
ALEA, Lat. Am. J. Probab. Math. Stat. 20, 1017–1039 (2023)

DOI: 10.30757/ALEA.v20-37

Sojourns of Stationary Gaussian Processes over a Random

Interval
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Abstract. We investigate asymptotics of the tail distribution of sojourn time∫ T

0
I(X(t) > u)dt,

as u → ∞, where X is a centered stationary Gaussian process and T is an independent of X

nonnegative random variable. The heaviness of the tail distribution of T impacts the form of the

asymptotics, leading to four scenarios: the case of integrable T , the case of regularly varying T with

index λ = 1 and index λ ∈ (0, 1) and the case of slowly varying tail distribution of T . The derived

findings are illustrated by the analysis of the class of fractional Ornstein-Uhlenbeck processes.

1. Introduction

For a given stochastic process X(t), t ≥ 0, by

Lu[a, b] :=

∫ b

a
Iu (X(t)) dt,
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with Iu (x) := I (x > u), we define the sojourn time spent above a fixed level u by process X

on interval [a, b]. The interest in analysis of distributional properties of Lu[a, b] stems both from

theoretical questions related to the research on the level sets of stochastic processes and from its

importance in applied probability, as e.g., in finance or insurance theory, where Lu[0, T ], T > 0 may

be interpreted as the total time in ruin up to time T for the risk process modeled by X; see e.g.,

Guérin and Renaud (2017); Landriault et al. (2020).

In the case of X being a Gaussian process, the asymptotics of the tail distribution of Lu[0, T ], as

u → ∞, was analyzed extensively in a series of papers by Berman, e.g., Berman (1985, 1987); see

also the seminal monograph Berman (1992) and recent refinements Dȩbicki et al. (2019, 2020b).

The aim of this paper is to get the exact asymptotics of tail distribution of Lu[0, T ] for a class of

centered stationary Gaussian processes over an independent of X random time T . The motivation

to consider extremal behaviour of a stochastic process over a random time interval stems from

its relevance in such problems as ruin of time-changed risk processes Fotopoulos and Luo (2011);

Geman et al. (2001), resetting models den Hollander et al. (2019) or hybrid queueing models Zwart

et al. (2005). We also refer to related problems on extremes of conditionally Gaussian processes and

Gaussian processes with random variance Hüsler et al. (2011a,b). Using the fact that

P {Lu[0, T ] > 0} = P

{
sup
t∈[0,T ]

X(t) > u

}
,

the findings of this contribution also extend results obtained in Arendarczyk and Dȩbicki (2012);

Dȩbicki et al. (2018); Tan and Hashorva (2013).

It appears that the form of the derived exact asymptotics strongly depends on the heaviness of

the tail distribution of T , leading to four scenarios: the case of finite ET (scenario D1), the case

of T having regularly varying tail distribution with index λ = 1 (scenario D2), λ ∈ (0, 1) (scenario

D3) and the case of slowly varying tail distribution of T (scenario D4); see Section 3.

Brief organisation of the rest of the paper: In Section 2 we formalize the analyzed model and

introduce notation. In Section 3 we derive the tail asymptotic behavior of the sojourn time for a

class of centered stationary Gaussian processes X over random interval [0, T ] under introduced in

Section 2 scenarios D1-D4, respectively. Section 4 contains some examples illustrating the main

findings of this contribution. All the proofs are displayed in Section 5, whereas few technical results

are included in Section 6.

2. Notation and model description

Let X(t), t ≥ 0 be a centered stationary Gaussian process with a.s. continuous trajectories, unit

variance function and covariance function r satisfying

A1: 1− r(t) is regularly varying at t = 0 with index α ∈ (0, 2];

A2: r(t) < 1 for all t > 0;

A3: limt→∞ r(t) log(t) = 0.
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Assumptions A1-A3 cover a wide range of investigated in the literature stationary Gaussian pro-

cesses, where A3 is referred to as Berman’s condition (see, e.g., Berman, 1992); see also Section

4.

Let function v(·) be such that limu→∞ v(u) =∞ and

lim
u→∞

u2(1− r(1/v(u))) = 1. (2.1)

By Berman (1992), v(·) exists and is regularly varying at infinity with index 2/α.

We are interested in the asymptotics of

P {L∗u[0, T ] > x} ,

as u→∞, where

L∗u[0, T ] := v(u)Lu[0, T ] (2.2)

and T is an independent of X nonnegative random variable with distribution function FT (·) which

belongs to one of the following distribution classes:

D1: T is integrable;

D2: T has regularly varying tail distribution with index λ = 1;

D3: T has regularly varying tail distribution with index λ ∈ (0, 1);

D4: T has slowly varying tail distribution.

We recall that a nonnegative random variable T has regularly varying tail distribution with index

λ > 0 if for any x > 0

lim
t→∞

P {T > xt}
P {T > t}

= x−λ.

If λ = 0 in the above limit, then it is said that T has slowly varying tail distribution. Furthermore,

T is integrable if λ > 1.

We note that, although classes D1-D4 cover a wide collection of distribution functions, they

are not exhaustive in the sense that, for example, random variable T that satisfies P {T > t} ∼
e− log t−cos(log t) as t→∞ does not belong to any of D1-D4.

Define for any x ≥ 0

Bα(x) = lim
S→∞

S−1Bα(S, x), (2.3)

with

Bα(S, x) =

∫
R
P
{∫ S

0
I0 (Wα(s) + z) ds > x

}
e−zdz, Wα(t) =

√
2Bα(t)− |t|α , (2.4)

where Bα is a standard fractional Brownian motion (fBm) with Hurst index α/2 ∈ (0, 1]. By

Theorem 2.1 in Dȩbicki et al. (2019), we know that Bα(x) is positive and finite for any x ≥ 0. Let

E be a unit exponential random variable independent of Wα and set

Gα(x) = P
{∫

R
I0 (Wα(s) + E) ds ≤ x

}
.
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As shown in Dȩbicki et al. (2020b), Gα is continuous on R+, and thus by Remark 2.2 ii) in Dȩbicki

et al. (2019)

Bα(x) =

∫ ∞
x

1

y
dGα(y)

holds for all x ∈ R+. We note that Bα(0) is equal to the classical Pickands constant; see e.g.,

Piterbarg (1996) or Section 10 in Berman (1992). Let

m(u) =
(
Bα(0)v(u)Ψ(u)

)−1
, (2.5)

where Ψ(u) is the survival function of an N(0, 1) random variable. Then, by Theorem 10.5.1 in

Berman (1992),

P

{
sup
t∈[0,1]

X(t) > u

}
∼ m−1(u), u→∞. (2.6)

In our notation ∼ stands for asymptotic equivalence of two functions as the argument tends to 0 or

to ∞ respectively.

