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Abstract. In this article, we introduce a random (directed) graph model for the simultaneous
forwards and backwards description of a rather broad class of Cannings models with a seed bank
mechanism. This provides a simple tool to establish a sampling duality in the finite population size,
and obtain a path-wise embedding of the forward frequency process and the backward ancestral
process. Further, it allows the derivation of limit theorems that generalize celebrated results by
Möhle to models with seed banks, and where it can be seen how the effect of seed banks affects the
genealogies. The explicit graphical construction is a new tool to understand the subtle interplay of
seed banks, reproduction and genetic drift in population genetics.

1. Introduction

Cannings models and their modifications, along with their multiple merger genealogies are a major
topic in mathematical population genetics Sagitov (1999); Möhle and Sagitov (2001); Schweinsberg
(2003); Birkner et al. (2018); Freund (2020); González Casanova et al. (2022a); Siri-Jégousse and
Wences (2022). Also, in the last decade, the study of dormancy (also called seed bank effect)
received significant attention Kaj et al. (2001); Blath et al. (2013, 2016, 2020). One of the unifying
themes in both modeling areas is that they arise from extensions of the Wright-Fisher model, and
that classical evolutionary forces such as genetic drift and selection are affected in important ways.
While the theory of Cannings models is now robust, the study of models with dormancy is still work
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in progress. The main goal of this paper is to stabilize a framework in which seed banks can be
combined with Cannings models, and to generalize the known limiting results for models without
dormancy to Cannings models with seed bank.

An important tool in population genetics is the moment duality for Markov processes. This
technique establishes a mathematical relation between forward and backward in time processes. The
celebrated duality between the Wright-Fisher diffusion and the Kingman coalescent was gradually
generalized to a wide class of neutral population genetics models, including some finite size discrete
populations such as Cannings-type models González Casanova and Spanò (2018). In this situation,
the duality leads to asymptotic results for both forward frequency and genealogical processes. In
the context of dormancy, duality was established for the seed bank diffusion, which arises as a limit
in models with geometric seed bank Blath et al. (2016). However, for discrete seed bank models,
the duality relation is the first open gap that this article aims to close.

There are two main models for dormancy phenomena.

• Kaj et al. The model defined in Kaj et al. (2001) is based on the Wright-Fisher model
with additional multi-generational jumps of (bounded) size, the system has been extended
to geometric jump sizes of bounded expected range in Koopmann et al. (2017) (which also
provide some insight into the forward in time frequency diffusion), to the general finite
expectation case in Blath et al. (2013), and even to unbounded (heavy-tailed) jump sizes in
Blath et al. (2015).
• Blath et al. A second modeling frame is given by an external seed bank in terms of a “second
island” (in the spirit of Wright’s island model), effectively leading to geometric jump sizes
on the evolutionary scale. Here, forward and backward limits have been constructed, giving
rise to the seed bank diffusion and the seed bank coalescent Blath et al. (2016) (see more
analysis and generalization in González Casanova et al. (2022b); Blath et al. (2020) and an
interesting connection with metapopulations in Lambert and Ma, 2015).

Both modeling frames (generational jumps and second island) have their advantages and dis-
advantages. For the Wright-Fisher model with multi-generational jumps, one typically loses the
Markov property. For the island version, one retains the Markov property but then needs to in-
vestigate two-dimensional frequency processes, which in the limit are harder to analyze than one-
dimensional diffusions, since e.g. the Feller theory is missing (this can in part be replaced by recent
theory for polynomial diffusions Blath et al., 2019). Interestingly, it turns out that for the limiting
frequency processes, both approaches can be two sides of the same medal.

In none of the above approaches, more general reproductive mechanisms, such as based on Can-
nings models, have been analyzed. This paper’s second aim is to close this gap. We present an
extended framework for the simultaneous construction of seed bank models with general multi-
generational jump distributions and Cannings-type reproductive laws satisfying a paintbox con-
struction. We are also able to obtain forward and backward convergence results (extending Kaj
et al. (2001), Koopmann et al. (2017) and Blath et al., 2013) and to provide an explicit sampling
duality, which is valid already in the finite individual models.

More precisely, we show that if a sequence of Cannings models (with no seed bank effect) is in
the universality class of the Kingman coalescent, meaning that its ancestral process converges in
the evolutionary scale to the Kingman coalescent, then the ancestry of the same sequence with a
seed bank effect will converge to the Kingman coalescent delayed by a constant β2, where β < ∞
is the expected number of generations that separates an individual from its ancestor. This extends
the results of Kaj et al. (2001) and Blath et al. (2013). Convergence of the frequency process to the
solution of the Wight-Fisher diffusion with the same delay is also proved. We go further and study
how sequences of seed bank models with divergent expectations can make sequences of Cannings
models that originally were not in the Kingman class, converge to the Kingman coalescent. This
is achieved using the mixing time of some auxiliary Markov chains introduced in Kaj et al. (2001).
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If instead of considering Cannings processes in the Kingman class we consider that their genealogy
converges to a Ξ-coalescent, we show that their seed bank modification converges to a Ξβ-coalescent.
Heuristically, the transformation Ξ → Ξβ consists in dividing by β all the non-dust boxes in a Ξ
paintbox event to obtain a Ξβ paintbox event. Similar asymptotics are shown for the forward
process. All those results are extended for models in the presence of mutations.

