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Abstract. Alternative proofs of the characterizations of the wide-sense geometric and of the
Marshall-Olkin exponential distributions via monotone set functions are provided. In contrast
to the ones presented in Shenkman (2017), which rely on the generative constructions of Arnold
(1975) or Marshall and Olkin (1967) to establish that certain functions equipped with monotone
parameters are proper survival functions, we aim herein to check that these candidates satisfy a
set of well known necessary and sufficient analytical conditions. The major difficulty in such an
approach consists in verifying that they do not infringe any of the so-called rectangle inequalities.
Fortunately, a factorization shows that compliance is guaranteed as long as a finite number of very
specific “basis” rectangle inequalities are not violated: a condition which is, by the very definition
of the monotone parameters, trivially met.

1. Introduction

Distribution theory, as a main pillar of science, enjoys a very special status within the realm
of mathematics. While univariate distributions have and continue to contribute heavily to this
success, the transition from difficult probabilistic situations in real life to mathematical problems
often require the involvement of multivariate distributions. In the sequel, we will focus our attention
on two intimately related particular types of such distributions. On the one hand, we have the most
famous multidimensional extension of the exponential distribution, which at the time, thanks to its
characterization via both intuitive generative constructions based on shocks and its fulfillment of the
so-called lack of memory property, bridged a relevant knowledge gap for the modeling of risk profiles
of systems constituted of many parts interacting with each other; see Marshall and Olkin (1967).
More precisely, denoting Sd := {1, . . . , d}, let {λI}∅6=I⊆Sd

be a collection of non-negative parameters
satisfying

∑
I:i∈I λI > 0 for all i ∈ Sd, and let {EI}∅6=I⊆Sd

be independent exponentially distributed
random variables, where EI ∼ Exp(λI). Then, the random vector τ = (τ1, . . . , τd) taking values in
Rd>0 defined by

τi = min
{
EI : i ∈ I

}
, i ∈ Sd, (1.1)
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is said to follow the d-variate Marshall-Olkin exponential (MOd) distribution with parameters
{λI}∅6=I⊆Sd

. Moreover, a random vector τ supported on Rd>0 follows a MOd distribution if and
only if it satisfies the lack of memory (LM) property

P
(
τi > ti + s, i ∈ I

)
= P

(
τi > ti, i ∈ I

)
P
(
τi > s, i ∈ I

)
(1.2)

for all I ⊆ Sd and all t ∈ Rd+, s > 0, where R+ = [0,∞). On the other hand, we have the more
complicated discrete analogue of the Marshall-Olkin distribution; see Esary and Marshall (1973)
and Arnold (1975). Both articles propose their own discrete probabilistic model to account for the
richer structure of the distribution. Taking the shock model of Arnold (1975) and borrowing the
terminology related to the equivalent generative construction presented in Esary and Marshall (1973)
leads us to a formal definition. Namely, let {χ(n)}n∈N be a sequence of d-variate independent and
identically Bernoulli distributed random vectors with associated probabilities {pI}I⊆Sd

satisfying∑
I⊆Sd

pI = 1 and
∑

I:i/∈I pI < 1 for all i ∈ Sd. Then, the random vector τ̃ = (τ̃1, . . . , τ̃d) with
values in Nd defined by

τ̃i = min
{
n ∈ N : χ

(n)
i = 0

}
, i ∈ Sd, (1.3)

is said to follow the d-variate wide-sense geometric (GWd ) distribution with parameters {pI}I⊆Sd
.

While in the continuous case the solution of the functional equation (1.2) can be found inductively
by inspection as it involves the fundamental multiplicative identity of the exponential function, a
completely different concept is needed to make up for the loss of the exponential ansatz when the
LM property is only discrete, i.e., when (1.2) only holds for all I ⊆ Sd and all t ∈ Nd0, s ∈ N,
where N = {1, 2, . . .} and N0 = N ∪ {0}. Surprisingly, although Azlarov and Volodin (1983) came
up with the right idea to solve the problem in dimension 2, it took many decades before it became
mathematical knowledge that a random vector τ̃ with values in Nd satisfies the discrete LM property
if and only if it follows a GWd distribution; see Mai et al. (2013a,b). Rather than pointing in the
direction of a notable open problem, we believe that such a time scale highlights the nonchalance
of experts towards a priori purely theoretical questions on complicated distributions without any
concrete published applications; cf. Esary and Marshall (1973), Arnold (1975), Azlarov and Volodin
(1983), Marshall and Olkin (1991) and Balakrishnan and Lai (2009, p. 452f.). However, sparked
off by Mai and Scherer (2009a,b, 2011, 2012), who studied, though initially without realizing, the
exchangeable Marshall-Olkin copula reparametrized with some novel monotone parameters, Mai
et al. (2013a,b) have set the ball rolling as the firsts of a series of articles devoted to elevating the
reparametrizations as relevant unconventional sophisticated technical tools. Indeed, when properly
harnessed, they may offer a strong guidance through the multidimensional maze arising from any
attempt to shed light on intrinsic properties of the MOd and GWd distributions: compare, e.g.,
Shenkman (2017) with Esary and Marshall (1974), Langberg et al. (1977), and Balakrishnan and
Lai (2009, p. 215f.), or Shenkman (2020) with Mai and Scherer (2009a,b, 2011, 2012). This brings
us to the prime concern of the present paper. In the literature, all characterizations of the MOd
and GWd distributions via their survival functions are achieved using a probabilistic model equivalent
to (1.1) or (1.3) seemingly corroborating the statement of Joe (1997, p. 11) that a purely analytical
approach is often difficult to pursue if not hopeless; see Marshall and Olkin (1967), Esary and
Marshall (1973), Galambos and Kotz (1978, Ch. 5), Mai et al. (2013b), Shenkman (2017). However,
we will demonstrate that, quite remarkably, embarking on such an enterprise in the context of the
distributions with limited memory is by no means doomed thanks to their monotone parameters.

