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Abstract. We consider multidimensional random walks in pyramids, which by definition are cones formed
by finite intersections of half-spaces. The main object of interest is the survival probability P(τ > n), τ
denoting the first exit time from a fixed pyramid. When the drift belongs to the interior of the cone, the
survival probability sequence converges to the non-exit probability P(τ = ∞), which is positive. In this
note, we quantify the speed of convergence, and prove that the exponential rate of convergence may be
computed by means of a certain min-max of the Laplace transform of the random walk increments. We
illustrate our results with various examples.

1. Introduction and main results

A glimpse of our results. For a d-dimensional random walk (Sn)n>0 with integrable and independent
increments Xn = Sn − Sn−1 having common distribution µ, we consider the survival probabilities

Px(τ > n), (1.1)

where τ denotes the first exit time from a given coneK, i.e.

τ = inf{n > 0|Sn /∈ K},

and Px is a probability distribution under which the random walk starts at S0 = x, with x ∈ K.
When the driftm = EX1 belongs to the interiorKo of the coneK, the non-exit probability Px(τ =∞),

which is the limit of the sequence (1.1), is positive (see Garbit and Raschel (2023, Lem. 8) for example). In
this note, our main result quantifies the speed of convergence in the following way:

Px(τ > n) = Px(τ =∞) + ρnBn, (1.2)
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Figure 1.1. A coneK (in red) and its dual coneK∗ (in blue)

where the exponential rate ρ ∈ (0, 1), and Bn satisfies n
√
Bn → 1 and Bn → 0. The precise statement is

given in Theorem 1 below. The rate ρ is computed in terms of a certain min-max of the Laplace transform
of µ.

In the special case of small step walks in Zd (i.e. when the support of µ is a subset of {−1, 0, 1}d) in the
orthant Zd+, this result was previously obtained in Garbit and Raschel (2023, Thm 4).

In the present paper, we consider general probability distributions µ with all exponential moments and
polyhedral convex cones, i.e. finite intersection of half-spaces, which for short we will call pyramids; see
examples on Figures 1.1 and 1.2.

One initial motivation to obtain formula (1.2) is the following consequence on the generating function

φ(z) =

∞∑
n=0

Px(τ > n)zn. (1.3)

If the survival probabilities behave as in (1.2), then the generating function (1.3) can not be a rational function,
as shown in Garbit and Raschel (2023) using singularity analysis. The question of proving rationality (and
various refinements, such as algebraicity) of generating functions as above is inspired by the combinatorial
work Bousquet-Mélou and Mishna (2010), where the rational nature of series as in (1.3) is used to measure
the complexity of the associated combinatorial problem.

Technical assumptions. In order to present the hypotheses under which we shall prove our main results, we
introduce two objects, through which the exponential rate ρ in (1.2) will be determined:

• the Laplace transform L of the increment distribution µ:

L(t) = E
(
e〈t,X1〉) =

∫
Rd
e〈t,y〉µ(dy),

• the dual coneK∗ associated withK (see Figure 1.1 for an example):

K∗ = {x ∈ Rd|〈x, y〉 > 0 for all y ∈ K}.
Obviously,K∗ is a closed convex cone.

We will also use extensively the notation Du for the closed half-space with inner normal u ∈ Sd−1, i.e.

Du = {y ∈ Rd|〈y, u〉 > 0}.
Note that K ⊂ Du if and only if u ∈ K∗. Disclaimer: when using the notation Du, it is understood that u
belongs to the sphere Sd−1 (in particular u 6= 0).
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Figure 1.2. Examples of (truncated) pyramids in dimension 3

Throughout this paper, we make the following assumptions on the cone K and the distribution µ of the
random walk increments:
(A1) [Cone] The coneK is a finite intersection of closed half-spacesDu, where u varies in a finite subset

S of Sd−1, henceK = ∩u∈SDu, and it has a non-empty interior. We call this type of cone a closed
pyramid. See Figure 1.2 for examples.

(A2) [Adaptation to the dimension] The random walk is truly d-dimensional, i.e. there is no u 6= 0 such
that 〈u,X1〉 = 0 almost surely.

(A3) [Adaptation to the cone] The random walk started at zero can reach the interior Ko of the cone:
there exists k > 0 such that P0(τ > k, Sk ∈ Ko) > 0.

(A4) [Exponential moments] The random walk increments have all exponential moments. In other words,
the Laplace transform is finite everywhere on Rd.

(A5) [Non-triviality] The random walk is not trapped in the cone: P(X1 ∈ K) < 1. (If P(X1 ∈ K) = 1,
then Px(τ > n) = 1 for all n and there is nothing more to say.)

We callm = EX1 =
∫
yµ(dy) the drift.

Precise statements. Our main result is the following:

Theorem 1. Assume hypotheses (A1)–(A5) above, K = ∩u∈SDu, and m ∈ Ko. The subset S′ ⊂ S of
directions u such that the equation L(su) = 1 has a solution s = su < 0 is non-empty, and

Px(τ > n) = Px(τ =∞) + ρnBn,

with
ρ = max

u∈S′
min
z∈K∗

L(tu + z) ∈ (0, 1), (1.4)

where tu = suu and Bn satisfies n
√
Bn → 1 together with Bn → 0.

Remark 2. Under the hypotheses of Theorem 1, the set S′ is also characterized as being the subset of all u
in S such that P(X1 ∈ Du) < 1. See Lemma 6 for a proof.

