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Abstract. We consider the simple random walk in i.i.d. nonnegative potentials on the d-dimensional
lattice (d ≥ 1). In this model, the so-called Lyapunov exponent describes the cost of traveling for
the simple random walk in the potential. The Lyapunov exponent depends on the distribution
function of the potential, and the aim of this article is to prove that the Lyapunov exponent is
strictly monotone in the distribution function of the potential with the order according to strict
dominance. Furthermore, the comparison for the Lyapunov exponent also provides that for the rate
function of this model.

1. Introduction

The main object of study in this article is the so-called Lyapunov exponent, which measures the
cost of traveling for the simple random walk in an i.i.d. nonnegative potential on the d-dimensional
lattice Zd (d ≥ 1). We now focus on the fact that the Lyapunov exponent depends on the dis-
tribution function of the potential. Then, the aim of this article is to show that the Lyapunov
exponent is strictly monotone in the distribution function of the potential with the order according
to strict dominance. In addition, since the Lyapunov exponent describes the rate function of the
large deviation principle for the simple random walk in a random potential, we can lift the strict
monotonicity of the Lyapunov exponent to the rate function.

1.1. The model. Let d ≥ 1 and consider the simple random walk (Sk)
∞
k=0 on Zd. For x ∈ Zd, write

P x for the law of the simple random walk starting at x, and Ex for the associated expectation.
Independently of (Sk)

∞
k=0, let ω = (ω(x))x∈Zd be a family of i.i.d. random variables taking values in

[0,∞), and we call ω the potential. Denote by P and E the law of the potential ω and the associated
expectation, respectively.
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For any subset A of Rd, H(A) stands for the hitting time of the simple random walk to A, i.e.,

H(A) := inf{k ≥ 0 : Sk ∈ A}.

When A = {y} is a single vertex set, we write H(y) := H({y}) for simplicity. Then, define for
x, y ∈ Zd,

e(x, y, ω) := Ex

[
exp

{
−
H(y)−1∑
k=0

ω(Sk)

}
1{H(y)<∞}

]
,

with the convention that e(x, y, ω) := 1 if x = y. Moreover, let us consider the following two-point
functions a(x, y, ω) and b(x, y) on Zd: For x, y ∈ Zd,

a(x, y, ω) := − log e(x, y, ω)

and

b(x, y) := − logE[e(x, y, ω)].

We call a(x, y, ω) and b(x, y) the quenched and annealed travel costs from x to y for the simple
random walk, respectively. The quenched travel cost a(x, y, ω) can be thought of as measuring the
cost of traveling from x to y for the simple random walk in a fixed potential ω. On the other hand,
Fubini’s theorem and the independence of the potential imply that if x 6= y, then

b(x, y) = − logEx

[∏
z∈Zd

E
[
exp{−`z(H(y))ω(0)}

]
1{H(y)<∞}

]
,

where for z ∈ Zd and N ∈ N, `z(N) is the number of visits to z by the simple random walk up to
time N − 1, i.e.,

`z(N) := #{0 ≤ k < N : Sk = z}.

Hence, the annealed travel cost b(x, y) is rewritten as the quantity after averaging over the potential,
and we can interpret b(x, y) as the cost of both optimizing the potential and transporting the simple
random walk from x to y. It is easy from the strong Markov property to see that the above travel
costs satisfy the following triangle inequalities: For any x, y, z ∈ Zd,

a(x, z, ω) ≤ a(x, y, ω) + a(y, z, ω)

and

b(x, z) ≤ b(x, y) + b(y, z).

(For more details we refer the reader to Flury (2007, (12) in Section 3) and Zerner (1998, Proposi-
tion 2).)

As seen above, this paper treats the quenched and annealed situations simultaneously. Therefore,
to simplify statements, we always make the following assumption only for the quenched situation:
(Qu) The potential ω satisfies E[ω(0)] < ∞ in d = 1 (there is no additional assumption at all if

d ≥ 2).
Under this assumption, the next proposition exhibits the asymptotic behaviors of the travel costs,
which were obtained by Flury (2007, Theorem A), Mourrat (2012, Theorem 1.1) and Zerner (1998,
Proposition 4).

Proposition 1.1. There exist norms α(·) and β(·) on Rd (which are called the quenched and
annealed Lyapunov exponents, respectively) such that for all x ∈ Zd,

lim
n→∞

1

n
a(0, nx, ω) = α(x) in probability,
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and

lim
n→∞

1

n
b(0, nx) = inf

n∈N

1

n
b(0, nx) = β(x).

Furthermore, the quenched and annealed Lyapunov exponents have the following bounds: For x ∈
Rd \ {0},

− logE[e−ω(0)] ≤ α(x)

‖x‖1
≤ log(2d) + E[ω(0)] (whenever E[ω(0)] <∞)

and

− logE[e−ω(0)] ≤ β(x)

‖x‖1
≤ log(2d)− logE[e−ω(0)],

where ‖ · ‖1 is the `1-norm on Rd.

The Lyapunov exponents play a key role in large deviation principles for the simple random walk
in random potentials. For more details, we consider the quenched and annealed path measures Qqu

n,ω

and Qan
n defined as follows:

dQqu
n,ω

dP 0
=

1

Zqu
n,ω

exp

{
−
n−1∑
k=0

ω(Sk)

}
and

dQan
n

dP 0
=

1

Zan
n

E
[
exp

{
−
n−1∑
k=0

ω(Sk)

}]
,

where Zqu
n,ω and Zan

n are the corresponding normalizing constants. In addition, write α(λ, ·) and
β(λ, ·) for the quenched and annealed Lyapunov exponents associated with the potential ω + λ =
(ω(x) + λ)x∈Zd , respectively. Note that α(λ, x) and β(λ, x) are continuous in (λ, x) ∈ [0,∞) × Rd
and concave increasing in λ (see Flury (2007, Theorem A) and Zerner (1998, below (64))). Then,
define the functions I and J on Rd as follows: For x ∈ Rd,

I(x) := sup
λ≥0

(α(λ, x)− λ)

and

J(x) := sup
λ≥0

(β(λ, x)− λ).

It is known from Flury (2007, below Theorem A) and Zerner (1998, below (66)) that I and J are
continuous and convex on their effective domains, which are equal to the closed `1-unit ball. The
following proposition states the quenched and annealed large deviation principles for the simple
random walk in a random potential, which were obtained by Flury (2007, Theorem B) and Mourrat
(2012, Theorem 1.10).

Proposition 1.2. Suppose that ess inf ω(0) = 0. Then, the law of Sn/n obeys the following quenched
and annealed large deviation principles with the rate functions I and J , respectively:

• (Quenched case) For P-a.e.ω and for any Borel set Γ in Rd,

− inf
x∈Γo

I(x) ≤ lim inf
n→∞

1

n
logQqu

n,ω(Sn ∈ nΓ)

≤ lim sup
n→∞

1

n
logQqu

n,ω(Sn ∈ nΓ) ≤ − inf
x∈Γ

I(x).
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• (Annealed case) For any Borel set Γ in Rd,

− inf
x∈Γo

J(x) ≤ lim inf
n→∞

1

n
logQan

n (Sn ∈ nΓ)

≤ lim sup
n→∞

1

n
logQan

n (Sn ∈ nΓ) ≤ − inf
x∈Γ

J(x).

Here Γo and Γ denote the interior and closure of Γ, respectively.

1.2. Main results. First of all, note that the annealed travel cost b(x, y), the Lyapunov exponents
α(·) and β(·) and the rate functions I and J depend on the distribution function of ω(0), say φ.
To specify the dependence on φ, we put a subscript φ on the above notations: b(x, y) = bφ(x, y),
α(x) = αφ(x), β(x) = βφ(x), I(x) = Iφ(x) and J(x) = Jφ(x). It is known that if F and G are
distribution functions on [0,∞) and satisfy F ≤ G, then

αF ≥ αG, βF ≥ βG
and

IF ≥ IG, JF ≥ JG
(We will discuss the inequalities above in Section 2 for the convenience of the reader). This raises
the question whether we can obtain “strict” inequalities in the above inequalities.

To discuss this problem, we introduce the following order between distribution functions on [0,∞):
For any two distribution functions F and G on [0,∞), we say that F strictly dominates G if F ≤ G
but F 6≡ G. Let us now formulate our main results, which are strict comparisons for the quenched
and annealed Lyapunov exponents.

Theorem 1.3. Suppose that F strictly dominates G. Then, there exists a constant 0 < C1 < ∞
(which may depend on d, F and G) such that for all x ∈ Rd \ {0},

αF (x)− αG(x) ≥ C1‖x‖1.
Theorem 1.4. Suppose that F strictly dominates G. For d = 1, assume additionally that

F (0) < e−βG(1). (1.1)

Then, there exists a constant 0 < C2 < ∞ (which may depend on d, F and G) such that for all
x ∈ Rd \ {0},

βF (x)− βG(x) ≥ C2‖x‖1.

Remark 1.5. In Section 6, we will check that (1.1) is a necessary and sufficient condition for strict
comparisons for the one-dimensional annealed Lyapunov exponent. However, we did not know
whether or not the simple random walk in random potentials on Z always satisfies (1.1), and this
problem is of interest as future work.

Since the rate functions are defined by the Lyapunov exponents, strict comparisons for the rate
functions are direct consequences of Theorems 1.3 and 1.4.

Corollary 1.6. Under the assumption of Theorem 1.3 (resp. Theorem 1.4), we have IF (x) > IG(x)
(resp. JF (x) > JG(x)) for all x ∈ Rd with 0 < ‖x‖1 < 1.

