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Abstract. In this note we prove that the asymptotic variance of the nodal length of complex-valued
monochromatic random waves restricted to an increasing domain in R3 is linear in the volume of
the domain. Put together with previous results this shows that a Central Limit Theorem holds true
for 3-dimensional monochromatic random waves. We compare with the variance of the nodal length
of the real-valued 2-dimensional monochromatic random waves where a faster divergence rate is
observed, this fact is connected with Berry’s cancellation phenomenon. Moreover, we show that a
concentration phenomenon takes place.

1. Introduction

During the last decade an impressive effort has been dedicated to understanding the behavior
of geometric functionals of random waves in the high energy limit. Motivation often comes from
Quantum Chaos as it is concerned with the behavior of Laplace eigenfunctions as the frequency or
the energy level (equivalently, the eigenvalue) tends to infinity. For a general picture of the field,
see the seminal papers Berry (2002); Berry and Dennis (2000), the recent reviews Wigman (2022);
Marinucci (2021); Vidotto (2022) and the background section in Krishnapur et al. (2013, S.1.6) for
an example of an early stage discussion on this topic.

Some instances of geometric functionals are the length of nodal (i.e: zero) curves, the number of
critical points and the number of connected components of the zero sets, see e.g. Berry and Dennis
(2000). Within this general framework, we focus our attention on the nodal length of complex-
valued random waves defined on R3 and compare it to the well studied case of the nodal length of
real-valued random waves defined on R2. The analogy between these two cases is apparent when
looking at the covariance functions, the analytic expressions and the expansions of the nodal lengths.
Indeed, since we use real analytic methods we can think the former random waves as R2-valued.
See sections 4, 5 and 6.
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A central family of random fields (either real or complex-valued, defined on Rd, d ≥ 3), rep-
resenting monochromatic waves, is the so-called Berry’s Random Wave Model (RWM for short).
Berry (1977) conjectured that the RWM can serve as a model for deterministic ’generic’ Laplace
eigenfunctions on manifolds with negative curvature in the high energy regime. Furthermore, the
RWM can be thought of as a universal model since it can be proved that, in some local sense, it
is the limit of other important Laplace random eigenfunctions models as Random Spherical Har-
monics (RSH) (Wigman, 2010, Eq.(1.8)-(1.9)) or Arithmetic Random Waves (ARW) defined in the
flat torus (Krishnapur et al., 2013, S1.6.1). See also Canzani and Hanin (2020) and Gass (2023)
for the case of Riemannian manifolds and Romaniega and Sartori (2022) for some deterministic
related constructions. For a discussion on these approximations, see section 1.6. in Krishnapur
et al. (2013).

The complex (resp. real)-valued RWM can be defined as the complex (resp. real)-valued centered
stationary isotropic Gaussian random field ψ defined on Rd having covariance function

r(x, y) = E[ψ(x)ψ(y)] = cd
Jλ(|x− y|)
|x− y|λ

, (1.1)

where cd is a normalizing constant, | · | stands for the Euclidean norm in Rd and Jλ is the Bessel
function of the first kind with index λ = d−2

2 . Alternatively, the RWM can be defined by stating
that its spectral measure is uniform on the unit sphere. In the real case, the conjugation in (1.1)
shall be omitted.

More generally, set ψk(x) = ψ(kx) : k ≥ 1. Note that ψ = ψ1. Then, it is well known that for
k ≥ 1, ψk is a solution of the Helmholtz equation

∆ψk(x) + k2ψk(x) = 0, x ∈ Rd,

which explains the terminologies frequency, energy or eigenvalue used to refer to k2. See section
1.1. in Nourdin et al. (2019).

It is worth mentioning that the study of the nodal sets of ψ on growing domains is equivalent
to the study of the nodal sets of ψk restricted to a fixed domain in the high energy limit, i.e: as
k → ∞, see remark 3.6. in Dalmao et al. (2021) and remark 1.3 in Nourdin et al. (2019). In this
note we choose to work on the former framework because our natural domain is the non-compact
manifold R3. See the discussion in section 3 below.

The nodal sets of these models were deeply studied in the last years, though the major part
of the literature focuses on the real-valued 2-dimensional case. The papers Nourdin et al. (2019)
(concerning real and complex-valued 2 dimensional RWM) and Dalmao et al. (2021) (concerning
complex-valued 3-dimensional RWM) are key for our work. See also the recent works Peccati and
Vidotto (2020), Notarnicola et al. (2023) dealing with functional convergence on the 2-dimensional
case and the reviews Marinucci (2021); Vidotto (2022); Wigman (2022).

In the real-valued 2-dimensional case the RWM soon showed a surprising behavior concerning
the high energy limit of the variance of their nodal length (i.e: the length of their zero curves) :
it diverges far more slowly than anticipated (similar results hold true for some related models as
RSH and ARW). More precisely, while the expectation and the variance of the nodal length were
expected to be of the same order as k → ∞, rephrasing equations (1.7)-(1.8) in Nourdin et al.
(2019), it happens that

Var(Lk(B)) ∼ log(E[Lk(B)]), as k →∞,
where B is a fixed domain in R2 and Lk(B) is the nodal length associated to ψk restricted to B.
This fact was first predicted by Berry (2002) where he expressed that this behavior is due to ’an
obscure cancellation phenomenon’.

The first rigorous confirmations of the so called Berry’s cancellation arrived in Wigman (2010) in
the case of RSH, in Marinucci et al. (2016) for ARW in the flat torus and in Nourdin et al. (2019)
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for the planar RWM. One important feature of the last reference is that it was the first one to deal
with non-compact manifolds, which is also the case we are interested in.

