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Abstract. The Bessel process in low dimension (0 ≤ δ ≤ 1) is not an Itô process and it is a
semimartingale only in the cases δ = 1 and δ = 0. In this paper we first characterize it as the unique
solution of an SDE with distributional drift or more precisely its related martingale problem. In a
second part, we introduce a suitable notion of path-dependent Bessel processes and we characterize
them as solutions of path-dependent SDEs with distributional drift.

1. Introduction

The class of Bessel processes is one of the most important classes of diffusion processes with values
in R+. It is a family of strong Markov processes parameterized by δ ∈ R+ (called the dimension),
which has deep connections with the radial behavior of the Brownian motion, square-root diffusions,
conformally invariant processes, etc. Bessel processes have been largely investigated in the literature,
we refer the reader to e.g. Mansuy and Yor (2008); Zambotti (2017); Revuz and Yor (1999) (Section
2.3, Chapter 3 and Chapter XI, respectively) for an overview on Bessel processes.

Let x0 ≥ 0. We recall that a Bessel process X (with initial condition x0, dimension δ ≥ 0 and
denoted by BESδ(x0)) is defined as the square root of the so-called squared Bessel process (with
initial condition s0 = x2

0, dimension δ ≥ 0 and denoted by BESQδ(x2
0)), which is characterized as
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the pathwise unique solution of the SDE

dSt = 2
√
|St|dWt + δdt, S0 = x2

0, (1.1)

where W is a standard Brownian motion.
When δ > 1 it is possible to characterize X as (pathwise unique non-negative) solution of

dXt =
δ − 1

2
X−1
t dt+ dWt, (1.2)

where W is again a standard Brownian motion, see for instance Exercise (1.26) of Chapter IX
in Revuz and Yor (1999). From now on the letter W will always denominate such a process. In
particular X is an Itô process. For 0 ≤ δ ≤ 1, the integral

∫ t
0 X

−1
s ds does not converge and BESδ(x0)

is a non-semimartingale process, except for δ = 1 and δ = 0, see Revuz and Yor (1999); Jeanblanc
et al. (2009), Chapter XI Section 1 and Section 6.1, respectively. If 0 < δ < 1, see for instance
Bertoin (1991) it is known that

Xt = x0 +
δ − 1

2
p.v.

∫ t

0

ds

Xs
ds+Wt, t ≥ 0, (1.3)

where p.v. stands for principal value defined by

p.v.
∫ t

0

ds

Xs
ds :=

∫
R+

(LXt (a)− LXt (0))aδ−2da,

where LX is the local time of X, defined as a density occupation measure. For details, see e.g.
Mansuy and Yor (2008).

The drift in decomposition (1.3) is a zero energy additive functional in the language of Markov
processes and BESδ(x0) is a Dirichlet process, i.e. the sum of a local martingale and a zero qua-
dratic variation process. As a consequence, in the low dimensional regime, (1.2) does not correctly
represent the paths of BESδ(x0). Representation (1.3) can be interpreted as the Dirichlet process
decomposition of BESδ(x0). For further details, we refer the reader to the works Zambotti (2017);
Engelbert and Wolf (1998); Mansuy and Yor (2008) and other references therein.

Typical examples of low-dimensional Bessel processes appear in the theory of Schramm-Loewner
evolution, see e.g. Lawler (2005). Two-parameter family of Schramm-Loewner evolution SLE(κ, κ−
4) defined in Lawler et al. (2003) provides a source of examples of BESδ flows with very singular
behavior when δ = 1 − 4

κ , κ > 4. In fact, the final right-boundary of SLE(κ, κ − 4) processes is
described by the excursions of BESδ(x0). We refer the reader to Dubédat (2006) for more details.
We also drive attention to Beliaev et al. (2020) for more recent applications of low-dimensional
Bessel processes starting at the origin.

In this work, we characterize BESδ(x0), for 0 ≤ δ ≤ 1, as the unique solution of an SDE with
distributional drift. The main result of this paper states that one natural way to investigate the
SDE dynamics of low-dimensional Bessel processes is the interpretation of the singular drift x 7→ 1

x
as the derivative in the sense of Schwartz distributions of the function x 7→ log|x| rather than
principal values via local times. For this purpose, we interpret (1.2) as a strong-martingale problem
previously introduced by Russo and Trutnau (2007). In this case, for 0 ≤ δ ≤ 1, we prove BESδ(x0)
is the unique non-negative solution of a suitable strong-martingale problem starting at x0 ≥ 0. A
non-Markovian extension is also considered for SDEs with singular drifts of the form

δ − 1

2

1

Xt
+ Γ(t,Xt),

where Γ is a path-dependent non-anticipative functional satisfying some technical conditions and
Xt will be given in (2.2). Our analysis is inspired by the series of works Flandoli et al. (2003, 2004);
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Russo and Trutnau (2007) which treat Markovian SDEs of the form

dXt = σ(Xt)dWt + b′(Xt)dt, X0
d
= δx0 , (1.4)

where σ and b are continuous functions on R. Moreover σ is strictly positive and one supposes the
existence of the function

Σ(x) := 2

∫ x

0

b′

σ2
(y)dy, x ∈ R, (1.5)

as a suitable limit via regularization. We stress that b′ is the derivative of some function b in the
sense of distributions. Assuming (1.5), the Markovian operator L is defined by the authors as

Lf = (eΣf ′)′
e−Σσ2

2
, (1.6)

where f belongs to the domain

DL = {f ∈ C1(R)|f ′eΣ ∈ C1(R)},

see e.g. Flandoli et al. (2003), Section 2 and also Ohashi et al. (2022) Proposition 4.1.
When σ and b′ are functions then previous expression equals

Lf =
σ2

2
f ′′ + b′f ′. (1.7)

In Ohashi et al. (2022), we have studied the class of SDEs

dXt = σ(Xt)dWt + b′(Xt)dt+ Γ(t,Xt)dt, X0
d
= δx0 , (1.8)

for some classes of functionals Γ.
In this paper, we will investigate existence and uniqueness of an SDE of the type (1.8), where

σ = 1, but b is no more a continuous function. More precisely, we focus on the SDE

dXt = dWt + b′(Xt)dt+ Γ(t,Xt)dt, X0
d
= δx0 , (1.9)

where b is given by

b(x) =

{
δ−1

2 log |x|, x ∈ R∗ | δ 6= 1
H(x), x ∈ R | δ = 1,

(1.10)

and H is the Heaviside function and R∗ = R − {0}. Then, (1.3) is considered as a particular case
of the SDE (1.9) with distributional drift b′ and Γ = 0. Even though b is no longer a continuous
function, (1.5) can still be defined in such a way that Σ ≡ 2b and (1.6) holds. We distinguish the
two cases: 0 ≤ δ < 1 and δ = 1.

• 0 ≤ δ < 1. If b is given by (1.10), then (1.5) implies

exp(−Σ(x)) = |x|1−δ. (1.11)

At this point, representation (1.6) for Lδ = L yields

Lδf(x) =
f ′′(x)

2
+

(δ − 1)f ′(x)

2x
, x 6= 0. (1.12)

• δ = 1. In this case, b(x) = H(x). So (1.6) yields

L1f(x) =
f ′′(x)

2
+ δ0f

′(x), x 6= 0, (1.13)

where δ0 is the Dirac measure at zero. Those expressions are perfectly well-defined for
f ∈ DLδ defined in Section 3.2 below. The product δ0f

′ for f ∈ DL is necessarily zero.
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We then study the (possibly non-Markovian) martingale problem associated with the operator

Lδf = Lδ + Γf ′,

in a suitable domain. The notion of martingale problem related to Lδ is given by Definition 2.2.
The notion of strong martingale problem related to the domain of Lδ and an underlying Brownian
motion W is given by Definition 2.3, which borrows the one in Russo and Trutnau (2007). It has to
be compared with the notion of strong existence and pathwise uniqueness of an SDE. In particular,
it represents the corresponding notion of strong solution of SDEs in the framework of martingale
problems.

Sections 3.2, 3.3, 3.4 present a series of results concerning existence/uniqueness for the SDE
(1.9) in Markovian case, for 0 ≤ δ < 1. In particular, Propositions 3.6 and 3.15 show the low-
dimensional Bessel process BESδ(x0) as the unique non-negative solution of the strong martingale
problem associated with Lδ for 0 < δ < 1 and x0 ≥ 0. A similar discussion concerns the case δ = 1,
see Section 3.7, Propositions 3.23 and 3.24. We remark that in the case δ = 1, results for pathwise
uniqueness, see Harrison and Shepp (1981) were already available in the literature.

In Section 3.5 we connect the martingale problem related to Bessel processes to one related to
an extended domain which includes the harmonic function

h(x) = sign(x)
|x|2−δ

2− δ
, x ∈ R. (1.14)

We also give general conditions on the marginal law of a generic process which is solution of the
basic martingale problem to solve the one with extended domain. This is fulfilled for instance by
the Bessel process with dimension δ > 0. Related considerations are discussed when δ = 0.

In Section 4, we establish existence and uniqueness of the martingale problem associated with
the non-Markovian SDE (1.9) under the condition that Γ is bounded; see Propositions 4.2 and 4.11.
Proposition 4.8 proves existence when Γ is unbounded with some technical conditions. Theorem
4.16 illustrate sufficient conditions on Γ to have well-posedness of the strong martingale problem.

We highlight that Aryasova and Pilipenko (2011) have established uniqueness for (1.3) of non-
negative solutions X, when 0 ≤ δ ≤ 1, under the condition that the solution X spends zero time at
the point zero, i.e.,

E
[ ∫ ∞

0
1{0}(Xs)ds

]
= 0. (1.15)

In contrast to Aryasova and Pilipenko (2011) we do not suppose that assumption and we provide
uniqueness among all non-negative solutions.

One important objective of the paper is the definition of path-dependent Bessel process. Let δ ≥ 2
be an integer. Similarly to the classical Markovian case with integer dimension, a path-dependent
Bessel type process (as solution of (1.9)) appears considering the dynamics of a δ-dimensional
Brownian motion β with drift having a radial intensity proportional to a non-anticipative functional
Γ.