Remark 3. It might not be clear at first sight why the expression (1.4) for ρ doesn’t depend on the set S as
long asK = ∩u∈SDu. The reason is that one set S0 among such S is minimal with respect to inclusion, and
any vector in S can be written as a non-negative linear combination of vectors in S0. This combined with
further basic properties of the convex function t 7→ minz∈K∗ L(t + z) makes it possible to deduce that the
maximum on {tu|u ∈ S′} is reached on {tu|u ∈ S′0}. The set S0 can be characterized as the set of extremal
directions ofK∗. This is explained in Appendix A; its reading is not necessary for the understanding of the
proof of Theorem 1.

Using similar singularity analysis technniques as in Garbit and Raschel (2023), the estimate obtained in
Theorem 1 yields the following:

Corollary 4. Assume hypotheses (A1)–(A5) above, K = ∩u∈SDu, and m ∈ Ko. Then the generating
function (1.3) is not rational.
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Although we are not able to extend Theorem 1 to the case of cones which are not pyramids, we conjecture
that the same conclusion holds, provided the formula (1.4) for ρ be replaced by

ρ = max
t∈M

min
z∈K∗

L(t+ z),

whereM = (−K∗) ∩ {L = 1} \ {0}.
The case of a drift m /∈ Ko is considered in Garbit and Raschel (2023), and our proof of Theorem 1 is

based on that previous result, which we now state for convenience:

Theorem 5 (Theorem 3 in Garbit and Raschel (2023)). Assume hypotheses (A1)–(A4) above and that L is
coercive onK∗. Ifm /∈ Ko, then

Px(τ > n) = ρnBn,

where
ρ = min

z∈K∗
L(z) ∈ (0, 1],

and Bn satisfies n
√
Bn → 1 and Bn → 0. Moreover ρ < 1 if and only ifm /∈ ∂K.

In Theorem 5 and throughout the manuscript, a non-negative, convex function f : Rd → R is said to be
coercive on a cone C if f(x)→ +∞ as ‖x‖ → +∞, x ∈ C.

2. Examples of application of Theorem 1

In this section, we give various illustrations of Theorem 1.

2.1. Small step examples with uniform distribution. All examples presented in Table 2.1 below are small step
walks in the plane, confined to the coneK = R2

+, with uniform distribution. By definition, two-dimensional
small step models have a support included in the set of the eight nearest neighbors {−1, 0, 1}2 \ {(0, 0)}.

In Table 2.1, we use the notation of Theorem 1; for example, s(1,0) denotes the unique negative point such
that L(s(1,0), 0) = 1. We further introduce

ρ(1,0) = min
z∈R2

+

L(t(1,0) + z), (2.1)

with t(1,0) = (s(1,0), 0). The quantities s(0,1) and ρ(0,1) are defined similarly. The rate ρ is as in (1.4) and
satisfies ρ = max{ρ(1,0), ρ(0,1)}.

In the list of 79 intrinsically different models of walks in the quarter plane established in Bousquet-Mélou
and Mishna (2010), exactly 12 of them have a drift inside of the quadrant. For each of these 12 models, we
compute s(1,0), ρ(1,0), s(0,1), ρ(0,1), and finally the rate ρ appearing in Theorem 1. For the first model, the
rate ρ is already computed in Mishna and Rechnitzer (2009, Prop. 9). The second, third and fourth rates are
obtained in Melczer and Mishna (2014, Thm 3.1).

Among these 12models, four of them have a support included in a half-plane. Thesemodels are considered
in the four first rows of Table 2.1. Notice that the first column of Table 2.1 represents the steps of the random
walk; it is implicitly assumed that the transition probabilities are uniform. For example, the first model has
jump probabilities 1

3 in the directions (−1, 1), (1, 1) and (1,−1).
The remaining 8 models have simultaneously a drift in the cone and a support which is not included in

any half-plane. These models are represented on Table 2.1 as well.

2.2. A weighted small step example. We now look at a two-dimensional example with Laplace transform

L(x, y) = p−1,1e
−x+y + p0,1e

y + p1,1e
x+y + p1,0e

x + p1,−1e
x−y, (2.2)

which is just a weighted version of the third step set on Table 2.1. We assume that the drift is in the interior
of the quadrant, i.e.

p−1,1 < p1,1 + p1,0 + p1,−1 and p1,−1 < p−1,1 + p0,1 + p1,1 (2.3)
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− log 2 2
√
2

3
− log 2

√
8
3

√
8

3
∗

− log 2 1+2
√
2

4
− log 2 1+2

√
2

4
1+2
√
2

4
∗∗

− log 3 1+2
√
3

5
− log 3 1+2

√
3

5
1+2
√
3

5
∗∗

− log 2 1+2
√
2

4
− log 3

√
3
2

1+2
√
2

4
∗∗

− log 2
√
8

3
− log 2

√
8
3

√
8

3

− log 2 1+2
√
2

4
− log 2 1+2

√
2

4
1+2
√
2

4

− log 2 2+2
√
2

5
− log 3 1+2

√
3

5
2+2
√
2

5

− log 2 2+2
√
2

5
log( 2

3
) 2

√
6

5
2
√
6

5

− log 2 2+2
√
2

5
− log 2 2+2

√
2

5
2+2
√
2

5

log( 2
3
) 1+2

√
6

6
− log 3 1+

√
3

3
1+2
√
6

6

log( 2
3
) 1+2

√
6

6
log( 2

3
) 1+2

√
6

6
1+2
√
6

6

log( 2
3
) 2+2

√
6

7
log( 2

3
) 2+2

√
6

7
2+2
√
6

7

Table 2.1. Some important quadrant walk models considered in Bousquet-Mélou and
Mishna (2010). For the models marked with a star (resp. two stars), the value of ρ is
computed in Mishna and Rechnitzer (2009) (resp. Melczer and Mishna (2014))
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Figure 2.3. On the left (right), the first example of Table 2.1 (the nineth example of
Table 2.1). We represent the level set {t ∈ R2|L(t) = 1} (red color), the drift (red), the
translated cones t(1,0) + R2

+ (yellow) and t(0,1) + R2
+ (blue); the intersection of the two

previous translated quadrants is the positive quarter plane (green). On the left display, the
two points stand for the global minima in t(1,0) + R2

+ and t(0,1) + R2
+. On the right display,

the same minima points are drawn, as well as the global minimum on R2.