Remark 1.7. It is clear that for any distribution function φ on [0,∞), we have αφ(0) = βφ(0) = 0
and Iφ(0) = Jφ(0) = 0. This is the reason why we omit the case ‖x‖1 = 0 in Theorems 1.3 and 1.4
and Corollary 1.6. As stated just above Proposition 1.2, the effective domains of the rate functions
are equal to the closed `1-unit ball. Hence, in the case ‖x‖1 > 1, Iφ(x) = Jφ(x) =∞ holds for any
distribution function φ on [0,∞). Therefore, we can also omit the case ‖x‖1 > 1 in Corollary 1.6.
However, we do not know whether Corollary 1.6 is still true in the case ‖x‖1 = 1 for a technical
reason (see Lemma 5.1 below).
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Let us here comment on earlier works related to the above results. Zerner (1998) and Flury
(2007) first introduced the quenched and annealed Lyapunov exponents for the simple random
walk in random potentials, respectively. In addition, Mourrat (2012) gave optimal conditions for
the existence of the quenched Lyapunov exponent. As mentioned in Subsection 1.1, the Lyapunov
exponents play an important role in large deviation principles for the simple random walk in random
potentials. Accordingly, the Lyapunov exponents have been investigated from various viewpoints.
Flury (2008) and Zygouras (2009) proved that the quenched and annealed Lyapunov exponents
coincide in d ≥ 4 and the low disorder regime (which means that the effect of the potential is
sufficiently small). In particular, the low disorder regime enables us to study the behaviors of the
quenched and annealed Lyapunov exponents well. In fact, Wang (2001, 2002) observed that the
quenched and annealed Lyapunov exponents were of the same order in the low disorder regime.
After that, Kosygina et al. (2011) improved Wang’s result, and explicitly computed the asymptotic
behavior of the quenched and annealed Lyapunov exponents as the potential tends to zero.

The aforementioned results compare the quenched and annealed Lyapunov exponents for a fixed
law of the potential. On the other hand, there are a few results on the comparison between Lyapunov
exponents for different laws of the potential. As a work of this topic, Hien (2017) considered different
laws of the potential simultaneously and proved that in d ≥ 3, the quenched and annealed Lyapunov
exponents are continuous in the law of the potential, i.e., if Fn converges weakly to F , then we have
for all x ∈ Rd,

lim
n→∞

αFn(x) = αF (x), lim
n→∞

βFn(x) = βF (x).

Le’s result naturally raises the question whether αFn(x) (resp. βFn(x)) coincides with αF (x)
(resp. βF (x)) for all sufficiently large n, and this is a motivation for the present article.

Our results are also related to the first passage percolation on Zd. In this model, a main object
of study is the behavior of the first passage time τ(x, y) from x to y defined as follows: Assign
independently to each edge e of Zd a nonnegative random weight te with a common distribution
function φ. Then, define

τ(x, y) := inf

{∑
e∈γ

te : γ is a lattice path on Zd from x to y
}
. (1.2)

It is known from Kesten (1986, Theorem 2.18) that under some mild moment condition for the
weights, there exists a norm µφ(·) on Rd (which is called the time constant) such that for all x ∈ Zd,

lim
n→∞

1

n
τ(0, nx) = µφ(x), a.s. and in L1.

The first passage time and the time constant correspond to the quenched travel cost and the
quenched Lyapunov exponent, respectively. In the context of the first passage percolation,
Marchand (2002) and van den Berg and Kesten (1993) studied the strict comparison for the time
constant, and obtained the following result: Assume that d = 2 and F (0) < 1/2. If F is strictly
more variable than G, i.e., ∫ ∞

0
h(t) dF (t) <

∫ ∞
0

h(t) dG(t)

for every convex increasing function h : R → R for which the two integrals converge absolutely,
then µF (ξ1) < µG(ξ1) holds, where ξ1 is the first coordinate vector. Note that the strict more
variability is a much weaker condition than the strict dominance (see van den Berg and Kesten
(1993, Section 3)). We believe that Theorems 1.3 and 1.4 hold under the strict more variability.
However, it may be difficult to apply the arguments taken in Marchand (2002) and van den Berg
and Kesten (1993) to the quenched and annealed Lyapunov exponents. This is because in those
articles, the key to deriving the strict comparison for the time constant is the analysis of “optimal
paths” for the first passage time (which are lattice paths attaining the infimum on the right side of
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(1.2)). For the quenched and annealed travel costs, we cannot fix such an optimal path since the
travel costs are averaged over trajectories of the simple random walk. Hence, the strict dominance
is thought of a reasonable order for the strict comparison between Lyapunov exponents.

As explained above, there are several results for the Lyapunov exponents, but we still do not know
those properties well. The present article provides new properties for the Lyapunov exponents, and
we expect that our results are useful for further research on the simple random walk in random
potentials.

Although we consider i.i.d. potentials and the simple random walk on Zd in the present and
aforementioned articles, let us finally mention results for models with various changes of our setting.
In Janjigian et al. (2022) and Rassoul-Agha et al. (2013), the underlying space is Zd, but the
potential is stationary and ergodic and each step of the random walk is in an arbitrary finite set.
Under such a more general setting, Rassoul-Agha et al. (2013) studied the quenched large deviation
principle and Janjigian et al. (2022) constructed the quenched Lyapunov exponent. On the other
hand, Sznitman (1998, Part II) treats a Brownian motion evolving in a Poissonian potential, which
is a continuum version of our model. In that model, the Lyapunov exponent and the large deviation
principle were also studied in both the quenched and annealed situations. For further related works,
see the references given in the aforementioned articles.

1.3. Organization of the paper. Let us describe how the present article is organized. In Section 2,
we first introduce a coupling of potentials based on the pseudo-inverse function of the distribution
function. Our next purpose is to observe that the strict dominance for distribution functions causes
a definite difference between their pseudo-inverse functions (see Lemma 2.1 below). Throughout
the paper, this observation is useful to derive a definite difference between Lyapunov exponents.

Section 3 is devoted to the proof of Theorem 1.3, which is the strict inequality for the quenched
Lyapunov exponent. The idea of the proof is as follows: Assume that F strictly dominates G, and
let ωF and ωG be the potentials distributed as F and G, respectively. Then, the observation of
Section 2 yields that with high probability, there exist a lot of sites whose potentials for F and G
are definitely different. Hence, when we focus on such a typical situation, the simple random walk
passes through a lot of sites z with a definite gap between ωF (z) and ωG(z). This shows that the
quenched travel cost in ωF is strictly bigger than that in ωG, and the strict inequality is inherited
to the quenched Lyapunov exponents αF and αG.

In Section 4, we prove Theorem 1.4, which is the strict inequality for the annealed Lyapunov
exponent. The idea of the proof is essentially the same as the quenched case. However, since the
annealed travel cost is the quantity after averaging over the potential, it is not sufficient to treat
only a typical situation as in the quenched case. Hence, the main task of this section is to construct
an event which is typical for both the potential and the simple random walk and is harmless to the
comparison for the annealed Lyapunov exponent. We need a slightly different construction of such
an event in d = 1 and d ≥ 2. Therefore, this section consists of three subsections: Subsections 4.1
and 4.2 treat the proof of Theorem 1.4 for d ≥ 2, and Subsection 4.3 gives the proof of Theorem 1.4
for d = 1.

The aim of Section 5 is to prove Corollary 1.6, which is the strict inequality for the quenched and
annealed rate functions. This is a direct consequence of Theorems 1.3 and 1.4.

Section 6 deals with comparisons for one-dimensional Lyapunov exponents and rate functions in
the case where assumption (Qu) or (1.1) fails to hold. The main work here is to prove that (1.1) is
a necessary and sufficient condition for strict comparisons between annealed Lyapunov exponents.
In particular, this result guarantees the existence of the threshold for the coincidence of annealed
rate functions.

We close this section with some general notation. Write ‖·‖1 and ‖·‖∞ for the `1 and `∞-norms on
Rd. Throughout the paper, c, c′ and Ci, i = 1, 2, . . . , denote some constants with 0 < c, c′, Ci <∞.
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2. Preliminary

In this section, we introduce a coupling of potentials. This is useful to compare Lyapunov expo-
nents for different distribution functions simultaneously. Independently of (Sk)

∞
k=0, let (U(x))x∈Zd

be a family of independent random variables with the uniform distribution on (0, 1). Then, for a
given distribution function φ on [0,∞), define

ωφ(x) := φ−1(U(x)), x ∈ Zd,

where φ−1 is the pseudo-inverse function of φ:

φ−1(s) := sup{t ≥ 0 : φ(t) < s}, s ∈ (0, 1),

with the convention sup ∅ := 0. Note that the potential ωφ = (ωφ(x))x∈Zd is a family of i.i.d. random
variables with the common distribution function φ.

From now on, throughout the paper, let us consider the above coupled potentials ωφ as underlying
potentials. In addition, we reuse the notations P and E to represent the probability measure and
its associated expectation of the probability space on which (U(x))x∈Zd is defined. The following
properties are a direct consequence of the coupling combined with Proposition 1.1:

• Given a distribution function φ on [0,∞), it holds that for any x ∈ Zd,

lim
n→∞

1

n
a(0, nx, ωφ) = αφ(x) in P-probability.

Moreover, bφ(x, y) = − logE[e(x, y, ωφ)] for x, y ∈ Zd.
• If F ≤ G, then ωF (z) ≥ ωG(z) holds for all z ∈ Zd, and we also have a(x, y, ωF ) ≥ a(x, y, ωG)
and bF (x, y) ≥ bG(x, y) for all x, y ∈ Zd.
• From the above items and the definition of the rate functions, if F ≤ G, then we have
αF ≥ αG, βF ≥ βG, IF ≥ IG and JF ≥ JG.