3. Main results

In this section we find the exact asymptotics of

P {L∗u[0, T ] > x} (3.1)

as u→∞, under scenarios D1-D4, respectively. All the proofs are postponed to Section 5.

3.1. Scenario D1. We begin with the case when T is integrable. It appears that under this

scenario the main contribution to the asymptotics of (3.1) comes from Gaussian process X, whereas

T contributes only by its average behavior.

Theorem 3.1. Let X(t), t ≥ 0 be a centered stationary Gaussian process with unit variance and

covariance function satisfying A1-A2. Suppose that T is an independent of X nonnegative random

variable that satisfies D1. Then for any x ≥ 0

P {L∗u[0, T ] > x} ∼ Bα(x)E {T} v(u)Ψ(u), u→∞. (3.2)

Theorem 2.1 in Dȩbicki et al. (2019) combined with Remark 2.2 therein yields

P {L∗u[0, 1] > x} ∼ Bα(x)v(u)Ψ(u), u→∞.

Thus

P {L∗u[0, T ] > x} ∼ E {T}P {L∗u[0, 1] > x} , u→∞,

which implies that T contributes to the asymptotics in (3.2) only by its average behavior.
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3.2. Scenario D2. Under this scenario the asymptotics of (3.1) is similar to the one obtained for

case D1 with the exception that T contributes to (3.1) by its integrated tail distribution rather

than by its mean.

Theorem 3.2. Let X(t), t ≥ 0 be a centered stationary Gaussian process with unit variance and

covariance function satisfying A1-A3. Suppose that T is an independent of X nonnegative random

variable that satisfies D2. Then for any x ≥ 0

P {L∗u[0, T ] > x} ∼ Bα(x)l(m(u))v(u)Ψ(u), u→∞, (3.3)

where l(u) =
∫ u

0 P {T > t} dt.

Remark 3.3. We note that if T satisfies D2 and is integrable, then (3.3) coincides with (3.2).

3.3. Scenario D3. This scenario leads to the asymptotics of (3.1) which depends only of the

heaviness of the tail distribution of T .

The following continuous distribution function

Fα(x) := B−1
α (0)

∫ x

0

1

y
dGα(x), x ≥ 0 (3.4)

plays an important role in further analysis. F∗kα (x) denotes the tail distribution of the k-th convo-

lution of Fα at x ≥ 0.

Theorem 3.4. Let X(t), t ≥ 0 be a centered stationary Gaussian process with unit variance and

covariance function satisfying A1-A3. Suppose that T is an independent of X nonnegative random

variable that satisfies D3. Then for any x ≥ 0

P {L∗u[0, T ] > x} ∼ λ
∞∑
k=1

Γ(k − λ)

k!
F∗kα (x)P {T > m(u)} , u→∞. (3.5)

Remark 3.5. Taking x = 0 in (3.5) and using

λ

∞∑
k=1

Γ(k − λ)

k!
= λ

∞∑
k=1

1

k!

∫ ∞
0

lk−λ−1e−ldl = λ

∫ ∞
0

(1− e−l)l−λ−1dl = Γ(1− λ),

we recover Theorem 3.2 in Arendarczyk and Dȩbicki (2012).

3.4. Scenario D4. Suppose now that T has slowly varying tail distribution. As shown in the

following theorem, similarly to scenario D3, the asymptotics of (3.1) depends only on the asymptotic

behavior of the tail distribution of T but in contrast to scenario D3 doesn’t depend on x.

Theorem 3.6. Let X(t), t ≥ 0 be a centered stationary Gaussian process with unit variance and

covariance function satisfying A1-A3. Suppose that T is an independent of X nonnegative random

variable that satisfies D4. Then for any x ≥ 0

P {L∗u[0, T ] > x} ∼ P {T > m(u)} , u→∞.
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4. Examples

In this section we illustrate the results derived in Section 3 by two classes of stationary Gaussian

processes: fractional Ornstein-Uhlenbeck processes and increments of fractional Brownian motions.

4.1. Fractional Ornstein-Uhlenbeck processes. Suppose thatX is a centered stationary Gauss-

ian process with covariance r(t) = e−t
α
, t ≥ 0, for α ∈ (0, 2]. We call X a fractional Ornstein-

Uhlenbeck process with index α. If α = 1, then X is the classical Ornstein-Uhlenbeck process.

It is straightforward to check that A1-A3 are satisfied. Thus, the following proposition holds

due to Theorems 3.1-3.6.

Proposition 4.1. Suppose that X is a fractional Ornstein-Uhlenbeck process with index α ∈ (0, 2],

and T is an independent of X nonnegative random variable. Then for any x ≥ 0, as u→∞,

(i) If T ∈ D1, then P {L∗u[0, T ] > x} ∼ Bα(x)E {T} (2π)−1/2u2/α−1e−u
2/2.

(ii) If T ∈ D2, then P {L∗u[0, T ] > x} ∼ Bα(x)(2π)−1/2u2/α−1e−u
2/2
∫√2πB−1

α (0)u1−2/αeu
2/2

0 P {T > t} dt.
(iii) If T ∈ D3, then P {L∗u[0, T ] > x} ∼ λ

∑∞
k=1

Γ(k−λ)
k! F∗kα (x)P

{
T >

√
2πB−1

α (0)u1−2/αeu
2/2
}
.

(iv) If T ∈ D4, then P {L∗u[0, T ] > x} ∼ P
{
T >

√
2πB−1

α (0)u1−2/αeu
2/2
}
.

4.2. Increments of fractional Brownian motion. For a standard fBm Bα(t), t ≥ 0 with Hurst

index α/2 ∈ (0, 1) and a > 0, define

Xα,a(t) :=
Bα(t+ a)−Bα(t)

aα/2
, t ≥ 0

One can check that Xα,a is a centered stationary Gaussian process with unit variance and covariance

function

r(t) =
(a+ t)α + |a− t|α − 2tα

2aα
, t ≥ 0,

and 1− r(t) ∼ a−αtα, t→ 0, which verifies assumption A1. Similarly for t > a

|r(t)| ≤ α |1− α| (t− a)α−2

aα−2
,

which confirms assumption A3. Thus the following proposition holds.

Proposition 4.2. Suppose that Xα,a(t), t ≥ 0 with α ∈ (0, 2), a > 0 is independent of a nonnegative

random variable T . Then for any x ≥ 0, as u→∞,

(i) If T ∈ D1, then P {L∗u[0, T ] > x} ∼ Bα(x)E {T} (2π)−1/2a−1u2/α−1e−u
2/2.