More precisely, let Y be a solution to

dYt = dβt + Γ(t, ‖Ys‖Rδ , s ≤ t)
Yt
‖Yt‖Rδ

dt, (1.16)

Then Xt := ‖Yt‖Rδ , i.e. the Euclidean norm in Rδ, solves (1.9). Indeed, if Y is a solution of (1.16),
then a formal application of Itô’s formula to ρt := ‖Yt‖2Rδ and Lévy’s characterization theorem for
local martingales show that

dρt = 2
√
ρtdWt + 2

√
ρtΓ(t,

√
ρs, s ≤ t)dt+ δdt. (1.17)

A subsequent formal application of Itô’s formula shows that Xt =
√
ρt solves (1.9). Our result

concerns the extension of that model to the singular case represented by δ ∈ [0, 1].
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The paper is organized as follows. After this Introduction we recall the notations and some
important results from Ohashi et al. (2022). Then we introduce specific preliminary considerations.
Section 3 is devoted to the case of Bessel processes in low dimension, under the perspective of
strong martingale problems. Section 4 discusses the case of non-Markovian perturbations of Bessel
processes.

2. About path-dependent martingale problems

2.1. Preliminary notations, definitions and results.
In this section we recall the general notation and some necessary results from Ohashi et al. (2022).
Let I be an interval of R. For k ∈ N, Ck(I) will denote the space of real functions defined on

I having continuous derivatives till order k. Such space is endowed with the uniform convergence
topology on compact sets for the functions and all derivatives. Generally I = R, R+ := [0,+∞[,
R− :=]−∞, 0], [0, T ], for some fixed positive real T . If there is no ambiguity Ck(R) will be simply
indicated by Ck. The space of continuous functions on I will be denoted by C(I). Given an a.e.
bounded real function f , |f |∞ will denote the essential supremum.

We recall some notions from Flandoli et al. (2003). For us all filtrations F fulfill the usual
conditions. When no filtration is specified, we mean the canonical filtration of an underlying process.
Otherwise, the canonical filtration associated with a process X is denoted by FX .

A sequence (Xn) of continuous processes indexed by [0, T ] is said to converge u.c.p. to some
process X whenever sup

t∈[0,T ]
|Xn

t −Xt| converges to zero in probability.

We consider a locally bounded functional

Γ : Λ→ R, (2.1)

where
Λ := {(s, ηs), s ∈ [0, T ], η ∈ C([0, T ])}

and

ηts =

{
ηs, if s ≤ t
ηt, if s > t.

(2.2)

By convention, we extend Γ from Λ to [0, T ]× C([0, T ]) by setting (in a non-anticipating way)

Γ(t, η) := Γ(t, ηt), t ∈ [0, T ], η ∈ C([0, T ]).

All along the paper E will denote R or R+.
Let us consider some locally bounded Borel functions σ, b′ : E → R. In this case the path-

dependent SDE {
dXt = σ(Xt)dWt + b′(Xt)dt+ Γ(t,Xt)dt
X0 = ξ,

(2.3)

for some deterministic initial condition ξ taking values in E, makes perfectly sense, see Section 5
of Ohashi et al. (2022), in particular one can speak about strong existence, pathwise uniqueness,
existence and uniqueness in law. (2.3) is denominated by E(σ, b′,Γ). Proposition 3.2 in Ohashi
et al. (2022) implies the following.

Proposition 2.1. Let b′ : E → R be a locally bounded function. We set Lf = σ2

2 f
′′ + b′f ′,

f ∈ C2(E). A couple (X,P) is a solution of E(σ, b′,Γ), if and only if, under P,

f(Xt)− f(X0)−
∫ t

0
Lf(Xs)ds−

∫ t

0
f ′(Xs)Γ(s,Xs)ds (2.4)

is a local martingale, where Lf = σ2

2 f
′′ + b′f ′, for every f ∈ C2(E).
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In this paper, we will be interested in a formal E(σ, b′,Γ) where σ = 1 but b′ is the derivative
of some specific Borel discontinuous function. The formulation is inspired by Proposition 2.1 which
states that the SDE is equivalent to a specific martingale problem. We will consider formal PDE
operators of the type L : DL(E) ⊂ C1(E) → C(E), where Lf gives formally σ2

2 f
′′ + b′f ′. When

b′, σ are locally bounded functions then DL(E) = C2(E). In that case, the notion of martingale
problem is (since the works of Stroock and Varadhan Stroock and Varadhan (2006)) is a concept
related to solutions of SDEs in law.

Definition 2.2.
(1) We say that a continuous stochastic process X solves (with respect to a probability P on

some measurable space (Ω,F)) the martingale problem related to

Lf := Lf + Γf ′, (2.5)

with initial condition ν = δx0 , x0 ∈ E, with respect to a domain DL(E) if

Mf
t := f(Xt)− f(x0)−

∫ t

0
Lf(Xs)ds−

∫ t

0
f ′(Xs)Γ(s,Xs)ds, (2.6)

is a P-local martingale for all f ∈ DL(E).
We will also say that the couple (X,P) is a solution of (or (X,P) solves) the martingale

problem with respect to DL(E).
(2) If a solution exists we say that the martingale problem above admits existence.
(3) We say that the martingale problem above admits uniqueness if any two solutions (Xi,Pi),

i = 1, 2 (on some measurable space (Ω,F)) have the same law.

In the sequel, when the measurable space (Ω,F) is self-explanatory it will be often omitted.
Below we introduce the analogous notion of strong existence and pathwise uniqueness for our

martingale problem, see also Ohashi et al. (2022) for the case when b′ is the derivative of a continuous
function and Russo and Trutnau (2007) for the case Γ = 0. In both cases we had E = R.

Definition 2.3.
(1) Let (Ω,F ,P) be a probability space and let F = (Ft) be the canonical filtration associated

with a fixed Brownian motion W . Let x0 ∈ E. We say that a continuous F-adapted E-
valued process X such that X0 = x0 is a solution to the strong martingale problem
(related to (2.5), σ) with respect to DL(E) and W (with related filtered probability space)
(with X0 = x0) if

f(Xt)− f(x0)−
∫ t

0
Lf(Xs)ds−

∫ t

0
f ′(Xs)Γ(s,Xs)ds =

∫ t

0
f ′(Xs)σ(Xs)dWs, (2.7)

for all f ∈ DL(E).
(2) We say that the martingale problem related to (2.5) and σ with respect to DL(E) admits

strong existence if for every x0 ∈ E, given a filtered probability space (Ω,F ,P,F), where
F = (Ft) is the canonical filtration associated with a Brownian motion W , there is a process
X solving the strong martingale problem (related to (2.5) and σ) with respect to DL(E)
and W with X0 = x0.

(3) We say that the martingale problem (related to (2.5)) with respect to DL(E) admits path-
wise uniqueness if given (Ω,F ,P) and a Brownian motionW and Xi, i = 1, 2 are solutions
to the strong martingale problem with respect to DL(E) and W with P[X1

0 = X2
0 ] = 1 then

X1 and X2 are indistinguishable.

The mention E will be often omitted when E = R. For instance C1(E), C2(E),DL(E), will be
simply denoted by C1, C2,DL.
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3. Martingale problem for Bessel processes

3.1. Preliminary considerations.
In this section, we are going to introduce and investigate well-posedness for a martingale problem

related to a Bessel process. In this section again W will denote a standard Brownian motion. We
recall that the rigorous definition of the Bessel process is the following. A non-negative process X
is said to be a Bessel process starting at x0 with dimension δ ≥ 0 (notation BESδ (x0)) if S = X2

is a squared Bessel process starting at s0 = x2
0 of dimension δ. S is denoted by BESQδ (s0) , we

recall in particular that it is the pathwise unique solution of (1.1).
As is shown in Proposition 2.13 in Chapter 5 of Karatzas and Shreve (1991) (see also Zambotti

(2017, Chapter 3)) (1.1) admits pathwise uniqueness. Since x 7→
√
|x| has linear growth it has weak

existence and so by Yamada-Watanabe theorem it also admits strong existence.

Remark 3.1. For δ > 1, we know that the Bessel process X fulfills

Xt = x0 +
δ − 1

2

∫ t

0
X−1
s ds+Wt. (3.1)

We recall that for δ > 2, X is even transient and it never touches zero, see Revuz and Yor (1999,
Chapter XI). As anticipated, when δ = 1 or δ = 0 X is still a semimartingale. Unfortunately if
0 < δ < 1 that is no more the case, see Chapter 10 of Mansuy and Yor (2008), and X is just a
Dirichlet process, i.e. the sum of a local martingale and a zero quadratic variation process.

Our point of view consists in rewriting (3.1) under the form

Xt = x0 +

∫ t

0
b′(Xs)ds+Wt, (3.2)

where W is a Brownian motion and b′ is the derivative of the function b(x) = δ−1
2 log |x|, at least

when δ < 1. In other words we make use of the ”analytical” p.v. of x 7→ 1
x which is the derivative of

log . That object is, on R, a Schwartz distribution and not a function, which nevertheless coincides
with x 7→ 1

x on R∗. This indeed explains (3.1) and takes into account the “relevant” time spent by
the Bessel process at zero.

In the case δ = 1, for similar reasons, and taking into account the fact that the Bessel process
is a reflected Brownian motion, we naturally choose b to be a Heaviside function so that b′ is the
δ-Dirac measure at zero.

We are going to construct two settings: one for 0 ≤ δ < 1 and another one for δ = 1. In what
follows, we should recall R∗ = R− {0}.