We close this section with an essential fact for the strict dominance, which is used throughout
the paper.

Lemma 2.1. If F strictly dominates G, then the following results hold:
(1) There exists an η0 = η0(F,G) > 0 and a closed interval H = H(η0) ⊂ (0, 1) with Lebesgue

measure |H| ∈ (0, 1) such that for all s ∈ H,
F−1(s)−G−1(s) ≥ η0.

(2) F (0) < 1 holds.

Proof : Let us first prove part (1). Since F strictly dominates G, we can find some t′ ≥ 0 such that
G(t′) > F (t′). Then, set

ε :=
1

2
(G(t′)− F (t′)) > 0.

The right-continuity of F enables us to take η0 > 0 such that F (t′ + η0) ≤ F (t′) + ε. We now
consider the interval

H :=

[
F (t′ + η0) +

1

3
(G(t′)− F (t′ + η0)), G(t′)− 1

3
(G(t′)− F (t′ + η0))

]
.

Clearly, H is a closed interval included in (0, 1) and |H| ∈ (0, 1) holds. Moreover, for any s ∈ H, we
have F−1(s) ≥ t′ + η0 and G−1(s) ≤ t′. This implies that for all s ∈ H,

F−1(s)−G−1(s) ≥ t′ + η0 − t′ = η0,

and the proof of part (1) is complete.
To prove part (2), assume F (0) = 1. Then, F ≡ 1 follows. Since F ≤ G, we have F ≡ G ≡ 1.

This contradicts F 6≡ G, and part (2) is proved. �
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3. Strict inequality for the quenched Lyapunov exponent

The aim of this section is to prove Theorem 1.3. To this end, throughout this section, we fix two
distribution functions F and G on [0,∞) such that F strictly dominates G, and let η0 = η0(F,G)
be the constant appearing in Lemma 2.1-(1). The idea of the proof of Theorem 1.3 is as follows:
Since F strictly dominates G, Lemma 2.1-(1) implies that for each z ∈ Zd, one has ωF (z) > ωG(z)
with positive probability. Hence, in a typical situation, during a certain time interval, the simple
random walk starting at 0 passes through “enough” sites z with ωF (z) > ωG(z). It follows that with
high probability, the travel cost in ωF is strictly bigger than that in ωG, and this strict comparison
is inherited by the quenched Lyapunov exponents αF and αG.

To carry out the above idea, for each R ∈ 2N, consider the boxes ΛR(v) := Rv + [−R/2, R/2)d,
v ∈ Zd, which are called R-boxes. Note that R-boxes form a partition of Zd. For a given M ∈ N,
we say that an R-box ΛR(v) is M -white if the following conditions (1) and (2) hold:

(1) ωF (z) ≥ ωG(z) + η0 holds for some z ∈ ΛR(v).
(2) ωG(z) ≤M holds for all z ∈ ΛR(v).

The next lemma guarantees that if R and M are large enough, then each R-box can be M -white
with high probability.

Lemma 3.1. We have

lim
R→∞

lim
M→∞

P(ΛR(0) is M -white) = 1.

Proof : Since ωG(z)’s are finite and the event {ωG(z) ≤ M for all x ∈ ΛR(0)} is increasing in M ,
we have

lim
M→∞

P(ΛR(0) is M -white) = P(ωF (z) ≥ ωG(z) + η0 for some z ∈ ΛR(0))

= 1− {1− P(ωF (0) ≥ ωG(0) + η0)}Rd .

Note that Lemma 2.1-(1) and the definition of ωF and ωG imply

P(ωF (0) ≥ ωG(0) + η0) =

∫
(0,1)

1{F−1(s)−G−1(s)≥η0} ds

≥
∫
H
1{F−1(s)−G−1(s)≥η0} ds = |H| ∈ (0, 1).

Hence,

lim
M→∞

P(ΛR(0) is M -white) ≥ 1− (1− |H|)Rd ,

and the lemma follows by letting R→∞. �

Define for 0 < δ < p < 1,

D(δ‖p) := δ log
δ

p
+ (1− δ) log

1− δ
1− p

. (3.1)

It is clear that for each δ ∈ (0, 1),

lim
p↗1

D(δ‖p) =∞

Moreover, set for R ∈ 2N and M ∈ N,

pR,M := P(ΛR(0) is M -white).

Thanks to Lemma 3.1, there exist R and M such that

D(1/2‖pR,M ) > 2 log(2d), (3.2)
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and we fix such R and M throughout this section (the dependence on R and M is omitted from the
notation when no confusion can arise). The next proposition ensures that with high probability,
the simple random walk starting at 0 must pass through “enough” M -white R-boxes by reaching a
remote point.

Proposition 3.2. There exist constants C3 and C4 (which may depend on d, F , G, η0, R and M)
such that for all N ∈ N,

P(E(N)c) ≤ C3e
−C4N ,

where E(N) is the event that for all lattice animals A on Zd (which are finite connected subsets of
Zd) containing 0 with #A ≥ N , ∑

v∈A
1{ΛR(v) is M-white} ≥

#A
2
.

Proof : The union bound shows that

P(E(N)c) ≤
∞∑
`=N

∑
A

P
(∑
v∈A

1{ΛR(v) is M -white} <
`

2

)
,

where the second sum is taken over all lattice animals A on Zd containing 0 with #A = `. Note
that (1{ΛR(v) is M -white})v∈Zd is a family of independent Bernoulli random variables with parameter
pR,M . Hence, we can use the Chernoff bound to estimate the last probability as follows:

P
(∑
v∈A

1{ΛR(v) is M -white} <
`

2

)
≤ e−`D(1/2‖pR,M ).

Since (2d)2` is a rough upper bound on the number of lattice animals on Zd, of size `, containing 0
(see Cox et al. (1993, Lemma 1)), one has

P(E(N)c) ≤
∞∑
`=N

(2d)2`e−`D(1/2‖pR,M )

=
∞∑
`=N

exp{−`(D(1/2‖pR,M )− 2 log(2d))}.

Therefore, the proposition immediately follows by (3.2). �

We next observe that M -white boxes contribute to the difference between the travel costs in ωF
and ωG. To do this, set for x, v ∈ Zd,

∆F,G(x) := ωF (x)− ωG(x)

and

T (v) := inf{k > 0 : Sk 6∈ ΛR(v)}. (3.3)

Furthermore, for each z ∈ Zd, let [z] be the index v such that z ∈ ΛR(v) (this notation is well-defined
since z is contained in precisely one R-box). Then, define for x, y ∈ Zd,

g(x, y) := Ex

[
exp

{
−
T ([S0])−1∑
k=0

∆F,G(Sk)

}
exp

{
−
H(y)−1∑
k=0

ωG(Sk)

}
1{H(y)<∞}

]
.

Proposition 3.3. If ΛR(v) is M -white and y 6∈ ΛR(v), then for all x ∈ ΛR(v),

g(x, y) ≤ δ0 × e(x, y, ωG),
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where

δ0 := 1− (1− e−η0)
( 1

2deM

)2dR
∈ (0, 1).

Proof : Assume that ΛR(v) is M -white and fix x ∈ ΛR(v) and y 6∈ ΛR(v). Furthermore, let A be
the set of all sites z ∈ Zd such that ∆F,G(z) ≥ η0. Note that P x-a.s. on the event {H(A) < T (v)},

exp

{
−
T (v)−1∑
k=0

∆F,G(Sk)

}
≤ exp{−∆F,G(SH(A))} ≤ e−η0 .

This proves

g(x, y)

≤ e−η0 × Ex
[

exp

{
−
H(y)−1∑
k=0

ωG(Sk)

}
1{H(y)<∞, H(A)<TR(v)}

]

+ Ex

[
exp

{
−
H(y)−1∑
k=0

ωG(Sk)

}
1{H(y)<∞, H(A)≥T (v)}

]

= e(x, y, ωG)− (1− e−η0)Ex

[
exp

{
−
H(y)−1∑
k=0

ωG(Sk)

}
1{H(y)<∞, H(A)<T (v)}

]
.

To estimate the last expectation, we consider a shortest lattice path γ which starts and ends at the
same site x and goes through a site in A. Since ΛR(v) isM -white, it is clear that γ has at most 2dR
vertices and each z ∈ γ satisfies that z ∈ ΛR(v) and ωG(z) ≤ M . This combined with the Markov
property implies that

Ex

[
exp

{
−
H(y)−1∑
k=0

ωG(Sk)

}
1{H(y)<∞, H(A)<T (v)}

]

≥ exp

{
−
∑
z∈γ

ωG(z)

}
P x(S· follows γ)× e(x, y, ωG)

≥
( 1

2deM

)2dR
× e(x, y, ωG).

With these observations, one has

g(x, y) ≤ e(x, y, ωG)− (1− e−η0)
( 1

2deM

)2dR
× e(x, y, ωG)

= δ0 × e(x, y, ωG),

and the proof is complete. �

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3: We first introduce the entrance times (σi)
∞
i=1 in M -white R-boxes and

the exit times (τi)
∞
i=1 from them: Set τ0 := 1 and define for j ≥ 0,

σj+1 := inf{k ≥ τj : Sk is in an M -white R-box}

and

τj+1 := inf{k > σj+1 : Sk 6∈ ΛR([Sσj+1 ])}.
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Furthermore, for z ∈ Zd, let A(z) stand for the lattice animal on Zd which is made of the labels v
of R-boxes ΛR(v) visited by the simple random walk up to but not including time H(ΛR([z])), i.e.,

A(z) :=
{

[Sk]R : 0 ≤ k < H(ΛR([z]))
}
. (3.4)

Fix x ∈ Zd \ {0} and let n be a sufficiently large integer. To shorten notation, write N :=
bn‖x‖∞/Rc and L := dN/2e. We now restrict ourselves on the event E(N) (which appears in
Proposition 3.2). Then, since P 0-a.s., A(nx) is a lattice animal on Zd containing 0 with #A(nx) ≥
N , ∑

v∈A(nx)

1{ΛR(v) is M -white} ≥
1

2
#A(nx) ≥ N

2
.