The early results, obtained using Rice formulas, did not allow a clear understanding of the
cancellation phenomenon, see e.g. Berry (2002); Wigman (2010); Krishnapur et al. (2013). The use
of Wiener Chaos techniques, see e.g. Marinucci et al. (2016); Nourdin et al. (2019); Dalmao et al.
(2019), provided a precise explanation of the cancellation phenomenon in terms of the Wiener (a.k.a.
chaotic or Hermite) expansion of the nodal length which combines in a subtle manner geometric
and probabilistic aspects. Roughly speaking, the nodal length restricted to a Borel set B, L(B) say,
can be expanded in the L2-sense in the form

L(B) =
∞∑
q=0

I2q(B),

where the components I2q(B) are orthogonal random variables. In particular, I0(B) equals the
expectation of L(B) and the rest of the terms are combinations of integrals involving polynomials
on the underlying process and its derivative. It was observed that the second component I2(B)
vanishes due to geometric reasons reflected in the coefficients of the expansion, see Notarnicola
(2021) for a general treatment of this issue. The cancellation of the coefficients in the second term
in the expansion avoids the integrals appearing in the computation of the variance of I2(B) to
produce higher rates of divergence, as those which do take place in the case of non-zero levels, see
e.g. Marinucci et al. (2016). See section 3 below.

In Dalmao et al. (2021) complex-valued 3-dimensional Berry’s general model in growing domains
was considered. In particular, for monochromatic random waves (verifying (1.1) with d = 3 or,
equivalently, verifying (2.2) below) it was shown that the variance of the second component in the
Wiener expansion vanishes asymptotically and that the variance of L(B) grows at most linearly in
the volume vol(B) as the underlying domain B ↑ R3. Nevertheless, no lower bound was pursued.
Consequently, the possibility of having a strictly lower order variance remained open. In view of the
behavior of the variance in the real-valued 2-dimensional case, the question about the true order of
the variance arises.

In the present note, we establish that the variance of the nodal length of the complex-valued
3-dimensional RWM is linear (with a strictly positive coefficient) in the volume of the growing
domain, which coincides with the order of the expectation. This behavior differs from the observed
one in the real valued 2-dimensional case Nourdin et al. (2019) where the variance diverges faster
than the expectation,

E[L(B)] ≈ area(B); Var(L(B)) ≈ area(B) log(area(B)), as B ↑ R2.

A rough explanation may be as follows. In both cases the second component Var(I2(B)) vanishes due
to geometric reasons as said above. The key difference between these cases lies in the integrability
of the covariance functions which is a fact of probabilistic nature (short vs. long memory, say). In
the 2-dimensional case r(x, y) = c2J0(|x − y|) belongs to L6(R2) but not to L4(R2) while in the
3-dimensional case r(x, y) = J1/2(|x − y|)/|x − y|1/2 belongs to L4(R3). Grosso modo, see lemma
9 in Dalmao et al. (2021), once normalized by the area or volume, according to the dimension, the
variance of I2q(B) is written as an integral of the 2q-th power of r (actually, the product of 2q factors
chosen from r and its derivatives). Thus, the normalized variance of I4(B) diverges in dimension 2
while the rest of the variances (i.e: those of I2q(B) : q ≥ 3 in 2d, those of I2q(B) : q ≥ 2 in 3d), once
normalized, converge. Observe that it follows that the variance is of lower order than the square
of the expectation as B increases, implying the concentration of the probability. See section 3 for
some details.

To prove our result, we carry on a careful analysis of the variance of the fourth component of the
Wiener expansion of L(B) which involves a few dozen terms. We need to compute explicitly each
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coefficient in the expansion and to find the asymptotic of the involved integrals. Since we look for
a lower bound for the variance, we can omit a convenient number of nonnegative terms.

Let us fix some notation: cs denotes an unimportant constant whose value may change from one
line to another, aR ≈ bR means that limR→∞

aR
bR

= c with c > 0 and aR ∼ bR when limR→∞
aR
BR

= 1,
we write aR & bR when there exists B′R ∼ bR such that aR ≥ B′R.

2. Problem setting and main result

Define the 3-dimensional monochromatic random wave model (RWM) as the complex-valued
centered stationary isotropic Gaussian random field

ψ(x) := ξ(x) + iη(x), x ∈ R3, (2.1)

such that its real and imaginary parts ξ, η are centered independent Gaussian random fields with
covariance function

r(x) := sinc(|x|), (2.2)

where sinc stands for the cardinal sine function sinc(·) = sin(·)
· and | · | is the Euclidean norm in R3.

Observe that this coincides with (2.2) for d = 3.
For any bounded domain B in R3, we introduce the nodal curve Z(B) and the nodal length L(B)

by

Z(B) :=
{
x ∈ B : |ψ(x)| = 0

}
,

L(B) := length(Z(B)).

In Dalmao et al. (2021) it was proved that E[L(B)] = 1
3πvol(B) (Corollary 2 with λ = 1

3), that
Var(L(B)) = O(vol(B)) as B ↑ R3 and that a Central Limit Theorem takes place (proposition 10).
Since the limit variance was not known to be positive, the limit law could be degenerated.

The main result of the present note is contained in the next theorem.

Theorem 2.1. Let ψ be defined as in (2.1)-(2.2). Consider BR the centered ball of radius R in R3,
then there exists a constant c > 0 such that

lim
R→∞

Var(L(BR))

vol(BR)
≥ c.

Observe that in Dalmao et al. (2021) the underlying domain was Qn = [−n, n]3 as n→∞ while
here we use BR as R → ∞. We choose the latter for simplicity of exposition, but one can easily
adapt the computation of the expectation and the variance from BR to Qn and conversely. Observe
that Nourdin et al. (2019) considers general convex domains. It may be instructive to read section
2.4 in Wigman (2022). When dealing with the asymptotic distribution of the nodal length, the case
of Qn is simpler.

3. Comparison with the real-valued 2-dimensional case

We begin with a common feature of both cases. As said above, in both cases, the second com-
ponent in the Wiener expansion vanishes. This cancellation avoids having a higher order of the
variances since the covariance functions are not in L2.