2. Characterizations of the GWd and MOd survival functions

Before stating the characterization theorem, we need to recall from Shenkman (2017) some results
on monotone set functions which will serve as parameters for the GWd andMOd distributions.
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2.1. Prerequisites on monotone set functions. Let µ be a real-valued function defined on the subsets
of Sd. For any T ⊆ Sd and i ∈ T , where T denotes the complement of T in Sd, we introduce the
forward difference

∇i µ(T ) := µ(T )− µ
(
T ∪ {i}

)
.

For each non-empty subset I of T , say I = {i1, . . . , i|I|}, define recursively

∇I µ(T ) := ∇i|I| · · · ∇i1 µ(T ) =
∑
J⊆I

(−1)|J | µ
(
T ∪ J

)
and set ∇∅ µ(T ) := µ(T ). The function µ is said to be d-monotone if it satisfies

∇I µ(T ) ≥ 0 ∀T ⊆ Sd and ∀ I ⊆ T , I 6= ∅, (2.1)

or, equivalently, it is d-monotone if ∇T µ(T ) ≥ 0 for all T ( Sd; see Lemma 2.2 in Shenkman
(2017).

Definition 2.1 (Md and LMd). We define Md to be the set of all d-monotone functions µ :
P(Sd)→ [0, 1] which satisfy

µ(∅) = 1, (2.2a)

µ
(
{i}
)
< 1 ∀i ∈ Sd. (2.2b)

Moreover, we let LMd be the set of all functions µ : P(Sd)→ (0, 1] which satisfy (2.2a) and (2.2b),
and for which the composite function ln ◦µ is d-monotone.

History shows that it was difficult to relate the setsMd and LMd to the GWd andMOd distribu-
tions. While the links are implicitly present in Esary and Marshall (1973, p. 20), in Formulas (2.1)
and (2.8) in Langberg et al. (1977), in Theorems 4.2 and 3.1 in Mai and Scherer (2009b,a), re-
spectively, and in Theorem 4.1 in Sun et al. (2017), an explicit assignment was, despite a decisive
impetus given by Gnedin and Pitman (2008), still only reached in stages; see Mai and Scherer
(2009a, 2011), Mai et al. (2013b), and Shenkman (2017).

The relationship between the setsMd and LMd is made clear by our next proposition. It builds
on the work of Bennett (1992) and Rhoades (1963) on totally monotone sequences; see Theorem 8
in Bennett (1992).

Proposition 2.2. Let µ : P(Sd)→ (0, 1]. Then, µ ∈ LMd if and only if µs ∈Md for all s > 0.

Proof : Refer to Appendix A. �

Recalling that a random vector τ with survival function S is said to be min-infinitely divisible
(min-id) if S1/n is itself a survival function for all n ∈ N, Proposition 2.3 shows thatMd and LMd

are intimately related to the d-variate (min-id) Bernoulli distributions.

Proposition 2.3. Let µ : P(Sd) → [0, 1]. Then, µ ∈ Md if and only if there exists a random
vector χ with values in {0, 1}d such that P(χi = 1) < 1 for all i ∈ Sd and

µ(T ) = P
(
χi = 1, i ∈ T

)
, T ⊆ Sd. (2.3)

Additionally, µ ∈ LMd if and only if χ is min-id with P(χ = 1) > 0.

