4| log t| ≤ 2 and 1− t > 1/2. Then

dc(I,N) ≤ 8d

3

√
dc(I,N)

t1/4
‖Σ−1‖opγ5 + 32d17/12‖Σ−1‖opγ5 + 4d6‖Σ−1‖3/2op

γ25√
t

+
40d√

2

√
t. (4.42)

Since dc(I,N) ≤ 1, the first inequality in (4.25) is obvious if γ5 ≥ ‖Σ−1‖−1/2op /
√

2. So we suppose
γ5 < ‖Σ−1‖−1/2op /

√
2 and take t ∈ (0, 1/2) so that

√
t = max

{√
2

80d
dc(I,N), ‖Σ−1‖1/2op γ5

}
.

By this choice of t and (4.42), we have

dc(I,N) ≤ 8d3/2

3

√
80

21/4
‖Σ−1‖opγ5 + 32d17/12‖Σ−1‖opγ5 + 4d6‖Σ−1‖opγ5

+
40d√

2
‖Σ−1‖1/2op γ5 +

1

2
dc(I,N),

which is equivalent to the first inequality in (4.25).
Proof of Part (ii). The proof of this part of the claim is rather obvious (it directly follows by Part
(i) and the assumptions), and therefore omitted. �

We conclude this subsection noticing that the claims of Theorem 4.4 immediately transfer to the
Kolmogorov distance

dK(X,Y) := sup
x1,...,xd∈R

|P(X1 ≤ x1, . . . , Xd ≤ xd)− P(X1 ≤ x1, . . . , Xd ≤ xd)|

where X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) are Rd-valued random vectors. Indeed we clearly
have that dK(·, ·) ≤ dc(·, ·).

5. Gaussian approximation of linear transformations of random vectors with the Dirich-
let distribution

For M,d ∈ N and i ∈ [d], let KiM ≥ 2 be integers and let

YM := (Y11, . . . , Y1K1M
, Y21, . . . , Y2K2M

, . . . , Yd1, . . . , YdKdM
)

be random vectors distributed according to the Dirichlet law with parameters

α(M) := (α
(M)
11 , . . . , α

(M)
1K1M

, α
(M)
21 , . . . , α

(M)
2K2M

, . . . , α
(M)
d1 , . . . , α

(M)
dKdM

).
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The next results provide Quantitative Central Limit Theorems for the sequence of random vectors
defined by

SM :=

(
C1M

K1M∑
m=1

u1m
(
Y1m − E[Y1m]

)
, . . . , CdM

KdM∑
m=1

udm
(
Ydm − E[Ydm]

))
,

where CiM , i ∈ [d], are normalizing constants and {uim}i∈[d],m=1,...,KiM
⊂ {−1,+1}.

Set

α̃M :=

d∑
i=1

KiM∑
m=1

α
(M)
im , α̃iM :=

1

C2
iM

KiM∑
m=1

α
(M)
im and µiM :=

1

C2
iM

KiM∑
m=1

uimα
(M)
im , i ∈ [d].

In this section we consider the quantities

γ1,M :=
d∑
i=1

∣∣∣Σii−
C4
iM

α̃M (α̃M + 1)

(
α̃iM −

C2
iMµ

2
iM

α̃M

) ∣∣∣+1{d ≥ 2}
i 6=j∑
i,j∈[d]

∣∣∣Σij +
C3
iMC

3
jM

α̃2
M (α̃M + 1)

µiMµjM

∣∣∣,
γ4,M :=

d3

α̃M (α̃M + 1)2

{
max
1≤i≤d

C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

)}1/2

×

{
max
1≤i≤d

C4
iM

(
C10
iMµ

4
iM α̃iM

(α̃M )4
− 4

C8
iMµ

4
iM

(α̃M )3
+ 6

C6
iMµ

2
iM α̃iM

(α̃M )2
− 4

C4
iMµ

2
iM

α̃M

+ C2
iM α̃iM + 1{d ≥ 2}

C8
iMµ

4
iM

(α̃M )4

d∑
j=1, j 6=i

C2
jM α̃jM

)}1/2

,

γ6,M := max{γ1,M ,
√
γ8,M},

and

γ8,M :=
2

3α̃M (α̃M + 1)(α̃M + 2)

{[
d∑
i=1

C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

)]1/2

×

[
d∑
i=1

C4
iM

(
C10
iMµ

4
iM α̃iM

(α̃M )4
− 4

C8
iMµ

4
iM

(α̃M )3
+ 6

C6
iMµ

2
iM α̃iM

(α̃M )2
− 4

C4
iMµ

2
iM

α̃M
+ C2

iM α̃iM

+ 1{d ≥ 2}
C8
iMµ

4
iM

(α̃M )4

d∑
j=1, j 6=i

C2
jM α̃jM

)]1/2

+ 2

[
α̃M + 2

α̃M + 1

d∑
i=1

C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

)

×

[
2

d∑
i=1

C4
iM

(
C10
iMµ

4
iM α̃iM

(α̃M )4
− 4

C8
iMµ

4
iM

(α̃M )3
+ 6

C6
iMµ

2
iM α̃iM

(α̃M )2
− 4

C4
iMµ

2
iM

α̃M
+ C2

iM α̃iM

+ 1{d ≥ 2}
C8
iMµ

4
iM

(α̃M )4

d∑
j=1, j 6=i

C2
jM α̃jM

)