(ii) If T ∈ D2, then

P {L∗u[0, T ] > x} ∼ Bα(x)(2π)−1/2a−1u2/α−1e−u
2/2

∫ √2πaB−1
α (0)u1−2/αeu

2/2

0
P {T > t} dt.

(iii) If T ∈ D3, then P {L∗u[0, T ] > x} ∼ λ
∑∞

k=1
Γ(k−λ)
k! F∗kα (x)P

{
T >

√
2πaB−1

α (0)u1−2/αeu
2/2
}

;

(iv) If T ∈ D4, then P {L∗u[0, T ] > x} ∼ P
{
T >

√
2πaB−1

α (0)u1−2/αeu
2/2
}
.
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5. Proofs

In this section we give detailed proofs of all the theorems presented in Section 3. We first give a

simple extension of Theorem 7.4.1 of Berman (1992).

Lemma 5.1. Let X(t), t ≥ 0 be a centered stationary Gaussian process with unit variance and

covariance function satisfying A1 and A3. If L∗u, m(u) and Fα are defined in (2.2), (2.5) and

(3.4), respectively, then for any s ≥ 0 and 0 < l0 < l1 <∞ we have

lim
u→∞

sup
τ∈[l0,l1]

∣∣∣E{e−sL∗u[0,τm(u)]
}
− e−τ

∫∞
0 (1−e−sx)dFα(x)

∣∣∣ = 0. (5.1)

Proof : For any τ > 0, the point convergence follows from Berman’s proof of Theorem 7.4.1 in

Berman (1992). The uniformity of convergence on [l0, l1] follows by monotonicity of E
{
e−sL

∗
u[0,τm(u)]

}
and by continuity of e−τ

∫∞
0 (1−e−sx)dFα(x) as functions of τ . �

Define a compound Poisson process

Y (t) =

N(t)∑
i=1

ξi, (5.2)

where {N(t) : t ≥ 0} is a Poisson process with unit intensity, and {ξi : i ≥ 1} are independent and

identically distributed random variables, with distribution function Fα, which are also independent

of N . The following corollary of Lemma 5.1 will play an important role in the proof of Theorem

3.4.

Corollary 5.2. If X is the Gaussian process given as in Lemma 5.1 and Y is defined in (5.2), then

for any x ≥ 0 and 0 < l0 < l1 <∞ we have

lim
u→∞

sup
l∈[l0,l1]

|P {L∗u[0, lm(u)] > x} − P {Y (l) > x}| = 0. (5.3)

Proof : For arbitrary l > 0, from (5.1) we know that the Laplace transforms of L∗u[0, lm(u)] converge

pointwise to the Laplace transform of Y (l) as u→∞. Then by the continuity theorem for Laplace

transforms (see, e.g., Exercise 15.4.3 in Klenke, 2020),

P {L∗u[0, lm(u)] > x} → P {Y (l) > x} , u→∞

holds for any continuity point of the distribution function of Y (l). Due to the continuity of Fα, the
above limit holds for all x > 0. Further,

|P {Y (l1) > x} − P {Y (l0) > x}| ≤ P {Y (|l1 − l0|) > 0} = 1− e−|l1−l0| ≤ |l1 − l0| ,

which implies that for any x > 0, P {Y (l) > x} is continuous in l. Finally, the uniform convergence

follows by the same arguments as the proof of Lemma 5.1. For x = 0 in (5.3), we refer to Lemma

4.3 in Arendarczyk and Dȩbicki (2012). This completers the proof. �
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5.1. Proof of Theorem 3.1. By (2.6), for arbitrary ε > 0, there exists large enough u such that

P

{
sup
t∈[0,1]

X(t) > u

}
< (1 + ε)m−1(u),

which together with the stationarity of process X implies that for any x ≥ 0 and t > 0

P {L∗u[0, t] > x}
v(u)Ψ(u)

≤
P
{

sups∈[0,t]X(s) > u
}

v(u)Ψ(u)

≤ (t+ 1)
P
{

sups∈[0,1]X(s) > u
}

v(u)Ψ(u)

≤ (t+ 1)(1 + ε)Bα(0).

Consequently, for nonnegative random variable T with distribution function FT satisfying D1, by

the Dominated Convergence Theorem and Remark 2.2 i) in Dȩbicki et al. (2019) we have

lim
u→∞

P {L∗u[0, T ] > x}
v(u)Ψ(u)

= lim
u→∞

∫ ∞
0

P {L∗u[0, t] > x}
v(u)Ψ(u)

dFT (t)

= Bα(x)

∫ ∞
0

tdFT (t)

= Bα(x)E {T} .

This completes the proof. �

5.2. Proof of Theorem 3.2. Let A(u) satisfy

lim
u→∞

A(u)v(u) =∞ and lim
u→∞

A(u) = 0.

By Corollary 6.3, for any x ≥ 0 and arbitrary ε ∈ (0, 1), there exist δ > 0 and u0 such that

inf
t∈[A(u),δm(u)]

P {L∗u[0, t] > x}
tBα(x)v(u)Ψ(u)

≥ 1− 2ε, u > u0

and

sup
t∈[A(u),δm(u)]

P {L∗u[0, t] > x}
tBα(x)v(u)Ψ(u)

≤ 1 + 2ε, u > u0.
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Therefore,

lim inf
u→∞

P {L∗u[0, T ] > x}
Bα(x)l(m(u))v(u)Ψ(u)

≥ lim inf
u→∞

∫ δm(u)
A(u) P {L∗u[0, t] > x} dFT (t)

Bα(x)l(m(u))v(u)Ψ(u)

≥ (1− 2ε) lim inf
u→∞

∫ δm(u)
A(u) tdFT (t)

l(m(u))

= (1− 2ε) lim inf
u→∞

∫ δm(u)
0 tdFT (t)

l(m(u))

= (1− 2ε) lim inf
u→∞

∫ δm(u)
0 P {T > t} dt− δm(u)P {T > δm(u)}

l(m(u))

= (1− 2ε),

where the last equality follows from Proposition 1.5.9a in Bingham et al. (1989) such that l(u) is

slowly varying at ∞ and limu→∞ uP {T > u} /l(u) = 0.

Similarly,

lim sup
u→∞

P {L∗u[0, T ] > x}
Bα(x)l(m(u))v(u)Ψ(u)

≤ lim sup
u→∞

P {L∗u[0, A(u)] > x}P {T ≤ A(u)}+
∫ δm(u)
A(u) P {L∗u[0, t] > x} dFT (t) + P {T > δm(u)}

Bα(x)l(m(u))v(u)Ψ(u)

≤ lim sup
u→∞

A(u)P {T ≤ A(u)}
l(m(u))

+ (1 + 2ε) lim sup
u→∞

∫ δm(u)
A(u) tdFT (t)

l(m(u))

= (1 + 2ε),

where the last inequality follows from (6.19) and the same reasons as above. Since ε is arbitrary,

letting ε→ 0, we complete the proof. �

5.3. Proof of Theorem 3.4. First, note that by Raabe’s Test, the series in (3.5) converges for

λ ∈ (0, 1). Then by integration by parts, for any x ≥ 0 we have∫ ∞
0

l−λdP {Y (l) > x} =

∫ ∞
0

P {Y (l) > x}λl−λ−1dl − lim
l→0

l−λP {Y (l) > x}

= λ
∞∑
k=1

F∗kα (x)
1

k!