Proof : Combining Proposition 2.2 with Propositions 2.4 and 3.7 in Shenkman (2017) yields the
claim. �
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2.2. Analytical derivation of the GWd and MOd survival functions. Shenkman (2017) showed that
the survival function of the GWd , resp. MOd, distribution can be derived directly from the LM
property (1.2). For the convenience of the reader, we go over the argumentation for the MOd
distribution and remind that it covers implicitly the case of the GWd distribution. Let τ follow
a MOd distribution and denote the ordered list of t1, . . . , td ∈ R+ by t(1) ≤ · · · ≤ t(d) with the
convention t(0) := 0. Further, for each t ∈ Rd+, let πt: Sd → Sd be a permutation depending on
t such that tπt(1) ≤ · · · ≤ tπt(d). Then, relying solely on (1.2), the survival function of τ can be
written for all t ∈ Rd+ as

S(t) = P
(
τ1 > t1, . . . , τd > td

)
= P

(
τπt(1) > t(1), . . . , τπt(d) > t(d)

)
= P

(
τπt(1) > t(1), . . . , τπt(d) > t(1)

)
P
(
τπt(2) > t(2) − t(1), . . . , τπt(d) > t(d) − t(1)

)
= P

(
τπt(1) > t(1), . . . , τπt(d) > t(1)

)
P
(
τπt(2) > t(2) − t(1), . . . , τπt(d) > t(2) − t(1)

)
× P

(
τπt(3) > t(3) − t(2), . . . , τπt(d) > t(d) − t(2)

)
=

d∏
i=1

P
(
τπt(i) > t(i) − t(i−1), . . . , τπt(d) > t(i) − t(i−1)

)
,

i.e., the probability of the event that the component τi survives ti units of time for all i ∈ Sd can be
factored into the product of d probabilities: the probability that all the components survive the first
t(1) units of time multiplied by the probability that the components with indices in {πt(2), . . . , πt(d)}
survive additional t(2) − t(1) units of time, etc. Again thanks to (1.2), we obtain for all I ⊆ Sd and
all m,n ∈ N, that

P
(
τi >

m

n
, i ∈ I

)n
= P

(
τi > 1, i ∈ I

)m
.

In fact, bearing in mind that P
(
τi > 0, i ∈ Sd

)
= 1, the equality holds for all m ∈ N0. From the

density of the rationals in R and the right-continuity of the survival function, it follows that

P
(
τi > t, i ∈ I

)
= P

(
τi > 1, i ∈ I

)t (2.4)

for all I ⊆ Sd and all t ∈ R+. So, we have

S(t) =

d∏
i=1

P
(
τπt(i) > 1, . . . , τπt(d) > 1

)t(i)−t(i−1)

=
d∏
i=1

µ
(
{πt(i), . . . , πt(d)}

)t(i)−t(i−1) , (2.5)

where µ is a function defined on the subsets of Sd by

µ(T ) = P
(
τi > 1, i ∈ T

)
, T ⊆ Sd.

The 2d − 1 values {µ(T )}∅6=T⊆Sd
uniquely determine S via (2.5), which yields that at any point

in time, the probability that a group of components of τ survives one additional unit of time is
governed by a unique d-variate Bernoulli distribution of the random vector χ given by

χi :=

{
0, if τi ≤ 1,

1, if τi > 1,
i ∈ Sd.

The survival probabilities of χ are completely determined by µ via (2.3). Since for all n ∈ N, the
random vector nτ has survival function S1/n, we see that for each n ∈ N, µ1/n itself defines the
survival probabilities of a d-variate Bernoulli distribution, which, in turn, implies that χ is min-id.
As τ is almost surely finite, we obtain for all i ∈ Sd, that P(χi = 1) < 1. Moreover, from (2.4)
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together with the fact that S(0) = 1 and the right-continuity of the survival function, we deduce
that P(χ = 1) > 0. Thus, in view of Proposition 2.3, µ ∈ LMd.

2.3. Characterization theorem. The characterizations of the GWd andMOd survival functions with
the classical parameters of their shock models (1.3) and (1.1) are without any doubt essential.
However, the alternative characterizations given in terms of parameters belonging to the sets Md

and LMd, already partially introduced in Section 2.2 and stated formally in Theorem 2.4, have a
lot to offer.

Theorem 2.4 (Characterizations of the GWd andMOd survival functions).
(i) A function S : Rd+ → [0, 1] defines a MOd survival function if and only if there exists

µ ∈ LMd such that for all t ∈ Rd+, it holds that

S(t) =
d∏
i=1

{
µ
(
{πt(i), . . . , πt(d)}

)}t(i)−t(i−1)

. (2.6)

(ii) A function S : Nd0 → [0, 1] defines a GWd survival function if and only if there exists µ ∈Md

such that (2.6) holds for all t ∈ Nd0.