+
6

α̃M (α̃M + 1)

d∑
i=1

(
C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

))2]]1/2}
. (5.1)

The following theorem holds.
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Theorem 5.1. Let d ∈ N be fixed. Then:
(i) If Σ is positive semi-definite, then

d3(SM ,N) ≤ 1

2
(γ1,M + γ4,M ). (5.2)

(ii) If Σ is positive definite, then

d2(SM ,N) ≤
√

2

π
‖Σ−1/2‖opγ1,M +

√
2π‖Σ−1/2‖op

4
γ4,M (5.3)

and

dc(SM ,N) ≤

[(
16d3/2

3

√
80

21/4
+ 64d17/12 + 8d6

)
‖Σ−1‖op +

80d√
2
‖Σ−1‖1/2op

]
γ6,M . (5.4)

Hereafter, we write an ∼ bn for two positive sequences {an}n∈N and {bn}n∈N such that an/bn → 1
as n→ +∞. The next two theorems and the next remark refer to the d-dimensional case with d ≥ 2.
The one-dimensional case is provided by Theorem 5.5.

Theorem 5.2. Let d ≥ 2 be fixed, let the notation of Theorem 5.1 prevail and suppose:
(H1): The sequences {CiM}M∈N, i ∈ [d], diverge to +∞, as M → +∞ and are such that, for any
j ∈ {2, . . . ,K}, there exists a positive constant κj > 0 such that CjM ∼ κjC1M , as M → +∞.
(H2): For any j ∈ [d], α̃jM → αj, as M → +∞. Here α1, . . . , αd are non-negative constants such
that (α1, . . . , αd) 6= 0.
(H3): For any j ∈ [d], µjM → µj ∈ R, as M → +∞.

Let Σ = (Σij)1≤i,j≤d be the symmetric matrix with entries

Σjj :=
κ4j
κ2

(
αj −

κ2jµ
2
j

κ

)
, j ∈ [d], Σjk := −

κ3jκ
3
k

κ3
µjµk, j 6= k, j, k ∈ [d],

where

κ :=

d∑
j=1

κ2jαj > 0 and κ1 := 1.

Then:
(i) If Σ is positive semi-definite, then the upper bound (5.2) holds, γ1,M , γ4,M → 0, as M → +∞,
and so d3(SM ,N)→ 0, as M → +∞.
(ii) If Σ is positive definite, then the upper bounds (5.3) and (5.4) hold, γ1,M , γ4,M , γ8,M → 0, as
M → +∞, and so dj(SM ,N)→ 0, as M → +∞, j = 2, c.

Theorem 5.3. Let d ≥ 2 be fixed, let the notation of Theorem 5.1 prevail, and suppose:
(H1)′: The sequences {CiM}M∈N, i ∈ [d], diverge to +∞, as M → +∞, and are such that, for
any j ∈ {2, . . . , d}, there exists a positive constant κj > 0 such that CjM/C1M = κj + O(C−11M ), as
M → +∞.
(H2)′: For any j ∈ [d], α̃jM = αj + O(C−21M ), as M → +∞. Here α1, . . . , αd are non-negative
constants such that (α1, . . . , αd) 6= 0.
(H3)′: For any j ∈ [d], µjM = µj +O(C−11M ), as M → +∞. Here µi1 , . . . , µiK are real constants.

Then, letting Σ denote the matrix defined in the statement of Theorem 5.2, we have:
(i) If Σ is positive semi-definite, then d3(SM ,N) = O(C−11M ), as M → +∞.
(ii) If Σ is positive definite, then d2(SM ,N) = O(C−11M ) and dc(SM ,N) = O(C

−1/2
1M ), as M → +∞.

Remark 5.4. (i) Note that the assumptions (H1)′, (H2)′ and (H3)′ of Theorem 5.3 are stronger than
the hypotheses (H1), (H2) and (H3) of Theorem 5.2, respectively, and guarantee a rate for the var-
ious distances. (ii) There are various criteria which guarantee that a real symmetric square matrix
is either positive semi-definite or positive definite. For instance, if a real symmetric square matrix
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has non-negative (positive, respectively) diagonal entries and it is diagonally dominant (strictly
diagonally dominant, respectively) then it is positive semi-definite (positive definite, respectively).
Therefore, the matrix Σ defined in the statement of Theorem 5.2 is positive semi-definite if

κ4j
κ2

(
αj −

κ2jµ
2
j

κ

)
≥
∑
k∈[d]

κ3jκ
3
k

κ3
|µjµk|, ∀ j ∈ [d]

and it is positive definite if

κ4j
κ2

(
αj −

κ2jµ
2
j

κ

)
>
∑
k∈[d]

κ3jκ
3
k

κ3
|µjµk|, ∀ j ∈ [d].

The next theorem concerns the one-dimensional case.

Theorem 5.5. Let d = 1, let the notation of Theorem 5.1 prevail and set

SM := C1M

K1M∑
m=1

u1m
(
Y1m − E[Y1m]

)
.