∫ ∞
0

lk−λ−1e−ldl − lim
l→0

l−λP {Y (l) > x}

= λ
∞∑
k=1

Γ(k − λ)

k!
F∗kα (x) <∞, (5.4)

where the last equality, recalling that λ ∈ (0, 1), follows from

lim
l→0

l−λP {Y (l) > x} ≤ lim
l→0

l−λ(1− e−l) = 0. (5.5)
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Next, by a similar argument as that used in the proof of Theorem 3.2 in Arendarczyk and Dȩbicki

(2012), for any 0 < l0 < l1 <∞ we have

P {L∗u[0, T ] > x} =
(∫ l0m(u)

0
+

∫ l1m(u)

l0m(u)
+

∫ ∞
l1m(u)

)
P {L∗u[0, l] > x} dFT (l)

= I1 + I2 + I3,

where

lim sup
u→∞

I1

P {T > m(u)}
≤ lim sup

u→∞

∫ l0m(u)
0 P

{
sups∈[0,l]X(s) > u

}
dFT (l)

P {T > m(u)}
≤ λ

1− λ
l1−λ0

and

lim sup
u→∞

I3

P {T > m(u)}
≤ lim sup

u→∞

P {T > l1m(u)}
P {T > m(u)}

= l−λ1 .

Further, in view of Corollary 5.2, for any given x ≥ 0 and arbitrary ε > 0, we have the following

upper bound

I2 =

∫ l1

l0

P {L∗u[0, lm(u)] > x} dFT (lm(u))

≤ (1 + ε)

∫ l1

l0

P {Y (l) > x} dFT (lm(u))

= (1 + ε)
(∫ l1

l0

P {T > lm(u)} dP {Y (l) > x}

−P {Y (l1) > x}P {T > l1m(u)}+ P {Y (l0) > x}P {T > l0m(u)}
)
,

which holds for u large enough. By Theorem 1.5.2 in Bingham et al. (1989),

P {T > lm(u)}
P {T > m(u)}

→ l−λ

uniformly for l ∈ [l0, l1] as u→∞. Thus by the Dominated Convergence Theorem

lim sup
u→∞

I2

P {T > m(u)}
≤ (1 + ε)

(∫ l1

l0

l−λdP {Y (l) > x} − P {Y (l1) > x} l−λ1 + P {Y (l0) > x} l−λ0

)
.

Similarly, we have the lower bound

lim inf
u→∞

I2

P {T > m(u)}
≥ (1− ε)

(∫ l1

l0

l−λdP {Y (l) > x} − P {Y (l1) > x} l−λ1 + P {Y (l0) > x} l−λ0

)
.

Finally, first letting ε → 0, and then letting l0 → 0, l1 → ∞ in the above bounds, using (5.4) and

(5.5), we complete the proof. �
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5.4. Proof of Theorem 3.6. According to Remark 3.3 in Arendarczyk and Dȩbicki (2012), we

know that

lim sup
u→∞

P {L∗u[0, T ] > x}
P {T > m(u)}

≤ lim sup
u→∞

P
{

sups∈[0,T ]X(s) > u
}

P {T > m(u)}
≤ 1.

Further, by Corollary 5.2, for arbitrary l > 0

P {L∗u[0, lm(u)] > x} → P {Y (l) > x}

holds for any x ≥ 0 as u→∞. Thus, for T with slowly varying tail distribution we get

lim inf
u→∞

P {L∗u[0, T ] > x}
P {T > m(u)}

≥ lim inf
u→∞

P {L∗u[0, lm(u)] > x}P {T > lm(u)}
P {T > m(u)}

= P {Y (l) > x} ,

which converges to 1 as l → ∞, since by the strong law of large numbers Y (l)/l → B−1
α (0) > 0.

This completes the proof. �

6. Appendix

Hereafter, Ci, i ∈ N are positive constants which may be different from line to line. All vectors

are column vectors unless otherwise specified. As long as it doesn’t cause confusion we use 0 to

denote the 2 × 1 column vector or the 2 × 2 matrix whose entries are all 0’s. For a given vector

(matrix) Q, let |Q| denote vector (matrix) with entries equal to absolute value of respective entries

of Q.

Lemma 6.1. Let X(t), t ≥ 0 be a centered stationary Gaussian process with unit variance and

covariance function satisfying A1 and A3. If v(u), Bα(S, x) and m(u) are defined in (2.1), (2.4)

and (2.5), respectively, then for any A(u) > 1 satisfying

lim sup
u→∞

u2

logA(u)
<∞ (6.1)

we have

lim
u→∞

sup
d≥A(u)

∣∣∣∣∣∣
P
{

sups1∈[0,S]X(s1/v(u)) > u, sups2∈[0,S]X(d+ s2/v(u)) > u
}

Ψ2(u)
− B2

α(S, 0)

∣∣∣∣∣∣ = 0.

Proof : We borrow the argument used in the proof of Theorem 5.1 in Dȩbicki et al. (2019). First,

for notational simplicity we define

ξu,d(s) = (X(s1/v(u)), X(d+ s2/v(u)))T , s = (s1, s2) ∈D = [0, S]2,
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and denote by Ru,d(s, t) the covariance matrix function of ξu,d, i.e.,

Ru,d(s, t) = Cov(ξu,d(s), ξu,d(t))

= E
{
ξu,d(s)ξu,d(t)

T
}

=

(
r( |t1−s1|v(u) ) r(d+ t2−s1

v(u) )

r(d+ s2−t1
v(u) ) r( |t2−s2|v(u) )

)
s, t ∈D.

Then, conditioning on ξu,d(0) we have

P {∃s∈Dξu,d(s) > u} =

∫∫
R2

P {∃s∈Dξu,d(s) > u|ξu,d(0) = y}φ(y1, y2; r(d))dy1dy2,

where y = (y1, y2)T and φ(y1, y2; r(d)) is the density function of bivariate normal random variable

ξu,d(0). By the change of variables y = u + z/u and using properties of conditional distribution of

normal random variable (see e.g., Chapter 2.2 in Berman, 1992), we get

P {∃s∈Dξu,d(s) > u} =
e−u

2

2πu2

∫∫
R2

P {∃s∈Dχu,d(s)− θu,d(s, z) > 0} fu,d(z)dz1dz2

=
e−u

2

2πu2

∫∫
R2

Iu,d(z)fu,d(z)dz1dz2,

where Iu,d(z) := P {∃s∈Dχu,d(s)− θu,d(s, z) > 0} with

χu,d(s) = u
(
ξu,d(s)−Ru,d(s,0)R−1

u,d(0,0)ξu,d(0)
)
, s ∈D,

θu,d(s, z) = u2
(
1−Ru,d(s,0)R−1

u,d(0,0)(1 + z/u2)
)
, s ∈D, z ∈ R2

and

fu,d(z) =
1√

1− r2(d)
exp

(
1

1 + r(d)
(u2r(d)− z1 − z2)− (z1 − r(d)z2)2

2u2(1− r2(d))
− z2

2

2u2

)
, z ∈ R2.