Proof : The proofs of necessity for the GWd and MOd survival functions were already given in
Shenkman (2017) but repeated in Section 2.2 for completeness. Sufficiency is shown in Section 3.2
forMOd and in Section 3.3 for GWd . As opposed to the standard practice, we will not rely on any
probabilistic model: The relationships between the parameters in the sets Md and LMd and the
ones in the constructions (1.1) and (1.3) can be found in Shenkman (2017). �

Theorem 3.5 given in Mai et al. (2013b) was identified as the tool of choice to carry out a thorough
study of the exchangeable GWd distribution; see Mai et al. (2013b, p. 463). Theorem 2.4 extends
its restricted scope of application since the indisputable benefit of this technical tool, originally
specialized for the exchangeable GWd distribution, is brought to bear on all the distributions with
limited memory. This way, many known results, prominent or not, previously perceived to be
tedious to derive, have been relegated to the class of low-hanging fruits. For instance, the second
part of the proof of Lemma 2.1 in Shenkman (2020) illustrates how straightforward Lemmas 2.1
and 3.1 in Mai and Scherer (2013) and Mai et al. (2013b) really are when considered in the context
of the above reparametrizations. Additionally, bringing this tool into play yields quite a few new
results and proof techniques such as the one we are about to discover in Section 3.

3. Analytical proofs of sufficiency in Theorem 2.4

McNeil and Nešlehová (2009) characterized the multivariate Archimedean copulas using an ap-
proach which relies on an analogue of the characterization of cumulative distribution functions via
their analytical properties for survival functions; see, e.g., Joe (1997, p. 11). Accordingly, finding
out whether a given function is a survival function requires, among other things, to check that
it satisfies the d-decreasingness condition on hyperrectangles of all possible sizes; see Lemma 1 in
McNeil and Nešlehová (2009). Lemma 3.1 below, an adaption of this result, allows to only consider
hypercubes of certain sizes as its proof takes into account the σ-additivity of probability measures.
Whereas the authors were not particularly affected by the seemingly stronger condition, it would
have been an insurmountable hurdle for the proof technique we present in Section 3.2.

3.1. A technical lemma. Before proceeding, let us introduce some notation: Inequalities between
vectors are understood componentwise, 1I : Sd → {0, 1} denotes the indicator function of a set
I ⊆ Sd, and for any t ∈ Rd, ‖t‖1 :=

∑d
i=1 |ti|.
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Lemma 3.1. A function S : Rd+ → [0, 1] is a survival function of a probability measure on Rd>0 if
and only if

(i) S(0) = 1 and lim
ti→∞

S(t) = 0 for each i ∈ Sd and all tj ≥ 0, j ∈ Sd\{i},

(ii) S is right-continuous: ∀ t ∈ Rd+ one has that ∀ ε ∈ (0, 1) ∃ δ > 0 s.t. ∀ s ≥ t

‖s− t‖1 < δ ⇒ |S(s)− S(t)| < ε,

(iii) (rectangle inequality) for any t ∈ Rd+, there exists s̃ > 0 s.t. for all s ∈ (0, s̃]∑
I⊆Sd

(−1)|I|S
(
t1 + s · 1I(1), . . . , td + s · 1I(d)

)
≥ 0.

Proof : Lemma 1 in McNeil and Nešlehová (2009) asserts that the d-decreasingness of S, i.e., for all
t ∈ Rd+ and all s ∈ Rd>0,∑

I⊆Sd

(−1)|I|S
(
t1 + s1 · 1I(1), . . . , td + sd · 1I(d)

)
≥ 0,

together with the conditions (i) and (ii) are necessary and sufficient in order for S to define a survival
function of a probability measure on Rd>0. To conclude the proof, we will show that conditions (ii)
and (iii) imply the d-decreasingness of S. Thanks to the right-continuity of S, it follows for all
t ∈ Rd+ and all s ∈ Rd>0, that

S
(
t1 + s1, . . . , td + sd

)
= lim

n→∞
S

(
t1 +

dns1e
n

, . . . , td +
dnsde
n

)
,

where d·e denotes the ceiling function. Hence, we obtain∑
I⊆Sd

(−1)|I|S
(
t1 + s1 · 1I(1), . . . , td + sd · 1I(d)

)
= lim
n→∞

∑
I⊆Sd

(−1)|I|S
(
t1 +

dns1e
n

1I(1), . . . , td +
dnsde
n

1I(d)

)

= lim
n→∞

dns1e−1∑
i1=0

· · ·
dnsde−1∑
id=0

∑
I⊆Sd

(−1)|I|S
(
t1+

i1
n
+

1

n
1I(1), . . . , td+

id
n
+
1

n
1I(d)