(i) If C1M → +∞, α̃1M → α > 0, µ1M → µ ∈ R, as M → +∞, and ν2 := α−2(α − α−1µ2) > 0,
then relations (5.2), (5.3) and (5.4) hold, with SM in place of SM , N(0, ν2) in place of N, d = 1,
ν2 in place of Σ, and the upper bounds go to zero as M → +∞.
(ii) If, as M → ∞, C1M → +∞, α̃1M = α + O(C−21M ), for some α > 0, µ1M = µ + O(C−11M ), for
some µ ∈ R, and ν2 := α−2(α− α−1µ2) > 0, then

d3(SM , N(0, ν2)) = O(C−11M ), d2(SM , N(0, ν2)) = O(C−11M ), as M → +∞

and
dc(SM , N(0, ν2)) = O(C

−1/2
1M ), as M → +∞.

We conclude with a couple of examples.

Example 1 For M ∈ N and d ≥ 2, define KiM := C, i ∈ [d], where C is a fixed even integer,
uim := (−1)m, α(M)

im := ϕ(M), i ∈ [d], m ∈ [C], where ϕ : N→ (0,+∞) is a function which diverges
to infinity, and CiM :=

√
Cϕ(M), i ∈ [d]. It is readily checked that α̃iM = 1 and µiM = 0, i ∈ [d].

Therefore, letting
YM := (Y11, . . . , Y1C , Y21, . . . , Y2C , . . . , Yd1, . . . , YdC)

denote a random vector with the Dirichlet distribution with parameters all equal to ϕ(M) and
setting

SM :=
√
Cϕ(M)

(
C∑

m=1

(−1)mY1m, . . . ,
C∑

m=1

(−1)mYdm

)
,

by Theorem 5.3 we have

d3(SM ,N) = O(ϕ(M)−1/2), d2(SM ,N) = O(ϕ(M)−1/2) and dc(SM ,N) = O(ϕ(M)−1/4),

asM → +∞, whereN is a centered d-dimensional Gaussian random vector with diagonal covariance
matrix Σ = diag(d−2, . . . , d−2). Similar rates can be obtained in the one-dimensional case applying
Theorem 5.5; we omit the details.

Example 2 For M ∈ N and d ≥ 2, define KiM := M , α(M)
im := γ > 0 and CiM :=

√
γM , i ∈ [d],

m ∈ [M ]. Let uim := um, i ∈ [d], m ∈ [M ], where {um}m∈[M ] ⊂ {+1,−1} is a sequence such that

Card
(
{m ∈ [M ] : um = +1}

)
=
M

2
+O(

√
M), as M goes to infinity
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(here the symbol Card(S) denotes the cardinality of the set S). It is readily checked that, for any
i ∈ [d], α̃iM = 1 and

µiM =
1

M

M∑
m=1

uim = O(M−1/2), as M →∞.

Therefore, letting

YM := (Y11, . . . , Y1M , Y21, . . . , Y2M , . . . , Yd1, . . . , YdM )

denote a random vector with the Dirichlet distribution with parameters all equal to γ and setting

SM :=
√
γM

(
M∑
m=1

um

(
Y1m −

1

dM

)
, . . . ,

M∑
m=1

um

(
Ydm −

1

dM

))
,

by Theorem 5.3 we have

d3(SM ,N) = O(M−1/2), d2(SM ,N) = O(M−1/2) and dc(SM ,N) = O(M−1/4),

asM → +∞, whereN is a centered d-dimensional Gaussian random vector with diagonal covariance
matrix Σ = diag(d−2, . . . , d−2). Similar rates can be obtained in the one-dimensional case applying
Theorem 5.5; we omit the details.

6. Appendix

6.1. Proof of Lemma 3.6. We refer the reader to p. 337 of Chen et al. (2011) and Lemma 3.3 in
Nourdin et al. (2010) for a proof of Part (i), to Proposition 2.3 in Schulte and Yukich (2019) for a
proof of Part (iii) and to p. 12 formula (2.5) in Schulte and Yukich (2019) for a proof of Part (iv).
As far as Part (ii) is concerned, letting ϕ denote the density of N, for any t ∈ (0, 1), x ∈ Rd and
i ∈ [d], a simple computation yields

∣∣∣∂ft,g(x)

∂xi

∣∣∣ =
1

2

∣∣∣ ∫ 1

t

1
√
s
√

1− s

∫
Rd

g(
√
sz +

√
1− sx)

∂ϕ(z)

∂xi
dzds

∣∣∣
≤ ‖g‖∞

2
√
t

∫ 1

t

1√
1− s

ds

∫
Rd

∣∣∣∂ϕ(z)

∂xi

∣∣∣dz = ‖g‖∞
√

1− t√
t

∫
Rd

∣∣∣∂ϕ(z)

∂xi

∣∣∣dz. (6.1)

Setting ζ`(ẑi) :=
∑d

j=1, j 6=i(Σ
−1/2)`jzj , a straightforward calculation shows

ϕ(z) =
1√

(2π)ddetΣ
exp

−1

2

d∑
`=1

 d∑
j=1

(Σ−1/2)`jzj

2
=

1√
(2π)ddetΣ

exp

(
−1

2

d∑
`=1

(
ζ`(ẑi) + (Σ−1/2)`izi

)2)

=
1√

(2π)ddetΣ
exp

(
−1

2

d∑
`=1

ζ`(ẑi)
2 − z2i

2

d∑
`=1

[(Σ−1/2)`i]
2 − zi

d∑
`=1

ζ`(ẑi)(Σ
−1/2)`i

)
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and therefore

∂ϕ(z)

∂xi
= −ziϕ(z)

d∑
`=1

[(Σ−1/2)`i]
2 − ϕ(z)

d∑
`=1

ζ`(ẑi)(Σ
−1/2)`i

= −ziϕ(z)
d∑
`=1

[(Σ−1/2)`i]
2 −

d∑
`=1

d∑
j=1, j 6=i

(Σ−1/2)`j(Σ
−1/2)`izjϕ(z)

= −
d∑

`,j=1

(Σ−1/2)`j(Σ
−1/2)`izjϕ(z).