Consequently, in order to show the claim it suffices to prove that for Wα(s) = (
√

2B
(1)
α (s1) −

sα1 ,
√

2B
(2)
α (s2) − sα2 )T , s ∈ D, where B(1)

α and B(2)
α are two independent fBm’s with Hurst index

α/2,

lim
u→∞

sup
d≥A(u)

∣∣∣∣∫∫
R2

Iu,d(z)fu,d(z)dz1dz2 − B2
α(S, 0)

∣∣∣∣
= lim

u→∞
sup

d≥A(u)

∣∣∣∣∫∫
R2

(
Iu,d(z)fu,d(z)− P {∃s∈DWα(s) + z > 0} e−z1−z2

)
dz1dz2

∣∣∣∣
= lim

u→∞
sup

d≥A(u)

∣∣∣∣∫∫
R2

(
Iu,d(z)fu,d(z)− I(z)e−z1−z2

)
dz1dz2

∣∣∣∣ = 0, (6.2)

with

I(z) := P {∃s∈DWα(s) + z > 0} (6.3)

= P

{
sup
s∈[0,S]

√
2Bα(s)− sα > −z1

}
P

{
sup
s∈[0,S]

√
2Bα(s)− sα > −z2

}
. (6.4)
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For any s, t ∈D,

Cov(χu,d(s), χu,d(t))

= u2Cov
(
ξu,d(s)−Ru,d(s,0)R−1

u,d(0,0)ξu,d(0), ξu,d(t)−Ru,d(t,0)R−1
u,d(0,0)ξu,d(0)

)
= u2{Ru,d(s, t)−Ru,d(s,0)R−1

u,d(0,0)Ru,d(0, t)}

= u2{(Ru,d(s, t)− E) + (E −Ru,d(s,0)) +Ru,d(s,0)(E −R−1
u,d(0,0)Ru,d(0, t))} (6.5)

where E is the 2× 2 identity matrix.

Since A(u) > 1 satisfying (6.1) tends to ∞ as u→∞, then by A3 we have

lim
u→∞

sup
d>A(u),s∈D

|Ru,d(s,0)− E| = 0 (6.6)

and

lim
u→∞

u2 sup
d≥A(u)

|r(d)| ≤ lim
u→∞

u2

logA(u)
sup

d≥A(u)
|r(d)| log d = 0. (6.7)

Therefore,

lim
u→∞

sup
d≥A(u)

u2(E −R−1
u,d(0,0)) = lim

u→∞
sup

d≥A(u)

u2r(d)

1− r2(d)

(
−r(d) 1

1 −r(d)

)
= 0. (6.8)

Note that, by A1, (2.1) and the Uniform Convergence Theorem (see, e.g., Theorem 1.5.2 in Bingham

et al., 1989), we get

lim
u→∞

sup
s∈[0,S]

∣∣u2(1− r(s/v(u)))− sα
∣∣

≤ lim
u→∞

sup
s∈[0,S]

∣∣∣∣1− r(s/v(u))

1− r(1/v(u))
− sα

∣∣∣∣+ lim
u→∞

sup
s∈[0,S]

∣∣∣∣1− r(s/v(u))

1− r(1/v(u))

∣∣∣∣ ∣∣u2(1− r(1/v(u)))− 1
∣∣

= 0.

Consequently,

lim
u→∞

sup
d≥A(u),s,t∈D

∣∣∣∣∣u2(E −Ru,d(s, t))−

(
|t1 − s1|α 0

0 |t2 − s2|α

)∣∣∣∣∣ = 0. (6.9)

Similarly,

lim
u→∞

sup
d≥A(u),s,t∈D

∣∣∣∣∣u2Ru,d(s,0)
(
E −R−1

u,d(0,0)Ru,d(0, t)
)
−

(
|t1|α 0

0 |t2|α

)∣∣∣∣∣
≤ lim

u→∞
sup

d≥A(u),s,t∈D

∣∣∣∣∣u2(E −Ru,d(0, t))−

(
|t1|α 0

0 |t2|α

)∣∣∣∣∣
+ lim
u→∞

sup
d≥A(u),s,t∈D

∣∣(Ru,d(s,0)− E)[u2(E −Ru,d(0, t))]
∣∣

+ lim
u→∞

sup
d≥A(u),s,t∈D

∣∣∣Ru,d(s,0)[u2(E −R−1
u,d(0,0))]Ru,d(0, t)

∣∣∣
= 0, (6.10)
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where in the last equality we have used (6.6), (6.8) and (6.9).

Substituting (6.9) and (6.10) into (6.5) gives

lim
u→∞

sup
d≥A(u),
s,t∈D

∣∣∣∣∣Cov(χu,d(s), χu,d(t))−

(
|s1|α + |t1|α − |t1 − s1|α 0

0 |s2|α + |t2|α − |t2 − s2|α

) ∣∣∣∣∣ = 0. (6.11)

Hence, the finite-dimensional distributions of χu,d converge to that of {
√

2Bα(s), s ∈D} uniformly

with respect to d ≥ A(u), where Bα(s) = (B
(1)
α (s1), B

(2)
α (s2))T .

Let C(D) denote the Banach space of all continuous functions on D equipped with sup-norm,

we now show that the measures on C(D) induced by {χu,d(s), s ∈D, d ≥ A(u)} are uniformly tight

for large u. In fact, since E {ξu,d(s)|ξu,d(0)} = Ru,d(s,0)R−1
u,d(0,0)ξu,d(0) then

E
{

(ξu,d(s)− ξu,d(t))T (Ru,d(s,0)−Ru,d(t,0))R−1
u,d(0,0)ξu,d(0)

}
= E

{
E
{

(ξu,d(s)− ξu,d(t))T |ξu,d(0)
}

(Ru,d(s,0)−Ru,d(t,0))R−1
u,d(0,0)ξu,d(0)

}
= E

{
ξTu,d(0)R−1

u,d(0,0)(Ru,d(0, s)−Ru,d(0, t))(Ru,d(s,0)−Ru,d(t,0))R−1
u,d(0,0)ξu,d(0)

}
and thus

E
{
‖χu,d(s)− χu,d(t)‖2

}
= u2

[
E
{
‖ξu,d(s)− ξu,d(t)‖2

}
−2E

{
(ξu,d(s)− ξu,d(t))T (Ru,d(s,0)−Ru,d(t,0))R−1

u,d(0,0)ξu,d(0)
}

+E
{
ξTu,d(0)R−1

u,d(0,0)(Ru,d(0, s)−Ru,d(0, t))(Ru,d(s,0)−Ru,d(t,0))R−1
u,d(0,0)ξu,d(0)

}]
= u2

[
E
{
‖ξu,d(s)− ξu,d(t)‖2

}
− E

{
‖(Ru,d(s,0)−Ru,d(t,0))R−1

u,d(0,0)ξu,d(0)‖2
}]

≤ u2E‖ξu,d(s)− ξu,d(t)‖2

= 2u2[1− r(|t1 − s1| /v(u)) + 1− r(|t2 − s2| /v(u))].