It follows that P 0-a.s.,

τi−1 ≤ σi < τi ≤ H(ΛR([nx])), 1 ≤ i ≤ L. (3.5)

Then, set for 1 ≤ i ≤ L,

fi := E0

[
exp

{
−
τi−1∑
k=0

∆F,G(Sk)

}
exp

{
−
H(nx)−1∑
k=0

ωG(Sk)

}
1{H(nx)<∞}

]
.

Note that

e(0, nx, ωF ) ≤ fL. (3.6)

On the other hand, the strong Markov property implies that for each 1 ≤ i ≤ L,

fi = E0

[
exp

{
−
σi−1∑
k=0

∆F,G(Sk)

}
exp

{
−
σi−1∑
k=0

ωG(Sk)

}
× g(Sσi , nx)

]
, (3.7)

where g(·, ·) is the two-point function on Zd introduced above Proposition 3.3. The definition of
σi’s and (3.5) yield that P 0-a.s., for all 1 ≤ i ≤ L, ΛR([Sσi ]) is M -white and nx 6∈ ΛR([Sσi ]) holds.
Therefore, we can use Proposition 3.3 to obtain that P 0-a.s.,

g(Sσi , nx) ≤ δ0 × e(Sσi , nx, ωG), 1 ≤ i ≤ L.

Substituting this into (3.7) and using the strong Markov property again, one has for each 1 ≤ i ≤ L,

fi ≤ δ0 × E0

[
exp

{
−
σi−1∑
k=0

∆F,G(Sk)

}
exp

{
−
H(nx)−1∑
k=0

ωG(Sk)

}
1{H(nx)<∞}

]
≤ δ0 × fi−1,

with the convention f0 := e(0, nx, ωG). This together with (3.6) implies

e(0, nx, ωF ) ≤ δL0 × e(0, nx, ωG).

With these observations, on the event E(N),

a(0, nx, ωF ) ≥ a(0, nx, ωG) + L log δ−1
0 ,

and Proposition 3.2 shows that

P
(
a(0, nx, ωF ) < a(0, nx, ωG) + L log δ−1

0

)
≤ P(E(N)c) ≤ C3e

−C4N .

Hence, the definition of the quenched Lyapunov exponent (see Proposition 1.1) proves that for all
x ∈ Zd \ {0},

αF (x) ≥ αG(x) +
log δ−1

0

2dR
‖x‖1.
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Since αF (·) and αG(·) are norms on Rd and the constants δ0 and R are independent of x, we can
easily extend the above inequality to all x ∈ Rd \ {0}. This completes the proof. �

4. Strict inequality for the annealed Lyapunov exponent

This section is devoted to the proof of Theorem 1.4. To this end, throughout this section,
we fix two distribution functions F and G such that F strictly dominates G. In the quenched
situation, the strict comparison follows from typical potentials caused by the event E(N) (which
appears in Proposition 3.2). However, in the annealed situation, we have to consider the travel
cost after averaging over the potential, and it is not enough to focus on typical potentials as in the
quenched situation. The key to overcoming this difficulty is how long the simple random walk stays
around sites with high potential. To see this, in Subsection 4.1, we construct some events harmless
to the comparison for the annealed Lyapunov exponent. Since those harmless events are slightly
different in one and more dimensions, the proof of Theorem 1.4 is divided into two subsections (see
Subsections 4.2 and 4.3 for d ≥ 2 and d = 1, respectively).

4.1. Some events harmless to the annealed comparison. Assume d ≥ 2 in this subsection. For any
κ > 0, we say that an R-box ΛR(v) is κ-good if ΛR(v) contains a site z of Zd with ωF (z) ≥ κ.
Our first objective is to observe that an R-box can be κ-good with high probability if κ and R are
sufficiently small and large, respectively.

Lemma 4.1. There exists κ > 0 such that P(ωF (0) < κ) < 1 holds. In addition, we have for all
R ∈ 2N,

qκ,R := P(ΛR(0) is κ-good) = 1− P(ωF (0) < κ)R
d
.

Proof : Since we have assumed that F strictly dominates G, Lemma 2.1-(2) implies P(ωF (0) = 0) =
F (0) < 1. Hence, P(ωF (0) < κ) < 1 holds for some small κ > 0, and the first assertion follows. The
proof of the second assertion is straightforward because we are now working on the i.i.d. setting. �

From now on, we fix an arbitrary x ∈ Zd \ {0} and a constant κ for which Lemma 4.1 holds
(the dependence on κ is omitted from the notation when no confusion can arise). Then, the next
proposition guarantees that with high probability, the simple random walk starting at 0 must go
through “enough” κ-good R-boxes by reaching a remote point.

Proposition 4.2. There exists an R = R(d, κ) ∈ 2N such that for all large n,

P(E1(R,n)c) ≤
( 1

4d
E[e−ωG(0)]

)n‖x‖1
,

where E1(R,n) is the event that ∑
v∈A

1{ΛR(v) is κ-good} ≥
#A

2

holds for all lattice animals A on Zd containing 0 with #A ≥ bn‖x‖∞/Rc.

Proof : Thanks to Lemma 4.1 and the fact that (1{ΛR(v) is κ-good})v∈Zd is a family of Bernoulli random
variables with parameter qκ,R, we can apply the same argument as in the proof of Proposition 3.2
to obtain that for all large R ∈ 2N and n ∈ N with n ≥ 2R,

P(E1(R,n)c) ≤ 2 exp

{
−n‖x‖1

2dR
(D(1/2‖qκ,R)− 2 log(2d))

}
. (4.1)

On the other hand, the definition of D(1/2‖qκ,R) (see (3.1)) implies that for all R ∈ 2N,
1

R
(D(1/2‖qκ,R)− 2 log(2d)) ≥ Rd−1

2
logP(ωF (0) < κ)−1 − 3

R
log(2d).
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Due to the hypothesis d ≥ 2 and Lemma 4.1, the right side above goes to infinity as R→∞. With
these observations, we can find an R ∈ 2N such that for all n ∈ N, the right side of (4.1) is smaller
than or equal to {E[e−ωG(0)]/(4d)}n‖x‖1 , and this is the proposition follows. �

We henceforth fix a constant R for which Proposition 4.2 holds, and omit the dependence on R
from the notation when no confusion can arise. Our second objective is to estimate the number
of κ-good R-boxes gone through by the simple random walk starting at 0. To do this, for z ∈ Zd,
let A(z) stand for the lattice animal which is made of the labels v of R-boxes ΛR(v) visited by the
simple random walk up to but not including time H(z), i.e.,

A(z) :=
{

[Sk] : 0 ≤ k < H(z)
}
,

where [y] stands for the index v such that y ∈ ΛR(v). In addition, denote by G the set of all sites v
of Zd such that the R-boxes ΛR(v) is κ-good:

G := {v ∈ Zd : ΛR(v) is κ-good}.
Let us also introduce the entrance times (σi)

∞
i=1 in κ-good R-boxes and the exit times (τi)

∞
i=1 from

them: Set τ0 := 1 and define for j ≥ 0,

σj+1 := inf{k ≥ τj : Sk is in a κ-good R-box}
and

τj+1 := inf{k > σj+1 : Sk 6∈ ΛR([Sσj+1 ])}.
The next proposition says that with high probability, there are a few κ-good R-boxes which the

simple random walk starting at 0 goes through many times before reaching a remote point.

Proposition 4.3. There exists an M = M(d, κ,R) ∈ N such that for all large n,

E⊗ E0

[
exp

{
−
H(nx)−1∑
k=0

ωF (Sk)

}
1{H(nx)<∞}∩E2(M,n)c

]

≤ 2
( 1

4d
E[e−ωG(0)]

)n‖x‖1
,

(4.2)

where E2(M,n) is the event that∑
v∈G

1{(Sk)
H(nx)
k=0 goes through ΛR(v) at least M times} ≤

1

3
#(A(nx) ∩ G).

Proof : We use Proposition 4.2 to obtain that for all large n, the left side of (4.2) is not larger than( 1

4d
E[e−ωG(0)]

)n‖x‖1
+ E⊗ E0

[
exp

{
−
H(nx)−1∑
k=0

ωF (Sk)

}
1{H(nx)<∞}∩E1(R,n)∩E2(M,n)c

]
.

(4.3)

Hence, our task is to show that the second term of (4.3) is bounded from above by ( 1
4dE[e−ωG(0)])n‖x‖1.

To this end, take M ∈ N large enough to have{
1− (1− e−κ)

( 1

2d

)2dR
}M/(12dR)

≤ 1

4d
E[e−ωG(0)].

Let n be a sufficiently large integer. Since P 0-a.s., A(nx) is a lattice animal on Zd containing 0
with #A(nx) ≥ bn‖x‖∞/Rc and

#(A(nx) ∩ G) =
∑

v∈AR(nx)

1{ΛR(v) is κ-good},
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it follows that P⊗ P 0-a.s. on the event {H(nx) <∞} ∩ E1(R,n) ∩ E2(M,n)c,∑
v∈G

1{(Sk)
H(nx)
k=0 goes through ΛR(v) at least M times}

>
1

3
#(A(nx) ∩ G) ≥ 1

6
#A(nx) ≥ 1

6

⌊
n‖x‖∞
R

⌋
≥ n‖x‖1

12dR
.