3.2. The framework for 0 ≤ δ < 1.
According to the considerations in Section 3.1, the natural form of the operator Lδ := L (outside

zero) is expected to be of the form

Lδf(x) =
f ′′(x)

2
+

(δ − 1)f ′(x)

2x
, (3.3)

for f ∈ C2(R∗).
As anticipated, we fix b : R → R, b(x) = δ−1

2 log |x|, x 6= 0 and σ ≡ 1. x 7→ δ−1
2x , appearing in

(3.3) coincides with b′ restricted to R∗. Formally speaking, Σ as in (1.5) gives Σ(x) = 2b(x), so

exp(−Σ(x)) = |x|1−δ, x ∈ R. (3.4)

The expression (3.3) can also be expressed as

Lδf(x) =
|x|1−δ

2
(|x|δ−1f ′)′, x 6= 0. (3.5)

The problem is to provide a natural extension for x = 0, which constitutes the critical point.
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We have now to specify the natural domain of Lδ, in such a way that it is compatible with (3.5).

Definition 3.2. We will denote by DLδ the set of f ∈ C(R) ∩ C2(R+) ∩ C2(R−) such that the
following holds.

(a) There is a continuous function g : R→ R extending x 7→ f ′(x)|x|δ−1, x 6= 0.
(b) There is a continuous function G : R→ R, extending x 7→ g′(x)|x|1−δ, x 6= 0, (i.e. 2Lδf(x),

according to (3.5)) to R.
We define then

Lδf :=
G

2
. (3.6)

Proposition 3.3.
(1) Suppose δ > 0. Then DLδ = Dδ := {f ∈ C2(R)|f ′(0) = 0} and

Lδf(x) =

{
f ′′(x)

2 + (δ−1)f ′(x)
2x : x 6= 0

δ f
′′(0)
2 : x = 0.

(3.7)

(2) Suppose δ = 0. Then DL0 = D0, where

D0 := {f ∈ C1(R) ∩ C2(R+) ∩ C2(R−)|f ′(0) = 0} (3.8)

and

L0f(x) =

{
f ′′(x)

2 − f ′(x)
2x : x 6= 0

0 : x = 0.
(3.9)

Proof : We first show the inclusion DLδ ⊂ Dδ. Suppose f ∈ DLδ . We have

lim
x→0

f ′(x) = lim
x→0
|x|1−δg(x) = 0. (3.10)

This obviously implies that f ∈ C1(R) and f ′(0) = 0. Taking into account (3.3), we have

f ′′(0+) := lim
x→0+

f ′′(x) = lim
x→0+

(
G(x)− (δ − 1)

f ′(x)

x

)
= G(0)− (δ − 1) lim

x→0+

f ′(x)

x
= G(0)− (δ − 1)f ′′(0+),

f ′′(0−) := lim
x→0−

f ′′(x) = lim
x→0−

(
G(x)− (δ − 1)

f ′(x)

x

)
= G(0)− (δ − 1) lim

x→0−

f ′(x)

x
= G(0)− (δ − 1)f ′′(0−),

by L’Hospital rule. This implies that

δf ′′(0+) = G(0) = δf ′′(0−). (3.11)

To show that f ∈ Dδ, it remains to show that f ′′(0+) = f ′′(0−) when δ 6= 0. This obviously follows
from (3.11), which shows the inclusion DLδ ⊂ Dδ for all δ ∈ [0, 1[. Now, (3.11), (3.3) and (3.6) show
in particular (3.7) and (3.9).

We prove now the opposite inclusion Dδ ⊂ DLδ . Let f ∈ Dδ, in particular such that f ′(0) = 0.
We need to prove that it fulfills the properties (a) and (b) characterizing DLδ . We set g(x) :=
f ′(x)|x|δ−1, x 6= 0 and g(0) := 0. By L’Hospital rule we can show that lim

x→0
g(x) = 0, so that g is

continuous at zero. This proves property (a) characterizing DLδ . Taking the derivative of g on R∗
we get

g′(x) = f ′′(x)|x|δ−1 + (δ − 1)f ′(x) sign(x)|x|δ−2. (3.12)
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Concerning property (b), as x 7→ G(x) := g′(x)|x|1−δ is continuous on R∗ it is enough to show that
lim
x→0

G(x) exists. By (3.12) we obtain

G(x) = f ′′(x) + (δ − 1) sign(x)
1

|x|
f ′(x) = f ′′(x) + (δ − 1)

f ′(x)

x
, x 6= 0.

We recall that f ′′(0+) and f ′′(0−) exist. Taking the limit when x goes to zero from the right and
from the left, by L’Hospital rule, we get

G(0+) = f ′′(0+) + (δ − 1)f ′′(0+) = δf ′′(0+),

G(0−) = f ′′(0−) + (δ − 1)f ′′(0−) = δf ′′(0−).

Distinguishing the cases δ > 0 (in this case f ′′(0+) = f ′′(0−)) and δ = 0, we show that G(0+) =
G(0−) and finally G extends continuously to 0. This concludes the proof of the two properties (a)
and (b) and so the inclusion Dδ ⊂ DLδ . �

Remark 3.4. In fact one could consider a larger domain D̂Lδ constituted by the functions f ∈
C(R) ∩ C2(R∗) fulfilling the conditions (a) and (b) before (3.6). Consider for instance the Lδ-
harmonic function h defined in (3.37). That function does not belong to DLδ because it has no
second left and right-derivative in 0, but it is an element of D̂Lδ . In fact that domain is too large for
our purposes of investigation of well-posedness. Formulating the martingale problem replacing DLδ
with D̂Lδ , it will be easier to show uniqueness, but more difficult to formulate existence. Suppose
that (X,P) is a solution to previous martingale problem, making use of the domain DLδ . The
natural question is to know if (X,P) is still a solution to the martingale problem formulated making
use of D̂Lδ instead of DLδ . This will be possible under a restricting condition on the law of X, see
Section 3.5; this condition will be fulfilled by the Bessel process starting from a point x0 6= 0 for
instance.

In the sequel we will denote by DLδ(R+) the set of functions f : R+ → R which are restrictions
of functions f̂ belonging to DLδ . We recall that, sometimes, we will also denote DLδ(R) := DLδ .
We will also denote Lδf as the restriction to R+ of Lδf̂ . (3.7) shows that this notation is coherent.
This convention will be made also for δ = 1 in Section 3.7.

Starting from Section 3.3, we will make use of convergence properties for functions and processes
according to the remark below.

Remark 3.5.
(1) If g : R → R is continuous (therefore uniformly continuous on compacts) then gn(x) =

f
(
x+ 1

n

)
converges to g uniformly on compacts.

(2) Let (Ω,F ,P) be a probability space and X a continuous stochastic process on (Ω,F ,P).
If gn : R → R is a sequence of functions that converges uniformly on compacts of R to a
function g then gn(X) converges to g(X) u.c.p.

3.3. The martingale problem in the full line case when 0 ≤ δ < 1.

Proposition 3.6. Let (Ω,F ,P) be a probability space and a Brownian motion W . Let x0 ≥ 0, 0 ≤
δ < 1. Let S be the solution of (1.1) (necessarily non-negative by comparison theorem) with s0 = x2

0,

so that X =
√
S is a BESδ(x0) process.

Then X solves the strong martingale problem with respect to DLδ and W . In particular, for every
f ∈ DLδ

f(Xt)− f(X0)−
∫ t

0
Lδf(Xs)ds =

∫ t

0
f ′(Xs)dWs. (3.13)

Remark 3.7.
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(1) Suppose that S is a non-negative solution of an SDE of the type (1.1), where the Brownian
motion W is replaced by a continuous semimartingale whose martingale component is a
Brownian motion. Then (3.13) still holds for every f ∈ DLδ .

(2) For δ = 0 and x0 = 0, BESQ0(0) is the null process. By Proposition 3.3 L0f(0) = 0 for all
f ∈ DL0 , obviously f(0)− f(0)−

∫ t
0 L

δf(0)ds ≡ 0 and (3.13) holds.

Proof (of Proposition 3.6):
We consider immediately the case of Remark 3.7 (1) and suppose W to be a semimartingale such

that [W ]t ≡ t. Let X =
√
S, where S is a BESQδ(s0), let f ∈ DLδ and define fn : R+ → R as

fn(y) = f
(√

y + 1
n

)
. Clearly fn ∈ C2(R+). Applying Itô’s formula we have

fn(St) = fn(S0) +

∫ t

0

f ′
(√

Ss + 1
n

)
√
Ss + 1

n

√
SsdWs +

∫ t

0
δ
f ′
(√

Ss + 1
n

)
2
√
Ss + 1

n

ds

+

∫ t

0

1

2
f ′′

(√
Ss +

1

n

)
− 1

2

f ′
(√

Ss + 1
n

)
√
Ss + 1

n

[ Ss

Ss + 1
n

]
ds, (3.14)

which can be rewritten as

fn(St) = fn(S0) +

∫ t

0

f ′
(√

Ss + 1
n

)
√
Ss + 1

n

√
SsdWs +

∫ t

0

1

2
f ′′

(√
Ss +

1

n

)[
Ss

Ss + 1
n

]
ds

+
1

2

∫ t

0

f ′
(√

Ss + 1
n

)
√
Ss + 1

n

[
δ − Ss

Ss + 1
n

]
ds. (3.15)

The first integral converges to ∫ t

0
f ′
(√

Ss

)
dWs, (3.16)

u.c.p. by Remark 3.5, with g = f ′ ∈ C(R+).
Secondly, applying Remark 3.5 with g = f ′′ and, taking into account the fact that Ss

Ss+
1
n

≤ 1,

together with Lebesgue’s dominated convergence theorem, the second integral in (3.15) converges
u.c.p. to

1

2

∫ ·
0
f ′′
(√

Ss

)
ds. (3.17)

We set now ` : R+ −→ R, the continuous function defined by

`(x) =

{
f ′(x)
x : x 6= 0.

f ′′(0+) : x = 0.

The third integral can be rewritten as

1

2

∫ t

0
`

(√
Ss +

1

n

)[
δ − Ss

Ss + 1
n

]
ds.

By Remark 3.5 with g = ` and, similarly as above, again Lebesgue’s dominated convergence the
previous expression converges u.c.p. to∫ t

0
`
(√

Ss

)(δ − 1

2

)
ds. (3.18)

Finally (3.16), (3.17) and (3.18) allow to conclude the proof of (3.13). �
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Below, if x ≥ 0, we denote by Xx the BESδ(x) process, being the square root of a solution of
(1.1) with s0 = x2.