)
≥ 0,

where the last equality holds since we have decomposed the hyperrectangle(
t1, t1 +

dns1e
n

]
× . . .×

(
td, td +

dnsde
n

]
into

d∏
i=1
dnsie hypercubes of length 1

n . �

3.2. Main result: Proof of sufficiency in Theorem 2.4 (i). We show that S : Rd+ → [0, 1] given
as in (2.6) satisfies conditions (i) − (iii) of Lemma 3.1 if µ ∈ LMd, whereby checking the non-
infringement of condition (iii) is the difficult part.
S(0) = 1 is easily seen while limti→∞ S(t) = 0 for all i ∈ Sd simply follows from the fact that

µ(I) < 1, ∀ I ⊆ Sd, I 6= ∅. (3.1)

To see why (3.1) holds, note first that µ
(
{i}
)
< 1 for all i ∈ Sd by (2.2b). Striving for a contra-

diction, assume that (3.1) is not true. Then, there exists I ⊆ Sd with |I| > 1 such that µ(I) ≥ 1
and µ(T ) < 1 for all T ( I. For any i ∈ I, it follows from the d-monotonicity of ln ◦µ that
lnµ

(
I\{i}

)
− lnµ(I) ≥ 0. Therefore, µ(I) ≤ µ

(
I\{i}

)
< 1, which is a contradiction. This gives us

(i).
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We now verify (ii). Let t ∈ Rd+ and ε ∈ (0, 1) be given. Order the elements of t such that
t(1) = . . .= t(l1)< t(l1+1) = . . .= t(l2)< . . . < t(lm−1+1) = . . . = t(lm), where lm = d, and define

Mt :=

 min
i∈{2,...,m}

{
t(li) − t(li−1)

}
, if l1 < d,

1, if l1 = d.

Introduce

Ii :=
{
πt(i), . . . , πt(d)

}
, i ∈ Sd,

and set Id+1 := ∅. Next, let

L := min
i∈{1,...,d}

{
µ
(
Ii
)

µ
(
Ii+1

)}.
Notice that L ∈ (0, 1) since µ is positive and L ≤ µ

(
{πt(d)}

)
< 1. Finally, define

δ := min

{
Mt,

ln(1− ε)
lnL

}
.

Then, because δ ≤ Mt, we have for all s ≥ t with ‖s − t‖1 < δ, that si − ti < Mt for all i ∈ Sd,
and, hence, there exist πs and πt satisfying πs(i) = πt(i) for all i ∈ Sd. It follows that

|S(s)− S(t)| =

∣∣∣∣∣∣
d∏
i=1

µs(i)−s(i−1)
(
Ii
)
−

d∏
j=1

µt(j)−t(j−1)
(
Ij
)∣∣∣∣∣∣

=
d∏
j=1

µt(j)−t(j−1)
(
Ij
)(

1−
d∏
i=1

(
µ
(
Ii
)

µ
(
Ii+1

))s(i)−t(i))

≤ 1−
d∏
i=1

(
µ
(
Ii
)

µ
(
Ii+1

))s(i)−t(i) ≤ 1− L‖s−t‖1 < 1− Lδ ≤ ε

as required.
To show (iii), we will transform, for arbitrary given t ∈ Rd+ and s ∈ (0,Mt], a sum of 2d terms of

the type S
(
t+s · j

)
, j ∈ {0, 1}d, into a product of non-negative terms. Keeping in mind the ordering

of the elements of t given in the proof of (ii), observe that t(li) + s ≤ t(li+1) for all i = 1, . . . ,m− 1.
Set l0 := 0. For any j ∈ {0, 1}d and each i = 0, 1, . . . ,m − 1, let j[li+1] ≤ j[li+2] ≤ . . . ≤ j[li+1]

denote the ordered list of jπt(li+1), jπt(li+2), . . . , jπt(li+1). Notice that in this way we have sorted all
the elements of the vector (t+ s · j) in ascending order and, in particular, for all i = 0, 1, . . . ,m− 1,
we have that

t(li+1) + s · j[li+1] ≤ t(li+2) + s · j[li+2] ≤ . . . ≤ t(li+1) + s · j[li+1].

Setting j[0] := 0 and remembering that an empty product is by convention equal to 1, we obtain
from Formula (2.6) that

S
(
t+ s · j

)
=

m−1∏
i=0

(
µt(li+1)−t(li)+s(j[li+1]−j[li])

(
{πt+sj(li + 1), . . . , πt+sj(d)}

)
×

li+1∏
k=li+2

µs(j[k]−j[k−1])
(
{πt+sj(k), . . . , πt+sj(d)}

))
. (3.2)
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Next, define

κ := µ(Sd)
t(1)

m−1∏
i=1

µt(li+1)−t(li)−s
(
{πt+sj(li + 1), . . . , πt+sj(d)}

)
. (3.3)

Making use of (3.2) together with (3.3), we now infer that

D(t, s) :=
∑
I⊆Sd

(−1)|I|S
(
t1 + s · 1I(1), . . . , td + s · 1I(d)

)

=
1∑

j1=0

· · ·
1∑

jd=0

(−1)j1+...+jdS
(
t+ s · j

)
= κ

1∑
j1=0

· · ·
1∑

jd=0

(−1)j1+...+jdµ−s(Sd)

×
m−1∏
i=0

(
µs(j[li+1]−j[li]+1)({πt+sj(li + 1), . . . , πt+sj(d)}

)
×

li+1∏
k=li+2

µs(j[k]−j[k−1])
(
{πt+sj(k), . . . , πt+sj(d)}

))
.