Therefore, setting N := Mdn‖x‖1/(12dR)e, one has P 0-a.s. on the event {H(nx) <∞}∩E1(R,n)∩
E2(M,n)c,

τi−1 ≤ σi < τi ≤ H(nx), 1 ≤ i ≤ N.

This tells us that the second term of (4.3) is bounded from above by

E⊗ E0

[
N∏
i=1

exp

{
−
τi−1∑
k=σi

ωF (Sk)

}
1{σi<∞}

]
.

To estimate this expectation, we shall prove that for any z ∈ Zd which is in a κ-good box ΛR(v),

Ez

[
exp

{
−
T (v)−1∑
k=0

ωF (Sk)

}]
≤ 1− (1− e−κ)

(
1

2d

)dR
, (4.4)

where T (v) is the exit time from the R-box ΛR(v) (see (3.3)). Choose w ∈ ΛR(v) such that
ωF (w) ≥ κ (this is possible since ΛR(v) is κ-good). Then,

Ez

[
exp

{
−
T (v)−1∑
k=0

ωF (Sk)

}]
≤ e−κP z(H(w) < T (v)) + P z(H(w) ≥ T (v))

= 1− (1− e−κ)P z(H(w) < T (v))

≤ 1− (1− e−κ)

(
1

2d

)dR
,

and (4.4) follows. Due to (4.4), P 0-a.s., for all i ∈ [1, N ],

1{σi<∞}E
Sσi

[
exp

{
−
T ([S0])−1∑
k=0

ωF (Sk)

}]
≤ 1− (1− e−κ)

(
1

2d

)dR
.

Using the strong Markov property and the above inequality repeatedly, one has P-a.s.,

E0

[
N∏
i=1

exp

{
−
τi−1∑
k=σi

ωF (Sk)

}
1{σi<∞}

]
≤
{

1− (1− e−κ)
( 1

2d

)dR}N
.

By the choice of M , the right side above is smaller than or equal to{
1− (1− e−κ)

( 1

2d

)dR}Mn‖x‖1/(12dR)
≤
( 1

4d
E[e−ωG(0)]

)n‖x‖1
.

With these observations, {E[e−ωG(0)]/(4d)}n‖x‖1 is an upper bound on the second term of (4.3), and
the proof is complete. �

Although Proposition 4.3 estimates the number of κ-good R-boxes which the simple random
walk goes through many times, the next proposition provides an estimate for the number of κ-good
R-boxes which the simple random walk goes through.
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Proposition 4.4. There exists a positive integer A = A(d, κ,R) ≥ 6 such that for all large n,

E⊗ E0

[
exp

{
−
H(nx)−1∑
k=0

ωF (Sk)

}
1{H(nx)<∞}∩E3(A,n)c

]

≤
( 1

4d
E[e−ωG(0)]

)n‖x‖1
,

where E3(A,n) is the event that (Sk)
H(nx)
k=0 goes through κ-good R-boxes at most Abn‖x‖∞/Rc times.

Proof : Take A large enough to satisfy that A ≥ 6 and{
1− (1− e−κ)

( 1

2d

)dR}A/(2dR)
≤ 1

4d
E[e−ωG(0)].

By the definition of E3(A,n), we have P⊗ P 0-a.s. on the event {H(nx) <∞} ∩ E3(A,n)c,

τi−1 ≤ σi < τi ≤ H(nx), 1 ≤ i ≤ Abn‖x‖∞/Rc.
This yields that

E⊗ E0

[
exp

{
−
H(nx)−1∑
k=0

ωF (Sk)

}
1{H(nx)<∞}∩E3(A,n)c

]

≤ E

[
E0

[
Abn‖x‖∞/Rc∏

i=1

exp

{
−
τi−1∑
k=σi

ωF (Sk)

}
1{σi<∞}

]]
.

The second expectation in the rightmost side above has the same form as the expectation just above
(4.4) (with N replaced by Abn‖x‖∞/Rc). Thus, we can apply the same argument as in the proof
of Proposition 4.3 and see that for all large n,

E⊗ E0

[
exp

{
−
H(nx)−1∑
k=0

ωF (Sk)

}
1{H(nx)<∞}∩E3(A,n)c

]

≤
{

1− (1− e−κ)
( 1

2d

)dR}Abn‖x‖∞/Rc
≤
( 1

4d
E[e−ωG(0)]

)n‖x‖1
.

Hence, the proof is complete. �

Our third objective is to observe that with high probability, the simple random walk does not
stay in any κ-good R-box for a long time. To this end, we set LB = LB(R) := BR, and begin by
proving the following lemma.

Lemma 4.5. We have

lim
B→∞

max
z∈ΛR(0)

P z(T (0) > LB) = 0,

where T (0) is the exit time from the R-box ΛR(0) (see (3.3)).

Proof : Since the simple random walk starting at a site in ΛR(0) must exit ΛR(0) when it moves
R-steps following the first coordinate direction ξ1, we have for all y ∈ ΛR(0),

P y(SR ∈ ΛR(0)) = 1− P y(SR 6∈ ΛR(0)) ≤ 1−
( 1

2d

)R
.

This together with the Markov property shows that for any z ∈ ΛR(0),

P z(T (0) > LB) ≤ P z(SiR ∈ ΛR(0) for all i ∈ {1, . . . , B}) ≤
{

1−
( 1

2d

)R}B
,

and the lemma follows immediately. �
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After the preparation above, the next proposition gives our desired conclusion for the staying
times in κ-good R-boxes.

Proposition 4.6. Let A be the constant given by Proposition 4.4. Then, there exists B = B(d,R,A) ∈
N such that for all large n,

P⊗ P 0({H(nx) <∞} ∩ E4(A,B, n)c) ≤ 3
( 1

4d
E[e−ωG(0)]

)n‖x‖1
,

where E4(A,B, n) is the event that∑
i≥1

τi≤H(nx)

1{τi−σi≤LB} ≥ (1−A−2)×#{i ≥ 1 : τi ≤ H(nx)}.

Proof : Let n be a sufficiently large integer. For simplicity of notation, write δ := 1−A−2 and

N :=

⌈
1

2

⌊
n‖x‖∞
R

⌋⌉
− 1 ≥ n‖x‖1

2dR
− 2.

In addition, thanks to Proposition 4.2, we may restrict our attention to the event E1(R,n). Then,
the simple random walk goes through κ-good R-boxes at least N times before hitting nx, and the
union bound shows that for any a > 0,

P 0({H(nx) <∞} ∩ E4(A,B, n)c)

≤
∞∑
`=N

P 0

(∑̀
i=1

1{τi−σi≤LB} < δ` and σi <∞, 1 ≤ i ≤ `

)

≤
∞∑
`=N

eaδ`E0

[∏̀
i=1

exp
{
−a1{τi−σi≤LB}

}
1{σi<∞}

]
.

To estimate the last expectations, set

rB := min
z∈ΛR(0)

P z(T (0) ≤ LB).

From Lemma 4.5, limB→∞ rB = 1 holds, and hence D(δ‖rB) goes to infinity as B → ∞. This
enables us to take B large enough to have rB > δ, e−D(δ‖rB) ≤ 1/2 and

exp

{
− 1

4dR
D(δ‖rB)

}
≤ 1

4d
E[e−ωG(0)].

Note that for any z ∈ Zd,

Ez
[
exp
{
−a1{T ([S0])≤LB}

}]
= 1− (1− e−a)P z(T ([z]) ≤ LB)

= 1− (1− e−a)P z−R[z](T (0) ≤ LB)

≤ 1− (1− e−a)rB.

Therefore, by using the strong Markov property inductively,

E0

[∏̀
i=1

exp
{
−a1{τi−σi≤LB}

}
1{σi<∞}

]
≤ {1− (1− e−a)rB}`.

It follows that setting f(a) := −aδ − log{1− (1− e−a)rB}, one has for any a > 0

P 0({H(nx) <∞} ∩ E4(A,B, n)c) ≤
∞∑
`=N

e−`f(a).
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Note that the function f(a) attains its maximum at the point

a0 := log
rB(1− δ)
δ(1− rB)

> 0,

and f(a0) = D(δ‖rB) holds. With these observations, on the event E1(R,n),

P 0({H(nx) <∞} ∩ E4(A,B, n)c) ≤
∞∑
`=N

e−`D(δ‖rB) =
1

1− e−D(δ‖rB)
e−ND(δ‖rB).

By the choice of B, the most right side is smaller than or equal to

2 exp

{
−
(
n‖x‖1
2dR

− 2

)
D(δ‖rB)

}
≤ 2

(
1

4d
E[e−ωG(0)]

)n‖x‖1
,

and this concludes the proof. �

4.2. Proof of Theorem 1.4 in the multi-dimensional case. The aim of this subsection is to prove
Theorem 1.4 in d ≥ 2. We fix x ∈ Zd \ {0} and summarize the events appearing the previous
subsection for the convenience of the reader:

E1(R,n) =

{∑
v∈A 1{ΛR(v) is κ-good} ≥ #A/2 holds for all lattice

animals A on Zd containing 0 with #A ≥ bn‖x‖∞/Rc

}
,

E2(M,n) =

{∑
v∈G

1{(Sk)
H(nx)
k=0 goes through ΛR(v) at least M times} ≤

1

3
#(A(nx) ∩ G)

}
,

E3(A,n) =
{

(Sk)
H(nx)
k=0 goes through κ-good R-boxes at most Abn‖x‖∞/Rc times

}
,

E4(A,B, n) =

{ ∑
i≥1

τi≤H(nx)

1{τi−σi≤LB} ≥ (1−A−2)×#{i ≥ 1 : τi ≤ H(nx)}

}
,

where κ, R = R(d, κ), M = M(d, κ,R), A = A(d, κ,R) ≥ 6 and B = B(d,R,A) are the constants
chosen in Lemma 4.1, Propositions 4.2, 4.3, 4.4 and 4.6, respectively. For simplicity of notation,
write

E ′(n) := E1(R,n) ∩ E2(M,n) ∩ E3(A,n) ∩ E4(A,B, n).