Regarding the growing domain regime, that is, the setting of this paper. In view of the results in
Dalmao et al. (2021), theorem 2.1 implies that the variance, and the expectation, of the nodal length
are exactly of the same order as the volume of BR. Recall that in the real-valued 2-dimensional
case the ratio variance/expectation was of the order of log(area(B)) as the domain B ↑ R2.
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This fact is connected to another important difference with the real-valued 2-dimensional case.
Here, each component of the Wiener expansion of L(B) plays a role in the asymptotic variance,
that is, there is no dominating term as in the real-valued 2-dimensional case. This is due to the
fact that the covariance function belongs to L4(R3) implying that all the integrals involved in the
computation of the variance are convergent. To show this point, consider one of the terms involved
in the variance of the sixth component of the expansion.∫

BR×BR
r(|x− y|)6dxdy ∼

∫
BR

∫
BR

r(|x− y|)6dxdy ∼ 2π3R3

3
,

which is of the order of the volume of BR. See section 6 for the computation of this sort of integrals.
In the real-valued 2-dimensional case the analogous integral was still convergent but negligible
w.r.t. to the variance of I4(B) since the covariance was in L6(R2) \ L4(R2). The existence of
a single dominant chaotic component makes it possible to get quantitative central limit theorems
using well-known bounds for the (e.g.: Kolmogorov, Wasserstein) distance between the distributions
of r.v.s lying in a fixed chaotic component. We are not pursuing this kind of results in the present
case where an infinite number of components contribute to the limit.

Now, let us consider the high energy framework on a fixed domain. We follow remark 1.3. in
Nourdin et al. (2019). Recall that for k ≥ 1, we defined ψk(x) = ψ(kx). Besides, we can relate
the nodal lengths Lk(B) of ψk and L(B) of ψ by using their integral representation (see (2.23) in
Nourdin et al. (2019))

Lk(B) =

∫
B
δ0(ψk(x))|∇ψk(x)|dx =

1

k

∫
k·B

δ0(ψ(y))|∇ψ(y)|dy =
L(k ·B)

k
.

Here, as usual, we use δ0 as a shorthand notation for an approximation of the unity. To translate
the former integral into the latter, we used the change of variables y = kx and denoted k ·B = {kb :
b ∈ B}. Hence, for fixed B, as k →∞, we have

E[Lk(B)] =
E[L(k ·B)]

k
∼ cs k2;

Var[Lk(B)] =
Var[L(k ·B)]

k2
∼ cs k.

We see, as above, that the ratio variance / square of the expectation tends to zero in the high
energy limit and, thus, there is concentration of the probability in the sense that Lk

E(Lk) converges
in probability to 1 as k → ∞. This ratio is ≈ 1/k3 in the complex-valued 3-dimensional case and
≈ log(k)/k2 in the real-valued 2-dimensional one.

4. Preliminaries

The departure point of the proof of theorem (2.1) is the Wiener expansion of L(BR) which we
borrow from proposition 2 in Dalmao et al. (2021). With this expansion at hand, we bound the
variance from below by that of one specific term (the fourth one) and compute it explicitly until we
are sure of its positivity.

Hermite polynomials : The building blocks of the Wiener expansion are Hermite polynomials
which we define recursively by H0(x) = 1, H1(x) = x for x ∈ R and for n ≥ 2 by

Hn(x) = xHn−1(x)− (n− 1)Hn−2(x), x ∈ R.

We need also the multi-dimensional Hermite polynomials :

H̃α(y) =
m∏
i=1

Hαi(yi), α = (αi)i ∈ Nm and y = (yi)i ∈ Rm.
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It is well known, see e.g. section 8.1. in Peccati and Taqqu (2011), that Hermite polynomials form a
complete orthogonal system of L2(φm(dy)) being φm the standard normal density function in Rm.
Hence, for f ∈ L2(φm(dy)), we can write in the L2-sense

f(y) =
∞∑
q=0

∑
α∈Nm, |α|=q

fαH̃α(y), y ∈ Rm,

with |α| =
∑m

i=1 αi and

fα =
1

α!

∫
Rm

f(y)H̃α(y)φm(dy),

with α! =
∏m
i=1 αi!. We refer to fα as the α-th Hermite coefficient of f .

Wiener expansion of L(BR) : Let us introduce the Wiener expansion of the nodal length. Denote
ξ′(x) = (ξ1(x), ξ2(x), ξ3(x)) for the gradient of ξ(x) and η′(x) = (η1(x), η2(x), η3(x)) for that of η(x).
Set

Y (x) :=
(
ξ(x), η(x),

√
3ξ′(x),

√
3η′(x)

)
,

which is a standard normal random vector in R8 for each x ∈ R3. Finally, we need the formal
Hermite coefficients of the Delta function Kratz and León (1997, Eq.5)

bα =
1

α!
√

2π
Hα(0), α ∈ N. (4.1)

Therefore, proposition 7 in Dalmao et al. (2021) states that

L̃(BR) :=
L(BR)− E[L(BR)]

vol(BR)
=

1

3

∑
q≥1

I2q(BR), (4.2)

I2q(BR) =
∑

α∈N8, |α|=2q

cα

∫
BR

H̃α(Y (x))dx,

in the L2-sense. The coefficients cα are defined by

cα = bα1bα2a(α3,...,α8),

with a(α3,...,α8) the Hermite coefficient of f(y) = det⊥(y) := det(yy>)1/2, y ∈ R6.

Expectations of products of Hermite polynomials : It is well known that for jointly Gaussian
X,Y

E[Hp(X)Hq(XY )] = δpqp!E[XY ]p, (4.3)

where δpq is Kronecker’s delta.
For future use we recall a few more useful formulas, see e.g. Nourdin et al. (2019, Eq.6.76). Let

X1, X2, X3, X4 be standard normal r.v. with E(X1X2) = E(X3X4) = 0, then

E[H2(X1)H2(X2)H2(X3)H2(X4)] = 4E[X1X3]
2E[X2X4]

2 + 4E[X1X4]
2E[X2X3]

2

+ 16E[X1X3]E[X1X4]E[X2X3]E[X2X4];

E[H2(X1)H2(X2)H4(X3)] = 24E[X1X3]
2E[X2X3]

2; (4.4)
E[X1X2X3X4] = E[X1X3]E[X2X4] + E[X1X4]E[X2X3].
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5. Proof of theorem 2.1

Now, we can proceed to the proof of the main result.
Lower bound for the variance : Since the components I2q(BR) : q ≥ 1 are orthogonal, we get

Var(L(BR)) =
1

3

∞∑
q=1

Var(I2q(BR)) ≥ 1

3
Var(I4(BR)).

Thus, we reduce our attention to the fourth component I4(BR).