Applying the conventions l0 = 0 and j[0] = 0 in the first equality, as well as lm = d, {πt+sj(d +
1), . . . , πt+sj(d)} = ∅, and µ(∅) = 1 in the last equality, we may write

µ−s(Sd)

m−1∏
i=0

µs(1−j[li])
(
{πt+sj(li + 1), . . . , πt+sj(d)}

)
=

m−1∏
i=1

µs(1−j[li])
(
{πt+sj(li + 1), . . . , πt+sj(d)}

)
=

m−2∏
i=0

µ
s
(
1−j[li+1]

)(
{πt+sj(li+1 + 1), . . . , πt+sj(d)}

)
=

m−1∏
i=0

µ
s
(
1−j[li+1]

)(
{πt+sj(li+1 + 1), . . . , πt+sj(d)}

)
.
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Hence, using the above computation together with the fact that for all i = 0, 1, . . . ,m− 1, we have
{πt+sj(li + 1), . . . , πt+sj(d)} = {πt(li + 1), . . . , πt(d)}, it follows that

D(t, s) = κ

1∑
j1=0

· · ·
1∑

jd=0

(−1)j1+...+jd
m−1∏
i=0

(
µsj[li+1]

(
{πt(li + 1), . . . , πt(d)}

)
× µs

(
1−j[li+1]

)(
{πt(li+1 + 1), . . . , πt(d)}

)
×

li+1∏
k=li+2

µs(j[k]−j[k−1])
(
{πt+sj(k), . . . , πt+sj(d)}

))

= κ
m−1∏
i=0

1∑
jπt(li+1)=0

· · ·
1∑

jπt(li+1)
=0

(−1)jπt(li+1)+...+jπt(li+1)

× µsj[li+1]
(
{πt(li+1), . . . , πt(d)}

)
µ
s
(
1−j[li+1]

)(
{πt(li+1+1), . . . , πt(d)}

)
×

li+1∏
k=li+2

µs(j[k]−j[k−1])
(
{πt+sj(k), . . . , πt+sj(d)}

)
.

Lastly, observe that for each fixed i ∈ {0, 1, . . . ,m − 1} and each associated ordered list of binary
indices 0 ≤ j[li+1] ≤ j[li+2] ≤ . . . ≤ j[li+1] ≤ 1,

µsj[li+1]
(
{πt(li+1), . . . , πt(d)}

)
µ
s
(
1−j[li+1]

)(
{πt(li+1+1), . . . , πt(d)}

)
×

li+1∏
k=li+2

µs(j[k]−j[k−1])
(
{πt+sj(k), . . . , πt+sj(d)}

)
= µs

(
{πt(li+1+1), . . . , πt(d)} ∪ Ji

)
,

where Ji ⊆ {πt(li+1), πt(li+2), . . . , πt(li+1)} is such that for all k ∈ {πt(li+1), πt(li+2), . . . , πt(li+1)},
we have that k ∈ Ji if and only if jk = 1. Therefore, we get the desired factorization (which is, not
without reminding of the factorization obtained in Shenkman (2022)):

D(t, s) = κ
m−1∏
i=0

∑
Ji⊆{πt(li+1),...,πt(li+1)}

(−1)|Ji|µs
(
{πt(li+1 + 1), . . . , πt(d)} ∪ Ji

)
= κ

m−1∏
i=0

∇{πt(li+1),...,πt(li+1)}µ
s
(
{πt(li+1 + 1), . . . , πt(d)}

)
≥ 0, (3.4)

where the inequality is due to Proposition 2.2. This gives us (iii) and also that S is the survival
function of a probability measure on Rd>0. To conclude, we remark that S satisfies the LM property
(1.2), i.e., a simple computation shows that S(t1 + s, . . . , td + s) = S(t1, . . . , td)S(s, . . . , s) for all
t ∈ Rd+ and all s > 0. �

Expression (3.4) for the S-volume of the hypercube
∏d
i=1(ti, ti + s] shows how the setsMd and

LMd come into play to guarantee the d-decreasingness of the survival functions. That the S-volume
of an arbitrary hypercube can be written as a product of a finite number of S-volumes of “basis”
hypercubes is a very special feature, which, to the best of our knowledge, was for the first time
observed for the exchangeable GWd distribution in Mai et al. (2013a). For instance, in dimension 2,
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the “basis” consists of three S-volumes given by ∇Iµ(∅), ∅ 6= I ⊆ S2: trivially, we get, e.g.,

Vs
(
(0, 1]× (0, 1]

)
= S(0, 0)− S(1, 0)− S(0, 1) + S(1, 1)

= µ(∅)− µ({1})− µ({2}) + µ({1, 2})
= ∇{1,2}µ(∅) ≥ 0.