Corollary 3.8. Let x0 ∈ R, 0 ≤ δ < 1. The martingale problem with respect to DLδ , with initial
condition X0 = x0 admits strong existence.

(1) If x0 ≥ 0, Xx0 solves the strong martingale problem with respect to DLδ and W .
(2) If x0 ≤ 0, −X−x0 solves the same strong martingale problem with respect to DLδ and −W .

Proof : Let (Ω,F ,P) be a probability space and a Brownian motion W . We set s0 = x2
0. We know

that (1.1) admits a strong solution S. Then, by Proposition 3.6 X =
√
S is a solution for the strong

martingale problem with respect to DLδ and W with initial condition |x0|.
So, if x0 ≥ 0 then strong existence is established. If x0 < 0 then we show below that −X also

solves the strong martingale problem with respect to DLδ and −W .
Let f ∈ DLδ . Then obviously f−(x) := f(−x) ∈ DLδ and

Lδf−(x) = Lδf(−x).

Therefore, since X solves the strong martingale problem with respect to DLδ andW , for all f ∈ DLδ
we have

f−(Xt)− f−(x0)−
∫ t

0
Lf−(Xs)ds =

∫ t

0
f ′−(Xs)dWs,

which implies

f(−Xt)− f(−x0)−
∫ t

0
Lδf(−Xs)ds =

∫ t

0
f ′(−Xs)d(−W )s.

Thus −X also solves the strong martingale problem with respect to DLδ and −W .
�

Proposition 3.9. Let us suppose 0 < δ < 1. The martingale problem with respect to DLδ does not
admit (in general) uniqueness in law.

Proof : Let S be the BESQδ(0). By Corollary 3.8, we know that X+ =
√
S and X− = −

√
S solve

the martingale problem with respect to an underlying probability P.
Obviously X does not have the same law as −X since X is positive and −X is negative. �

Remark 3.10. If the initial condition x0 is different from zero, for instance positive, then uniqueness
also fails since we can exhibit two solutions. The first one is still the classical Bessel process,
the second one behaving as the first one until it reaches zero and then it behaves like minus a
Bessel. We recall that, when δ ≤ 1, the corresponding Bessel process reaches {0} a.s., see (ii) in the
considerations after Corollary (1.4), Chapter XI in Revuz and Yor (1999).

For proving indeed results for uniqueness, we will need the following.

Proposition 3.11. Let 0 ≤ δ < 1. Let (X,P) be a solution (not necessarily positive) of the
martingale problem with respect to DLδ . Then S = X2 is a squared Bessel process.

Proof : We first show that
M1
t := X2

t − x2
0 − δt (3.19)

is a local martingale and

X4
t = x4

0 + 2(2 + δ)

∫ t

0
X2
sds+M2

t , (3.20)

where M2 is a local martingale. Clearly, f1(x) := x2 ∈ DLδ because f ∈ C2(R) and f ′1(0) = 0. By
Proposition 3.3 Lδf1(x) ≡ δ, which shows (3.19). On the other hand, obviously f2(x) := x4 ∈ DLδ
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and then, by Proposition 3.3, Lδf2(x) = 2(2 + δ)x2, so (3.20) follows. Now, setting S := X2, by
integration by parts and using (3.19) we have

[M1]t = [S]t = S2
t − s2

0 − 2

∫ t

0
SsdSs = X4

t − x4
0 − 2δ

∫ t

0
X2
sds+Mt, (3.21)

where M is a local martingale. This implies

X4
t = x4

0 + 2δ

∫ t

0
X2
sds+ [M1]t −Mt. (3.22)

We remark that (3.22) and (3.20) provide two decompositions of the semimartingale X4. By unique-
ness of the semimartingale decomposition we can identify the bounded variation component, which
implies

[M1]t = 4

∫ t

0
X2
sds, t ∈ [0, T ]. (3.23)

Possibly enlarging the probability space, we consider an independent Brownian motion W. We
define now the process

Wt :=

∫ t

0
1{Xs 6=0}

dM1
s

2|Xs|
+

∫ t

0
1{Xs=0}dWs, t ≥ 0. (3.24)

W is a Brownian motion taking into account the fact that [W ]t ≡ t together with Lévy’s character-
ization of Brownian motion. At this point we define M̃1 = 2

∫ ·
0 |Xs|dWs. We get

M̃1
t = 2

∫ t

0
1{Xs 6=0}|Xs|dWs =

∫ t

0
1{Xs 6=0}|Xs|

1

|Xs|
dM1

s

=

∫ t

0
1{Xs 6=0}dM

1
s .

This yields

[M̃1 −M1]t =

∫ t

0
1{Xs=0}d[M1]s = 4

∫ t

0
X2
s 1{Xs=0}ds = 0, t ≥ 0,

Consequently M1 = M̃1, hence, (3.19) yields that the process S is a (weak) solution of the SDE

dSs = δds+ 2
√
|Ss|dWs, (3.25)

which shows that S is a BESQδ(s0), s0 = x2
0.

�

Proposition 3.9 shows that no uniqueness on the real line holds when δ > 0. Surprisingly, if δ = 0
then uniqueness holds.

Remark 3.12. Suppose δ = 0.
(1) Assume x0 = 0. By Proposition 3.11 if (X,P) is a solution of the martingale problem, then

X2 is (under P) a BESQ0(0) which is the null process; this fact shows uniqueness.
(2) Suppose x0 different from zero (for instance strictly positive). If (X,P) is a solution to the

strong martingale problem, then, by Proposition 3.11, under P, S := X2 is a BESQ0(x2
0).

In particular S is a solution of (1.1) with respect to some suitable Brownian motion W .
Then, the strong Markov property shows that, whenever S reaches zero it is forced to remain
there.

At the level of strong martingale problem we have the following.

Proposition 3.13. Let 0 ≤ δ < 1. Let X be a non-negative solution to the strong martingale
problem with respect to DLδ , σ and a Brownian motion W . Then S = X2 is a solution to (1.1).



About Path-dependent Bessel processes 1123

Proof : Let us suppose that X is a solution of the strong martingale problem with respect to DLδ
and a Brownian motion W. Setting S := X2 and applying (2.7) with f1(x) = x2 we get

St = s0 + 2

∫ t

0

√
|Ss|dWs + δt, t ∈ [0, T ],

with s0 = x2
0. �

3.4. The martingale problem in the R+-case.
We remain still with the case 0 ≤ δ < 1. Let (Ω,F ,P) be a probability space and a Brownian

motion W . We will be interested in non-negative solutions X for the strong martingale problem
with respect to DLδ(R+) and W , which means that

f(Xt)− f(X0)−
∫ t

0
Lδf(Xs)ds =

∫ t

0
f ′(Xs)dWs, (3.26)

for all f ∈ DLδ(R+). Proposition 3.14 below states the existence result. It follows directly from the
R-case, see Proposition 3.6.

Proposition 3.14. Let 0 ≤ δ < 1. The process BESδ(x0) as stated in Proposition 3.6 solves the
strong martingale problem with respect to DLδ(R+) and W . In particular, the martingale problem
related to DLδ(R+) admits strong existence.

Proposition 3.15. The martingale problem with respect to DLδ(R+) and W admits pathwise
uniqueness.

Proof : Let us suppose that (X,P) is a solution of the martingale problem with respect to DLδ(R+)
and W . This implies the same with respect to DLδ . By Proposition 3.13 S = X2 is a solution of
(1.1) for some Brownian motion W . The result follows by the pathwise uniqueness of the SDE (1.1)
and the positivity of X.

�

3.5. The martingale problem related to an extended domain.
In this section we answer to the question raised in Remark 3.4. Indeed, for some aspects, one

could be interested in a formulation of the martingale problem with respect to the extended domain
D̂Lδ defined in Remark 3.4 in order to include the harmonic function (1.14).

Proposition 3.16. Let (Xt)t≥0 be a solution to the martingale problem with respect to DLδ . Suppose
the following.

i) For almost all t ∈ ]0, T ] the law of Xt admits density pt.

ii) lim
|x|→0

∫ T

0
|x|1−δpt(x)dt = 0.

Then (Xt) is also a solution to the martingale problem with respect to D̂Lδ .

Remark 3.17. An analogous statement is valid for the strong martingale problem.

Proof (of Proposition 3.16): Let f ∈ D̂Lδ and consider a smooth bounded function χ : R −→ R+

such that

χ(x) =

 1, x ≤ −1
0, x ≥ 0

S(x), x ∈ [−1, 0],
(3.27)

for some bounded function S : [−1, 0] −→ [0, 1] with S(0) = 0, S(−1) = 1. For every n ≥ 1 we
define χn : R −→ R+ as

χn(x) := χ

(
1

2
− n|x|

)
.
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Notice that

χn(x) =

 0, |x| ≤ 1
2n

1, |x| ≥ 3
2n

∈ [0, 1], otherwise.
We have χ′n(x) = χ′

(
1
2 − n|x|

)
(−nsign(x)), so that

|χ′n(x)| ≤ n||χ′||∞I{ 1
2n
≤|x|≤ 3

2n
}(x), x ∈ R. (3.28)

For every n ≥ 1 we define fn : R −→ R+ such that{
fn(0) = f(0)
f ′n = f ′χn.

(3.29)

Clearly fn ∈ DLδ , so

fn(Xt)− fn(X0)−
∫ t

0
Lδfn(Xs)ds (3.30)

is a local martingale. Obviously fn → f and f ′n → f ′ uniformly on each compact. We show below
that ∫ ·

0
Lδfn(Xs)ds

u.c.p.−−−→
∫ ·

0
Lδf(Xs)ds. (3.31)

By (3.5) and (3.29) we get

Lδfn(x) =
|x|1−δ

2
(|x|δ−1f ′n)′(x) = χn(x)Lδf(x) +

1

2
χ′n(x)f ′(x).