Fourth component : We can give the explicit expression of I4(BR). From (4.2) we get

I4(BR) = b0b4a0

∫
BR

H4(ξ(x))dx+ b0b4a0

∫
BR

H4(η(x))dx

+ b22a0

∫
BR

H2(ξ(x))H2(η(x))dx+
3∑

k=1

b20a4ek

∫
BR

H4(ξ̄k(x))dx

+
3∑

k=1

b20a4ek

∫
BR

H4(η̄k(x))dx+
3∑

k=1

b0b2a2ek

∫
BR

H2(ξ(x))H2(ξ̄k(x))dx

+

3∑
k=1

b0b2a2ek

∫
BR

H2(η(x))H2(η̄k(x))dx

+
3∑

k=1

b0b2a2ek

∫
BR

H2(ξ(x))H2(η̄k(x))dx

+
3∑

k=1

b0b2a2ek

∫
BR

H2(η(x))H2(ξ̄k(x))dx

+
∑
i 6=j

b20a2ei+2ej

∫
BR

H2(ξ̄i(x))H2(ξ̄j(x))dx

+
∑
i 6=j

b20a2ei+2ej

∫
BR

H2(η̄i(x))H2(η̄j(x))dx

+
∑
i 6=j

b20a2ei+2ej

∫
BR

H2(ξ̄i(x))H2(η̄j(x))dx.

Here ξ̄k =
√

3ξk and η̄k =
√

3ηk and {e1, e2, . . . , e6} is the canonical basis in R6. Equation (4.1)
gives

b0 =
1√
2π

; b2 = − 1

2
√

2π
; b4 =

1

8
√

2π
.

The next lemma, whose proof is presented in section 6, provides the explicit values of the relevant
Hermite coefficients of det⊥(·).

Lemma 5.1. The first Hermite coefficients of det⊥(·) are :

a0 = 1; a2ek =
1

3
; a2ei+2ej =

1

9
(i 6= j); a4ek = −5

9
.

Using the explicit values of the coefficients we have

2π · I4(BR) = A1 +A2 +A3,
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with

A1 :=
1

8

∫
BR

H4(ξ) +
1

8

∫
BR

H4(η) +
1

4

∫
BR

H2(ξ)H2(η)− 5

9

3∑
k=1

∫
BR

H4(ξ̄k)

− 5

9

3∑
k=1

∫
BR

H4(η̄k);

A2 := −1

6

3∑
k=1

∫
BR

H2(ξ)H2(ξ̄k)−
1

6

3∑
k=1

∫
BR

H2(η)H2(η̄k)

− 1

6

3∑
k=1

∫
BR

H2(ξ)H2(η̄k)−
1

6

3∑
k=1

∫
BR

H2(η)H2(ξ̄k);

A3 :=
∑
i 6=j

1

9

∫
BR

H2(ξ̄i)H2(ξ̄j) +
∑
i 6=j

1

9

∫
BR

H2(η̄i)H2(η̄j)

+
∑
i 6=j

1

9

∫
BR

H2(ξ̄i)H2(η̄j).

It follows that

Var
(
2π · I4(BR)

)
=

3∑
i,j=1

Cov(Ai, Aj).

This is a long computation. This partition, which may seem strange at first sight, will allow us to
avoid considering quite a lot of terms.

Now, we state the equivalences for the variances and covariances of these terms, except for the
variance of A2 and A3 which are certainly non negative and turn out to be innecssary.

Denote A1 =
∑5

i=1A1i. Then, as ξ and η are independent processes we have:

Var(A1) = 2Var(A11) + Var(A13) + 2Var(A14) + 4Cov(A11, A14)

∼ 4π3R3

3

4362

35
.

Similarly, denote A2 =
∑4

i=1A2i and A3 =
∑3

i=1A3i. Then,

Cov(A1, A2) = 2Cov(A11, A21) + 2Cov(A13, A23) + 2Cov(A14, A21)

& −4π3R3

3

4

3
.

Cov(A1, A3) = 2Cov(A11, A31) + Cov(A13, A33) + 2Cov(A14, A31)

& −4π3R3

3

1184

105
.

and

Cov(A2, A3) = 2Cov(A21, A31) + 2Cov(A23, A33)

& −4π3R3

3

824

525
.

Therefore, since Var(A2) ≥ 0 and Var(A3) ≥ 0, we have

Var
(
I4(BR)

)
&

4πR3

3

7691

350
.



A note on 3d-monochromatic random waves and cancellation 1099

The result follows. The proofs of these relations are presented in section 6.

6. Ancillary computations

In this section we include part of the long and sometimes tedious computations involved in
the asymptotic variance of I4(BR). The omitted computations are analogous to those which are
presented here.

6.1. The coefficients. We prove Lemma 5.1. Note that det⊥(y) = |y ∧ y|. Here, ∧ is the standard
wedge product in R3. Assume that Z1 = (Z11, Z12, Z13) and Z2 = (Z21, Z22, Z23) are independent
standard Gaussian r.v. in R3.

a0 = E(|Z1 ∧ Z2|) = E(vol{aZ1 + bZ2 : 0 ≤ a, b ≤ 1}) =
√

2
Γ(1)

Γ(1/2)
·
√

2
Γ(3/2)

Γ(1)
= 1.

Here we used the notation and results of Azaïs and Wschebor (2009, p.305) for the expected volume
of a random paralellepiped.

Since the distribution of (Z1, Z2) is invariant under permutations of its coordinates, we deduce
that a2ek : k = 1, . . . , 6 coincide. Besides, as H2(x) = x2 − 1,

a2e1 = E(|Z1 ∧ Z2|H2(Z11)) =
1

3
E(|Z1 ∧ Z2||Z1|2)− a0.

To connect the latter expectation with a0 we use spherical coordinates, writing z1 = ρu with ρ > 0
and u ∈ S2.

E(|Z1 ∧ Z2||Z1|2) =

∫
R3×R3

|z1 ∧ z2||z1|2φ3(dz1)φ3(dz2)

=

∫
R3

φ3(dz2)

∫
S2

|u ∧ z2|du
∫ ∞
0

ρ2ρ2ρφ(dρ).