In an exemplary manner, this easy computation brings us to discuss an aspect so far neglected,
namely the importance of special and low dimensional cases. Since we have not considered a single
one of them in this work and repeatedly praised the tractability of the distributions, it may appear
that we claim that, at least in theory, to produce such a proof by himself, a skilled mathematician
could forgo their investigation and improvise from the very beginning in high dimension without ever
needing to look down or sideways. This view does not reflect at all our experience and, therefore,
we encourage any interested reader to attempt to engage with the “simpler” and yet distinctive
case of the exchangeable GWd distribution in order to get, in a sense, an unbiased feel for the
complexity of such an enterprise: All the ingredients required to start the exercise and its complete
solution are in Mai et al. (2013a), although it must be said that the general proof given there can be
drastically shortened with the help of the factor κ to account in one go for all possible constellations.
Alternatively, one can simply assess, by consulting Remark 2.4 in Mai et al. (2013a), which presents
the case of the exchangeable GW2 distribution in great detail, whether the indispensable intuition
and know-how needed to envision and shape a way to solve the multidimensional problem could
realistically originate from other sources of inspiration than its thorough study in low dimensions.

3.3. Proof of sufficiency in Theorem 2.4 (ii). In view of Section 3.2, the proof of sufficiency in
Theorem 2.4 (ii) is now almost just a formality. We make use of Lemma 2.1 in Mai et al. (2013a),
which is a discrete equivalent of Lemma 3.1. Observe that S(0) = 1. Further, by d-monotonicity
of µ we have that µ(I) ≤ µ

(
{i}
)
for all ∅ 6= I ⊆ Sd and any i ∈ I. In view of (2.2b), this gives

µ(I) < 1 for all ∅ 6= I ⊆ Sd. As a result, limti→∞ S(t) = 0 for all i ∈ Sd. Hence, it remains to
show that S assigns non-negative mass to each point t ∈ Nd, or, equivalently, that∑

I⊆Sd

(−1)|I|S
(
t1 + 1I(1), . . . , td + 1I(d)

)
≥ 0

for all t ∈ Nd0. However, we have already shown this in the proof of Section 3.2. Therefore, S is the
survival function of a probability measure on Nd which satisfies the discrete LM property (1.2). �

A. Appendix: Proof of Proposition 2.2

Let µ be a positive function on the subsets of Sd satisfying µs ∈ Md for all s > 0. Then,
repeating the arguments of Shenkman (2017), for all n ∈ N, all T ⊆ Sd, and all ∅ 6= I ⊆ T , one has

∇I
(
µ1/n(T )− 1

)
= ∇I µ1/n(T ) ≥ 0,

where the equality is due to I 6= ∅. Using Euler’s limit representation of the logarithm, it follows
that

∇I lnµ(T ) = lim
n→∞

n∇I
{
µ1/n(T )− 1

}
≥ 0,

which, in turn, gives µ ∈ LMd.
To see that the converse is true, notice first that if µ ∈ LMd, then µs ∈ LMd for all s > 0 since

for all T ⊆ Sd and all ∅ 6= I ⊆ T , we have ∇I lnµs(T ) = s∇I lnµ(T ). Hence, we only need to
show that µ ∈ LMd implies µ ∈ Md. Before getting started, we need to extract a result from the
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proof of Proposition 2.6 in Shenkman (2017). For completeness we recall it here: For any two set
functions µ and ν on the subsets of Sd, we have

∇I
(
µ(T ) ν(T )

)
=
∑
J⊆I

(
∇I∩J µ

(
T ∪J

))(
∇J ν(T )

)
(A.1)

for all T ⊆ Sd and I ⊆ T . (A.1) is shown by induction on the cardinality of I. Note that for
I = ∅, (A.1) holds trivially. Fix an arbitrary T ( Sd. Observe first that for all i ∈ T ,

∇i
(
µ(T ) ν(T )

)
=
(
∇i µ(T )

)
ν(T ) + µ

(
T ∪{i}

)
∇i ν(T ). (A.2)

For the induction step, assume that (A.1) is true for all I ⊆ T satisfying |I| ≤ n for some 0 ≤ n <
∣∣T ∣∣.