Figure 2.4. This figure contains two examples, which are complementary to those of
Figure 2.3. On the left, a model with step set included in a half-space. The Laplace
transform does not admit a minimum in the direction (1, 0), so according to Theorem 1,
S′ = {(0, 1)} and ρ is computed as the global minimum on t(0,1) + R2

+. On the right, the
model with Laplace transform L(x, y) = e−x

6 + e−y

2 + ex+2y

3 .

and that p0,1+p1,1+p1,0 > 0, so that thewalk be truly 2-dimensional (hypothesis (A2)). If p−1,1 = p1,−1 = 0,
then the walk is trapped in the cone and τ = ∞ almost surely. If both of p−1,1, p1,−1 are non-zero, then
applying Theorem 1, we shall prove that

ρ = max
{
p0,1 + 2

√
p−1,1(p1,1 + p1,0 + p1,−1), p1,0 + 2

√
p1,−1(p−1,1 + p0,1 + p1,1)

}
. (2.4)

The formula (2.4) is a generalization of Melczer and Mishna (2014, Thm 3.1) to weighted, non-symmetric
step sets with Laplace transform (2.2).

If one of p−1,1, p1,−1 is zero (say p−1,1) and the other one is non-zero, then

ρ = p1,0 + 2
√
p1,−1(p0,1 + p1,1). (2.5)
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Proof of (2.4): Applying Theorem 1 yields ρ = max
{
ρ(1,0), ρ(0,1)

}
, with ρ(1,0) given by (2.1), and

ρ(0,1) computed symmetrically. In order to derive (2.4), it is sufficient to show that ρ(1,0) = p0,1 +

2
√
p−1,1(p1,1 + p1,0 + p1,−1). We first observe that ρ(1,0) is necessarily reached at some boundary point

of t(1,0) + R2
+. Indeed, if ρ(1,0) were reached at an interior point of t(1,0) + R2

+, then it would be a global
minimum of L on R2, which does not exist due to the fact that the step set is included in a half-space. Hence
it is enough to compute

α = min{L(s(1,0), y)|y > 0} and β = min{L(x, 0)|x ∈ [s(1,0),∞)}.
The equation L(x, 0) = 1 writes

p−1,1e
−x + p0,1 + (p1,1 + p1,0 + p1,−1) e

x = 1, (2.6)
and is solved by

x = 0 and x = s(1,0) = ln

(
p−1,1

p1,1 + p1,0 + p1,−1

)
< 0.

Now we compute the partial derivative:
∂L

∂y
(s(1,0), 0) = p−1,1e

−s(1,0) + p0,1 + p1,1e
s(1,0) − p1,−1es(1,0) = 1− (p0,1 + 2p1,−1)e

s(1,0) ,

where the last equality is obtained thanks to (2.6). Because of (2.3), we have
p0,1 + 2p1,−1 < p0,1 + p1,−1 + p−1,1 + p0,1 + p1,1 = 1,

and es(1,0) < 1. Therefore ∂L
∂y (s(1,0), 0) > 0 and by convexity the partial function y 7→ L(s(1,0), y) is

non-decreasing for y > 0. By consequence α = 1. Accordingly,
ρ(1,0) = β = min{L(x, 0)|x ∈ R}.

A straightforward computation then shows that the global minimum of a function of the form ae−x+ b+ cex

is reached at ex =
√

a
c and takes the value b+ 2

√
ac. The proof of (2.4) is completed.

The formula (2.5) would be proved similarly, using that S′ = {(0, 1)}. �

2.3. Irrelevance of the location of the drift. In this paragraph, we would like to illustrate the following fact:
the position of the drift (in particular its distance to the boundary) does not in general determine which point
in S′ will give the rate ρ.

Let us take three examples in the case of the quarter plane. For the first model in Table 2.1, the model is
symmetric (about the first diagonal), with drift (13 ,

1
3), and one has ρ = ρ(1,0) = ρ(0,1). Consider now the

fourth model in Table 2.1. Its drift is (14 ,
1
2), closer to the vertical axis. The rate is given by ρ(1,0), as shown

in Table 2.1. Finally, look at the model represented on Figure 2.4, which has a drift of the form (16 ,
1
6).

Easy computations show that ρ(1,0) ≈ 0.97, which turns out to be the global minimum of L on R2, while
ρ(0,1) ≈ 0.99. By continuity w.r.t. the parameters, this last example could be modified to get an example
with a drift slightly directed to the vertical axis, but for which the rate ρ would be actually equal to ρ(0,1).