Here we have a ρ2 from the Jacobian, another ρ2 from the squared norm and the final ρ from the
wedge product. In the same way, we get

a0 =

∫
R3×R3

|z1 ∧ z2|φ3(dz1)φ3(dz2) =

∫
R3

φ3(dz2)

∫
S2

|u ∧ z2|du
∫ ∞
0

ρ2ρφ(dρ).

Hence, denoting mk :=
∫∞
0 ρkφ(dρ) and using the recurrence mk+1 = kmk−1, we have

E(|Z1 ∧ Z2||Z1|2) =
m5

m3
a0 = 4. (6.1)

Thus,

a2e1 =
1

3

m5

m3
a0 − a0 =

1

3
4− 1 =

1

3
.

Again, for i 6= j, all the a2ei+2ej coincide. Besides,

a2e1+2e4 = E(|Z1 ∧ Z2|H2(Z11)H2(Z21)) = E(|Z1 ∧ Z2|Z2
11Z

2
21)− a2e1 − a2e4 − a0.

Here we used that H2(x)H2(y) = x2y2 −H2(x)−H2(y)− 1. Thus

E(|Z1 ∧ Z2|Z2
11Z

2
21) =

1

9
E(|Z1 ∧ Z2||Z1|2|Z2|2)

=
1

9

∫
S2×S2

|u1 ∧ u2|du1du2
∫ ∞
0

ρ21ρ
2
1ρ1φ(dρ1)

∫ ∞
0

ρ22ρ
2
2ρ2φ(dρ2) =

1

9

m2
5

m2
3

a0 =
16

9
, (6.2)
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where we used spherical coordinates in both z1 and z2 and the fact that permuting the indexes does
not changes the expectation. Thus

a2e1+2e4 =
1

9

m2
5

m2
3

a0 −
2

3
− 1 =

1

9
.

Finally, a4ek : k = 1, . . . , 6 coincide. Besides,

a4ek = E(|Z1 ∧ Z2|H4(Z1)) = E(|Z1 ∧ Z2|(Z4
1 − 6Z2

1 + 3))

=
1

3
E(|Z1 ∧ Z2||Z1|4)− 2E(|Z1 ∧ Z2|Z2

11Z
2
21)− 2E(|Z1 ∧ Z2||Z1|2) + 3a0

Here we used that |(a1, a2, a3)|4 = a41 + a42 + a43 + 2(a21a
2
2 + a21a

2
3 + a22a

2
3).

The second and third terms have been computed in (6.1) and (6.2). We look at the first one.

E(|Z1 ∧ Z2||Z1|4) =

∫
R3×R3

|z1 ∧ z2||z1|4φ3(dz1)φ3(dz2)

=

∫
R3

φ3(dz2)

∫
S2

|u ∧ z2|du
∫ ∞
0

ρ2ρ4ρφ(dρ) =
m7

m3
a0 = 24.

Therefore,

a4ek =
1

3

m7

m3
a0 − 2

1

9

m2
5

m2
3

a0 − 2
m5

m3
a0 + 3a0 = −5

9
.

6.2. The variances and covariances of Aij. We use Gradshteyn and Ryzhik (2015) and
Wolfram|Alpha to compute the radial integrals (i.e: those w.r.t. ρ).

Recall that BR is the ball of radius R centered at 0 and set BR(z) = BR + z. Also recall that

r(u) = sinc(u) =
sin(u)

u
,

sinc′(u) =
cos(u)

u
− sinc(u)

u
=
u cos(u)− sin(u)

u2
;

sinc′′(u) = −sinc(u) +
2sinc(u)

u2
− 2 cos(u)

u2
.

Besides, denoting rk0(x, y) = ∂r(x,y)
∂xk

(and using similar notations for y), we have

rk0(x, y) = sinc′(|x− y|)∆k, r0k(x, y) = −sinc′(|x− y|)∆k, (6.3)

with
∆k =

xk − yk
|x− y|

.

Besides,

rkk(x, y) =
[sinc′(|x− y|)
|x− y|

− sinc′′(|x− y|)
](xk − yk)2

|x− y|2
− sinc′(|x− y|)

|x− y|
=: A(|x− y|)∆2

k −B(|x− y|), (6.4)

with

A(u) =
sinc′(u)

u
− sinc′′(u) =

u2 sin(u)− 3 sin(u) + 3u cos(u)

u3

B(ρ) =
sinc′(u)

u
=
u cos(u)− sin(u)

u3
. (6.5)
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For k 6= k′:

rkk′(x, y) =
[
sinc′′(|x− y|)− sinc′(|x− y|)

|x− y|

](yk′ − xk′)(xk − yk)
|x− y|2

= A(|x− y|)∆k∆k′ (6.6)

To deal with the integrals of the angular parts ∆k we consider spherical coordinates in ∂Bρ(x):
x1 − y1 = ρ sin(θ) cos(ϕ),

x2 − y2 = ρ sin(θ) sin(ϕ),

x3 − y3 = ρ cos(θ).

In the sequel we use sistematically (4.3) and (4.4).

(1) We consider Var(A1) in detail. We have.
• Var(A11) = Var(A12) ∼ 4π3R3

3
3
4 , Var(A13) ∼ 4π3R3

3
1
2 . Indeed, using (4.4) we get

Var(A11) =
1

64

∫
BR×BR

E(H4(ξ(x))H4(ξ(y)))dxdy =
4!

64

∫
BR×BR

r(|x− y|)4dxdy.

Var(A13) =
1

16

∫
BR×BR

E(H2(ξ(x))H2(ξ(y)))E(H2(η(x))H2(η(y)))dxdy

=
4

16

∫
BR×BR

r(|x− y|)4dxdy.

To compute this kind of integral we begin using the area formula as in the first display
in the proof of proposition 5.1 in Nourdin et al. (2019). We have∫

BR×BR
r(|x− y|)4dxdy =

∫ 2R

0
dρ

∫
BR

dx

∫
∂Bρ(x)∩BR

r(|x− y|)4dy,

where ∂Bρ(x) is the sphere of radius ρ centered at x. Following Nourdin et al. (2019,
eq.(5.64)) we split this integral.∫
BR×BR

r(|x− y|)4dxdy =

∫ R

0
dρ

∫
BR−ρ

dx

∫
∂Bρ(x)

r(|x− y|)4dy

+

∫ R

0
dρ

∫
BR−BR−ρ

dx

∫
∂Bρ(x)∩BR

r(|x− y|)4dy

+

∫ 2R

R
dρ

∫
BR

dx

∫
∂BR(x)∩BR

r(|x− y|)4dy.