Note that the interplay of general reproduction and seed banks with other evolutionary forces
can be subtle, and we provide a framework for its analysis (also regarding the real-time embedding
of coalescent-based estimates, see e.g. Blath et al., 2020).

The paper is organized as follows. In section 2 we construct a random graph that allows us to
embed the ancestry and the frequency processes of both Cannings and dormancy models simultane-
ously and study the duality relation of the processes forward and backward in time. Furthermore,
we analyze the scaling limits of the ancestral process in presence of skewed reproduction mecha-
nisms and dormancy. We give conditions for convergence to the Kingman coalescent and study
scenarios beyond this universality class, where we can describe how seed bank phenomena reduce
the typical size coalescence events when combining seed banks with Cannings models that would, in
absence of the seed bank component, converge to a Λ- or a Ξ- coalescent. Section 3 uses the moment
duality to formally prove convergence of the frequency process to a Wright-Fisher diffusion. This
intuitively clear result was missing in the literature, probably since the lack of Markov property for
the frequency process makes usual techniques fail. In section 4 we study a variant of the seed bank
random graph where mutations are added and we extend the results obtained in sections 2 and 3.

2. A random graph version of the model of Kaj, Krone and Lascoux

Consider a discrete-time haploid population of constant size N ≥ 1 at each generation. The
vertex set V N = Z× [N ] represents the whole population. For each individual v ∈ V N , denote by
g(v) its generation and by `(v) its label so that v = (g(v), `(v)). We denote the g-th generation of
the population by V N

g := {v ∈ V N : g(v) = g}. Set a probability measure WN on the exchangeable
probability measures on [N ]. Let {W̄N

g }g∈Z be a sequence of independent WN -distributed random
variables with W̄N

g = {WN
v }v∈V Ng . Each variableWN

v gives the reproductive weight of the individual
v in the population graph. This multinomial setting can be extended to some more general Cannings
models (as in Möhle and Sagitov, 2001) or non-exchangeable reproductive success (as in Siri-Jégousse
and Wences, 2022). Also, consider a sequence {mN}N≥1 of integers and set a probability measure
µN on [mN ]. Let {JNv }v∈V N be a collection of independent µN -distributed random variables. The
variable JNv says how many generations ago an individual v’s mother is living. Finally, set a
collection of random variables in [N ], {UNv }v∈V N such that UNv is the label of the mother of v. Its
conditional distribution is

P(UNv = k|JNv = j, {W̄N
g }g∈Z) = WN

(g(v)−j,k).

Definition 2.1. (The seed bank random di-graph) Consider the random set of directed edges

EN = {(v, (g(v)− JNv , UNv )), for all v ∈ V N}.

The seed bank random di-graph with parameters N , WN and µN is given by GN := (V N , EN ).

Two classical examples are

• the Kaj, Krone and Lascoux (KKL) seed bank graph Kaj et al. (2001), in this case µN has
finite support [m], i.e. mN = m, and WN = δ(1/N,...,1/N).
• the Cannings model with parameterWN Cannings (1974, 1975); Möhle and Sagitov (2001),
in this case µN = δ1.
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Figure 2.1. In this case N = 8 and mN = 2. The gray circles represent the
members of S0 = {v1, v2, v3, v4, v5} where, for example, v2 = (0, 4) and v5 = (−1, 3).
The light gray circles represent the ancestors of the sample. Ā8

0 = (4, 1), Ā8
1 = (2, 2),

Ā8
2 = (3, 0), Ā8

3 = (1, 1), Ā8
4 = (1, 0), Ā8

5 = (1, 0).

For every u, v ∈ V N we denote by δ(u, v) the distance of u and v in the graph GN , i.e. the
number of vertices in a path from u to v or from v to u. Now let us define the ancestral process
associated with this graph.