2.4. Normal distribution. Here we consider the case where the step distribution µ is a standard normal
distribution on Rd with meanm. The Laplace transform is then given by

L(t) = exp

(
〈t,m〉+

‖t‖2

2

)
= exp

(
‖t+m‖2 − ‖m‖2

2

)
. (2.7)

Let us first recall an explicit expression for the minimum of L on the closed convex cone K∗. It is clearly
reached when t is the projection of −m onK∗, and then

‖t+m‖ = d(−m,K∗) = d(m,K]),

whereK] = −K∗ is the polar cone ofK. By Moreau’s decomposition theorem

d(m,K])2 + d(m,K)2 = ‖m‖2,
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Figure 2.5. This figure summarizes the results presented in Subsection 2.4. The equation
L(t) = 1 describes a circle with center at c = −m and radius r = ‖m‖. The cone K is
represented in blue and the polar cone in green. In pink, we have represented one of the two
domains tu +K∗.

therefore the minimum of L onK∗ is exp
(
−1

2d(m,K)2
)
.

Now consider the set Γ = {t ∈ R2|L(t) = 1}. From (2.7), we see that Γ is the circle C(−m, ‖m‖) with
center at −m and radius ‖m‖, see Figure 2.5. For t ∈ Γ, we have

L(t+ z) = exp

(
‖z + t+m‖2 − ‖t+m‖2

2

)
since ‖t + m‖2 = ‖m‖2. The function z 7→ L(t + z) is thus the Laplace transform of a standard normal
distribution with mean t+m, and it follows that

min
z∈K∗

L(t+ z) = exp

(
−1

2
d(t+m,K)2

)
.

For a closed pyramidK = ∩u∈SDu containingm in its interior, the set S′ is equal to S (see Remark 2) and
the rate ρ is given by

ρ = max
u∈S

exp

(
−1

2
d(tu +m,K)2

)
= exp

(
−1

2
min
u∈S

d(zu,K)2
)
,

where zu = tu + m is characterized as being the unique intersection point of the circle C(0, ‖m‖) and the
half-line {su+m|s < 0}.

For example, consider the cone K = {ρ(cos θ, sin θ)|ρ > 0, θ ∈ [0, α]} in the plane and m =
r(cosβ, sinβ), with 0 < β < α 6 π. ThenK = Du ∩Dv with u = (0, 1) and v = (sinα,− cosα). Some
computations show that zu = r(cosβ,− sinβ) and zv = r(cos(2α−β), sin(2α−β)). From this, we obtain
ρ = e−d

2/2 with
d = rmin

{
sinβ, sin(α− β)

}
.

Note that in this example, d equals the distance betweenm and ∂K.

3. Proof of Theorem 1

3.1. Sketch of the proof. LetK = ∩u∈SDu be a closed pyramid. We want to estimate

∆n = Px(τ > n)− Px(τ =∞) = Px(n < τ <∞).



Survival probabilities of random walks with drift inside a pyramid 981

By the geometry ofK, we have {τ <∞} = ∪u∈S{σu <∞}, where σu denotes the first exit time from the
half-space Du, therefore

max
u∈S

Px(n < τ, σu <∞) 6 ∆n 6
∑
u∈S

Px(n < τ, σu <∞).

If u is such that P(X1 ∈ Du) = 1, then the random walk can not leave the half-space Du and Px(n <
τ, σu <∞) = 0. So we can rewrite the preceding relation as

max
u∈S′

Px(n < τ, σu <∞) 6 ∆n 6
∑
u∈S′

Px(n < τ, σu <∞),

where S′ is the subset of all u ∈ S satisfying P(X1 ∈ Du) < 1. We shall see that those simple bounds
are sufficient to obtain our estimate on ∆n. Estimates of each term Px(n < τ, σu < ∞) are obtained in
Lemma 9. Theorem 1 then follows immediately. Lemmas 6 and 8 are preparatory material.

3.2. Turning the drit inside out. The Laplace transform of a vector X = (X(1), . . . , X(d)) ∈ Rd with
probability distribution µ is the function L defined for t ∈ Rd by

L(t) = E
(
e〈t,X〉

)
=

∫
Rd
e〈t,y〉µ(dy).

It is finite in some neighborhood of the origin if and only if E
(
eα‖X‖

)
is finite for some α > 0. If L is

finite in a neighborhood of the origin, sayB(0, r), then L is infinitely differentiable inB(0, r) and its partial
derivatives are given there by

∂L(t)

∂ti
= E

(
X(i)e〈t,X〉

)
.

Therefore, the expectation EX = (EX(1), . . . ,EX(d)) is the gradient of L at the origin ∇L(0). Notice that
X is centered (i.e. EX = 0) if and only if 0 is a critical point of L. Since L is a convex function, this means
that 0 is a minimum point of L in B(0, r).

Now suppose that L is finite in some ball B(t0, r) and define a new probability measure µ∗ by

µ∗(dy) =
e〈t0,y〉

L(t0)
µ(dy). (3.1)

We will say that µ∗ is the t0-changed measure. The Laplace transform L∗ of µ∗ is linked to that of µ by
the relation L∗(t) = L(t0 + t)/L(t0), and therefore L∗ is finite in some neighborhood of the origin. As a
consequence, applying the results above shows that any random vector X∗ with distribution µ∗ satisfies:

• E
(
eα‖X∗‖

)
<∞ for some α > 0;

• EX∗ = ∇L(t0)/L(t0).
For specific points t0 satisfying the equation L(t0) = 1, we obtain additional information on the new drift:

Lemma 6. Assume hypotheses (A1), (A2), (A4), (A5) above, K = ∩u∈SDu, andm ∈ Ko. Then the subset
S′ ⊂ S of directions u such that the equation L(su) = 1 has a solution s = su < 0 is non-empty and equal
to the set of all u ∈ S such that P(X1 ∈ Du) < 1. In addition, for any u ∈ S′, the gradient of L at the point
tu = suu satisfies 〈∇L(tu), u〉 < 0.