The claim easily follows by this expression, (6.1), the fact that Nj is Gaussian distributed with
mean zero and variance Σjj and the Cauchy-Schwarz inequality.

6.2. Proof of Lemma 3.8. The proof of Lemma 3.8 exploits, in turn, the following lemma, which
provides a “corrected" multivariate chain rule for the gradient D.

Lemma 6.1. Let F = (F1, . . . , Fd) : P(X)→ Rd be a measurable mapping. Then, for all f ∈ C2(Rd)
with ‖f (2)‖∞ <∞, for P⊗ σ̂-almost all (ω, x, t), we have

D(x,t)f(F(η)) =
d∑
i=1

∂

∂xi
f(F(η))D(x,t)Fi(η) +R(F(η), D(x,t)F(η)),

where R : Rd × Rd → R is a measurable mapping such that

|R(F(η), D(x,t)F(η))| ≤ 1

2
‖f (2)‖∞

(
d∑
i=1

|D(x,t)Fi(η)|

)2

, for P⊗ σ̂-almost all the (ω, x, t).

The proof of this lemma is provided later on in this Appendix, and now we proceed by proving
Lemma 3.8. Throughout the proof, for ease of notation, we put I := I(η,h). Let g ∈ C2(Rd) with
bounded first and second derivatives. Then g(I) ∈ L2(Ω,P). Indeed, by a simple application of the
Multivariate Mean Value Theorem we have

|g(I)− g(0)| ≤

 sup
z∈Rd

√√√√ d∑
i=1

∣∣∣∂g(z)

∂xi

∣∣∣2

√√√√ d∑

i=1

|I(η, hi)|2 ≤
√
d‖g(1)‖∞

√√√√ d∑
i=1

|I(η, hi)|2.

By (2.4) we immediately have

E

[
d∑
i=1

I(η, hi)
2

]
=

1

β(β + 1)

d∑
i=1

∫
X
|hi(x)|2σ(dx) <∞,

and so g(I) − g(0) ∈ L2(Ω,P), i.e., g(I) ∈ L2(Ω,P). Thus by Lemma 3.1 (with G(η) := g(I)) and
Lemma 6.1 (with f := g and F(η) := I) we have

E[g(I)I(η, h0)] = E
[
〈h0(·), D·g(I)〉L2(X×[0,1],σ̂)

]
= E

[
d∑
i=1

∂g(I)

∂xi
〈h0(·), D·I(η, hi)〉L2(X×[0,1],σ̂)

]
+ E[〈h0(·), R(I, D·I)〉L2(X×[0,1],σ̂)]

(6.2)
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with

|E[〈h0, R(I, D·I)〉L2(X×[0,1],σ̂)]|

≤ 1

2
‖g(2)‖∞

∫
X×[0,1]

|h0(x)|E

( d∑
i=1

|D(x,t)I(η, hi)|

)2
 σ̂(dx, dt). (6.3)

Furthermore, for any (x, t) ∈ X× [0, 1], by the convexity of x 7→ x2 and (2.3), (2.4), (4.31) we have

E

( d∑
i=1

|D(x,t)I(η, hi)|

)2
 = d2E

(1

d

d∑
i=1

|D(x,t)I(η, hi)|

)2


≤ d
d∑
i=1

E[|D(x,t)I(η, hi)|2]

= t2d

(
d∑
i=1

|hi(x)|2 +
1

β(β + 1)

d∑
i=1

∫
X
|hi(x)|2σ(dx)

)
.

The claim follows on combining this latter relation with (6.2), (4.32) and (6.3).

6.3. Proof of Lemma 6.1. For P⊗ σ̂-almost all the (ω, x, t), we have D(x,t)f(F(η)) = f(D(x,t)F(η)+
F(η))− f(F(η)), and so by the Multivariate Taylor’s Formula with the integral remainder we have

D(x,t)f(F(η)) =

d∑
i=1

∂

∂xi
f(F(η))D(x,t)Fi(η) +R(F(η), D(x,t)F(η)),

where

R(F(η), D(x,t)F(η)) = 2
∑

(n1,...,nd)∈N∪{0}: n1+...+nd=2

(D(x,t)F1(η))n1 . . . (D(x,t)Fd(η))nd

n1! . . . nd!

×
∫ 1

0
(1− t)

∂n1+...+ndf(F(η) + tD(x,t)F(η))

∂xn1
1 . . . ∂xnd

d

dt.

Therefore,

|R(F(η), D(x,t)F(η))|

≤
∫ 1

0
(1− t) dt ‖f (2)‖∞

∑
(n1,...,nd)∈N0: n1+...+nd=2

2

n1! . . . nd!
|D(x,t)F1(η)|n1 . . . |D(x,t)Fd(η)|nd

=
1

2
‖f (2)‖∞

(
d∑
i=1

|D(x,t)Fi(η)|

)2

, for P⊗ σ̂-almost all the (ω, x, t)

where the latter relation follows by the Multinomial Theorem.