Definition 2.2 (The ancestral process). Fix a generation g0 and Sg0 consisting in a sample of
individuals living between generation g0 and g0−mN + 1, i.e. Sg0 ⊂ ∪

mN
i=1V

N
g0+1−i. For every g ≥ 0,

let ANg be the set composed by the most recent ancestors of the individuals of Sg0 that live at a
generation g0 − g′ for some g′ ≥ g, that is

ANg = {v ∈ ∪∞g′=gV N
g0−g′ : ∃u ∈ Sg0 such that δ(u, v) ≤ δ(u, v′) for all v′ ∈ ∪∞g′=gV N

g0−g′}.
Define, for all i ∈ [mN ],

AN,ig = |ANg ∩ V N
g0−g+1−i|

and ĀNg = (AN,1g , . . . , AN,mNg ). We call {ĀNg }g≥0 the ancestral process. In the sequel, we consider
the initial configuration Sg0(n̄), for n̄ = (n1, . . . , nmN ), such that ni ≥ 0 individuals are uniformly
sampled (with repetition) from generation g0 + 1− i. We denote the law of the ancestral process of
this sample by Pn̄. See Figure 2.1 for an illustration.

For simplicity, we suppose that sup{i ≥ 1 : ni > 0} does not depend on N . This model was
introduced, for reproductions as in the Wright-Fisher model, by Kaj et al. (2001) directly, in the
sense that they construct a random graph only implicitly. Our construction permits to provide a
transparent relation between the ancestral process and the forward frequency process defined in
section 3. Observe that {ĀNg }g≥0 is a Markov chain. We start our results by formalizing the remark
on p. 290 in Kaj et al. (2001). This illustrative result is established when the Cannings model
is in the domain of attraction of the Kingman coalescent, although it can be easily generalized to
any type of reproduction law. Here we use the classical notations cN (resp. dN ) that denote the
probability that two (resp. three) given individuals choose the same parent in a Cannings model.
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Those notations will be helpful all along the paper. Recall, e.g. from Möhle and Sagitov (2001), that
the genealogies of a Cannings model fall into the domain of attraction of the Kingman coalescent
when cN → 0 and dN = o(cN ) while multiple merger coalescents arise when dN and cN are of the
same order.

Proposition 2.3 (Reformulation of Theorem 1 in Kaj et al., 2001). Suppose that

cN = NE[(WN
v )2]→ 0 and dN = NE[(WN

v )3] = o(cN ).

Let M(n) be a multinomial random variable with parameters n and {µN (i)}mNi=1 . Also, for any
n̄ = (n1, . . . , nmN ) ∈ [N ]mN , let Z(n̄) = (n2, . . . , nmN , 0)+M(n1). Then, the transitions of {ĀNg }g≥0

can be written in terms of M and Z as follows.
• Pn̄(ĀN1 = Z(n̄)) = 1−

∑∞
i=1 cN [

(
n1

2

)
µN (i)2 + µN (i)n1ni+1] + o(cN )

• Pn̄(ĀN1 = Z(n̄)− ei) = cN [
(
n1

2

)
µN (i)2 + µN (i)n1ni+1] + o(cN )

where ei is the vector with the i-th coordinate equal to 1 and the others equal to 0, for all i ≥ 1.

Proof : We need to make two observations. First note that all the randomness in the transitions
of the chain {ĀNg }g≥0 lies in what happens to the first coordinate. If for some g ≥ 0, ĀNg =

(0, n2, . . . , nmN ) it is easy to see that ĀNg+1 = (n2, . . . , nmN , 0) almost surely. On the other hand,
if n1 > 0, the individuals that are in ANg ∩ V N

g0−g cannot belong to ANg+1. Then, each of these
individuals, if denoted by v, must be replaced by an individual which lives JNv generations in the
past, that is

Pe1(ĀN1 = ei) = µN (i).

Further, if n1 > 1, one needs to find n1 new ancestors, but some of them could be the same due to
some coalescence. The complete picture is as follows. For i ≥ 2 and j, k ≥ 0, and by denoting e0

for the null vector,

P2e1+ei(Ā
N
1 = ei−1 + ej + ek) =



2µN (j)µN (k) if i− 1 6= j 6= k
(µN (j))2(1− cN ) if i− 1 6= j, j = k
2µN (i− 1)µN (k)(1− cN ) if i− 1 = j, j 6= k
(2µN (i− 1)µN (j) + (µN (j))2)cN if i− 1 6= j, k = 0
(µN (i− 1))2(cN − dN ) if i− 1 = j, k = 0
(µN (i− 1))2dN if j = k = 0

. (2.1)

The proof follows easily after these observations. �

We now construct a less natural backward process which will be very useful when establishing its
moment duality with the forward process in section 3. We start by defining it in a graphical and
intuitive way. More formal definitions will follow all along the section.

Definition 2.4 (The window process). Fix a generation g0, and Sg0 ⊂ ∪
mN
i=1V

N
g0+1−i. In the genealog-

ical tree of the sample Sg0 , define the variable BN,1
g as the number of edges arriving to generation

g0 − g (plus the number of individuals of Sg0 living at this generation). For any i ∈ {2,mN}, let
BN,i
g be the number of edges crossing generation g0−g and arriving to generation g0−g− i+1 (plus

the number of individuals of Sg0 living at this generation). Then, let B̄N
g := (BN,1

g , . . . , BN,mN
g ).