Consider the first integral. Note that for y ∈ ∂Bρ(x) we have |x− y| = ρ. Hence,∫ R

0
dρ

∫
BR−ρ

dx

∫
∂Bρ(x)

r(|x− y|)4dy =

∫ R

0
vol(BR−ρ)area(∂Bρ(x))r(ρ)4dρ

=
16π2

3

∫ R

0
(R− ρ)3ρ2

sin(ρ)4

ρ4
dρ =

16π2

3
R3

∫ R

0

(
1− ρ

R

)3 sin(ρ)4

ρ2
dρ

∼R→∞
16π2

3
R3

∫ ∞
0

sin(ρ)4

ρ2
dρ = 2

4π3R3

3
.
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Consider the second integral.∫ R

0
dρ

∫
BR\BR−ρ

dx

∫
∂Bρ(x)∩BR

r(|x− y|)4dy ≤ 16π2

3

∫ R

0

(
R3 − (R− ρ)3

)
ρ2r(ρ)4dρ

≤ 16π2

3

∫ R

0

(
3R− 3R2

ρ
+ ρ
)

sin(ρ)4dρ = O(R2 log(R)) = o(R3).

Similarly, for the third integral we have∫ 2R

R
dρ

∫
BR

dx

∫
∂BR(x)∩BR

r(|x− y|)4dy ≤
∫ 2R

R
vol(BR)area(∂Bρ(x))r(ρ)4dρ

≤ 16π2R3

3

∫ 2R

R

sin(ρ)4

ρ2
dρ ≤ 16π2R3

3

∫ 2R

R

1

ρ2
dρ =

8π2R2

3
= o(R3).

In conclusion∫
BR×BR

r(|x− y|)4dxdy =
8π3R3

3
+O(R2 log(R)) ∼ 2

4π3R3

3
,

as claimed.

• Cov(A11, A14) = Cov(A12, A15) ∼ −4π3R3

3
21
5 . Indeed,

Cov(A11, A14) = − 5

72

3∑
k=1

∫
BR×BR

E(H4(ξ(x))H4(ξ̄k(y)))dxdy.

Recall that ξ̄k(x) =
√

3ξk(x).∫
BR×BR

E(H4(ξ(x))H4(ξ̄k(y)))dxdy = 9 · 4!

∫
BR×BR

r0k(x, y)4dxdy

= 9 · 4!

∫ 2R

0
dρ

∫
BR

dx

∫
∂Bρ(x)∩BR

r0k(x, y)4dy.

Recall that r0k(x, y) was computed in (6.3). We split the integral as before, the domi-
nant term is

3∑
k=1

∫ R

0
dρ

∫
BR−ρ

dx

∫
∂Bρ(x)

r0k(x, y)4dy

=
3∑

k=1

∫ R

0
vol(BR−ρ)sinc′(ρ)4ρ2dρ

∫
[0,π]×[0,2π]

∆4
k sin(θ)dθdϕ

The radial part is similar to the previous one.∫ R

0
vol(BR−ρ)sinc′(ρ)4ρ2dρ =

4πR3

3

∫ R

0

[
1− ρ

R

]3sinc′(ρ)4ρ2dρ

∼ 4πR3

3

∫ ∞
0

sinc′(ρ)4ρ2dρ =
4πR3

3

7π

60
.
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The angular part equals 12π
5 . Indeed,

3∑
k=1

∫
[0,π]×[0,2π]

∆4
k sin(θ)dθdϕ

=

∫
[0,π]×[0,2π]

[
sin5(θ) cos4(ϕ) + sin5(θ) sin4(ϕ) + cos4(θ) sin(θ)

]
dθdϕ

=
16

15
· 3π

4
+

16

15
· 3π

4
+

2

5
2π =

12π

5
.

In the sequel we omit the explicit computations of the angular parts since they are
analogous. (The remainder term behaves as in the previous case). In conclusion

3∑
k=1

∫
BR×BR

E(H4(ξ(x))H4(ξ̄k(y)))dxdy ∼ 9 · 4!
4πR3

3

7π

60

12π

5
=

4πR3

3

1512

25
.

Multiplying by − 5
72 the result follows.

• Var(A14) = Var(A15) = 488
7 . Indeed,

Var(A14) =
25

81

3∑
k,k′=1

∫
BR×BR

E(H4(ξ̄k(x))H4(ξ̄k(y)))dxdy.

We begin with the diagonal terms.∫
BR×BR

E(H4(ξ̄k(x))H4(ξ̄k(y)))dxdy = 81 · 4!

∫
BR×BR

rkk(x, y)4dxdy.

Recall that rkk is given by (6.4) and (6.5). Thus,

∫
BR×BR

rkk(x, y)4dxdy ∼ 4πR3

3

∫ R

0

[
1− ρ

R

]3 ∫
∂Bρ(x)

rkk(x, y)4dydρ

∼ 4πR3

3

∫ ∞
0

∫
∂Bρ(x)

rkk(x, y)4dydρ.

The fourth power gives rise to several terms that we treat separately. For the first one,
using spherical coordinates as before, we have

3∑
k=1

∫ ∞
0

∫
∂Bρ(x)

A(|x− y|)4∆8
kdxdy =

∫ ∞
0

A(ρ)4ρ2dρ ·
∫
[0,π]×[0,2π]

∆8
k sin(θ)dθdϕ

=
11π

140

12π

9
=

11π2

105
.
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Moving to the next terms, with similar arguments we have
3∑

k=1

∫ ∞
0

∫
∂Bρ(x)

A(ρ)3∆6
kB(ρ)dydρ =

π

70

12π

7
=

6π2

245

3∑
k=1

∫ ∞
0

∫
∂Bρ(x)

A(‖x− y‖)2∆4
kB(‖x− y‖)2dxdy =

2π

315

12π

5
=

8π2

525
,

3∑
k=1

∫ ∞
0

∫
∂Bρ(x)

A(ρ)∆2
kB(ρ)3dydρ =

17π

3780

12π

3
=

17π2

945
,∫ ∞

0

∫
∂Bρ(x)

B(ρ)4dydρ = 4π
17π

2835
=

68π2

2835

Gathering all together.
3∑

k=1

∫
BR×BR

E(H4(ξ̄k(x))H4(ξ̄k(y)))dxdy

∼ 81 · 4!
4πR3

3

[11π2

105
− 4

6π2

245
+ 6

8π2

525
− 4

17π2

945
+ 3

68π2

2835

]
= 81 · 4!