6.4. Proof of Theorem 5.1. Let M,d ∈ N, σM a positive and finite measure on (X,B(X)) and

{X11, . . . , X1K1M
, X21, . . . , X2K2M

, . . . , Xd1, . . . , XdKdM
} ∈ P∑

i∈[d]KiM
(X)

a partition of X such that σM (Xim) = α
(M)
im > 0, i ∈ [d], m ∈ [KiM ]. Let ηM be the Dirichlet-

Ferguson measure with parameter σM . Then

βM := σM (X) =
d∑
i=1

KiM∑
m=1

α
(M)
im = α̃M
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and, by the definition of ηM ,

(ηM (X11), . . . , ηM (X1K1M
), ηM (X21), . . . , ηM (X2K2M

), . . . , ηM (Xd1), . . . , ηM (XdKdM
))
L
= YM .

(6.4)

For i ∈ [d], define the function

hi,M (x) := CiM

KiM∑
m=1

uim

(
1Xim(x)−

α
(M)
im

βM

)
, x ∈ X

and note that

I(ηM , hi,M ) = CiM

KiM∑
m=1

uim
(
ηM (Xim)− E[ηM (Xim)]

)
,

indeed E[ηM (Xim)] = α
(M)
im /βM since ηM (Xim) is the im-th marginal of Dir[α(M)]. Therefore, by

(6.4) we have that

I(ηM ,hM ) = (I(ηM , h1,M ), . . . , I(ηM , hd,M ))
L
= SM .

Since σM (X) = βM , we have ∫
X
hi,M (x)σM (dx) = 0.

Therefore, the kernels hi,M satisfy the condition (1.2) with hi,M in place of h and σM in place of σ.
The inequalities (5.2) and (5.3), with

γ1,M :=

d∑
i,j=1

∣∣∣Σij −
1

α̃M (α̃M + 1)

∫
X
hi,M (x)hj,M (x)σM (dx)

∣∣∣ (6.5)

and

γ4,M :=
d3

α̃M (α̃M + 1)2

√
max
1≤i≤d

∫
X
|hi,M (x)|2σM (dx) max

1≤i≤d

∫
X
|hi,M (x)|4σM (dx), (6.6)

and the inequality (5.4), with γ6,M := max{γ1,M ,
√
γ8,M} and

γ8,M :=
2

3α̃M (α̃M + 1)(α̃M + 2)

{√√√√ d∑
i=1

∫
X
|hi,M (x)|2σM (dx)

d∑
i=1

∫
X
|hi,M (x)|4σM (dx)

+ 2

[
α̃M + 2

α̃M + 1

d∑
k=1

∫
X
hk,M (x)2σM (dx)

×
d∑

k=1

(
2

∫
X
hk,M (x)4σM (dx) +

6

α̃M (α̃M + 1)

(∫
X
hk,M (x)2σM (dx)

)2
)]1/2}

(6.7)

then follow by Theorems 4.1, 4.2 and 4.4, respectively.
The rest of the proof consists in computing the integrals involved in the expressions of γ1,M , γ4,M

and γ8,M .
Step 1: Computing γ1,M .
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For any i, j ∈ [d] and x ∈ X, we have

hi,M (x)hj,M (x) = CiMCjM

KiM∑
m=1

KjM∑
n=1

uimujn

(
1Xim(x)−

α
(M)
im

βM

)(
1Xjn(x)−

α
(M)
jn

βM

)

= CiMCjM

KiM∑
m=1

KjM∑
n=1

uimujn

(
1Xim∩Xjn(x)− 1Xim(x)

α
(M)
jn

βM
− 1Xjn(x)

α
(M)
im

βM
+
α
(M)
im α

(M)
jn

β2M

)
,

and so

∫
X
hi,M (x)hj,M (x)σM (dx) = CiMCjM

KiM∑
m=1

KjM∑
n=1

uimujn

(
σM (Xim ∩Xjn)−

α
(M)
im α

(M)
jn

βM

)
.

Hence

∫
X
hi,M (x)hj,M (x)σM (dx) = −

CiMCjM
α̃M

KiM∑
m=1

KjM∑
n=1

uimujnα
(M)
im α

(M)
jn

= −
C3
iMC

3
jM

α̃M
µiMµjM , for i 6= j and d ≥ 2 (6.8)

and

∫
X
hi,M (x)2σM (dx) = C2

iM

KiM∑
m=1

α
(M)
im − 1

βM

KiM∑
m=1

(α
(M)
im )2 − 1

βM

n6=m∑
n,m∈[KiM ]

uinuimα
(M)
im α

(M)
in


= C2

iM

KiM∑
m=1

α
(M)
im − 1

βM

(
KiM∑
m=1

uimα
(M)
im

)2


= C2
iM

(
KiM∑
m=1

α
(M)
im − 1

βM
C4
iMµ

2
iM

)

= C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

)
. (6.9)

The expression of γ1,M in the statement of the theorem easily follows by (6.5), (6.8) and (6.9).
Step 2: Computing γ4,M and γ8,M .
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The claimed expressions of γ4,M and γ8,M follow by (6.6), (6.7), (6.9), and the following computation:

∫
X
hi,M (x)4 σM (dx) = C4

iM

∫
X

(KiM∑
m=1

uim

(
1Xim(x)−

α
(M)
im

βM

))4

σM (dx)