We call {B̄N
g }g≥0 the window process. As for the ancestral process, we denote by Pn̄ the law of the

window process generated from the initial sample Sg0(n̄).

In Figure 2.1, the values of the window process are B̄8
0 = (4, 1), B̄8

1 = (2, 3), B̄8
2 = (5, 0),

B̄8
3 = (2, 1), B̄8

4 = (2, 0), B̄8
5 = (1, 0). The window process and the ancestral process only differ in

the time where we acknowledge a coalescence event. In the window process coalescence events only
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occur in the first coordinate, while in the ancestral process coalescence events may take place at
every entry (see Figure 2.1).

The following equivalent (in law) definition of the window process allows us to compare it with
the ancestral process. Let CN (n) be the number of ancestors after one generation of a sample of
n individuals in a Cannings model with weights distributed as WN . As in Proposition 2.3, let
M(n) be a multinomial random variable with parameters n and {µN (i)}mNi=1 . Given B̄N

g−1 = n̄ =

(n1, . . . , nmN ) ∈ [N ]mN ,
B̄N
g = (n2, . . . , nmN , 0) +M(CN (n1)).

in distribution. It is left to the reader to show that indeed both definitions are equivalent.
The process {B̄N

g }g≥0 can be expressed in terms of a particle system. Fix N,µN and WN . Let
Y N
g = (RNg , L

N
g ) define a Markov chain with state space Z+ × [N ] and transition probabilities,

conditional on the weights W̄N
g ,

P
(
Y N
g = (i, k)|{W̄N

g }g, Y N
g−1 = (1, j)

)
= WN

(g0−g+1−i,k)µ
N (i)

for every i ≥ 1, k ∈ [N ], and

P
(
Y N
g = (i, k)|{W̄N

g }g, Y N
g−1 = (i+ 1, j)

)
= WN

(g0−g,k)

for every i ≥ 1 and k ∈ [N ].

Proposition 2.5. Set n =
∑
ni to be the total size of the initial sample. For every g ≥ 0, consider

n (conditional on {W̄N
g }g) independent realizations of Y N

g , that we call Y N,j
g = (RN,jg , LN,jg ) for

1 ≤ j ≤ n. Let σN,1 =∞ and

σN,j = inf{g ≥ 1 : Y N,j
g = Y N,j′

g = (1, k), for some j′ < j such that σN,j
′
> g, k ∈ [N ]}.

For all i ≥ 1, set
∑n

j=1 1{RN,j0 =i} = BN,i
0 . Then, the i-th component BN,i

g of the random vector B̄N
g

is equal in distribution to
∑n

j=1 1{RN,jg =i}1{σN,j≥g}, for all g ≥ 0.

Proof : The proof consists in observing that g0−RN,jg −g+1 is equal in distribution to the generation
of the most recent ancestor, living at a generation g0 − g′ for some g′ ≥ g, of a fixed individual in
the initial sample Sg0 . So we couple these two processes. At the particular times in which RN,jg = 1

(and thus a coalescence event can occur in the window process) we take LN,jg to be the label of the
closest ancestor. Then σN,j corresponds to the generation at which individual j’s ancestral lineage
is involved into a coalescence event with the ancestral lineage of an individual of lower level. Under
this coupling,

BN,i
g =

n∑
j=1

1{RN,jg =i}1{σN,j≥g}

almost surely. �

At this point it could seem unnecessary that the process L jumps at every time since it looks like
it only has a role when R is reaching 1. However this independent construction of R and L will be
important in the proof of Theorem 2.6. The chain {Y N

g }g≥0 provides a very convenient coupling to
the ancestral and the window processes, mainly because {RNg }g≥0 has an invariant measure given
by

νN (i) =
P(JNv ≥ i)
E[JNv ]

. (2.2)

To see this, just observe that the chain has two types of behaviors. Using the notation Pj(·) =
P(·|RN0 = j), we have

(1) Deterministic transitions: if j > 1, then Pj(RN1 = j − 1) = 1
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(2) Random transitions: for j ≥ 1, P1(RN1 = j) = P(JNv = j) = µN (j).
Then,

∞∑
j=1

Pj(RN1 = i)νN (j) =Pi+1(RN1 = i)νN (i+ 1) + P1(RN1 = i)νN (1)

=
P(JNv ≥ i+ 1)

E[JNv ]
+

P(JNv = i)

E[JNv ]

=νN (i).

Our way to compare two Markov chains consists in applying coupling concepts developed in
Levin and Peres (2017). Let us first recall the definition of mixing time (see page 55 of Levin
and Peres, 2017). We denote dN (g) = maxj∈[mN ] ||Pj(RNg ∈ ·) − νN (·)||TV and the mixing time
τN = inf{g ≥ 0 : dN (g) < 1/4}. We allow τN = 0, because this is true in the important case
P(JNv = 1) = 1, which is the case without seed bank.