Our first task is to prove that if n is large enough, then P⊗P 0-a.s. on the event {H(nx) <∞}∩
E ′(n),

#{z ∈ Zd : 1 ≤ `z(H(nx)) ≤MLB} ≥
n‖x‖1
12dR

. (4.5)

To this end, set

V1 :=
{
v ∈ A(nx) ∩ G : (Sk)

H(nx)
k=0 goes through ΛR(v) at most M times

}
,

V2 :=

{
v ∈ A(nx) ∩ G : (Sk)

H(nx)
k=0 exits from ΛR(v) within

time LB each time it visits ΛR(v)

}
,

and consider the cardinality

N (n) := #(V1 ∩ V2).

Note that for v ∈ V1∩V2, ΛR(v) is κ-good and contains at least one site z of Zd with 1 ≤ `z(H(nx)) ≤
MLB. Hence, N (n) is a lower bound on the left side of (4.5). Therefore, for (4.5), it suffices to prove
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that N (n) is bounded from below by n‖x‖1/(12dR). P⊗ P 0-a.s. on the event E1(R,n) ∩ E2(M,n),

#V1 ≥ #(A(nx) ∩ G)−
∑
v∈G

1{(Sk)
H(nx)
k=0 goes through ΛR(v) at least M times}

≥ 2

3
#(A(nx) ∩ G) ≥ 1

3
#A(nx).

Moreover, P⊗ P 0-a.s. on the event E3(A,n) ∩ E4(A,B, n),∑
i≥1

τi≤H(nx)

1{τi−σi>LB} ≤ A
−2 ×#{i ≥ 1 : τi ≤ H(nx)} ≤ 1

A

⌊
n‖x‖∞
R

⌋
,

which guarantees that there exist at most bbn‖x‖∞/Rc/Ac κ-goodR-boxes ΛR(v) such that (Sk)
H(nx)
k=0

stays in ΛR(v) for more than time LB when it visits ΛR(v). Therefore, P ⊗ P 0-a.s. on the event
E3(A,n) ∩ E4(A,B, n),

#V c
2 ≤

1

A

⌊
n‖x‖∞
R

⌋
≤ 1

A
#A(nx).

The estimates for #V1 and #V c
2 above and A ≥ 6 implies that if n is large enough, then P⊗P 0-a.s.

on the event {H(nx) <∞} ∩ E ′(n),

N (n) ≥ #V1 −#V c
2 ≥

(
1

3
− 1

A

)
#A(nx) ≥ n‖x‖1

12dR
,

and (4.5) follows.
We next prove that there exists ρ0 ∈ (0, 1) (which is independent of x) such that for all large n,

E⊗ E0

[
exp

{
−
H(nx)−1∑
k=0

ωF (Sk)

}
1{H(nx)<∞}∩E ′(n)

]
≤ ρn‖x‖10 E[e(0, nx, ωG)].

(4.6)

To do this, let L(n) be the event that (4.5) holds. Note that we have proved that if n is large
enough, then 1{H(nx)<∞}∩E ′(n) ≤ 1{H(nx)<∞}∩L(n) holds P ⊗ P 0-a.s. Hence, if n is large enough,
then the left side of (4.6) is bounded from above by

E⊗ E0

[
exp

{
−
H(nx)−1∑
k=0

ωF (Sk)

}
1{H(nx)<∞}∩L(n)

]

= E0

[ ∏
z∈Zd

`z(H(nx))≥1

E[e−`z(H(nx))ωF (0)]1{H(nx)<∞}∩L(n)

]

≤ E0

[ ∏
z∈Zd

1≤`z(H(nx))≤MLB

Rz(nx)

×
∏
z∈Zd

`z(H(nx))≥1

E[e−`z(H(nx))ωG(0)]1{H(nx)<∞}∩L(n)

]
,

where for y, z ∈ Zd,

Rz(y) :=
E[e−`z(H(y))ωF (0)]

E[e−`z(H(y))ωG(0)]
=

∫ 1
0 e
−`z(H(y))F−1(s) ds∫ 1

0 e
−`z(H(y))G−1(s) ds

∈ [0, 1].
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We use Lemma 2.1-(1) to estimate the denominator in the definition of Rz(n) as follows: For z ∈ Zd
with 1 ≤ `z(H(nx)) ≤MLB,∫ 1

0
e−`z(H(nx))G−1(s) ds

=

∫ 1

0
e−`z(H(nx))F−1(s) × e`z(H(nx))(F−1(s)−G−1(s)) ds

≥
∫ 1

0
e−`z(H(nx))F−1(s) ds+ (eη0 − 1)

∫
H
e−`z(H(nx))F−1(s) ds

≥
∫ 1

0
e−`z(H(nx))F−1(s) ds+ a,

where H is the closed interval given by Lemma 2.1 and

a := |H|(eη0 − 1) exp
{
−MLB sup

s∈H
F−1(s)

}
∈ (0,∞).

Since the function f(t) := t/(t+ a) is increasing in t ≥ 0, one has for z ∈ Zd with 1 ≤ `z(H(nx)) ≤
MLB,

Rz(nx) ≤ f
(∫ 1

0
e−`z(H(nx))F−1(s) ds

)
≤ f

(∫ 1

0
e−F

−1(s) ds

)
=: ρ ∈ (0, 1).

Accordingly, the left side of (4.6) is not greater than

E0

[
ρ#{z∈Zd:1≤`z(H(nx))≤MLB} ×

∏
z∈Zd

`z(H(nx))≥1

E[e−`z(H(nx))ωG(0)]1{H(nx)<∞}∩L(n)

]

≤ ρn‖x‖1/(12dR) × E0

[ ∏
z∈Zd

`z(H(nx))≥1

E[e−`z(H(nx))ωG(0)]1{H(nx)<∞}

]

=
(
ρ1/(12dR)

)n‖x‖1 × E[e(0, nx, ωG)],

and we get (4.6) by taking ρ0 := ρ1/(12dR).
Let us finally complete the proof of Theorem 1.4 for d ≥ 2. For a given x ∈ Zd \ {0}, Proposi-

tions 4.2, 4.3, 4.4 and 4.6 and (4.6) imply that for all large n,

E[e(0, nx, ωF )] ≤ 7
( 1

4d
E[e−ωG(0)]

)n‖x‖1
+ ρ

n‖x‖1
0 × E[e(0, nx, ωG)].

Since E[e(0, nx, ωG)] ≥ {E[e−ωG(0)]/(2d)}n‖x‖1 , we have for all large n,

E[e(0, nx, ωF )] ≤ 2 max
{

7
(1

2

)n‖x‖1
, ρ
n‖x‖1
0

}
× E[e(0, nx, ωG)],

or equivalently

bF (0, nx) ≥ bG(0, nx)− log 2− log max

{
7
(1

2

)n‖x‖1
, ρ
n‖x‖1
0

}
.

Therefore, dividing by n and letting n→∞ proves that for any x ∈ Zd \ {0},

βF (x) ≥ βG(x) + ‖x‖1 min{log 2,− log ρ0}.

Since βF (·) and βG(·) are norms on Rd and the constant ρ0 is independent of x, we can easily extend
the above inequality to x ∈ Rd \ {0}, and the proof is complete. �
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4.3. Proof of Theorem 1.4 in the one-dimensional case. Let d = 1 and assume (1.1) (i.e., F (0) <

e−βG(1)). In this case, the proof of Theorem 1.4 is simpler than the case d ≥ 2. Since βF (·) and
βG(·) are norms on R, it suffices to prove that there exists a constant C5 such that

βF (1)− βG(1) ≥ C5. (4.7)

To this end, we first prepare some notation and lemma. Due to the assumption (1.1), it is possible
to take δ ∈ (0, 1) such that

F (0)1−δ < (1− δ)e−βG(1). (4.8)

Then, for K,n ∈ N, let L′(K,n) be the event that

#{z ∈ Z : 1 ≤ `z(H(n)) ≤ K} ≥ δn.

This event plays a role similar to the event L(n) in the previous subsection, and the next lemma
guarantees that the complement of L′(K,n) is harmless to the one-dimensional annealed comparison.

Lemma 4.7. There exists K = K(δ) ∈ N such that for all n ≥ 1,

E⊗ E0

[
exp

{
−
H(n)−1∑
k=0

ωF (Sk)

}
1L′(K,n)c

]
≤ (1− δ)ne−nβG(1). (4.9)

Proof : Note that P 0-a.s. on the event L′(K,n)c, the number of sites z such that `z(H(n)) > K is
bigger than (1− δ)n. Hence, the left side of (4.9) is smaller than or equal to

E0

[ ∏
z∈Z

`z(H(n))>K

E[e−`z(H(n))ωF (0)]1L′(K,n)c

]
≤ E[e−KωF (0)](1−δ)n.

Lebesgue’s dominated convergence theorem together with (4.8) shows that

lim
K→∞

E[e−KωF (0)]1−δ = F (0)1−δ < (1− δ)e−βG(1).