4π3R3

3

361

3675
=

4π3R3

3

233928

1225
.

We move to the case k 6= k′.∫
BR×BR

E(H4(ξ̄k(x))H4(ξ̄k′(y)))dxdy = 81 · 4!

∫
BR×BR

rkk′(x, y)4dxdy.

Recall that rkk′ , k 6= k′, is given by (6.6).∑
k 6=k′

∫
BR×BR

rkk′(x, y)4dxdy ∼ 4πR3

3

∑
k 6=k′

∫ ∞
0

∫
∂Bρ(x)

rkk′(x, y)4dydρ

=
4πR3

3

∫ ∞
0

A(ρ)4ρ2dρ ·
∑
k 6=k′

∫
[0,π]×[0,2π]

∆4
k∆

4
k′ sin(θ)dθdϕ

=
4πR3

3

11π

140

24π

105
=

4π3R3

3

22

1225
.

Thus, multiplying this last result by 81 · 4! and summing it to the diagonal terms:
3∑

k,k′=1

∫
BR×BR

E(H4(ξ̄k(x))H4(ξ̄k′(y)))dxdy =
4π3R3

3

[233928

1225
+

42768

1225

]
=

4π3R3

3

39528

175
.

Multiplying by 25/81 we get the result.

(2) Let us consider Cov(A1, A2). There are many terms which vanish since ξ and η are inde-
pendent random fields.

Cov(A11, A23) = Cov(A11, A24) = Cov(A12, A23) = Cov(A12, A24) = Cov(A13, A21)

= Cov(A13, A24) = Cov(A14, A22) = Cov(A14, A23) = Cov(A14, A24)

= Cov(A15, A21) = Cov(A15, A23) = Cov(A15, A24) = 0.

We treat the rest of them.
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• Cov(A11, A21) = Cov(A12, A22) ∼ −4π3R3

3
1
2 . Indeed,

3∑
k=1

∫
BR×BR

E
[
H4(ξ(x))H2(ξ(y))H2(ξ̄k(y))

]
dxdy

= 3 · 4!

3∑
k=1

∫
BR×BR

r(x, y)2r0k(x, y)2dxdy

= 3 · 4!
3∑

k=1

∫
BR×BR

sinc(ρ)2sinc′(ρ)2∆2
kdxdy ∼ 3 · 4!

4πR3

3

π

12
4π =

4π3R3

3
24.

Multiplying by −1/48 we get the result.

• Cov(A13, A23) = Cov(A13, A24) ∼ −4π3R3

3
1
6 . Indeed,

3∑
k=1

∫
BR×BR

E
[
H2(ξ(x))H2(ξ(y))

]
E
[
H2(η(y))H2(η̄k(y))

]
dxdy

= 3 · 4
3∑

k=1

∫
BR×BR

r(x, y)2r0k(x, y)2dxdy ∼ 3 · 44πR3

3

π2

3
=

4π3R3

3
4.

We used the computations in Cov(A11, A21). Multiplying by −1/24 we get the result.

• Cov(A14, A21) = Cov(A15, A22) ≥ 0. We have

Cov(A14, A21) =
5

54

3∑
k,k′=1

∫
BR×BR

E
[
H4(ξ̄k(x))H2(ξ(y))H2(ξ̄k′(y))

]
dxdy

=
5

54
27 · 4!

∑
k,k′=1

∫
BR×BR

rk0(x, y)2rkk′(x, y)2dxdy ≥ 0.

Thus, we can omit it.

(3) We move to Cov(A1, A3). Again there are several vanishing terms.

Cov(A11, A32) = Cov(A11, A33) = Cov(A12, A31) = Cov(A12, A33)

= Cov(A13, A31) = Cov(A13, A32) = Cov(A14, A32)

= Cov(A14, A33) = Cov(A15, A31) = Cov(A15, A33) = 0.

We look at the rest of the terms.
• Cov(A11, A31) = Cov(A12, A32) ≥ 0. Indeed,

Cov(A11, A31) =
1

72

∑
i 6=j

∫
BR×BR

E
[
H4(ξ(x))H2(ξ̄i(y))H2(ξ̄j(y))

]
dxdy

=
1

72
9 · 4!

∑
i 6=j

∫
BR×BR

r0i(x, y)2r0j(x, y)2dxdy ≥ 0.
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• Cov(A13, A33) ≥ 0. we have,

Cov(A13, A33) =
1

36

∑
i 6=j

∫
BR×BR

E
[
H2(ξ(x))H2(ξ̄i(y))

]
E
[
H2(η(x))H2(η̄j(y))

]
dxdy

=
1

36
9 · 4

∑
i 6=j

∫
BR×BR

r0i(x, y)2r0j(x, y)2dxdy ≥ 0.

• Cov(A14, A31) = Cov(A15, A32) ∼ −4π3R3

3
592
105 . We have,

3∑
k=1

∑
i 6=j

∫
BR×BR

E
[
H4(ξ̄k(x))H2(ξ̄i(y))H2(ξ̄j(y))

]
dxdy

= 81 · 4!
3∑

k=1

∑
i 6=j

∫
BR×BR

rki(x, y)2rkj(x, y)2dxdy

We begin with the case k 6= i, k 6= j, i 6= j, we write k 6= i 6= j for short.∑
k 6=i 6=j

∫
BR×BR

rki(x, y)2rkj(x, y)2dxdy =
∑
k 6=i 6=j

∫
BR×BR

A(|x− y|)4∆4
k∆

2
i∆

2
jdxdy

=
4πR3

3

11π

140

24π

315
=

4π3R3

3

22

3675
.