Remark 7. In other words, under the tu-changed measure, the new drift does not belong to the half-space
Du = {z ∈ Rd|〈z, u〉 > 0}.

Proof : First, we note that 〈m,u〉 > 0 for all non-zero u ∈ K∗. Indeed, if C is a closed cone, the interior of
its dual cone has the following description:

(C∗)o =
{
y ∈ Rd|〈y, u〉 > 0 for all u ∈ C \ {0}

}
,
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see Exercise 2.31(d) in Boyd and Vandenberghe (2004) for example. Since K is a closed convex cone, it is
well known that (K∗)∗ = K (see Consequence 1 in Studený (1993) or Theorem 14.1 in Rockafellar (1970)).
Applying this to C = K∗, we see that the interior ofK can be expressed as

Ko =
{
y ∈ Rd|〈y, u〉 > 0 for all u ∈ K∗ \ {0}

}
.

This proves the first assertion.
Let u ∈ S. By definition one hasK ⊂ Du, thus u ∈ K∗. Consider the partial function of a real variable

φ(s) = L(su). This function isC∞ and strictly convex, since the Laplace transform isC∞ thanks to (A2) and
strictly convex thanks to (A4). Its derivative is given by φ′(s) = 〈∇L(su), u〉, hence φ′(0) = 〈m,u〉 > 0.
Based on Garbit and Raschel (2016, Lem. 6), the following dichotomy holds:

• If P(X1 ∈ Du) < 1, then lims→−∞ φ(s) = ∞. Since φ is strictly convex and satisfies φ(0) = 1
and φ′(0) > 0, there exists a unique s < 0 such that φ(s) = 1. Moreover, at this point, the derivative
φ′(s) must be negative. Hence L(su) = 1 and 〈∇L(su), u〉 < 0.
• If P(X1 ∈ Du) = 1, then lims→−∞ φ(s) = P(〈X1, u〉 = 0) < 1. In this case, the equation
φ(s) = 1 has no solution s < 0.

Since P(X1 ∈ K) < 1 by (A5) and K = ∩u∈SDu with S finite, there is at least one u ∈ S such that
P(X1 ∈ Du) < 1. Therefore S′ is non-empty. �

3.3. Change of measure. Let t0 be given and consider the t0-changed measure (3.1). We shall denote by Px∗
a probability distribution under which (Sn)n>0 is a random walk with increment distribution µ∗ and started
at S0 = x. It is easily checked that

Ex
(
f(S1, S2, . . . , Sk)

)
= L(t0)

ke〈t0,x〉Ex∗
(
f(S1, S2, . . . , Sk)e

−〈t0,Sk〉
)
, (3.2)

for any non-negative measurable function f : Rk → [0,∞).

Lemma 8. Assume L(t0) = 1, and let τ and σ be two stopping times w.r.t. the natural filtration associated
with (Sn)n>0. Then

Px(n < τ 6 σ <∞) = e〈t0,x〉Ex∗
(
n < τ 6 σ <∞, e−〈t0,Sσ〉

)
. (3.3)

Proof : For all k > n, applying (3.2) gives

Px(n < τ 6 σ = k) = e〈t0,x〉Ex∗
(
n < τ 6 σ = k, e−〈t0,Sk〉

)
= e〈t0,x〉Ex∗

(
n < τ 6 σ = k, e−〈t0,Sσ〉

)
.

By summing over k > n, we obtain (3.3). �

By specializing this relation to the exit time τ from the coneK = ∩u∈SDu and the exit time σu from one
half-space Du, we shall obtain the following:

Lemma 9. Assume hypotheses (A1)–(A5),K = ∩u∈SDu, andm ∈ Ko. For all u ∈ S′,

Px(n < τ, σu <∞) = ρnuBn,

where Bn satisfies n
√
Bn → 1 and Bn → 0, and

ρu = min
z∈K∗

L(tu + z) ∈ (0, 1),

where tu = su is the unique solution to L(su) = 1 with s < 0.
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Proof : Fix u ∈ S′ and let tu be as in the statement of Lemma 6. Then the driftm∗ = ∇L(tu) of the random
walk under Px∗ satisfies 〈u,m∗〉 < 0, so that σu is almost surely finite and the relation (3.3) of Lemma 8
gives

Px(n < τ, σu <∞) = e〈tu,x〉Ex∗
(
n < τ, e−〈tu,Sσu 〉

)
= e〈tu,x〉Ex∗

(
n < τ,ESn∗

(
e−〈tu,Sσu 〉

))
= e〈tu,x〉Ex∗

(
n < τ, φ(Sn)

)
,

where we have set
φ(y) = Ey∗

(
e−〈tu,Sσu 〉

)
= Ey∗

(
esu〈−u,Sσu 〉

)
.

Let us focus on φ(y) for y ∈ K. Under Py∗, the projected random walk Zn = 〈−u, Sn〉 is started at
ỹ = 〈−u, y〉 6 0 and has a positive drift 〈−u,m∗〉 > 0. The random time σu corresponds to its first exit
time T from the negative half-line (−∞, 0] and therefore φ(y) is the expectation of f(ZT ) when the random
walk is started at ỹ 6 0, where f(t) = esut is continuous and non-increasing. So, it follows from Lemma 10
below that the function φ(y) is bounded from above and below on the cone K by two positive constants
0 < c < C. Therefore

ce〈tu,x〉 Px∗ (τ > n) 6 Px(n < τ 6 σu <∞) 6 Ce〈tu,x〉 Px∗ (τ > n) .