Since χn converges to 1 uniformly on each compact, then
∫ ·

0 χn(Xs)L
δf(Xs)ds converges u.c.p. to∫ ·

0 L
δf(Xs)ds. To prove (3.31) it remains to prove that∫ t

0
χ′n(Xs)f

′(Xs)ds
u.c.p.−−−→ 0. (3.32)

For this, by (3.28) we have

E

(
sup
t≤T

∣∣∣∣∫ t

0
χ′n(Xs)f

′(Xs)ds

∣∣∣∣
)
≤ E

(∫ T

0

∣∣χ′n(Xs)f
′(Xs)

∣∣ ds) ≤ (3.33)

≤ n||χ′||∞E
(∫ T

0
|f ′(Xt)|I{ 1

2n
|Xt|< 3

2n
}(Xt)dt

)
= n||χ′||∞

∫ T

0

∫ 3
2n

1
2n

|f ′(x)|pt(x)dxdt.

Let g be the continuous functions such that for x 6= 0 we have g(x) = f ′(x)|x|δ−1. (3.33) gives

I(n) := n||χ′||∞
∫ T

0

∫ 3
2n

1
2n

|f ′(x)|pt(x)dxdt = n||χ′||∞
∫ T

0

∫ 3
2n

1
2n

|g(x)||x|1−δpt(x)dxdt.

Let ε > 0. Taking into account hypothesis ii) in the statement, there exists A > 0 such that for
|x| ≤ A, we have

∫ T
0 |x|

1−δpt(x)dt < ε. Consequently, for |x| ≤ A

I(n) ≤ ||χ′||∞ sup
|x|≤A

|g(x)|ε.

Taking the lim sup when n goes to infinity and since ε is arbitrary we get lim supn→+∞ I(n) = 0
and consequently (3.32).

Since the space of local martingales is closed under the u.c.p. convergence then, taking the limit
on (3.30) when n→∞, we conclude that f(Xs)− f(X0)−

∫ t
0 L

δf(Xs)ds is a local martingale. �

Proposition 3.18. Let (Xt) be the Bessel process of dimension δ ∈ [0, 1] starting from x0 > 0.
Then the following holds.
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i) For every t > 0 the law of Xt admits a density pt.

ii) lim
|x|→0+

∫ T

0
|x|1−δpt(x) = 0.

Before doing the proof we recall that Iν is the modified Bessel function of first kind (see Abramowitz
and Stegun (1964), section 10) with ν = δ

2 − 1. To prove Proposition 3.18 we will make use of the
estimate stated in the following lemma.

Lemma 3.19. Iν(z) ≤ C exp(z), for some constant C and z ∈ R large enough.

Proof : In Abramowitz and Stegun (1964) equation 9.6.20 (p.376) we have

Iν(z) =
1

2π

∫ π

0
exp(z cos(θ)) cos(νθz)dθ − sin(νπ)

π

∫ ∞
0

exp(−z cosh(t)− νt)dt =: I1(z)− I2(z).

For z > 0 we get

|I1(z)| ≤ 1

2
exp(z).

Concerning I2(z) we first observe that −z cosh(t) − νt ≤ (−z − ν)t for t ≥ 0. Let R > −ν. For
z > R we get

|I2(z)| ≤ 1

π

∫ ∞
0

exp(−t(R+ ν))dt =
1

π(R+ ν)
.

Consequently the result follows. �

Proof (of Proposition 3.18):
i) We recall (see Jeanblanc et al. (2009), chapter 6 equation 6.2.2 and Appendix A) that for
X0 = x0

ps(y) =
y

s

(
y

x0

)ν
exp

(
−x

2
0 + y2

2s

)
Iν

(x0y

s

)
, (3.34)

ii) Since X is non-negative, we can remove the absolute value from |x|. By (3.34) and Lemma
3.19 we have

x1−δ
∫ T

0
pt(x)dt ≤ Cx

1−δ+1+ δ
2
−1

x
δ
2
−1

0

∫ T

0
exp

(
−x

2
0 + x2

2t
+
x0x

t

)
1

t
dt

≤ Cx1− δ
2x

1− δ
2

0

∫ T

0
exp

(
−(x0 − x)2

2t

)
1

t
dt.

For t > 0 and x < x0 we set t̃ := (x0−x)2

t , so dt = − (x0−x)2

t̃2
. That gives us

C(xx0)1− δ
2

∫ ∞
(x0−x)2

T

exp

(
−t̃
2

)
1

t̃
dt̃. (3.35)

Since previous integral converges to∫ ∞
x20
T

exp

(
−t̃
2

)
dt̃,

when x→ 0, then (3.35) converges to zero. So the proof is concluded.
�

Remark 3.20. We remark that item (ii) of Proposition 3.18 is not fulfilled for a Bessel process
starting from x0 = 0, see Proposition 3.21. In this case, if one replaces the initial domain DLδ
with its extended domain the Bessel process fulfills a martingale problem where one has to add a
supplementary term in the operator Lδ. This research is developed in an ongoing draft, which goes
beyond the scope of the present paper.
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Proposition 3.21. Let (Xt) be the Bessel process with dimension δ ∈ [0, 1] starting at x0 = 0.
Then, the following holds.

i) For every t > 0 the law of Xt admits a density pt

ii) For every t > 0 lim
x→0+

∫ t

0
x1−δps(x)ds =

22− δ
2

Γ( δ2)
t1−

δ
2

1

2− δ
.

where Γ is the Gamma function given by Γ(a) =
∫∞

0 xa−1 exp(−x)dx, a > 0.

Proof : According to equation 6.2.2 in Jeanblanc et al. (2009) we have

pt(x) =
2νt−(ν+1)

Γ(ν + 1)
x2ν+1 exp

(
−x

2

2t

)
.

Consequently, since ν = δ
2 − 1, we get

xδ−1

∫ t

0
ps(x)ds =

21− δ
2

Γ( δ2)

∫ t

0
exp

(
−x

2

2s

)
s−

δ
2ds

For s > 0 and x > 0 we set s̃ = x2

s , ds = −x2

s̃2
ds̃. We obtain

21− δ
2

Γ( δ2)

∫ ∞
x2

t

x2

s̃2

(
s̃

x2

) δ
2

exp

(
− s̃

2

)
ds̃ =

x2−δ21− δ
2

Γ( δ2)

∫ ∞
x2

t

s̃−( δ
2

) exp

(
δ

2

)
ds̃ =

=
21− δ

2

Γ(−s̃2 )

1

xδ−2

∫ ∞
x2

t

s̃
δ
2
−2 exp

(
− s̃

2

)
ds̃

Since the integral and 1
xδ−2 go to ∞ when x→ 0+ then, by L’Hospital rule,

lim
x→0+

∫ t

0
x1−δps(x)ds = −21− δ

2

Γ( δ2)
lim
x→0+

2x
t (x

2

t )
δ
2
−2 exp(−x2

t )

(δ − 2)xδ−3
=

= −22− δ
2

Γ( δ2)
t1−

δ
2

1

δ − 2
lim
x→0+

x0 =
22− δ

2

Γ( δ2)
t1−

δ
2

1

2− δ
.

�

3.6. On an alternative approach to treat the martingale problem on the full line.
A priori we could have approached the martingale problem related to Bessel processes by the

technique of Flandoli et al. (2003).
(1) Thereby, the authors handled martingale problems related to operators L : DL ⊂ C1(R)→ R

of the form Lf = σ2

2 f
′′+ b′f ′, where b is the derivative of a continuous function, σ is strictly

positive continuous and Σ is defined as (1.5). The idea was to consider an L-harmonic
function h : R→ R defined by h(0) = 0 and h′ = e−Σ. In Flandoli et al. (2003), L was also
expressed in the form (1.6). The proof of well-posedness of the martingale problem thereby
was based on a non-explosion condition (3.16) in Proposition 3.13 in Flandoli et al. (2003)
and the fact that σ0 := (σe−Σ) ◦ h−1 is strictly positive and so the SDE (for every fixed
initial condition)

Yt = y0 +

∫ t

0
σ0(Ys)dWs, (3.36)

is well-posed.
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(2) Consider δ ∈ [0, 1[. As far as the martingale problem (for the Bessel process) on the full
line is concerned, we could have tried to adapt similar methods. We observe that L := Lδ

is also expressed in the form (1.6), which in our case gives (3.5). Taking into account (3.4),
we have

h(x) = sign(x)
|x|2−δ

2− δ
, x ∈ R. (3.37)

Since h is bijective, one can show that (3.16) in Proposition 3.13 in Flandoli et al. (2003) is
automatically satisfied. Moreover

σ0(y) = sign(y)(2− δ)
1−δ
2−δ |y|

1−δ
2−δ . (3.38)

Following the same idea as in in Proposition 3.2 of Flandoli et al. (2003), one can show that
the well-posedness of the Bessel martingale problem (with respect to D̂Lδ) is equivalent to
the well-posedness (in law) of (3.36). Here σ0(0) = 0, but (3.36) is still well-posed even if∫ ε

0

1

σ2
0

(y)dy = +∞, ∀ε > 0. (3.39)

In fact in that case (3.39) corresponds to the Engelbert-Schmidt criterion (see Theorem 5.7
in Karatzas and Shreve (1991, Chapter 5).

(3) The criterion (3.39) can be reformulated here saying that the quantity
1

(2− δ)
2−2δ
2−δ

∫ ε

0
y

2δ−2
2−δ dy, ∀ε > 0, (3.40)

is infinite. Now, (3.40) is always finite for any δ > 0. This confirms that (3.36) has no
uniqueness in law on R, with σ0 defined in (3.38), when δ ∈]0, 1[. So, the non-uniqueness
observed in Proposition 3.9 is not astonishing.

(4) On the other hand, when δ = 0, then (3.40) is infinite, which implies uniqueness in law.
(5) We drive the attention on the fact that the considerations of this section concern the mar-

tingale problem with respect to the extended domain D̂Lδ and for the case x0 6= 0.