Moreover, by (2.1) and Potter’s Theorem (see, e.g., Theorem 1.5.6 in Bingham et al., 1989), there

exists some constant C > 1 such that

u2(1− r(s/v(u))) = u2(1− r(1/v(u)))
1− r(s/v(u))

1− r(1/v(u))
≤ C |s|α/2

holds for all s ∈ [0, S] and all large enough u. Hence, for large enough u we get

sup
d≥A(u)

E
{
‖χu,d(s)− χu,d(t)‖2

}
≤ 2C(|t1 − s1|α/2 + |t2 − s2|α/2) (6.12)

for any s, t ∈ D, implying the uniform tightness of the measures induced by {χu,d(s), s ∈ D, d ≥
A(u)}. This together with (6.11) implies that χu,d converges weakly, as u→∞, to

√
2Bα(s), s ∈D

uniformly for d ≥ A(u).
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Further, by (6.8) and (6.9) we have

lim
u→∞

sup
d≥A(u),s∈D

∣∣∣∣∣u2
(
E −Ru,d(s,0)R−1

u,d(0,0)
)
−

(
|s1|α 0

0 |s2|α

)∣∣∣∣∣ (6.13)

≤ lim
u→∞

sup
d≥A(u),s∈D

∣∣∣∣∣u2(E −Ru,d(s,0))−

(
|s1|α 0

0 |s2|α

)∣∣∣∣∣
+ lim
u→∞

sup
d≥A(u),s∈D

∣∣∣Ru,d(s,0)[u2(E −R−1
u,d(0,0))]

∣∣∣
= 0

and thus for any z ∈ R2

lim
u→∞

sup
d≥A(u),s∈D

∣∣θu,d(s)− (|s1|α − z1, |s2|α − z2)T
∣∣

≤ lim
u→∞

sup
d≥A(u),s∈D

∣∣∣∣∣
[
u2
(
E −Ru,d(s,0)R−1

u,d(0,0)
)
−

(
|s1|α 0

0 |s2|α

)][
1

1

]∣∣∣∣∣
+ lim

u→∞
sup

d≥A(u),s∈D

∣∣∣(E −Ru,d(s,0)R−1
u,d(0,0)

)
z
∣∣∣

= 0.

Therefore, for each z ∈ R2, the probability measures on C(D) induced by {χu,d(s)− θu,d(s, z), s ∈
D} converge weakly, as u→∞, to that induced by {Wα(s) + z, s ∈D} uniformly with respect to

d ≥ A(u). Then, by the continuous mapping theorem, (6.4) and the fact that the set of discontinuity

points of cumulative distribution function of sups∈[0,S]

√
2Bα(s)−sα consists of at most of one point

(see, e.g., Theorem 7.1 in Azaïs and Wschebor, 2009 or related Lemma 4.4 in Dȩbicki et al., 2020a),

we get

lim
u→∞

sup
d≥A(u)

|Iu,d(z)− I(z)| = 0

for almost all z ∈ R2, where I(z) is defined in (6.3). Further, by (6.7) we know

lim
u→∞

sup
d≥A(u)

∣∣fu,d(z)− e−z1−z2
∣∣ = 0, ∀ z ∈ R2,

and thus for almost all z ∈ R2

lim
u→∞

sup
d≥A(u)

∣∣Iu,d(z)fu,d(z)− I(z)e−z1−z2
∣∣ = 0. (6.14)

Therefore, to verify (6.2), we have to put the limit into integral. In the following, we look for an

integrable upper bound for supd≥A(u) Iu,d(z)fu,d(z). We first give a lower bound for inf
d≥A(u),s∈D

θu,d(s, z).

Let ε(< 1/2) be a positive constant. In view of (6.13), we know that, for sufficiently large u

sup
d≥A(u),s∈D

∣∣∣E −Ru,d(s,0)R−1
u,d(0,0)

∣∣∣ ≤ (ε ε

ε ε

)
,
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and thus

inf
d≥A(u),
s∈D

θu,d(s, z) = inf
d≥A(u),s∈D

{u2(E −Ru,d(s,0)R−1
u,d(0,0))1 + (E −Ru,d(s,0)R−1

u,d(0,0))z − z}

≥ −1− z + inf
d≥A(u),s∈D

{(E −Ru,d(s,0)R−1
u,d(0,0))z}

≥ −1− z −

(
ε ε

ε ε

)
|z| := h(z), z ∈ R2.

Let {ek, k = 1, 2, 3} denotes (1, 1)T , (0, 1)T and (1, 0)T , respectively. By Cauchy-Schwartz inequality

and (6.12), for large enough u

sup
d≥A(u)

E
{(

eTk (χu,d(s)− χu,d(t))
)2} ≤ sup

d≥A(u)
2E
{
‖χu,d(s)− χu,d(t)‖2

}
≤ 4C(|t1 − s1|α/2 + |t2 − s2|α/2), k = 1, 2, 3 (6.15)

holds for any s, t ∈ D. Thus, by Sudakov-Fernique inequality (see, e.g., Theorem 2.9 in Adler,

1990), we have

sup
d≥A(u)

E
{

sup
s∈D

eTk χu,d(s)

}
≤ E

{
sup
s∈D

2∑
i=1

2
√
CB

(i)
α/2(si)

}
:= C1 <∞, k = 1, 2, 3, (6.16)

where B(i)
α/2’s are independent fBm’s with Hurst index α/4. Then, for all large enough u,

sup
d≥A(u)

Iu,d(z) = sup
d≥A(u)

P {∃s∈Dχu,d(s)− θu,d(s, z) > 0}

≤ sup
d≥A(u)

P
{
∃s∈Dχu,d(s) > inf

d≥A(u),s∈D
θu,d(s, z)

}
≤ sup

d≥A(u)
P
{

sup
s∈D

eTk χu,d(s) > eTk h(z)

}

≤ sup
d≥A(u)

exp

(
−
(
eTk h(z)− E

{
sups∈D eTk χu,d(s)

})2
2Vars∈DeTk χu,d(s)

)
(6.17)