Now, we consider the case k = i 6= j, (k = j 6= i is equal).∑
k 6=j

∫
BR×BR

rkk(x, y)2rkj(x, y)2dxdy

=
∑
k 6=j

∫
BR×BR

(A(|x− y|)2∆2
k −B(|x− y|))2A(|x− y|)2∆2

k∆
2
jdxdy.

The first integral∑
k 6=j

∫
BR×BR

A(|x− y|)4∆6
k∆

2
jdxdy ∼

4πR3

3

11π

140

8π

21
=

4π3R3

3

22

735
.

The radial part is as in the previous case. The second integral.∑
k 6=j

∫
BR×BR

A(|x− y|)3B(|x− y|)∆4
k∆

2
jdxdy ∼

4πR3

3

π

70

24π

35
=

4π3R3

3

12

1225
.

The third integral is∑
k 6=j

∫
BR×BR

A(|x− y|)2B(|x− y|)2∆2
k∆

2
jdxdy ∼

4πR3

3

2π

315

8π

5
=

4π3R3

3

16

1575
.

Thus,
3∑

k=1

∑
i 6=j

∫
BR×BR

E
[
H4(ξ̄k(x))H2(ξ̄i(y))H2(ξ̄j(y))

]
dxdy

∼ 81 · 4!
4π3R3

3

[ 22

3675
+ 2
( 22

735
− 2

12

1225
+

16

1575

)]
=

4πR3

3

15984

175
.

The result follows multiplying by −5/81.
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(4) Finally, we consider Cov(A2, A3). We have

Cov(A21, A32) = Cov(A21, A33) = Cov(A22, A31) = Cov(A22, A33)

= Cov(A23, A31) = Cov(A23, A32) = Cov(A24, A31) = Cov(A24, A32) = 0.

Besides, we have.
• Cov(A21, A31) = Cov(A22, A32) = −4π3R3

3
1304
3675 .

3∑
k=1

∑
i 6=j

∫
BR×BR

E
[
H2(ξ(x))H2(ξ̄k(x))H2(ξ̄i(y))H2(ξ̄j(y))

]
dxdy

= 27 · 4
3∑

k=1

∑
i 6=j

∫
BR×BR

r0i(x, y)2rkj(x, y)2dxdy

+ 27 · 4
3∑

k=1

∑
i 6=j

∫
BR×BR

r0j(x, y)2rki(x, y)2dxdy

+ 27 · 16
3∑

k=1

∑
i 6=j

∫
BR×BR

r0i(x, y)r0j(x, y)rki(x, y)rkj(x, y)dxdy

We begin with the first two integrals (their sum over k, i 6= j coincide). Consider k 6= i,
k 6= j (and i 6= j), we write i 6= k 6= j for short.

∑
i 6=k 6=j

∫
BR×BR

r0j(x, y)2rki(x, y)2dxdy

=
∑
i 6=k 6=j

∫
BR×BR

sinc′(|x− y|)2A(|x− y|)2∆2
i∆

2
k∆

2
jdxdy

∼ 4πR3

3

23π

420

8π

35
=

4π3R3

3

46

3675
.

Now, take k = j 6= i.

∑
i 6=k

∫
BR×BR

r0k(x, y)2rki(x, y)2dxdy

=
∑
i 6=k

∫
BR×BR

sinc′(|x− y|)2A(|x− y|)2∆2
i∆

4
kdxdy ∼

4πR3

3

23π

420

24π

35
=

4π3R3

3

46

1225
.

Finally, take k = i 6= j.∑
j 6=k

∫
BR×BR

r0j(x, y)2rkk(x, y)2dxdy

=
∑
j 6=k

∫
BR×BR

sinc′(|x− y|)2(A(|x− y|)∆2
k −B(|x− y|))2∆2

jdxdy

=
4πR3

3

[23π

420

24π

35
− 2

π

42

8π

5
+

2π

105
12π

]
=

4π3R3

3

698

3675
.
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We move to the third integral. Take k 6= i, k 6= j and i 6= j. Write i 6= k 6= j for short.∑
i 6=k 6=j

∫
BR×BR

r0i(x, y)r0j(x, y)rki(x, y)rkj(x, y)dxdy

=
∑
i 6=k 6=j

∫
BR×BR

sinc′(|x− y|)4∆2
i∆

2
j∆

2
k dxdy ∼

4πR3

3

7π

60

8π

35
=

4π3R3

3

2

75
.

Finally, take k = j 6= i (the case k = i 6= j yields the same value).∑
i 6=k

∫
BR×BR

r0i(x, y)r0k(x, y)rki(x, y)rkk(x, y)dxdy

=
∑
i 6=k

∫
BR×BR

sinc′(|x− y|)2A(|x− y|)(A(|x− y|)∆2
k −B(|x− y|))∆2

i∆
2
k dxdy

∼ 4πR3

3

[23π

420

24π

35
− π

42

8π

5

]
= −4π3R3

3

2

3675
.

Gathering all together
3∑

k=1

∑
i 6=j

∫
BR×BR

E
[
H2(ξ(x))H2(ξ̄k(x))H2(ξ̄i(y))H2(ξ̄j(y))

]
dxdy

= 27 · 44π3R3

3

[
2
( 46

3675
+

46

1225
+

698

3675

)
+ 4
( 2

75
− 2

2

3675

)]
= 27 · 44π3R3

3

652

3675
.

Multiplying by −1/54 we get the result.

• Cov(A23, A33) = Cov(A24, A33) ∼ −4π3R3

3
316
735 .

3∑
k=1

∑
i 6=j

∫
BR×BR

E
[
H2(ξ(x))H2(ξ̄i(y))

]
E
[
H2(η̄k(x))H2(η̄j(y))

]
dxdy

= 27 · 4
3∑

k=1

∑
i 6=j

∫
BR×BR

r0i(x, y)2rkj(x, y)2dxdy = 27 · 44π3R3

3

158

735
.

Multiplying by −1/54 we get the result. This integral coincides with the first two terms
in Cov(A21, A31).
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