3.7. The framework for δ = 1.
Let W be a standard Brownian motion on some underlying probability space. By definition, a

Bessel process of dimension δ = 1 starting at x0 ≥ 0 is a non-negative process X such that S := X2

is a BESQ1(x2
0). On the other hand, in the literature such a Bessel process X is also characterized

as a non-negative strong solution of

Xt = x0 +Wt + LXt (0), t ∈ [0, T ], (3.41)

where LX(0) is a non-decreasing process only increasing when X = 0, i.e.∫
[0,T ]

ϕ(s)dLXs (0) =

∫
[0,T ]

ϕ(s)1{Xs=0}dL
X
s (0),

for every generic Borel function ϕ : R+ → R+. In particular, X is a semimartingale. Indeed, let X
be a non-negative solution of (3.41), then by an easy application of Itô’s formula for semimartingales,
setting S := X2, we have

St = x2
0 + 2

∫ t

0
XsdWs +

∫ t

0
XsdL

X
s (0) +

1

2
2t

= x2
0 + 2

∫ t

0

√
SsdWs +

∫ t

0
Xs1{Xs=0}dL

X
s (0) + t

= x2
0 + 2

∫ t

0

√
SsdWs + t,
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which implies that S is a BESQ1(x2
0) and so X is a BES1(x0). This shows in particular that (3.41)

admits pathwise uniqueness. Existence and uniqueness of (3.41) can be seen via the Skorokhod
problem, see Harrison and Shepp (1981).

In this section, we represent alternatively X as a non-negative solution of a (strong) martingale
problem. As we mentioned at the beginning of Section 3, we have fixed

b(x) = H(x) =

{
1 : x ≥ 0
0 : x < 0.

Formally speaking we get

Σ(x) = 2

∫ x

0
δ0(y)dy = 2H(x),

where H is the Heaviside function. Coming back to the expression (1.6), it is natural to set

L1f = (exp(2H)f ′)′
exp(−2H)

2
, f ∈ C2(R∗). (3.42)

This gives of course

L1f =
f ′′

2
, f ∈ C2(R∗). (3.43)

Analogously to the case δ ∈]0, 1[ and applying the same principle as for the domain characterization
in the case δ ∈ [0, 1[, we naturally arrive to

DL1 = {f ∈ C2|f ′(0) = 0}.

Since L1f has to be continuous, (3.43) gives

L1f =
f ′′

2
, ∀f ∈ DL1 . (3.44)

The PDE operator L1 appearing at (3.44) coincides with the generator of Brownian motion. How-
ever, the domain of that generator is larger since it is C2(R).

Remark 3.22. The same preliminary analysis of Section 3.3 about the martingale problem related
to 0 ≤ δ < 1 in the R-case extends to the case δ = 1. More precisely, Proposition 3.6, Corollary
3.8, Proposition 3.9 and Remark 3.10 hold. This is stated below.

Proposition 3.23.
(1) There is a process BES1(x0) solving the strong martingale problem with respect to DL1 and

W .
(2) The martingale problem related to L1 with respect to DL1 admits (in general) no uniqueness.

Similarly to Corollary 3.8, the processes BES1(x0) (resp. −BES1(−x0)) is a solution to the
strong martingale problem with respect to DL1 and an underlying Brownian motion W (resp.
−W )). Other solutions on the real line are the so-called skew Brownian motions which will be
possibly investigated more in detail in a future work. For this last one, we can mention the works
of Harrison and Shepp (Harrison and Shepp (1981)) and Le Gall (Le Gall (1984)).

Concerning the R+-case, let again (Ω,F ,P) be a probability space equipped with the canonical
filtration FW of a Brownian motion W .

By using the same arguments as for Propositions 3.14 and 3.15, we get the following result.

Proposition 3.24. There is a process BES1(x0) solving the strong martingale problem with respect
to DL1(R+) and W . Moreover, the martingale problem admits pathwise uniqueness with respect to
DL1(R+).
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4. Martingale problem related to the path-dependent Bessel process

4.1. Generalities.
Now we are going to treat a non-Markovian martingale problem which is a perturbation of the

Bessel process BESδ(x0), 0 ≤ δ ≤ 1, x0 ≥ 0. More precisely, we want to analyze existence and
uniqueness of solutions to the martingale problem related to the SDE

Xt = x0 +Wt +

∫ t

0
b′(Xs)ds+

∫ t

0
Γ(s,Xs)ds, (4.1)

where Γ is the same path-dependent functional as in (2.1), and b is as in (1.10).

Proposition 4.1. Suppose δ = 0, x0 = 0. Let W be a standard Brownian motion. The null process
is a solution to the strong martingale problem (in the sense of Definition 2.3) with respect to DLδ
and W .

In presence of a path-dependent drift Γ, under suitable conditions, Corollary 4.17 allows to show
that the null process is still the unique solution of the corresponding strong martingale problem.

4.2. The martingale problem in the path-dependent case: existence in law.
We recall that a pair (X,P) is a solution for the martingale problem related to L in the sense

of Definition 2.2 with L = Lδ with respect to DLδ (resp. DLδ(R+)), 0 ≤ δ ≤ 1, if for all f ∈ DLδ
(resp. f ∈ DLδ(R+)),

f(Xt)− f(X0)−
∫ t

0
Lδf(Xs)ds−

∫ t

0
f ′(Xs)Γ(s,Xs)ds, (4.2)

is a P-local martingale.
A first criterion of existence can be stated if Γ is measurable and bounded.

Proposition 4.2. Suppose that Γ is bounded. Then the martingale problem related to L (defined in
(2.5)) admits existence with respect to DLδ . Moreover we have the following.

(1) If the initial condition is x0 ≥ 0, then the solution can be constructed to be non-negative.
(2) If the initial condition is x0 ≤ 0, then the solution can be constructed to be non-positive.

Proof : Let x0 ≥ 0. Given a Brownian motion W , by Propositions 3.14 and 3.23, there exists a
solution X to the (even strong) martingale problem related to (2.5) (with Γ = 0) with respect to
DLδ(R+) and W . That solution is in fact a BESδ(x0). In particular, for all f ∈ DLδ(R+),

f(Xt)− f(X0)−
∫ t

0
Lδf(Xs)ds =

∫ t

0
f ′(Xs)dWs. (4.3)

Since the Bessel process is non-negative, (4.3) also holds for f ∈ DLδ . As Γ is bounded then, by
Novikov’s condition

Nt = exp

(∫ t

0
Γ(s,Xs)dWs −

1

2

∫ t

0
Γ2(s,Xs)ds

)
,

is a martingale. By Girsanov’s Theorem

Bt := Wt −
∫ t

0
Γ(s,Xs)ds,

is a Brownian motion under the probability measure Q such that dQ = NTdP. Then, we can rewrite
(4.3) as

f(Xt)− f(X0)−
∫ t

0
Lδf(Xs)ds−

∫ t

0
f ′ (Xs) dBs −

∫ t

0
f ′ (Xs) Γ(s,Xs)ds = 0.



1130 Alberto Ohashi, Francesco Russo and Alan Teixeira

Since
∫ t

0
f ′ (Xs) dBs is a Q−local martingale, (X,Q) happens to be a solution to the martingale

problem in the sense of Definition 2.2 with respect to DLδ .
Suppose now that x0 ≤ 0. The process X defined as −BESδ(−x0) is a solution of (4.3), with W

replaced with −W . Then a similar procedure as for the case x0 ≥ 0 works. This shows existence
for the martingale problem on DLδ .

Let us discuss the sign of the solution. Suppose that x0 ≥ 0 (resp. x0 ≤ 0). Then, our
construction starts with BESδ(x0) (resp. −BESδ(−x0)) which is clearly non-negative (resp. non-
positive). The constructed solution is again non-negative (resp. non-positive) since it is supported
by an equivalent probability measure. �

Remark 4.3. As we have mentioned in Proposition 3.9 and its extension to δ = 1, the martingale
problem in the sense of Definition 2.2 admits no uniqueness in general, at least with respect to DLδ ,
i.e. on the whole line.

4.3. Some preliminary results on a path-dependent SDE.
Before studying a new class of path-dependent martingale problems we recall some results stated

in Section 4.5 of Ohashi et al. (2022).
Let σ0 : R → R. Let Γ̄ : Λ → R be a generic Borel functional. Related to it we formulate the

following, which was Assumption 4.25 in Ohashi et al. (2022).

Assumption 4.4.

(1) There exists a function l : R+ → R+ such that
∫ ε

0 l
−2(u)du =∞ for all ε > 0 and

|σ0(x)− σ0(y)| ≤ l(|x− y|).

(2) σ0 has at most linear growth.
(3) There exists K > 0 such that

|Γ̄(s, η1)− Γ̄(s, η2)| ≤ K
(
|η1(s)− η2(s)|+

∫ s

0
|η1(r)− η2(r)|dr

)
,

for all s ∈ [0, T ], η1, η2 ∈ C([0, T ]).
(4) Γ̄∞ := sup

s∈[0,T ]
|Γ̄(s, 0)| <∞.

The proposition below was the object of Ohashi et al. (2022, Proposition 4.27).

Proposition 4.5. Let y0 ∈ R. Suppose the validity of Assumption 4.4. Then E(σ0, 0, Γ̄), i.e.

Yt = y0 +

∫ t

0
σ0(Ys)dWs +

∫ t

0
Γ̄(s, Y s)ds, (4.4)

admits pathwise uniqueness.

The lemma below was the object of Ohashi et al. (2022, Lemma 4.28).

Lemma 4.6. Suppose the validity of the assumptions of Proposition 4.5. Let Y be a solution of
(4.4) and m ≥ 2 an integer. Then there exists a constant C > 0, depending on the linear growth
constant of σ0, y0, K,T,m and the quantity (4) in Assumption 4.4 such that

E

(
sup
t≤T
|Ys|m

)
≤ C.
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4.4. A new class of solutions to the martingale problem.
Besides Proposition 4.2, Proposition 4.8 below and Proposition 4.9 provide a new class of solutions

to the martingale problem related to L with respect to DLδ . We consider now a particular case of
Γ̄, which is associated with Γ:

Γ̄(s, η) := 2
√
|η(s)|Γ(s,

√
|ηs|) + δ, s ∈ [0, T ] η ∈ C([0, T ]). (4.5)

Next, we introduce a growth assumption on Γ.