≤ exp
(
−C2

(
eTk h(z)− C1

)2)
, z ∈ Zk, k = 1, 2, 3,

where (6.17) follows from Borell-TIS inequality (see, e.g., Theorem 2.1.1 in Adler and Taylor, 2007),

the last inequality follows from (6.15)-(6.16) with C2 = (16CSα/2)−1, and

Z1 = {(z1, z2)|z1 < 0, z2 < 0, (2ε− 1)(z1 + z2) > 2 + C1},

Z2 = {(z1, z2)|z1 > 0, z2 < 0, (ε− 1)z2 − εz1 > 1 + C1},

Z3 = {(z1, z2)|z1 < 0, z2 > 0, (ε− 1)z1 − εz2 > 1 + C1}.
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Therefore,

sup
d≥A(u)

Iu,d(z) ≤ g(z) :=

 exp
(
−C2

(
eTk h(z)− C1

)2)
, z ∈ Zk, k = 1, 2, 3,

1, z ∈ R2\
⋃3
k=1 Zk,

holds for sufficiently large u. Moreover, by (6.7)

sup
d≥A(u)

fu,d(z)ez1+z2

= sup
d≥A(u)

1√
1− r2(d)

exp

(
u2r(d)

1 + r(d)
+

2u2r(d)(1− r(d))(z1 + z2)− (z2
1 − 2r(d)z1z2 + z2

2)

2u2(1− r2(d))

)

≤ 3

2
sup

d≥A(u)
exp

(
u2r(d)

1 + r(d)
+
−1+r(d)

2 (z2 − z1)2 − 1−r(d)
2 (z1 + z2 − 2u2r(d))2 + 2u4r2(d)(1− r(d))

2u2(1− r2(d))

)

≤ 3

2
sup

d≥A(u)
eu

2r(d) ≤ 2, z ∈ R2

holds for all large enough u, and thus

sup
d≥A(u)

Iu,d(z)fu,d(z) ≤ 2g(z)e−z1−z2 , z ∈ R2.

We now show that g(z)e−z1−z2 is integrable on R2. In fact,∫∫
R2

g(z)e−z1−z2dz1dz2 =

(∫∫
Z1

+

∫∫
Z2

+

∫∫
Z3

+

∫∫
R2\

⋃3
k=1 Zk

)
g(z)e−z1−z2dz1dz2,

where∫∫
Z1

g(z)e−z1−z2dz1dz2

≤
∫ 0

−∞

∫ 0

−∞
exp

(
−C2 ((2ε− 1)z1 + (2ε− 1)z2 − 2− C1)2 − z1 − z2

)
dz1dz2

≤
(∫ 0

−∞
exp

(
−C2(2ε− 1)2z2

1 + (2C2(2ε− 1)(2 + C1)− 1) z1

)
dz1

)2

<∞,

∫∫
Z2

g(z)e−z1−z2dz1dz2

=

∫∫
Z3

g(z)e−z1−z2dz1dz2

=

∫ ∞
0

(∫ εz1+1+C1
(ε−1)

−∞
exp

(
−C2 ((ε− 1)z2 − εz1 − 1− C1)2 − z2

)
dz2

)
e−z1dz1

=
e

1+C1
1−ε

1− ε

∫ ∞
0

e( ε
1−ε−1)z1dz1

∫ ∞
0

exp

(
−C2z

2
2 −

z2

ε− 1

)
dz2 <∞,
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since ε < 1/2, and∫∫
R2\

⋃3
k=1 Zk

g(z)e−z1−z2dz1dz2 ≤

(∫∫
z1<0,z2<0,z1+z2≥ 2+C1

2ε−1

+2

∫ ∞
0

∫ ∞
εz1+C1+1

ε−1

)
e−z1−z2dz1dz2

≤
(

2 + C1

1− 2ε

)2

e
2+C1
1−2ε + 2e

1+C1
1−ε

∫ ∞
0

e( ε
1−ε−1)z1dz1 <∞.

Consequently, (6.2) follows from the Dominated Convergence Theorem and (6.14). This completes

the proof. �

Lemma 6.2. Let X(t), t ≥ 0 be a centered stationary Gaussian process with unit variance and

covariance function satisfying A1 and A3. Let v(u), Bα(x) and m(u) be defined in (2.1), (2.3) and

(2.5) respectively. Then for A(u) such that

lim
u→∞

A(u)v(u) =∞ and lim
u→∞

A(u)

m(u)
= 0 (6.18)

and any x ≥ 0 we have

P {L∗u[0, A(u)] > x} ∼ Bα(x)A(u)v(u)Ψ(u), u→∞. (6.19)

Proof : We follow the argument used in the proof of Theorem 2.1 in Dȩbicki et al. (2019). Let A(u)

satisfy (6.18), for any S > 1 define

∆k = [kS/v(u), (k + 1)S/v(u)], k = 0, . . . , Nu

with Nu = bA(u)v(u)/Sc, i.e., the integer part of A(u)v(u)/S. By stationarity of X, we have for

all u positive and x ≥ 0

I1(u) ≤ P {L∗u[0, A(u)] > x} ≤ I2(u),

where

I1(u) = (Nu − 1)P {L∗u∆0 > x} −
∑

0≤i<k≤Nu−1

qi,k(u),

I2(u) = (Nu + 1)P {L∗u∆0 > x}+
∑

0≤i<k≤Nu

qi,k(u),

with qi,k(u) = P
{

supt∈∆i
X(t) > u, supt∈∆k

X(t) > u
}
. By Theorem 5.1 in Dȩbicki et al. (2019)

and (2.3), we have

lim
S→∞

lim
u→∞

NuP {L∗u∆0 > x}
A(u)v(u)Ψ(u)

= Bα(x) (6.20)

for any x ≥ 0. Therefore, it suffices to show that the double sum is negligible with respect to

A(u)v(u)Ψ(u) as u→∞ and then as S →∞.

Let ε∗(< 2) be the positive root of equation x2−(2−α)x− 3
2α = 0 and put β = inft≥1{1−r(t)},

which by A3 is positive. Define

A0(u) = 0, A1(u) = u
ε∗−2
α ∧A(u), A2(u) = 1 ∧A(u), A3(u) = eβu

2/8 ∧A(u), A4(u) = A(u)
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and

Λl(u) = {(i, k) : 1 ≤ i+ 1 < k ≤ Nu, Al−1(u) < (k − i− 1)S/v(u) ≤ Al(u), l = 1, 2, 3, 4}.

Then ∑
0≤i<k≤Nu

qi,k(u) =
∑

0≤i<Nu

qi,i+1(u) +
4∑
l=1

∑
(i,k)∈Λl(u)

qi,k(u) (6.21)

:= Q0(u) +

4∑
l=1

Ql(u).