The main theorem of Kaj et al. (2001) (proved for µN with finite support and extended to finite
expectation in Blath et al., 2013) consists in showing that the L1 norm of the ancestral process
converges weakly to the block counting process of the Kingman coalescent under a constant time
change. Here we extend this result to the window process and to some more general Cannings’
mechanism.

Theorem 2.6 (Convergence of the window process I: Kingman limit). Consider a seed bank di-
graph with parameters N,WN and µN . Suppose that βN = E[JNv ] <∞. Let τN be the mixing time
of {RNg }g≥0, cN = NE[(WN

v )2] and dN = NE[(WN
v )3]. Assume that µN (1) > 0 and that

cN/β
2
N → 0, N ετNcN → 0, (1/4)N

ε
β2
N → 0 and dN/(βNcN )→ 0. (2.3)

for some ε > 0. Then, let {B̄N}N≥1 be the sequence of window processes with parameters N and
µN and starting condition B̄N

0 = n̄ for all N ∈ Z+ big enough. Then,

lim
N→∞

{|B̄N
btβ2

N/cN c
|}t≥0 = {NK

t }t≥0 (2.4)

in the finite dimension sense, where {NK
t }t≥0 stands for the block counting process of a Kingman

coalescent.
Furthermore, suppose that νN converges to a measure ν as N →∞. Let V t,K be a (conditional)

multinomial random variable with parameters NK
t and ν. For any fixed time t > 0, in distribution,

lim
N→∞

B̄N
btβ2

N/cN c
= V t,K . (2.5)

Note that when βN → β < ∞ the third condition of Theorem 2.6 is automatically fulfilled. On
the other side, when βN → ∞, then the fourth condition is always fulfilled because dN/cN ≤ 1.
The latter reflects the fact that a stronger seed bank effect (in the sense that the expected number
of generations separating an individual from its ancestor tends to infinity) makes impossible the
existence of multiple mergers. Theorem 2.8 below discusses the interplay between seed banks and
random genetic drift. Note also that the second condition implies that τN < ∞ for all but finitely
many N , meaning that the support of µN is finite for all but at most finitely many N . In general,
a process with finite mixing time can have an infinite support. In our case, a particle that starts in
k takes k deterministic steps before jumping to a random location. This enforces that the support
is a lower bound for the mixing time.

Remark 2.7. The arguments that we use in the proof of the theorem establish a convergence result
in the finite dimension sense for (2.4). However this result can be strengthened into a convergence
in distribution thanks to classical limit theorems, see for example Theorem 17.25 in Kallenberg
(2021). This will also be the case in the forthcoming Theorems 2.8, 3.4, 4.7, 4.9 and 4.10.
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Recall from the seminal work of Schweinsberg (2001) that Ξ-coalescents are characterized by
a measure on ∆, the infinite simplex on [0, 1]. Every realization of this measure Ξ describes the
coalescence rule at every jump time of the process. Let Fβ : ∆ 7→ ∆ be such that for A ⊂ ∆,
Fβ(A) = {ȳ/β, ȳ ∈ A}. To any finite measure Ξ over ∆, we associate a finite measure Ξβ defined
by the rule

Ξβ(A) := Ξ(F1/β(A) ∩∆)

for any borelian A ⊆ 1

β
∆, or equivalently

Ξβ(Fβ(B)) = Ξ(B)

for any borelian B on ∆. Observe that Ξβ associates no weight on mass partitions ȳ = (y1, y2, . . . )
such that

∑
yi > 1/β. It is also remarkable that the seed bank effect sends the class of Λ-coalescents

into itself. As an example, the Beta(2−α, α) coalescent with the characteristic measure, restricted
to (0, 1), Ξ(A) =

∫
A

1
Γ(2−α)Γ(α)x

1−α(1−x)α−1dx turns to a coalescent with measure, now restricted
to (0, 1/β), Ξβ(A) =

∫
A

1
Γ(2−α)Γ(α)x

1−α( 1
β − x)α−1dx.

Theorem 2.8 (Convergence of the window process II: Ξ limit). Consider a seed bank di-graph with
parameters N,WN and µN . Suppose that βN = E[JNv ]→ β <∞. Assume that the ancestral process
of a Cannings model driven by WN , that we denote by {CNg }g≥0 is such that

lim
N→∞

{CNbt/cN c}t≥0) = {NΞ
t }t≥0 (2.6)

where {NΞ
t }t≥0 stands for the block counting process of a Ξ-coalescent. Then

lim
N→∞

{|B̄N
bt/cN c|}t≥0 = {NΞβ

t }t≥0 (2.7)

in the finite dimension sense.
Furthermore, suppose that νN converges to a measure ν as N →∞. Let V t,Ξβ be a (conditional)

multinomial random variable with parameters NΞβ
t and ν. For any fixed time t > 0, in distribution,

lim
N→∞

BN
bt/cN c = V t,Ξβ . (2.8)

Note that the rates of the Ξβ-coalescent converge to those of the Kingman coalescent when
β →∞, converting the Kingman coalescent to a limit model when β becomes large. This intuitively
coincides with the hypothesis on β in Theorem 2.6.