Assumption 4.7. Γ is continuous and there exists a constant K such that, for every (s, η) ∈ Λ we
have

|Γ(s, η)| ≤ K

(
1 + sup

r∈[0,T ]

√
|η(r)|

)
.

Proposition 4.8. . Let δ ∈ [0, 1]. Suppose that Γ fulfills Assumption 4.7. Then, we have the
following.

(1) Let s0 ≥ 0. The path-dependent SDE

St = s0 + δt+

∫ t

0
2
√
|Ss|dWs +

∫ t

0
2
√
|Ss|Γ

(
s,
√
|Ss|

)
ds, δ ≥ 0, (4.6)

admits existence in law, see Definition A.4 of Appendix in Ohashi et al. (2022).
(2) The constructed solution of (4.6) in item (1) is non-negative.
(3) Let x0 ≥ 0. The martingale problem related to Lf = Lδf + Γf ′ (see Definition 2.2, (2.5))

admits existence with respect to DLδ(R+).

Proof :
We remark that the hypothesis on Γ implies that Γ̄ has linear growth, i.e. there is a constant K

such that
Γ̄(t, ηt) ≤ K(1 + sup

s∈[0,t]
|η(s)|), ∀(t, η) ∈ [0, T ]× C([0, T ]). (4.7)

For item (1), we start truncating Γ. Let N > 0. Let us define, for s ∈ [0, T ], η ∈ C([0, T ]),

ΓN (s, η) := (Γ(s, ηs) ∨ (−N)) ∧N,
Γ̄N (s, η) := 2

√
|η(s)|ΓN (s,

√
|η|) + δ.

We consider the SDE {
dSt = 2

√
|St|dWt + Γ̄N (t, S) dt,

S0 = s0.
(4.8)

We set x0 :=
√
s0. Since ΓN is bounded, by Proposition 4.2, the martingale problem related to

L with respect to DLδ , admits a solution (X,P) which is non-negative. By Proposition 4.9 the
SDE (4.8) admits existence in law and in particular there exists a solution SN (which is necessarily
non-negative) on some probability space (Ω,F , P̄N ). By Itô’s formula, this implies that (on the
mentioned space),

MN
t := f(SNt )− f(SN0 )−

∫ t

0
f ′(SNs )Γ̄N

(
s, SN

)
ds− 2

∫ t

0
f ′′(SNs )|SNs |ds, (4.9)

is a martingale for all f ∈ C2 with compact support. This will be used later.
We want first to show that the family of laws (Q̄N ) of (SN ) is tight. For this we are going to use
the Kolmogorov-Centsov Theorem. We denote by ĒN the expectation related to P̄N . According to
Problem 4.11 in Section 2.4 of Karatzas and Shreve (1991), it is enough to find constants α, β > 0
realizing

sup
N

ĒN (|SNt − SNs |α) ≤ c|t− s|1+β; s, t ∈ [0, T ], (4.10)
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for some constant c > 0. Indeed, we will show (4.10) for α = 6 and β = 1. By (4.8) and Burkholder-
Davis-Gundy inequality there exists a constant c6 such that, for 0 ≤ s ≤ t ≤ T ,

ĒN (|SNt − SNs |6) ≤ c6

(
ĒN
(∫ t

s
(|SNr |)dr

)3

+ ĒN
(∫ t

s
Γ̄N
(
r, |SN |

)
dr

)6
)
. (4.11)

By (4.7), there exists a constant C1 where

|Γ̄N (s, η)| ≤ 2
√
|η(s)||Γ(s,

√
|η|)|+ δ = |Γ̄(s, η)| ≤ C1

(
1 + sup

r≤s
|η(s)|

)
, (4.12)

for every (s, η) ∈ Λ, uniformly in N . By Jensen’s inequality and (4.12), there exists a constant
C2 > 0, only depending on T and on Γ̄, but not on N , such that

ĒN (|SNt − SNs |6) ≤ C2

(
(t− s)2ĒN

(
sup
s≤t
|SNs |3

)
+ (t− s)5ĒN

(
sup
s≤t
|SNs |6

))
.

By Lemma 4.6, the quantity

ĒN
(

sup
s≤T
|SNs |3 + sup

s≤T
|SNs |6

)
,

is bounded uniformly in N and therefore (4.10) holds. Consequently, the family of laws (Q̄N ) of
(SN ) under (P̄N ) is tight. We can therefore extract a subsequence which, for simplicity, we will still
call Q̄N that converges weakly to a probability measure Q̄ on (C[0, T ],B(C[0, T ])).

We denote by EN the expectation with respect to Q̄N . Let 0 ≤ s ≤ t ≤ T and let F : C([0, s])→
R be a bounded and continuous function. By (4.9), if S is the canonical process we have

EN ((M̃N
t − M̃N

s )F (Sr, 0 ≤ r ≤ s)) = 0, (4.13)

where

M̃N
t := f(St)− f(S0)−

∫ t

0
f ′(Ss)Γ̄

N (s, S) ds− 2

∫ t

0
f ′′(Ss)|Ss|ds. (4.14)

By Skorokhod’s convergence theorem, there exists a sequence of processes (Y N ) and a process Y
both on a probability space (Ω,F ,Q), converging u.c.p. to Y as N → +∞. Indeed (Y N ) and Y
can be seen as random elements taking values in the state space (C[0, T ],B(C[0, T ])).

Moreover, the law of Y N is Q̄N , so that

EQ((M
N
t −M

N
s )F (Y N

r , 0 ≤ r ≤ s)) = 0, (4.15)

where

M
N
t := f(Y N

t )− f(S0)−
∫ t

0
f ′(Y N

r )Γ̄N
(
s, Y N

)
ds− 2

∫ t

0
f ′′(Y N

s )|Y N
r |dr. (4.16)

We wish to pass to the limit when N → ∞ using Lebesgue dominated convergence theorem and
obtain

EQ((M t −M s)F (Yr, 0 ≤ r ≤ s)) = 0, (4.17)
with

M t := f(Yt)− f(S0)−
∫ t

0
f ′(Ys)Γ̄ (s, Y ) ds− 2

∫ t

0
f ′′(Yr)|Yr|dr. (4.18)

For this it remains to prove that, when N →∞

EQ
(∫ t

s
f ′(Y N

r )Γ̄N (r, Y N )dr

)
→ EQ

(∫ t

s
f ′(Y )Γ̄(r, Y )dr

)
(4.19)

and

EQ
(∫ t

s
f ′′(Y N

r )|Y N
r |dr

)
→ EQ

(∫ t

s
f ′′(Yr)|Yr|dr

)
, (4.20)

as N →∞. Below, we only prove (4.19) since (4.20) follows similarly.



About Path-dependent Bessel processes 1133

Note that (4.19) is true, if and only if,

lim
N→∞

I1(N) = 0, lim
N→∞

I2(N) = 0,

where

I1(N) := EQ
[∫ t

s
f ′(Y N

r )(Γ̄N (r, Y N )− Γ̄(r, Y N ))dr

]
,

I2(N) := EQ
[∫ t

s
f ′(Y N

r )Γ̄(r, Y N )− f ′(Yr)Γ̄(r, Y )dr

]
.

By (4.7) and (4.12), we have

I1(N) ≤ ||f ′||∞EQ
[
1{supr∈[0,T ] |Γ(r,Y N,r)|>N}

∫ t

s
|Γ̄N (r, Y N )− Γ̄(r, Y N )|dr

]
≤

≤ 2KT ||f ′||∞EQ

[
1{supr∈[0,T ] |Γ(r,Y N )|>N}(1 + sup

r∈[0,T ]
|Y N
r |)

]
.

By Cauchy-Schwarz’s inequality, there exists a non-negative constant C(f, T,K) such that

I1(N)2 ≤ C(f, T,K)I11(N)I12(N), (4.21)

where

I11(N) := Q

(
sup
r∈[0,T ]

|Γ(r, Y N )| > N

)
,

I12(N) := EQ

[
1 + sup

r∈[0,T ]
|Y N
r |2

]
.

By Chebyshev’s inequality we have

I11(N) ≤ 1

N2
EQ

[
sup
r∈[0,T ]

|Γ(r, Y N )|2
]
≤ 2K

N2
EQ

[
1 + sup

r∈[0,T ]
|Y N
r |2

]
.

Consequently, lim
N→∞

I11(N) = 0 because of Lemma 4.6. On the other hand, again by Lemma 4.6,

I12(N) is bounded in N and so by (4.21), we get lim
N→∞

I1(N) = 0.

Concerning I2(N), we have

I2(N)2 ≤ T
∫ t

s
EQ [|f ′(Y N

r )Γ̄(r, Y N )− f ′(Yr)Γ̄(r, Y )|2
]
dr. (4.22)

By Lemma 4.6, there exists a constant C not depending on N such that

EQ

[
sup
r∈[0,T ]

|Y N
r |4

]
≤ C,

and, consequently, by Fatou’s Lemma

EQ

[
sup
r∈[0,T ]

|Yr|4
]
≤ C.
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Let r ∈ [0, T ]. We have

EQ[|f ′(Y N
r )Γ̄(r, Y N ) − f ′(Yr)Γ̄(r, Y )|4] (4.23)

≤ 8||f ′||4∞K4

(
2 + EQ

[
sup
r∈[0,T ]

|Y N
r |4 + sup

r∈[0,T ]
|Yr|4

])
≤ 16||f ′||4∞K4(1 + C).