As a last step, we apply Theorem 5 to estimate Px∗ (τ > n). Let us see why the hypotheses of this theorem
are satisfied under P∗, i.e. by our new random walk with increment distribution µ∗(dy) = e〈tu,y〉µ(dy) and
Laplace transform L∗(t) = L(tu + t):
(A1) The cone hasn’t changed.
(A2) The random walk is truly d-dimensional, since this condition depends only on the support of µ∗ (it

should not be included in any linear hyperplane) and its support is exactly the same as that of µ.
(A3) For the same reason, the new random walk inherits from the original random walk the property that

it can reach the interior of the cone. This can be seen via (3.2).
(A4) The Laplace transform L∗(t) = L(tu + t) is finite everywhere, since L is finite everywhere.
• The new driftm∗ is not inK, since 〈m∗, u〉 < 0 andK ⊂ Du.
• Finally, it remains to check that L∗ is coercive on the dual cone K∗. Fix v ∈ K∗ and recall from
Garbit and Raschel (2016, Lem. 6) that limt→∞ L∗(tv) =∞ if and only if the support of µ∗ is not
included in −Dv. But µ and µ∗ have the same support which is not included in −Dv, for else the
original driftm would also be in −Dv. This is impossible sincem ∈ Ko and −Dv ∩Ko = ∅.

It follows from Theorem 5 that
Px∗ (τ > n) = ρnuBn,

where Bn satisfies n
√
Bn → 1 and Bn → 0, and

ρu = min
z∈K∗

L(tu + z) ∈ (0, 1).

(ρu < 1 sincem∗ 6∈ K, see Theorem 5.) This concludes the proof of the lemma. �

We end this section with a result on overshoots of a random walk that is uniform w.r.t. the starting point.

Lemma 10 (Overshoot). Let (Zn)n>0 be a one-dimensional random walk with integrable i.i.d. increments
Yk satisfying EYk > 0. Let T denote the first exit time from the half-line (−∞, 0]. For any continuous,
non-increasing function f : [0,∞)→ (0,∞), we have

0 < inf
x60

Exf(ZT ) 6 sup
x60

Exf(ZT ) <∞.

Proof : Since the randomwalk has positive drift, the exit timeT is almost surely finite, furthermoreExT <∞
for all x 6 0. Since ZT > 0 and f is non-increasing, we have Exf(ZT ) 6 f(0) for all x 6 0. This proves
the rightmost inequality of Lemma 10.
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We now turn to the leftmost inequality side, which is the difficult part. Since

Exf(ZT ) > Ex (f(ZT ), ZT 6 a) > f(a)Px(ZT 6 a),

it suffices to find a > 0 such that
inf
x60

Px(ZT 6 a) > 0.

We shall first exhibit a lower bound when x remains in a bounded interval [b, 0], b < 0. To do this, simply
write

Px(ZT > a) =
∑
n>1

Px(Zn > a, T = n)

6
∑
n>1

Px(Yn > a, T > n− 1) = P(Y1 > a)ExT.

Let b be an arbitrary negative number. Since ExT is non-increasing as x ↑ 0, we have

sup
b6x60

Px(ZT > a) 6 P(Y1 > a)EbT.

Choosing a > 0 such that P(Y1 > a)EbT < 1, we obtain infb6x60 Px(ZT 6 a) > 0.
It remains to lower bound Exf(ZT ) for large negative x. To do this, we use a well-known consequence

of the renewal theorem, which asserts that the overshoot ZT above 0 converges in distribution as the initial
state x goes to −∞. To state this result precisely, let us introduce the ladder epochs (Tk)k>0 defined by

T0 = 0 and Tk+1 = inf{n > Tk|Zn > ZTk}, k > 0,

and the corresponding ladder heights Hk = ZTk . It is clear that our exit time T must occur at one of the
ladder epochs, hence ZT = Hτ+ , where τ+ = inf{n > 0|Hn > 0}. Now

Hn = Z0 +
n∑
k=1

(ZTk − ZTk−1
),

where the random variables ZTk −ZTk−1
are i.i.d. and positive. According to Feller (1971, XI.4, Eq. (4.10),

p. 370), the overshoot Hτ+ above 0 of the renewal process (Hn)n>0 converges in distribution as x→ −∞.
More precisely, if the distribution of the ladder heights increments ZTk −ZTk−1

is non-arithmetic1, then for
any bounded and continuous function f : [0,∞)→ R,

lim
x→−∞

Exf(Hτ+) =
1

ν

∫ ∞
0

f(t)G(t)dt,

where G is the survival function of ZTk −ZTk−1
and ν is its expectation. Since the variable ZTk −ZTk−1

is
positive and our function f is also positive, the integral above is positive.

In case the distribution of ZTk − ZTk−1
is arithmetic with span λ > 0, then

lim
n→−∞

Enλf(Hτ+) =
λ

ν

∞∑
k=0

f((k + 1)λ)G(kλ).

The proof is exactly as that of Feller (1971, XI.4, Eq. (4.10), p. 370), when specialized to the case of
arithmetic distributions, see Feller (1971, XI.1, Eq. (1.19), p. 362)2. Here again the limit is positive, since
at least G(0) > 0. So, there exists n0 < 0 such that infn<n0 Enλf(Hτ+) > 0. Now, for n < 0 and
x ∈ ((n− 1)λ, nλ], the exit time τ+ when the process is started at x is identical to that when started at nλ,
hence

Exf(Hτ+) = Enλf(Hτ+ − (nλ− x)) > Enλf(Hτ+).

Therefore infx<n0λ Exf(Hτ+) > 0. �

1A probability distribution is arithmetic if it is concentrated on λZ for some λ > 0. In this case, the largest λ with this property
is called the span.