Take an arbitrary I ⊆ T with |I| = n+ 1 and fix an i ∈ I. Then,

∇I
(
µ(T )ν(T )

)
= ∇i∇I\{i}

(
µ(T )ν(T )

)
= ∇i

∑
J⊆I\{i}

(
∇
I∩{i}∩J µ

(
T ∪J

))(
∇J ν(T )

)
=

∑
J⊆I\{i}

(
∇I∩J µ

(
T ∪J

)
∇J ν(T ) + ∇

I∩{i}∩J µ
(
T ∪J ∪{i}

)
∇J∪{i} ν(T )

)
=
∑
J⊆I
i/∈J

∇I∩J µ
(
T ∪J

)
∇J ν(T ) +

∑
J⊆I
i∈J

∇I∩J µ
(
T ∪J

)
∇J ν(T )

=
∑
J⊆I
∇I∩J µ

(
T ∪J

)
∇J ν(T ),

where the second equality is due to the induction hypothesis, and the third equality follows by
applying (A.2) to the product of µ̃(T ) = ∇

I∩{i}∩J µ
(
T ∪J

)
and ν̃(T ) = ∇J ν(T ), T ⊆ Sd, for each

fixed J ⊆ I\{i}.
Now let µ ∈ LMd. Then,

∇i µ(T ) =

(
µ(T )

µ
(
T ∪ {i}

) − 1

)
µ
(
T ∪ {i}

)
≥ 0

for all T ( Sd and i ∈ T , where the inequality follows by making use of ∇i lnµ(T ) ≥ 0 and of the
positivity of µ. Striving for a contradiction, assume (2.1) is not true. Then there exists an n ∈ N
satisfying 1 ≤ n < d such that

∇I µ(T ) ≥ 0 ∀T ⊆ Sd and ∀ I ⊆ T , I 6= ∅, |I| ≤ n, (A.3)

but where (2.1) does not hold for some T ⊆ Sd and some ∅ 6= J ⊆ T with |J | = n + 1. Take any
i ∈ J . Then, by application of (A.1),

∇J µ(T ) = ∇J\{i}

((
µ(T )

µ
(
T ∪ {i}

) − 1

)
µ
(
T ∪ {i}

))

=
∑

I⊆J\{i}

∇(J\{i})∩I

(
µ
(
T ∪ I

)
µ
(
T ∪ {i} ∪ I

) − 1

)
∇I µ

(
T ∪ {i}

)
,

where ∇I µ(T ∪{i}) ≥ 0 for all I ⊆ J\{i} by (A.3). Hence, we will obtain a contradiction if we can
show that

∇I

(
µ(K)

µ
(
K ∪ {j}

) − 1

)
≥ 0 (A.4)
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for all K ( Sd, all j ∈ K, and all I ⊆ K\{j}. To this end, observe first that

∇I ln

(
µ(K)

µ
(
K ∪ {j}

)) = ∇I∪{j} lnµ(K) ≥ 0

for all K ( Sd, all j ∈ K, and all I ⊆ K\{j}. Applying inductively the product rule (A.1), we
deduce that

∇I lnm
(

µ(K)

µ
(
K ∪ {j}

)) ≥ 0 (A.5)

for all m ∈ N, all K ( Sd, all j ∈ K, and all I ⊆ K\{j}. Moreover, for m = 0, the left-hand side
of (A.5) equals 1 if I = ∅, and 0 otherwise. Using the power series representation of the exponential
function, we obtain

∇I

(
µ(K)

µ
(
K ∪ {j}

)) =
∞∑
m=0

1

m!
∇I lnm

(
µ(K)

µ
(
K ∪ {j}

)) ≥ 0

for all K ( Sd, all j ∈ K, and all I ⊆ K\{j}. Consequently, we get (A.4) for all ∅ 6= I ⊆ K\{j}.
Having in mind that for all j ∈ K,

(
µ(K)/µ(K ∪ {j})

)
≥ 1, we infer that (A.4) actually holds for

all K ( Sd, all j ∈ K, and all I ⊆ K\{j}. This provides the desired contradiction and concludes
the proof. �

Acknowledgements

I sincerely thank an associate editor for the valuable comments on a first version of this man-
uscript. In particular, addressing the substantiated criticism that the article was geared towards
a confidential audience gave me the chance to facilitate the dissemination of its content. Finally,
I acknowledge having adopted the wordings “sophisticated technical tools” and “generative con-
structions” of the referee and of the associate editor to describe the reparametrizations and the
probabilistic constructions, respectively.

References

Arnold, B. C. A characterization of the exponential distribution by multivariate geometric com-
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