So the sequence
|f ′(Y N

r )Γ̄(r, Y N )− f ′(Yr)Γ̄(r, Y )|2

is uniformly integrable. We fix again r ∈ [0, T ]. Since f ′ and Γ̄ are continuous it follows that

EQ [|f ′(Y N
r )Γ̄(r, Y N )− f ′(Yr)Γ̄(r, Y )|2

]
−→ 0, (4.24)

as N →∞. Now (4.23) and Cauchy-Schwarz implies that

EQ[|f ′(Y N
r )Γ̄(r, Y N )− f ′(Yr)Γ̄(r, Y )|2] ≤ 4||f ′||2∞K2

√
1 + C. (4.25)

This time (4.24), (4.25) and Lebesgue’s dominated theorem show that the entire Lebesgue integral
of (4.24) on [s, t] converges to 0. Finally, lim

N→∞
I2(N) = 0 so that we conclude to (4.19) and, conse-

quently, (4.17). Therefore, (Y,Q) solve the martingale problem of the type (2.4) as in Proposition
2.1 with

Lf(x) = 2|x|f ′′(x) + δf ′(x)

and Γ̄ replacing Γ. By Proposition 2.1, this concludes the proof of item (1).

Concerning item (2), the previously constructed Y is a (weak) solution to (4.6) under the prob-
ability Q. Since it is a limit of non-negative solutions, it will also be non-negative.

Item (3) follows from Proposition 4.9 below.
�

4.5. Equivalence between martingale problem and SDE in the path-dependent case.
We state here an important result establishing the equivalence between the martingale problem

and a path-dependent SDE of squared Bessel type. Let 0 ≤ δ ≤ 1.

Proposition 4.9. Let (Ω,F ,P) be a probability space. Let X be a stochastic process and we denote
S = X2.

(1) (|X|,P) is a solution to the martingale problem related to (2.5) with respect to DLδ , if and
only if, the process S is a solution of (4.6) for some Brownian motion W .

(2) Let W be a standard Brownian motion (with respect to P). Then |X| is a solution to the
strong martingale problem with respect to DLδ and W , if and only if, S is a solution of (4.6).

Remark 4.10. In the statement of Proposition 4.9, DLδ can be replaced with DLδ(R+), provided
that |X| is replaced by X.

Proof (of Proposition 4.9): We discuss item (1).
Concerning the direct implication, by choosing f1(x) = x2, f2(x) = x4 we have Lδf1(x) =

δ, Lδf2(x) = 2(2 + δ)x2. By definition of the martingale problem, the two processes (t ∈ [0, T ])

Mt := X2
t −X2

0 − δt−
∫ t

0
2|Xs|Γ(s, |Xs|)ds (4.26)

and

Nt := X4
t −X4

0 − 2(2 + δ)

∫ t

0
X2
sds− 4

∫ t

0
|Xs|3Γ(s, |Xs|)ds, (4.27)

are FX -local martingales.
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Since S = X2, by (4.26) we have [S] = [M ]. By integration by parts and (4.26), we have

[M ]t = [X2]t = X4
t −X4

0 − 2

∫ t

0
X2
sdX

2
s = X4

t −X4
0 − 2δ

∫ t

0
X2
sds− 4

∫ t

0
|Xs|3Γ(s, |Xs|)ds+M1,

where M1 is a local martingale. Therefore

X4
t −X4

0 = M1 + 2δ

∫ t

0
X2
sds+ 4

∫ t

0
|Xs|3Γ(s, |Xs|)ds+ [M ]t, t ∈ [0, T ]. (4.28)

(4.28) and (4.27) give us two decompositions of the semimartingale X4; by the uniqueness of the
semimartingale decomposition, [M ]t = 4

∫ t
0 X

2
sds. Defining W similarly as in (3.24) with M replac-

ing M1, (possibly enlarging the probability space) one can show that W is a standard Brownian
motion and

St = s0 + δt+

∫ t

0
2
√
SsdWs +

∫ t

0
2
√
SsΓ(s,

√
Ss)ds, t ∈ [0, T ].

Concerning the converse implication, suppose that S = X2 solves (4.6) for some Brownian motion
W . Then S solves

St = s0 + δt+

∫ t

0
2
√
|Ss|dW̃s, t ∈ [0, T ], (4.29)

where

W̃t := Wt +

∫ t

0
Γ(s,

√
|Ss|)ds, t ∈ [0, T ].

Let f ∈ DLδ ; by Proposition 3.6 and Remark 3.7 we have

f(|Xt|)− f(|X0|)−
∫ t

0
Lδf(|Xs|)ds =

∫ t

0
f ′(|Xs|)dW̃s. (4.30)

Consequently

Mf
t := f(|Xt|)− f(|x0|)−

∫ t

0
Lδf(|Xs|)ds−

∫ t

0
f ′(|Xs|)Γ(s, |Xs|)ds

=

∫ t

0
f ′(|Xs|)dWs,

is an FX -local martingale. Then, (|X|,P) solve the martingale problem related to (2.5) with respect
to DLδ in the sense of Definition 2.2. On the other hand, |X| also solves the strong martingale
problem with respect to DLδ and W . This concludes the proof of item (1).

As far as item (2) is concerned, the converse implication argument can be easily adapted to the
argument for the proof of the converse implication in (1). Concerning the direct implication, we
define f1 as in the proof of item (1). By (2.7), (4.26) and the fact that

M = 2

∫ ·
0
f ′1(|Xs|)dWs = 2

∫ ·
0

√
SsdWs,

we obtain (4.6). This concludes the proof.
�

4.6. The martingale problem in the path-dependent case: uniqueness in law.
A consequence of Girsanov’s theorem gives us the following.

Proposition 4.11. Let 0 ≤ δ ≤ 1. Suppose that Γ is bounded. The martingale problem related to
(2.5) with respect to DLδ(R+) admits uniqueness.

Remark 4.12. Let x0 ≥ 0 (resp. x0 ≤ 0). By Proposition 4.2, every solution of the aforementioned
martingale problem is non-negative (resp. non-positive).
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Proof (of Proposition 4.11):
Let (Xi,Pi), i = 1, 2 be two solutions to the martingale problem related to Lf = Lf + Γf ′ with

respect to DLδ(R+). By Proposition 4.9, Si = (Xi)2 is a solution of (4.6), for some Brownian
motion W i and Pi. We define the random variable (which is also a Borel functional of Xi)

V i
t = exp

(
−
∫ t

0
Γ(s,Xi)dW i

s −
1

2

∫ t

0

(
Γ(s,Xi)

)2
ds

)
.

By the Novikov’s condition, it is a Pi-martingale. This allows us to define the probability dQi =

V i
TdPi. By Girsanov’s theorem, for i = 1, 2, under Qi, Bi

t := W i
t +

∫ t
0 Γ(s,Xi,s)ds is a Brownian

motion. Therefore, Si is a solution of (4.6) with Γ = 0, under Qi. Now (4.6) (with Γ = 0) admits
pathwise uniqueness and therefore uniqueness in law, by Yamada-Watanabe theorem. Consequently
Si (under Qi), i = 1, 2 have the same law and the same holds of course for Xi, i = 1, 2. Hence, for
every Borel set B ∈ B(C[0, T ]) we have

P1{X1 ∈ B} =

∫
Ω

1

V 1
T (X1)

1{X1∈B}dQ1 =

∫
Ω

1

V 2
T (X2)

1{X2∈B}dQ2 = P2{X2 ∈ B}.

So, X1 under P1 has the same law as X2 under P2. Finally the martingale problem related to (2.5)
with respect to DLδ(R+) admits uniqueness. �

4.7. Path-dependent Bessel process: results on pathwise uniqueness.
In this section, Γ̄ is the same as the one defined in (4.5), i.e.

Γ̄(s, η) := 2
√
|η(s)|Γ(s,

√
|ηs|) + δ, s ∈ [0, T ] η ∈ C([0, T ]).

At this point, we can state a pathwise uniqueness theorem. For this purpose, we state the following
assumption.

Assumption 4.13.
(1) There exists a constant K > 0 such that, for every s ∈ [0, T ], η1, η2 ∈ C([0, T ]), we have
|Γ̄(s, η1)− Γ̄(s, η2)| ≤ K

(
|η1(s)− η2(s)|+

∫ s
0 |η

1(r)− η2(r)|dr
)
.

(2) sup
t∈[0,T ]

|Γ̄(t, 0)| <∞.

Remark 4.14.
(1) σ0(y) = 2

√
|y| has linear growth.

(2) Defining l(x) = 2
√
x, x ≥ 0, we have

∫ ε
0 l
−2(u)du = ∞ for every ε > 0 and |l(x) − l(y)| ≤

l(|x− y|), x, y ∈ R+.

Remark 4.15. Note that, by Remark 4.14, Assumption 4.13 implies Assumption 4.4.

We start the analysis by considering equation (4.6). For the definitions of strong existence and
pathwise uniqueness for path-dependent SDEs, see Definitions A.2 and A.3 of Ohashi et al. (2022).

Theorem 4.16. Suppose Assumptions 4.13 and 4.7.
(1) (4.6) admits pathwise uniqueness.
(2) (4.6) admits strong existence.
(3) Suppose x0 ≥ 0. Every solution of (4.6) with s0 = x2

0 is non-negative.

Proof :
(1) We remark that (4.6) is of the form (4.4). The result follows from Proposition 4.5 and

Remark 4.14.
(2) By Proposition 4.8, we have existence in law. By an extension of Yamada-Watanabe theorem

to the path-dependent case, strong existence holds for (4.6).
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(3) Suppose x0 ≥ 0. By Proposition 4.8 (2), (4.6) admits even existence in law of a non-
negative solution. By Yamada-Watanabe theorem extended to the path-dependent case,
pathwise uniqueness implies uniqueness in law, so that the above-mentioned solution has to
be non-negative.

�

We are now able to state the following.

Corollary 4.17. Suppose that Γ̄ (defined in (4.5)) fulfills Assumptions 4.13 and 4.7. Then the
strong martingale problem related to (2.5) (see Definition 2.3) with respect to DLδ(R+) and W
admits strong existence and pathwise uniqueness.

Proof : By Theorem 4.16, the equation (4.6) admits a unique strong solution which is non-negative.
Proposition 4.9 and Remark 4.10 allow us to conclude the proof.

�
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