= C4
iM

d∑
j=1

KjM∑
m=1

∫
Xjm

(KiM∑
k=1

uik

(
1Xik

(x)−
α
(M)
ik

βM

))4

σM (dx)

= C4
iM

KiM∑
m=1

∫
Xim

(KiM∑
k=1

uik

(
1Xik

(x)−
α
(M)
ik

βM

))4

σM (dx)

+ 1{d ≥ 2}C4
iM

d∑
j=1, j 6=i

KjM∑
m=1

∫
Xjm

(KiM∑
k=1

uik

(
1Xik

(x)−
α
(M)
ik

βM

))4

σM (dx)

= C4
iM

KiM∑
m=1

∫
Xim

(
uim

(
1Xim(x)−

α
(M)
im

βM

)
− 1

βM

KiM∑
k=1, k 6=m

uikα
(M)
ik

)4

σM (dx)

+ 1{d ≥ 2}C4
iM

d∑
j=1, j 6=i

KjM∑
m=1

α
(M)
jm

(KiM∑
k=1

uik
α
(M)
ik

βM

)4

= C4
iM

KiM∑
m=1

∫
Xim

(
uim

(
1−

α
(M)
im

βM

)
− 1

βM

KiM∑
k=1, k 6=m

uikα
(M)
ik

)4

σM (dx)

+ 1{d ≥ 2}
C12
iMµ

4
iM

(α̃M )4

d∑
j=1, j 6=i

C2
jM α̃jM

= C4
iM

[
KiM∑
m=1

α
(M)
im

(
uim

(
1−

α
(M)
im

βM

)
− 1

βM

KiM∑
k=1, k 6=m

uikα
(M)
ik

)4

+1{d ≥ 2}
C8
iMµ

4
iM

(α̃M )4

d∑
j=1, j 6=i

C2
jM α̃jM

]

= C4
iM

[
KiM∑
m=1

α
(M)
im

(
uim −

C2
iMµiM
α̃M

)4

+ 1{d ≥ 2}
C8
iMµ

4
iM

(α̃M )4

d∑
j=1, j 6=i

C2
jM α̃jM

]

and we also easily have

KiM∑
m=1

α
(M)
im

(
uim −

C2
iMµiM
α̃M

)4

=
C10
iMµ

4
iM α̃iM

(α̃M )4
− 4

C8
iMµ

4
iM

(α̃M )3
+ 6

C6
iMµ

2
iM α̃iM

(α̃M )2
− 4

C4
iMµ

2
iM

α̃M
+ C2

iM α̃iM .

6.5. Proof of Theorem 5.2. We divide the proof in three steps where we show that γj,M → 0, as
M → +∞, for any j = 1, 4, 8. The claims (i) and (ii) then follow by Theorem 5.1.
Step 1: Proof of γ1,M → 0.
Note that α̃M =

∑d
i=1C

2
iM α̃iM . Therefore by the assumptions (H1) and (H2) we have

α̃M ∼ κC2
1M , as M → +∞. (6.10)

By this relation and the assumptions (H1), (H2) and (H3) we easily have, as M → +∞,

C4
jM

α̃M (α̃M + 1)

(
α̃jM −

C2
jMµ

2
jM

α̃M

)
→

κ4j
κ2

(
αj −

κ2jµ
2
j

κ

)
, j ∈ [d] (6.11)



854 Giovanni Luca Torrisi

and

C3
jMC

3
kM

α̃2
M (α̃M + 1)

µjMµkM →
κ3jκ

3
k

κ3
µjµk, j 6= k, j, k ∈ [d].

On combining these relations with the definition of γ1,M and the definition of the matrix Σ in the
statement of the theorem, we immediately have γ1,M → 0, as M → +∞.
Step 2: Proof of γ4,M → 0.
Note that

γ4,M = d3
{

1

(α̃M + 1)2
max
1≤i≤d

C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

)}1/2

×

{
1

(α̃M )2(α̃M + 1)2
max
1≤i≤d

C4
iM

(
C10
iMµ

4
iM α̃iM

(α̃M )4
− 4

C8
iMµ

4
iM

(α̃M )3
+ 6

C6
iMµ

2
iM α̃iM

(α̃M )2
− 4

C4
iMµ

2
iM

α̃M

+ C2
iM α̃iM +

C8
iMµ

4
iM

(α̃M )4

d∑
j=1, j 6=i

C2
jM α̃jM

)}1/2

. (6.12)

By (6.11) and the fact that α̃M → +∞ (this follows by (6.10), κ > 0 and C1M → +∞), we have
that, as M → +∞,

1

(α̃M )2
max
1≤i≤d

C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

)
= O(1). (6.13)

As far as the term inside the second square root in (6.12) is concerned, exploiting (6.10) and the
assumptions (H1), (H2) and (H3) easily follows that, as M → +∞,

1

(α̃M )4
max
1≤i≤d

C4
iM

(
C10
iMµ

4
iM α̃iM

(α̃M )4
− 4

C8
iMµ

4
iM

(α̃M )3
+ 6

C6
iMµ

2
iM α̃iM

(α̃M )2
− 4

C4
iMµ

2
iM

α̃M

+ C2
iM α̃iM +

C8
iMµ

4
iM

(α̃M )4

d∑
j=1, j 6=i

C2
jM α̃jM

)
= o(1). (6.14)

On combining (6.12) with (6.13) and (6.14) it immediately follows that γ4,M → 0, as M → +∞.
Step 3: Proof of γ8,M → 0.
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Note that