Remark 2.9. The site frequency spectrum (SFS) provides a convenient way to visualize the trans-
formations induced by the mapping Ξβ of Theorem 2.8 to the shape of the coalescent. The SFS is a
vector proportional to the branch lengths (L1, . . . , Ln−1) of the coalescent tree, where Li stands for
the length of the lineages with exactly i leaves in the original sample of size n. In Figure 2.2 we see
how the branch lengths are increased in a non linear way in the case of the Bolthausen-Sznitman co-
alescent. Note that when the genealogies are in the domain of attraction of the Kingman coalescent
(Theorem 2.6), every coordinate of the SFS will be multiplied by the constant β.

Proof of Theorem 2.6: The proof consists in coupling the window process {B̄N
g }g≥0 to a process

which is "always in stationarity". If we suppose that {B̄N
g }g≥0 starts a.s. with one lineage, i.e.

B̄N
0 = ek for some k, it is straightforward that it has a stationary distribution ν̄N given by ν̄N (ei) =

νN (i). Now, let Y N,j
g = (RN,jg , LN,jg ) where {RN,jg }g≥0 is a sequence of independent νN -distributed

random variables. Let

σN,j = inf{g ≥ 1 : Y N,j
g = Y N,j′

g = (1, k), for some j′ < j such that σN,j
′
> g, k ∈ [N ]}.
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Figure 2.2. Expected SFS of the Ξβ-coalescent where Ξ is the uniform measure
on (0, 1) (Bolthausen-Sznitman coalescent) and β = 1, 2, 3. The initial sample size
is n = 20. The values are obtained thanks to computational methods based on
phase-type theory Hobolth et al. (2019). An exact formula for β = 1 can be found
in Kersting et al. (2021). Left: Expected SFS in logarithmic scale. Right: Expected
SFS divided by the expected SFS of the Bolthausen-Sznitman coalescent.

Hence, inspired by the coupling of Proposition 2.5, we define an artificial window process by

Z̄Ng = (ZN,1g , . . . , ZN,mNg )

where, as n =
∑
ni,

ZN,ig =
n∑
j=1

1{RN,jg =i}1{σN,j≥g}.

The process {|Z̄Ng |}g≥0 is Markovian.
We now proceed in two steps to prove (2.4). First, we calculate the generator of {|Z̄Ng |}g≥0 in

order to discover its scaling limit. Let f : Z+ → R be a bounded function. Then

GNf(n) = E[f(|Z̄N1 |)− f(n)] = P(|Z̄N1 | = n− 1)[f(n− 1)− f(n)] +O(P(|Z̄N1 | = n− 2))

=

(
n

2

)
cN (νN (1))2[f(n− 1)− f(n)] +O(dN (νN (1))3)

=
cN
β2
N

[(
n

2

)
[f(n− 1)− f(n)] +O

( dN
βNcN

)]
.

So we conclude that
lim
N→∞

{|Z̄Nbβ2
N t/cN c

|}t≥0 = {NK
t }t≥0 (2.9)

in the finite dimension sense.
Second, let us couple {|Z̄Nbβ2

N t/cN c
|}t≥0 and {|B̄N

bβ2
N t/cN c

|}t≥0 to show that the same limit holds
for the rescaled window process. The coupling consists in constructing for every i ≥ 1 the random
variable (RN,1ρi , . . . , R

N,mN
ρi ) as the optimal coupling (defined in Remark 4.8, of Levin and Peres,

2017) of (RN,1ρi , ..., R
N,mN
ρi ), which depends on the initial condition n̄ ∈ [N ]mN , and the station-

ary distribution (νN )⊗mN , where the times {ρi}i≥1 correspond to the times where the processes
{|Z̄Nbβ2

N t/cN c
|}t≥0 and {|B̄N

bβ2
N t/cN c

|}t≥0 can jump. More precisely, if we denote for any p, q ∈ [n],

ρN,p,qk = inf{g > ρN,p,qk−1 : LN,pg = LN,qg } (with ρN,p,q0 = 0), then ρi = inf{g > ρi−1 : g = ρN,p,qk for
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some p, q ∈ [n] with p 6= q, and some k ∈ Z+} (with ρ0= 0). Note that we do not precise the
dependence on N in the notation. In our case, the probability that the coupling is successful

pN : = inf
n̄∈[N ]mN

Pn̄((RN,1ρ1 , . . . , RN,mNρ1 ) = (RN,1ρ1 , . . . , RN,mNρ1 ))