2Note that there is a misprint in Feller (1971, XI.1, Eq. (1.19), p. 362): for x ∈ [0, λ), the indices j should start at 0.
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Appendix A. Properties of pyramids and proof of Remark 3

The main objective of the appendix is to prove that the value of ρ in Theorem 1 doesn’t depend on the
set S as long as K = ∩u∈SDu, as mentioned in Remark 3. Along the way of showing this, we shall recall
several statements on pyramids. To make the paper self-contained and for the convenience of the reader, we
will briefly prove these technical results.

Recall that a subset K of Rd is a closed pyramid if there is a finite subset S of the sphere Sd−1 such that
K = ∩u∈SDu, where Du stands for the closed half-space {y ∈ Rd|〈y, u〉 > 0}, see Figure 1.2. In other
words, K is a finite intersection of homogeneous closed half-spaces. A closed pyramid is clearly a closed
convex cone.

In this section, we will show (Lemma 12) the following straightforward-looking result: if K is a closed
pyramid with non-empty interior3, there is a finite set S0 such that K = ∩u∈S0Du and S0 is minimal
w.r.t. inclusion, i.e.

K = ∩u∈SDu ⇒ S0 ⊂ S.
From this, we will deduce (Lemma 13) that

max
u∈S′

min
z∈K∗

L(tu + z) = max
u∈S′0

min
z∈K∗

L(tu + z), (A.1)

thus explaining why the expression for ρ in Theorem 1 doesn’t depend on the particular choice of the set S,
provided thatK = ∩u∈SDu.

A.1. Some facts about pyramids. To begin, let K be any non-empty closed convex cone. It is well known
thatK is the intersection of the homogeneous closed half-spacesDu which contain it (see Rockafellar (1970,
Cor. 11.7.1)). Since the conditionK ⊂ Du is clearly equivalent to u ∈ K∗, it follows that

K =
⋂
u∈K∗

Du.

From now on, we will assumeK has a non-empty interior and focus on the structure of the dual coneK∗.
SinceK contains a ball B(x0, r), any non-zero y ∈ K∗ satisfies 〈y, x0 + ru〉 > 0 for all u ∈ Sd−1, and this
condition is equivalent to 〈y, x0〉 > r‖y‖. This implies that the cone C = K∗ is salient, i.e. there exists
v ∈ Sd−1 such that 〈y, v〉 > 0 for all y ∈ C \ {0}.

Salient convex cones have the following property:

Lemma 11. If a closed convex cone C is salient, then there exists an affine hyperplane H , not containing
the origin, such that C ∩H is compact and generates C, i.e. C = {λy|λ > 0, y ∈ C ∩H}).

Proof : The set C ∩Sd−1 is compact and generates C. Consider the affine hyperplaneH = v+ [v]⊥, where
v is as in the definition of a salient cone. The mapping φ : C ∩ Sd−1 → C ∩H given by φ(y) = y/〈y, v〉 is
continuous and onto, therefore C ∩ Sd−1 is compact. Moreover C ∩H generates C, since any non-zero y
in C can be written as y = λφ(y) with λ = 〈y, v〉. �

Take H as in the lemma above and denote by E the set of extreme points of the convex set C ∩H (see
Figure A.6). Since C ∩H is compact, it follows from Minkowski-Steinitz Theorem (see Rockafellar (1970,
Cor. 18.5.1)) that any of its points a can be written as a convex combination of extreme points:

a =

p∑
i=1

λiai,

with ai ∈ E , λi > 0 and
∑p

i=1 λi = 1. From this we define the set of extremal directions of C as

Ed(C) =
{
a/‖a‖ | a ∈ E

}
.

3The result is not true in general if the interior of K is empty. Consider for example the cone K = {0} × [0,∞)
in R2. It can be written as ∩u∈SDu, with S = {(1, 0), (−1, 0), (0, 1)}, and this S is minimal w.r.t. cardinality, but
S̃ = {(1, 0), (−1, 0), (1/

√
2, 1/
√
2)} is adapted toK as well.
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Figure A.6. A salient cone C and the extreme points (in red) of C ∩H

It can be seen that this set does not depend on the particular choice of H , and has the following intrisic
characterisation: u ∈ Sd−1 is an extremal direction of C if and only if it can not be written as a combination
αa+ βb with α, β > 0 and a, b ∈ C, a 6= b. Since C ∩H generates C, it follows that any point u in C may
be expressed as

u =

p∑
i=1

µiui,

with ui ∈ Ed(C) and µi > 0. This implies Du ⊃ Du1 ∩Du2 ∩ · · · ∩Dup .
Applying this to the salient coneK∗, we obtain the following representation forK:

K =
⋂
u∈K∗

Du =
⋂

u∈Ed(K∗)

Du. (A.2)

Lemma 12. A closed convex coneK with non-empty interior is a polyhedral cone (or pyramid) if and only
if the set Ed(K∗) is finite. In this case, for any set S such thatK = ∩u∈SDu, we have

(1) Ed(K∗) ⊂ S,
(2) any vector in S is a non-negative linear combination of vectors of Ed(K∗).

Proof : If Ed(K∗) is finite, then the representation (A.2) shows thatK is a finite intersection of half-spaces.
Conversely, suppose K = ∩u∈SDu with S finite and let T ⊂ S be such that K = ∩u∈TDu and minimal
with respect to cardinality. Write T = {u1, u2, . . . , up} and consider the set

A =

{
p∑
i=1

λiui|λ1, λ2, . . . , λp > 0

}
.