γ8,M ≤
2

3α̃M (α̃M + 1)(α̃M + 2)

{
d

[
max
1≤i≤d

C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

)]1/2

×

[
max
1≤i≤d

C4
iM

(
C10
iMµ

4
iM α̃iM

(α̃M )4
− 4

C8
iMµ

4
iM

(α̃M )3
+ 6

C6
iMµ

2
iM α̃iM

(α̃M )2
− 4

C4
iMµ

2
iM

α̃M
+ C2

iM α̃iM

+ 1{d ≥ 2}
C8
iMµ

4
iM

(α̃M )4

d∑
j=1, j 6=i

C2
jM α̃jM

)]1/2

+ 2

[
α̃M + 2

α̃M + 1
d max
1≤i≤d

C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

)

×

[
2d max

1≤i≤d
C4
iM

(
C10
iMµ

4
iM α̃iM

(α̃M )4
− 4

C8
iMµ

4
iM

(α̃M )3
+ 6

C6
iMµ

2
iM α̃iM

(α̃M )2
− 4

C4
iMµ

2
iM

α̃M

+ C2
iM α̃iM + 1{d ≥ 2}

C8
iMµ

4
iM

(α̃M )4

d∑
j=1, j 6=i

C2
jM α̃jM

)

+
6

α̃M (α̃M + 1)
d

(
max
1≤i≤d

C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

))2]]1/2}
. (6.15)

The claim follows on noticing that this upper bound converges to zero as M → +∞ by (6.10),
(6.13) and (6.14).

6.6. Proof of Theorem 5.3. We divide the proof in three steps. In the first step we prove that
γ1,M = O(C−11M ), in the second step we prove that γ4,M = O(C−11M ) and in the third step we prove
that γ8,M = O(C−11M ). The claim then follows by the bounds on the distances d3, d2 and dc of
Theorem 5.1.
Step 1: Proof of γ1,M = O(C−11M ).
We first show that the addend 1{d ≥ 2}

∑i 6=j
i,j∈[d] | · · · | in the expression of γ1,M is O(C−11M ), as

M → +∞. By the definition of the matrix Σ and the assumption (H3)′, we have

C1M

i 6=j∑
i,j∈[d]

∣∣∣Σij +
C3
iMC

3
jM

α̃2
M (α̃M + 1)

µiMµjM

∣∣∣ = C1M

j 6=k∑
j,k∈[d]

∣∣∣− κ3jκ
3
k

κ3
µjµk +

C3
jMC

3
kM

α̃2
M (α̃M + 1)

(µjµk +O(C−11M ))
∣∣∣

=: T1M .

Note that

C3
jMC

3
kM

α̃2
M (α̃M + 1)

=
1

α̃3
M/(C

3
jMC

3
kM ) + α̃2

M/(C
3
jMC

3
kM )

=
1

α̃3
M/(C

3
jMC

3
kM ) +O(C−21M )

, j 6= k, j, k ∈ [d].

We shall show later on that

α̃3
M/(C

3
jMC

3
kM ) =

κ3/(κ3jκ
3
k) +O(C−11M )

1 +O(C−11M )
, for any j 6= k, j, k ∈ [d]. (6.16)
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Therefore

T1M = C1M

j 6=k∑
j,k∈[d]

∣∣∣− κ3jκ
3
k

κ3
µjµk +

µjµk +O(C−11M )

κ3/(κ3jκ
3
k) +O(C−11M )

∣∣∣
= C1M

j 6=k∑
j,k∈[d]

∣∣∣ O(C−11M )

κ3/(κ3jκ
3
k) +O(C−11M )

∣∣∣,
whose lim sup as M → +∞ is finite. This shows that the addend 1{d ≥ 2}

∑i 6=j
i,j∈[d] | · · · | in the

expression of γ1,M is O(C−11M ), as M → +∞.
Now we show that the addend

∑d
i=1 | · · · | in the expression of γ1,M is O(C−11M ), as M → +∞,

which, combined with what we have previously proved, yields γ1,M = O(C−11M ), as M → +∞. By
the definition of the matrix Σ we have

C1M

d∑
i=1

∣∣∣Σii −
C4
iM

α̃M (α̃M + 1)

(
α̃iM −

C2
iMµ

2
iM

α̃M

) ∣∣∣
= C1M

∑
j∈[d]

∣∣∣κ4j
κ2

(
αj −

κ2jµ
2
j

κ

)
−

C4
jM

α̃M (α̃M + 1)

(
α̃jM −

C2
jMµ

2
jM

α̃M

)∣∣∣
=: T2M . (6.17)

By the assumptions (H2)′ and (H3)′ we have

κ4j
κ2

(
αj −

κ2jµ
2
j

κ

)
−

C4
jM

α̃M (α̃M + 1)

(
α̃jM −

C2
jMµ

2
jM

α̃M

)

=
κ4j
κ2

(
αj −

κ2jµ
2
j

κ

)
−

C4
jM

α̃M (α̃M + 1)
(αj +O(C−21M )) +

C6
jM

α̃2
M (α̃M + 1)

(µ2j +O(C−11M )), j ∈ [d].