Therefore, if K is large enough, then the left side of (4.9) is bounded from above by (1−δ)ne−nβG(1),
and the proof is complete. �

We move to the proof of Theorem 1.4 in d = 1. Lemma 4.7 implies that

E[e(0, n, ωF )] ≤ (1− δ)ne−nβG(1) + E⊗ E0

[
exp

{
−
H(n)−1∑
k=0

ωF (Sk)

}
1L′(K,n)

]
. (4.10)

To estimate the right side, we follow the argument used to obtain (4.6). The second term in the
right side of (4.10) is smaller than or equal to

E0

[ ∏
z∈Z

1≤`z(H(n))≤K

Rz(n)×
∏
z∈Z

`z(H(n))≥1

E[e−`z(H(n))ωG(0)]1L′(K,n)

]
.

Note that for any z ∈ Z with 1 ≤ `z(H(n)) ≤ K,

Rz(n) ≤
∫ 1

0 e
−F−1(s) ds∫ 1

0 e
−F−1(s) ds+ a

=: ρ ∈ (0, 1),

where

a := |H|(eη0 − 1) exp
{
−K sup

s∈H
F−1(s)

}
∈ (0,∞).
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This, combined with the definition of the annealed Lyapunov exponent (see Proposition 1.1), implies
that the second term in the right side of (4.10) is bounded from above by

ρδn × E0

[ ∏
z∈Z

`z(H(n))≥1

E[e−`z(n)ωG(0)]1L′(K,n)

]
≤ ρδn × E[e(0, n, ωG)] ≤ ρδne−nβG(1).

Hence, one has

E[e(0, n, ωF )] ≤ (1− δ)ne−nβG(1) + ρδne−nβG(1)

≤ 2 max{(1− δ)n, ρδn}e−nβG(1),

which proves that
1

n
bF (0, n) ≥ βG(1)− 1

n
log 2− log max{1− δ, ρδ}.

Consequently, (4.7) immediately follows by letting n→∞. �

5. Strict inequalities for the rate functions

This section is devoted to the proof of Corollary 1.6.

Proof of Corollary 1.6: Let φ be a distribution function on [0,∞). Recall that αφ(λ, ·) and
βφ(λ, ·) are the quenched and annealed Lyapunov exponents associated with the potential ωφ+λ =
(ωφ(x) + λ)x∈Zd , respectively. As mentioned before Proposition 1.2, αφ(λ, x) and βφ(λ, x) are
continuous in (λ, x) ∈ [0,∞)× Rd and concave increasing in λ. For each x ∈ Rd, we introduce the
quantities

λqu
φ (x) := inf{λ > 0 : ∂−αφ(λ, x) ≤ 1}

and

λan
φ (x) := inf{λ > 0 : ∂−βφ(λ, x) ≤ 1},

where ∂−αφ(λ, x) and ∂−βφ(λ, x) are the left derivatives of αφ(λ, x) and βφ(λ, x) with respect to
λ, respectively. Clearly, λqu

φ (x) (resp. λan
φ (x)) attains the supremum in the definition of Iφ(x)

(resp. Jφ(x)). Then, the following lemma is the key to proving the corollary.

Lemma 5.1. We have for any x ∈ Rd with 0 < ‖x‖1 < 1,

lim sup
λ→∞

αφ(λ, x)

λ
< 1 (5.1)

and

lim sup
λ→∞

βφ(λ, x)

λ
< 1. (5.2)

The proof of the lemma is postponed until the end of the section, and we shall complete the proof
of the corollary. Fix x ∈ Rd with 0 < ‖x‖1 < 1. As mentioned above Proposition 1.2, αG(λ, x)
and βG(λ, x) are concave increasing in λ. This together with Lemma 5.1 implies that there exists
λ0 ∈ (0,∞) such that

∂−αG(λ0, x) ≤ αG(λ0, x)

λ0
< 1

and

∂−βG(λ0, x) ≤ βG(λ0, x)

λ0
< 1,
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which proves that λqu
G (x) ∨ λan

G (x) ≤ λ0 < ∞. Therefore, Theorems 1.3 and 1.4 yield that there
exist constants c and c′ (which depend on λqu

G (x) and λan
G (x), respectively) such that

IF (x)− IG(x) ≥ αF (λqu
G (x), x)− αG(λqu

G (x), x) ≥ c‖x‖1 > 0

and

JF (x)− JG(x) ≥ βF (λan
G (x), x)− βG(λan

G (x), x) ≥ c′‖x‖1 > 0,

and the corollary follows. �

We close this section with the proof of Lemma 5.1.

Proof of Lemma 5.1: Fix x ∈ Rd with 0 < ‖x‖1 < 1. If E[ωφ(0)] <∞ holds, then Proposition 1.1
tells us that

αφ(λ, x) ≤ ‖x‖1(λ+ log(2d) + E[ωφ(0)]).

Since we have assumed the finiteness of E[ωφ(0)] in the one-dimensional quenched situation (see
assumption (Qu) above Proposition 1.1), (5.1) is valid for d = 1. Proposition 1.1 also implies that

βφ(λ, x) ≤ ‖x‖1
(
λ+ log(2d)− logE[e−ωφ(0)]

)
,

and (5.2) holds for all d ≥ 1.
It remains to prove (5.1) for d ≥ 2 (because (Qu) does not guarantee the finiteness of E[ωφ(0)]

for d ≥ 2). Although the proof is essentially the same as above, we need some more work to carry
it out. Let M > 0 and consider the independent Bernoulli site percolation ηM on Zd defined as

ηM = (ηM (z))z∈Zd := (1{ωφ(z)≤M})z∈Zd .

Then, M -clusters of the configuration ηM are the connected components of the graph {z ∈ Zd :
ηM (z) = 1} with the usual adjacency relation on Zd: u, v ∈ Zd are adjacent if ‖u − v‖1 = 1. It
is well known that there exists pc = pc(d) ∈ (0, 1) such that if P(ηM (0) = 1) > pc holds, then
P-a.s., we have a unique infinite M -cluster, say C∞,M , with P(0 ∈ C∞,M ) > 0 (see Grimmett (1999,
Theorems 1.10 and 8.1) for instance). In addition, define the chemical distance dM (u, v) between u
and v as the minimal length of a lattice path from u to v which uses only sites z with ηM (z) = 1.
Note that the chemical distance dM (u, v) may be equal to infinity if u or v is not in C∞,M . To
avoid this, for each z ∈ Zd, let us consider the closest point to z in C∞,M for the `1-norm, with a
deterministic rule to break ties, and denote it by z̃M . From Garet and Marchand (2010, Lemma 4.1),
there exists a norm µM (·) on Rd such that for each y ∈ Zd,

lim
n→∞

1

n
dM (0̃M , ñyM ) = µM (y), P-a.s. and in L1(P). (5.3)

Moreover, since

lim
M→∞

P(ηM (0) = 1) = lim
M→∞

φ(M) = 1,

we can apply Grimmett (1999, Theorem 8.8) and Garet and Marchand (2007, Corollary 1.5) (or
Garet et al. (2017, Theorem 1.2)) to obtain that

lim
M→∞

P(0 ∈ C∞,M ) = 1

and

lim
M→∞

sup
‖x‖1≤1

|µM (x)− ‖x‖1| = 0.
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Fix x ∈ Rd with 0 < ‖x‖1 < 1 and take M > 0 large enough to have P(ηM (0) = 1) > pc,
P(0 ∈ C∞,M ) ≥ 3/4 and µM (x) < 1. Then, by translation invariance, one has for all y ∈ Zd and
n ∈ N,

P(0, ny ∈ C∞,M ) = 1− P(0 6∈ C∞,M or ny 6∈ C∞,M )

≥ 1− P(0 6∈ C∞,M )− P(ny 6∈ C∞,M )

= 1− 2P(0 6∈ C∞,M ) ≥ 1

2
.

Furthermore, on the event {0, ny ∈ C∞,M}, we have 0̃M = 0, ñyM = ny and there exists a lattice
path γ from 0 to ny such that γ attains the chemical distance dM (0, ny) (In particular, ωφ(z) ≤M
holds for all z ∈ γ). This guarantees that for any λ > 0, y ∈ Zd and n ∈ N, on the event
{0, ny ∈ C∞,M},

a(0, ny, ωφ + λ) ≤ − logEx

[
exp

{
−
H(y)−1∑
k=0

(ωφ(Sk) + λ)

}
1{S· follows γ}

]

≤ − logEx

[
exp

{
−dM (0, ny)(M + λ)

}
1{S· follows γ}

]
= dM (0̃M , ñyM )(λ+ log(2d) +M).

With these observations, for all λ > 0, y ∈ Zd and n ∈ N,
1

2
≤ P(0, ny ∈ C∞,M )

≤ P
(
a(0, ny, ωφ + λ) ≤ dM (0̃M , ñyM )(λ+ log(2d) +M)

)
.

Hence, Proposition 1.1 and (5.3) imply that for all λ > 0 and y ∈ Zd,
αφ(λ, y)

λ
≤ 1

λ
µM (y)(λ+ log(2d) +M).

This inequality is also valid for all y ∈ Rd because αφ(λ, ·) and µM (·) are norms on Rd. It follows
that

lim sup
λ→∞

αφ(λ, x)

λ
≤ µM (x) < 1,

and (5.1) is also valid for d ≥ 2. �

6. Discussion on the one-dimensional situation

In the statements of Theorems 1.3 and 1.4, additional conditions (Qu) and (1.1) are assumed
for d = 1. Hence, we finally discuss comparisons for one-dimensional Lyapunov exponents and rate
functions without (Qu) and (1.1).

Let us first comment on the one-dimensional quenched situation without (Qu) (i.e., E[ω(0)] =∞).
In this situation, for all x ∈ Z \ {0},

lim
n→∞

1

n
a(0, nx, ω) =∞ P-a.s.