According to (4.7)-(4.9) in Dȩbicki et al. (2019) we know that

lim sup
u→∞

Q2(u)

A(u)v(u)Ψ(u)
= 0, (6.22)

lim
S→∞

lim sup
u→∞

Q1(u)

A(u)v(u)Ψ(u)
= 0, (6.23)

and

lim
S→∞

lim sup
u→∞

Q0(u)

A(u)v(u)Ψ(u)
= 0. (6.24)

Next, without loss of generality we suppose that A(u) > 1 (since otherwise, Q3(u) = 0). Then by

the stationarity of X, for sufficiently large u

sup
(i,k)∈Λ3(u)

E

{
sup

s∈∆i,t∈∆k

(X(s) +X(t))

}
≤ 2E

{
sup
s∈[0,1]

X(s)

}
=: C3 <∞,

sup
(i,k)∈Λ3(u),s∈∆i,t∈∆k

Var(X(s) +X(t)) = 4− 2 inf
(i,k)∈Λ3(u),(s,t)∈∆i×∆k

{1− r(t− s)}

≤ 4− 2β.

The last inequality above follows from

inf
(i,k)∈Λ3(u),(s,t)∈∆i×∆k

{1− r(t− s)} ≥ inf
(i,k)∈Λ3(u),t≥(k−i−1)S/v(u)

{1− r(t)} ≥ β,

where we used that (k− i−1)S/v(u) > 1 for (i, k) ∈ Λ3(u). Then, by Borell-TIS inequality we have

for large enough u

sup
(i,k)∈Λ3(u)

qi,k(u) ≤ sup
(i,k)∈Λ3(u)

P

{
sup

s∈∆i,t∈∆k

X(s) +X(t) > 2u

}

≤ exp

(
−(2u− C3)2

2(4− 2β)

)
≤ exp

(
−1 + β/2

2
(u− C3/2)2

)
,
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and thus

lim sup
u→∞

Q3(u)

A(u)v(u)Ψ(u)
≤ lim sup

u→∞

NuA3(u)v(u)

SA(u)v(u)Ψ(u)
exp

(
−1 + β/2

2
(u− C3/2)2

)
≤ lim sup

u→∞

√
2πuv(u)

S2
exp

(
−β

8
u2 + C3u(1 + β/2)

)
= 0. (6.25)

Further, since eβu2/8 satisfies (6.1), then by Lemma 6.1 and stationarity of X,

Q4(u) ≤ 2N2
uΨ2(u)B2

α(S, 0)

holds for u sufficiently large. Therefore,

lim sup
u→∞

Q4(u)

A(u)v(u)Ψ(u)
≤ lim sup

u→∞

2N2
uΨ2(u)B2

α(S, 0)

A(u)v(u)Ψ(u)

≤ lim sup
u→∞

2B2
α(S, 0)

S2Bα(0)

A(u)

m(u)
= 0, (6.26)

where the last equality follows from (6.18).

Consequently, substituting (6.22)-(6.26) into (6.21) yields

lim
S→∞

lim sup
u→∞

1

A(u)v(u)Ψ(u)

∑
0≤i<k≤Nu

qi,k(u) = 0,

which together with (6.20) completes the proof. �

Corollary 6.3. If X, v(u), Bα(x), m(u) and A(u) are given as in Lemma 6.2, then for any x ≥ 0

and ε ∈ (0, 1) there exists δ > 0 such that

lim inf
u→∞

inf
t∈[A(u),δm(u)]

P {L∗u[0, t] > x}
tBα(x)v(u)Ψ(u)

≥ 1− ε (6.27)

and

lim sup
u→∞

sup
t∈[A(u),δm(u)]

P {L∗u[0, t] > x}
tBα(x)v(u)Ψ(u)

≤ 1 + ε. (6.28)

Proof : Let x ≥ 0 be fixed, recalling (5.2) we have that, for arbitrary ε ∈ (0, 1), there exists some

δ > 0 such that

(1− ε/4) ≤ P {Y (t) > x}
tFα(x)

≤ (1 + ε/4), t ∈ (0, δ). (6.29)

For such ε and δ, suppose that (6.27) does not hold. Then, there exist two sequences {un, n ∈ N}
and {tn, n ∈ N} such that un →∞ as n→∞ and

P
{
L∗un [0, tn] > x

}
tnBα(x)v(un)Ψ(un)

< 1− ε, tn ∈ [A(un), δm(un)], n ∈ N. (6.30)

Putting t̂n = tn/m(un), by (2.5) and (3.4), we get

P
{
L∗un [0, t̂nm(un)] > x

}
t̂nFα(x)

< 1− ε, t̂n ∈ [A(un)/m(un), δ], n ∈ N. (6.30′)
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Since sequence {t̂n, n ∈ N} is bounded, then there exists a convergent subsequence {t̂nk , k ∈ N}
such that limk→∞ t̂nk ≥ 0. If limk→∞ t̂nk > 0, then by Corollary 5.2

P
{
L∗unk

[0, t̂nkm(unk)] > x
}

P
{
Y (t̂nk) > x

} > 1− ε/4

holds for sufficiently large k, which together with (6.29) implies

P
{
L∗unk

[0, t̂nkm(unk)] > x
}

t̂nkFα(x)
> (1− ε/4)2.

This however contradicts (6.30′). If limk→∞ t̂nk = 0, then

lim
k→∞

tnkv(unk) ≥ lim
k→∞

A(unk)v(unk) =∞ and lim
k→∞

tnk
m(unk)

= lim
k→∞

t̂nk = 0,

and thus by Lemma 6.2

P
{
L∗unk

[0, tnk ] > x
}

tnkBα(x)v(unk)Ψ(unk)
> 1− ε/4

holds for sufficiently large k. This contradicts (6.30). An analogous argument can be used to verify

(6.28). This completes the proof. �
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Arendarczyk, M. and Dȩbicki, K. Exact asymptotics of supremum of a stationary Gaussian process

over a random interval. Statist. Probab. Lett., 82 (3), 645–652 (2012). MR2887483.

Azaïs, J.-M. and Wschebor, M. Level sets and extrema of random processes and fields. John Wiley

& Sons, Inc., Hoboken, NJ (2009). ISBN 978-0-470-40933-6. MR2478201.

Berman, S. M. Sojourns above a high level for a Gaussian process with a point of maximum variance.

Comm. Pure Appl. Math., 38 (5), 519–528 (1985). MR803245.

Berman, S. M. Extreme sojourns of a Gaussian process with a point of maximum variance. Probab.

Theory Related Fields, 74 (1), 113–124 (1987). MR863721.

http://www.ams.org/mathscinet-getitem?mr=MR1088478
http://www.ams.org/mathscinet-getitem?mr=MR2319516
http://www.ams.org/mathscinet-getitem?mr=MR2887483
http://www.ams.org/mathscinet-getitem?mr=MR2478201
http://www.ams.org/mathscinet-getitem?mr=MR803245
http://www.ams.org/mathscinet-getitem?mr=MR863721
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