(6.18)

We shall show later on that

C4
jM

α̃M (α̃M + 1)
=
κ4j/κ

2 +O(C−11M )

1 +O(C−11M )
and

C6
jM

α̃2
M (α̃M + 1)

=
κ6j/κ

3 +O(C−11M )

1 +O(C−11M )
, j ∈ [d]. (6.19)

Combining these relations with (6.18) we have

κ4j
κ2

(
αj −

κ2jµ
2
j

κ

)
−

C4
jM

α̃M (α̃M + 1)

(
α̃jM −

C2
jMµ

2
jM

α̃M

)

=
κ4j
κ2

(
αj −

κ2jµ
2
j

κ

)
−
κ4j/κ

2 +O(C−11M )

1 +O(C−11M )
(αij +O(C−21M )) +

κ6j/κ
3 +O(C−11M )

1 +O(C−11M )
(µ2jM +O(C−11M ))

= O(C−11M ), for any j ∈ [d] (6.20)

and so the lim sup asM →∞ of T2M is finite, and therefore the addend
∑d

i=1 | · · · | in the expression
of γ1,M is O(C−11M ), as M → +∞. To conclude the proof of Step 1 it remains to show the relations
in (6.16) and (6.19). We only check (6.16). Indeed, the relations in (6.19) can be verified along
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similar computations. By the assumptions (H1)′ and (H2)′, we have

α̃3
M/(C

3
jMC

3
kM ) =

C−61M

(∑d
i=1C

2
iM α̃iM

)3
C−61MC

3
jMC

3
kM

=

(∑
j∈[d]

(
CjM

C1M

)2
(αj +O(C−21M ))

)3

(κj +O(C−11M ))3(κk +O(C−11M ))3

=

(∑
j∈[d]

(
κj +O(C−11M )

)2
(αj +O(C−21M ))

)3
κ3jκ

3
k +O(C−11M )

=
(κ+O(C−11M ))3

κ3jκ
3
k +O(C−11M )

=
κ3 +O(C−11M )

κ3jκ
3
k +O(C−11M )

, for any j 6= k, j, k ∈ [d]

which gives the claim.
Step 2: Proof of γ4,M = O(C−11M ).
Rewriting γ4,M as in (6.12), thanks to (6.13), it suffices to show that

C2
1M

(α̃M )4
max
1≤i≤d

C4
iM

(
C10
iMµ

4
iM α̃iM

(α̃M )4
− 4

C8
iMµ

4
iM

(α̃M )3
+ 6

C6
iMµ

2
iM α̃iM

(α̃M )2
− 4

C4
iMµ

2
iM

α̃M

+ C2
1M α̃iM +

C8
iMµ

4
iM

(α̃M )4

d∑
j=1, j 6=i

C2
jM α̃jM

)
= O(1), (6.21)

as M → +∞. This relation follows noticing that by (6.10) and the assumptions (H1)′, (H2)′ and
(H3)′ we have

C2
1MC

4
jM

(α̃M )4
= O(C−21M ),

C10
jMµ

4
jM α̃jM

(α̃M )4
= O(C2

1M ), for any j ∈ [d]

C8
jMµ

4
jM

(α̃M )3
= O(C2

1M ),
C4
jMµ

2
jM

α̃M
= O(C2

1M ), for any j ∈ [d]

C6
jMµ

2
jM α̃jM

(α̃M )2
= O(C2

1M ), C2
1M α̃jM = O(C2

1M ), for any j ∈ [d]

C8
jMµ

4
jM

(α̃M )4
= O(1),

d∑
k=1, k 6=j

C2
kM α̃kM = O(C2

1M ), for any j ∈ [d].

Step 3: Proof of γ8,M = O(C−11M ).
Note that it suffices to show that the right-hand side of the inequality (6.15) is O(C−11M ), as M →
+∞. Using (6.10) and that γ4,M = O(C−11M ) as M → +∞, we easily see that it suffices to prove
that

d

(α̃M )6
max
1≤i≤d

C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

)

×

[
2d max

1≤i≤d
C4
iM

(
C10
iMµ

4
iM α̃iM

(α̃M )4
− 4

C8
iMµ

4
iM

(α̃M )3
+ 6

C6
iMµ

2
iM α̃iM

(α̃M )2
− 4

C4
iMµ

2
iM

α̃M
+ C2

1M α̃iM

+
C8
iMµ

4
iM

(α̃M )4

1,d∑
j 6=i

C2
jM α̃jM

)
+

6d

α̃M (α̃M + 1)
max
1≤i≤d

(
C4
iM

(
α̃iM −

C2
iMµ

2
iM

α̃M

))2]
= O(C−21M ).
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By (6.21) we rewrite the left-hand side of this relation as

d

(α̃M )2
max
1≤i≤d

C4
iM

(
α̃iM−

C2
iMµ

2
iM

α̃M

)[
O(C−21M ) +

6d

(α̃M )5(α̃M + 1)
max
1≤i≤d

(
C4
iM

(
α̃iM−

C2
iMµ

2
iM

α̃M

))2]
.

(6.22)

By (6.10) and the assumptions (H1)′, (H2)′ and (H3)′ we have

C4
jM

(α̃M )2

(
α̃jM −

C2
jMµ

2
jM

α̃M

)
= O(1), for any j ∈ [d].

Therefore the term in (6.22) is

O(1)(O(C−21M ) +O(C−41M )) = O(C−21M )

and the proof is completed.

6.7. Proof of Theorem 5.5. The proof of Theorem 5.5 is similar to the proofs of Theorems 5.2 and
5.3, and therefore it is omitted.
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