This set is clearly a convex cone, and it can be seen that it is a closed set (see Studený (1993, Prop. 1) or
Rockafellar (1970, Thm 14.1)). It is straightforward that y belongs to A∗ if and only if 〈y, ui〉 > 0 for all
1 6 i 6 p. In other words,

A∗ =

p⋂
i=1

Dui = K.

Since A is a closed convex cone, A = (A∗)∗ = K∗, see Consequence 1 in Studený (1993) or Rockafellar
(1970, Thm 14.1). Now, it is easily seen, using the intrisic characterisation of an extremal direction together
with the minimality of the set T , that any extremal direction of Amust be one of the ui’s. Therefore Ed(K∗)
is a subset of T , hence finite. (In fact, by minimality T = Ed(K∗).)

Any vector in S is a non-negative linear combination of vectors of Ed(K∗), as S is necessarily a subset of
K∗. �

A.2. Proof of Remark 3. We first prove a technical result, which exactly captures the situation encountered
in Theorem 1.
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Lemma 13. Let K be a closed pyramid with non-empty interior and F,G : K∗ → R two convex functions
such that:

• F (0) = 1 and for all u ∈ K∗ \ {0}, either the equation F (su) = 1 with s > 0 has exactly one
solution or F (su) < 1 for all s > 0;
• G is non-increasing along the rays of the coneK∗.

LetM = K∗ ∩ {F = 1} \ {0}. IfM is non-empty, the maximum of G onM is reached at some point z in
M such that u = z/‖z‖ is an extremal direction ofK∗.

Proof : Let A be the collection of u ∈ Ed(K∗) such that the equation L(su) = 1 with s > 0 has exactly one
solution, and let B = Ed(K∗) \A. By hypothesis, if u belongs to B, then L(su) < 1 for all s > 0. We first
show that A is non-empty, so that there exists at least one point z = su inM such that z/‖z‖ ∈ Ed(K∗). To
see this, let x be any point inM . As an element ofK∗, it can be written as a linear combination

x =
∑

u∈Ed(K∗)

λuu (A.3)

with λu > 0. Assume A is empty and let n denote the cardinality of B. Then, by convexity of F ,

F (x) = F

(
1

n

∑
u∈B

nλuu

)
6

1

n

∑
u∈B

F (nλuu) < 1.

This contradicts with F (x) = 1, hence A is non-empty.
For each u ∈ A, denote by xu the unique point such that F (xu) = 1 and xu = su with s > 0. Starting

from (A.3), we can decompose x as follows:

x =
∑
u∈A

µuxu +
∑
u∈B

λuu,

where µu > 0 and λu > 0. Set µ =
∑

u∈A µu, λ =
∑

u∈B λu and cε = µ + ελ, for a parameter ε > 0.
Repeating the argument above shows that at least one of the µu is positive, hence µ > 0 and cε > 0. By
convexity of F , we have

F (x/cε) = F

(∑
u∈A

µu
cε
xu +

∑
u∈B

ελu
cε

(u/ε)

)

6
∑
u∈A

µu
cε
F (xu) +

∑
u∈B

ελu
cε
F (u/ε) 6 1.

But, by hypothesis, the function φ(s) = F (sx) is convex and the equation φ(s) = 1 has only two non-
negative solutions, namely s = 0 and s = 1, thus φ(s) > 1 for all s > 1. Therefore cε must be larger than
one. So, since G is non-increasing along the rays ofK∗, the value G(x) is less than G(x/cε), and using the
convexity exactly as above we obtain

G(x) 6
∑
u∈A

µu
cε
G(xu) +

∑
u∈B

ελu
cε
G(u/ε)

6
µ

cε
max
u∈A

G(xu) +
ελ

cε
max
u∈B

G(u/ε).

As ε goes to 0, cε goes to µ and maxu∈B G(u/ε) remains bounded (by maxu∈B G(u) for ε < 1 for example).
Therefore, letting ε→ 0 in the inequality above leads to

G(x) 6 max
u∈A

G(xu).

This proves the lemma. �
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As an application, let K = ∩u∈SDu be a closed pyramid with non-empty interior and L be the Laplace
transform of the distribution µ satisfying the hypotheses of Theorem 1. Set

F (x) = L(−x) and G(x) = inf
z∈K∗

L(−x+ z).

The proof of Lemma 6 shows that the function F satisfies the first hypothesis of Lemma 13 and that M
is non-empty. Now G is also a convex function (because L is convex). To see why it is non-increasing
along the rays of K∗, fix v ∈ K∗ and a < b. Since K∗ is a convex cone, it is also a semi-group, therefore
(b − a)v + K∗ ⊂ K∗, and adding −bv on each side leads to −av + K∗ ⊂ −bv + K∗. It follows that
G(av) > G(bv).

Now define T as the set of all u in K∗ such that the equation F (su) = 1 with s > 0 has exactly one
solution, which we write−αu with αu < 0. Then tu = αuu denotes the same point as in Theorem 1 because
L(αuu) = F (−αuu) = 1. The setM in Lemma 13 is equal to {−tu|u ∈ T} and the lemma asserts that

max{G(−tu)|u ∈ T} = max{G(−tu)|u ∈ T ∩ Ed(K∗)}.
More explicitly,

max
u∈T

inf
z∈K∗

L(tu + z) = max
u∈T∩Ed(K∗)

inf
z∈K∗

L(tu + z).

But the set S′ in Theorem 1 satisfies
T ∩ Ed(K∗) ⊂ S′ ⊂ T,

hence
max
u∈S′

inf
z∈K∗

L(tu + z) = max
u∈T∩Ed(K∗)

inf
z∈K∗

L(tu + z).

This explains (A.1).
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