= 1− sup
n̄∈[N ]mN

Pn̄((RN,1ρ1 , . . . , RN,mNρ1 ) 6= (RN,1ρ1 , . . . , RN,mNρ1 ))

= 1− sup
n̄∈[N ]mN

‖Pn̄((RN,1ρ1 , . . . , RN,mNρ1 ) = ·)− (νN )⊗mN (·)‖TV

where Pn̄ stands for the law of {RN,1g , . . . , RN,mNg }g≥0 (or {RN,1g , . . . , RN,mNg }g≥0) starting at the
state n̄ ∈ [N ]mN and where Proposition 4.7 in Levin and Peres (2017) is used for the last equality.
To prove that pN → 1 when N →∞, take ε > 0 such that N ετNcN → 0. The condition µN (1) > 0

implies that, for any i ≥ 1, the processes {RN,ig }g≥0 are irreducible. So, by equation (4.29) in Levin
and Peres (2017) and the definition of τN , we have

||Pn̄((RN,1NετN
, . . . , RN,mNNετN

) = ·)− (νN )⊗mN (·)||TV < (1/4)N
ε
. (2.10)

Then observe that, stochastically, ρ1 ≥ ΓN where ΓN is a geometric random variable with parameter
n2cN ≥

(
n
2

)
cN (think of a Cannings model without dormancy) and thus

P(ρ1 < N ετN ) ≤ P(ΓN < N ετN ) = 1− (1− n2cN )N
ετN → 0.

This implies that pN ≥ 1− (1/4)N
ε
(1 + o(1)).

Let TN1 = inf{i ≥ 1 : |Z̄Nρi | = 1}. Observe that if |Z̄N0 | = n (we will use the notation Pn),
stochastically

TN1 ≤
n∑
i=1

GNi (2.11)

where the GNi ’s are independent geometric random variables with parameter β−2
N (the probability

that two particles in stationarity reach state 1). We finish the proof of (2.4) noting that the
trajectories of both processes are identical with overwhelming probability

Pn(sup
t
||Z̄Nbtβ2

N/cN c
| − |B̄N

btβ2
N/cN c

|| = 0) = E[p
TN1
N ] ≥ E[p

∑n
i=1G

N
i

N ]

=

(
pNβ

−2
N

1− (1− β−2
N )pN

)n
=
(
1− β2

N + p−1
N β2

N

)−n
.

Since pN ≥ 1− (1/4)N
ε
(1 + o(1)) and (1/4)N

ε
β2
N → 0, we have that the quantity above converges

to 1 when N →∞.
Finally, let us prove (2.5). Let t > 0 fixed, and suppose that νN converges to a measure ν. By,

equation (2.9) we have that limN→∞ |Z̄Nbtβ2
N/cN c

| = NK
t . Then, observe that Z̄Ng has a multinomial

distribution with parameters |Z̄Ng | and νN . Thus, in distribution,

lim
N→∞

Z̄Nbtβ2
N/cN c

= V t,K . (2.12)

On the other hand, by (2.4), we have that

lim
N→∞

|B̄N
btβ2

N/cN c
| = NK

t .
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For t > 0 fixed, let us couple Z̄Nbtβ2
N/cN c

and B̄N
btβ2

N/cN c
to show that the limit (2.12) is the

same for B̄N
btβ2

N/cN c
. As we did before, the coupling consists in constructing the random variable

(RN,1btβ2
N/cN c

, . . . , RN,mNbtβ2
N/cN c

) as the optimal coupling of (RN,1btβ2
N/cN c

, . . . , RN,mNbtβ2
N/cN c

), which depends
on the initial condition n̄ ∈ [N ]mN . The probability that the coupling is successful is

%N := inf
n̄∈[N ]mN

Pn̄((RN,1btβ2
N/cN c

, . . . , RN,mNbtβ2
N/cN c

) = (RN,1btβ2
N/cN c

, . . . , RN,mNbtβ2
N/cN c

))

= 1− sup
n̄∈[N ]mN

Pn̄((RN,1btβ2
N/cN c

, . . . , RN,mNbtβ2
N/cN c

) 6= (RN,1btβ2
N/cN c

, . . . , RN,mNbtβ2
N/cN c

))

= 1− sup
n̄∈[N ]mN

‖Pn̄((RN,1btβ2
N/cN c

, . . . , RN,mNbtβ2
N/cN c

) = ·)− (νN )⊗mN (·)‖TV

Take ε > 0 such that N ετNcN → 0, and observe that βN > 0. This implies that

P(btβ2
N/cNc < N ετN )→ 0 as N →∞. (2.13)

By, (2.10) and (2.13), we have that %N → 1. This gives (2.5). �

Remark 2.10. Consider two processes, {RNg }g≥0 and {RNg }g≥0, the first one starting with one particle
in stationarity and the second one starting with one particle in state one. If we consider their
Doebling coupling (which consists in letting them evolve according to their respective laws and in
merging their paths when they meet for the first time, see Levin and Peres (2017), Chapter 5), their
coupling time, TN , is less than two with probability

νN (1) +

mN−1∑
i=1

µN (i)νN (i+ 1) ≤ νN (1) +
1

βN

mN−1∑
i=1

µN (i) =
1

βN
(2− µN (mN )).