Indeed, we have for any L > 0,

a(0, nx, ω) ≥
nx−1∑
k=0

(ω(k) ∧ L),
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and the law of large numbers yields that

lim
n→∞

1

n

nx−1∑
k=0

(ω(k) ∧ L) = |x| × E[ω(0) ∧ L] P-a.s.

Since E[ω(0)] = ∞, we get the desired conclusion by letting L → ∞. Therefore, the quenched
Lyapunov exponent does not exist in the sense of Proposition 1.1, and we cannot also define the
quenched rate function by using the quenched Lyapunov exponent. Consequently, if F and G are
distribution functions on [0,∞) and one of them does not satisfy (Qu), then the comparisons for αF ,
αG, IF and IG are not well-defined. As long as we argue comparisons for the Lyapunov exponent
and the rate function in the present setting, assumption (Qu) is necessary in the one-dimensional
quenched situation.

On the other hand, in spite of the establishment of (Qu), the annealed Lyapunov exponent is
always well-defined in d = 1. The next theorem exhibits criteria of the strict comparison for the
one-dimensional annealed Lyapunov exponent.

Proposition 6.1. Let d = 1. Then, the following results hold:
(1) If F ≤ G and (1.1) fails to hold (i.e., F (0) ≥ e−βG(1)), then

− logF (0) = βF (1) = βG(1) = − logG(0).

In particular, if F strictly dominates G, then F (0) < e−βG(1) is a necessary and sufficient
condition for βF (1) > βG(1).

(2) If F strictly dominates G and F (0) < G(0), then βF (1) > βG(1) holds.
(3) If F strictly dominates G and F (0) = 0, then βF (1) > βG(1) holds.

Proof : We first prove part (1). Assume that F ≤ G and F (0) ≥ e−βG(1). For an arbitrary ε > 0,

E[e(0, n, ωF )] ≥ E0
[
F (0)#{z∈Z:`z(H(n))≥1}

]
≥ E0

[
F (0)#{z∈Z:`z(H(n))≥1}1{H(n)<H(−dεne)}

]
≥ F (0)(1+ε)nP 0(H(n) < H(−dεne)).

An easy computation shows that

P 0(H(n) < H(−dεne)) =
dεne

n+ dεne
(see for instance Lawler (2013, (1.20))), and we have

1

n
bF (0, n) ≤ −(1 + ε) logF (0)− 1

n
log

dεne
n+ dεne

.

Hence, letting n→∞ proves βF (1) ≤ −(1 + ε) logF (0). Since ε is arbitrary, one has

βF (1) ≤ − logF (0). (6.1)

This, combined with the assumption F (0) ≥ e−βG(1) and the fact that βF ≥ βG, proves that

F (0) ≥ e−βG(1) ≥ e−βF (1) ≥ F (0),

which implies βF (1) = βG(1) = − logF (0). Furthermore, since (6.1) with F replaced by G is valid,
we have

G(0) ≥ F (0) ≥ e−βG(1) ≥ G(0),

and βG(1) = − logG(0) holds. With these observations, the first assertion of (1) follows. For the
second assertion of part (1), assume that F strictly dominates G. If F (0) < e−βG(1) holds, then
βF (1) > βG(1) follows form Theorem 1.4. Conversely, suppose that βF (1) > βG(1) holds. Then,



Strict comparison for the Lyapunov exponents 1013

the first assertion of part (1) implies F (0) < e−βG(1). Therefore, the second assertion of part (1) is
proved.

We next prove part (2). Note that − logF (0) > − logG(0) holds if F (0) < G(0). Hence,
the first assertion of Proposition 6.1-(1) implies F (0) < e−βG(1). Therefore, Theorem 1.4 gives
βF (1) > βG(1), and part (2) follows.

Finally, part (3) is a direct consequence of Theorem 1.4. Indeed, since βG(1) is finite, F (0) <

e−βG(1) holds if F (0) = 0. Hence, Theorem 1.4 leads to βF (1) > βG(1). �

Proposition 6.1 guarantees the existence of the threshold for the coincidence of one-dimensional
annealed rate functions as follows.

Corollary 6.2. Let d = 1. Suppose that F strictly dominates G and (1.1) fails to hold (i.e.,
F (0) ≥ e−βG(1)). Then, there exists a constant v0 ∈ (0, 1) (which may depend on F and G) such
that

JF (x)− JG(x)

{
> 0, if v0 < |x| < 1,

= 0, if |x| ≤ v0.
(6.2)

Proof : Recall that for any distribution function φ on [0,∞),

λan
φ (x) := inf{λ > 0 : ∂−βφ(λ, x) ≤ 1}.

Our proof starts with the observation that for any x ∈ R with 0 < |x| < 1,

JF (x)− JG(x) > 0 ⇐⇒ λan
F (x) > 0 or λan

G (x) > 0. (6.3)

To this end, fix x ∈ R with 0 < |x| < 1. Note that λan
G (x) is finite as seen in the proof of

Corollary 1.6. We first treat the case where λan
G (x) > 0. Let F̃ and G̃ be the distribution functions

of ωF (0) + λan
G (x) and ωG(0) + λan

G (x), respectively. Then, we have F̃ (0) = 0. Since the annealed
Lyapunov exponent is a norm on R, Proposition 6.1-(3) implies that

JF (x)− JG(x) ≥ βF (λan
G (x), x)− βG(λan

G (x), x)

= β
F̃

(x)− β
G̃

(x) = {β
F̃

(1)− β
G̃

(1)}|x| > 0.

Next, in the case where λan
G (x) = 0 but λan

F (x) > 0, there exists λ′ > 0 such that ∂−βF (λ′, x) > 1.
Note that since βF (λ, x) is concave in λ,

βF (λ′, x)− βF (0, x)

λ′
≥ ∂−βF (λ′, x) > 1.

This combined with the fact that βF ≥ βG shows that

JF (x)− JG(x) ≥ βF (λ′, x)− λ′ − βG(0, x)

≥
(
βF (λ′, x)− βF (0, x)

λ′
− 1

)
λ′ > 0.

Finally consider the case where λan
F (x) = λan

G (x) = 0. Then, since the annealed Lyapunov exponent
is a norm on R, Proposition 6.1-(1) gives

JF (x)− JG(x) = βF (x)− βG(x) = {βF (1)− βG(1)}|x| = 0.

With these observations, (6.3) immediately follows.
We now refer to the following result obtained by Kosygina and Mountford (2012, Theorem 1.2)

in our setting: If φ is a distribution function on [0,∞) satisfying that P(ωφ(0) = 0) < 1 and
ess inf ωφ(0) = 0, then there exists a constant vφ ∈ (0, 1) such that

∂+βφ(0, 1) =
1

vφ
, (6.4)
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where ∂+βφ(λ, x) stands for the right derivative of βφ(λ, x) with respect to λ. Then, we prove that
if φ is a distribution function on [0,∞) satisfying that P(ωφ(0) = 0) < 1 and ess inf ωφ(0) = 0, then
for x ∈ R,

λan
φ (x)

{
> 0, if vφ < |x| < 1,

= 0, if |x| < vφ.
(6.5)

In the case where vφ < |x| < 1, since the annealed Lyapunov exponent is a norm on R, (6.4) implies
that

∂+βφ(0, x) = ∂+{|x|βφ(0, 1)} = |x| × ∂+βφ(0, 1) =
|x|
vφ

> 1.

This means that there exists λ1 > 0 such that
βφ(λ1, x)− βφ(0, x)

λ1
> 1.

By the continuity of βφ(λ, x) in λ, we can take λ2 ∈ (0, λ1) such that

βφ(λ1, x)− βφ(λ2, x)

λ1 − λ2
> 1.

This, together with the concavity of βφ(λ, x) in λ, proves

1 <
βφ(λ1, x)− βφ(λ2, x)

λ1 − λ2
≤ ∂−βφ(λ2, x).

Therefore, λan
φ (x) ≥ λ2 > 0 holds in the case where vφ < |x| < 1. On the other hand, by (6.4), if

|x| < vφ holds, then

∂+βφ(0, x) = |x| × ∂+βφ(0, 1) =
|x|
vφ

< 1,

and we can easily see that λan
φ (x) = 0. Therefore, (6.5) is proved.

We are now in a position to prove Corollary 6.2. Note that since F strictly dominates G,
Lemma 2.1-(2) implies P(ωF (0) = 0) < 1. In addition, since (1.1) fails to hold, we have

G(0) ≥ F (0) ≥ e−βG(1) > 0,

which proves that ess inf ωF (0) = ess inf ωG(0) = 0. Hence, (6.5) holds for F . Assume that
P(ωG(0) = 0) < 1. Then, (6.5) is also established for G. It follows that λan

F (x) > 0 or λan
G (x) > 0

holds for vF ∧ vG < |x| < 1, and λan
F (x) = λan

G (x) = 0 holds for |x| < vF ∧ vG. Therefore, (6.3)
shows that

JF (x)− JG(x)

{
> 0, if vF ∧ vG < |x| < 1,

= 0, if |x| < vF ∧ vG.

This is also valid for |x| = vF ∧ vG because JF and JG are continuous on [−1, 1] (see the statement
stated above Proposition 1.2). Thus, in the case where P(ωG(0) = 0) < 1, (6.2) follows by taking
v0 := vF ∧ vG. For the case where P(ωG(0) = 0) = 1, taking v0 := vF establishes (6.2). Indeed,
Proposition 6.1-(1) gives that for all x ∈ R,

βG(x) = |x|βG(1) = |x|(− logG(0)) = 0,

which implies that λan
G (x) = 0 holds for all x ∈ R. This together with (6.3) and (6.5) tells us that

(6.2) holds for v0 = vF . Consequently, we can find the desired constant v0 in any case, and the
proof is complete. �
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