As the process {RNg }g≥0 visits the state one approximately every βN steps we conclude that P(TN >

N εβ2
N ) → 0 when N → ∞. Since τN ≤ inf{t ≥ 0;P(TN > t) < 1/4}, we obtain that mN ≤ τN ≤

N εβ2
N for N large enough. Note that mN is always a lower bound for τN since the mixing time is

at least the time for one particle starting at mN to reach the origin. Then hypotheses of Theorem
2.6 can be relaxed to the following

cN/β
2
N → 0, mN/(N

εβ2
N )→ δ < 1, N2εβ2

NcN → 0, (1/4)N
ε
β2
N → 0 and dN/(βNcN )→ 0

with the advantage that they are easier to verify.

Proof of Theorem 2.8: The proof of (2.7) is similar to that of (2.4) in Theorem 2.6. First observe
that (2.6) implies that cN → 0. Assuming furthermore that βN → β <∞, we get that cN/β2

N → 0,
(1/4)N

ε
β2
N → 0 and N ετNcN → 0 (since the mixing time is of order 1 in this case). These are the

three first conditions of (2.3), necessary to mimic the proof of Theorem 2.6.
In the present case, let Ii denote the indicator of the event that LN,i1 = LN,j1 for some j ∈ [i− 1].

Note that {CNbt/cN c}t≥0 has generator

CNf(n) = c−1
N E[f(n−

n∑
i=1

Ii)− f(n)]

which by hypothesis converges to the generator of the block counting process of a Ξ-coalescent.
Finally note that, using the same notation, the generator of the artificial (in stationarity) block
counting process {Z̄Nbt/cN c}t≥0 is

CNf(n) = c−1
N E[f(n−

n∑
i=1

Ii1{RN,i1 =1})− f(n)].
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As 1{RN,i1 =1} is a Bernoulli random variable with parameter tending to β−1 and independent of Ii,
we conclude that

lim
N→∞

{|B̄N
bt/cN c|}t≥0 = {NΞβ

t }t≥0.

The rest of the proof is identical to that of Theorem 2.6. �

Remark 2.11. The window process can also be defined in terms of a modification of the partition-
valued ancestral process. This more formal (and more complicated) definition follows the historical
approach of Kaj et al. (2001); Blath et al. (2013). Fix a generation g0, and Sg0 ⊂ ∪

mN
i=1V

N
g0+1−i.

For g ≥ 1, consider the equivalence relation on Sg0 , that we denote by ∼g, such that u ∼g v if and
only if they have a common ancestor at a generation between g0 − g + 1 and g0. Let π0 = π1 be
the trivial partition made of the isolated elements of Sg0 (singletons) and let πg be the partition
induced by ∼g in the sample Sg0 . Let BNg be the set composed by the closest ancestors, living at a
generation g0 − g′ for some g′ ≥ g, of each of the blocks in πg. Then, for 1 ≤ i ≤ mN , we define

BN,i
g := |BNg ∩ V N

g0−g+1−i|.

We illustrate this definition by the realization pictured in Figure 2.1.
In this case π0 = π1 = π2 = {{v1}, {v2}, {v3}, {v4}, {v5}}. Observe that even if some indi-

viduals reach their common ancestor at generation -2, they remain isolated in π2. Then π3 =
{{v1, v2}, {v3, v4}, {v5}}, π4 = {{v1, v2, v3, v4}, {v5}}, π5 = {{v1, v2, v3, v4, v5}}. Hence, B8

0 =
{v1, v2, v3, v4, v5} and, when moving some generations backwards, we get B8

1 = {v5, (−1, 5), (−2, 4),
(−2, 7), (−2, 7)} and B8

2 = {(−2, 3), (−2, 4), (−2, 4), (−2, 7), (−2, 7)}. Observe that in B8
2 the ances-

tors (−2, 4) and (−2, 7) appear twice. Also B8
3 = {(−3, 7), (−3, 7), (−4, 6)}, B8

4 = {(−4, 6), (−4, 6)},
B8

5 = {(−5, 5)}.
Finally, note that the coupled variables Y N,j

g = (RN,jg , LN,jg ) define the process that models the
distance between g and the position of the ancestor of the j-th block induced by ∼g.

3. The forward frequency process

In this section we introduce the forward frequency process associated to the seed bank graph, we
establish duality results with the ancestral and window processes introduced in the previous section,
and we establish some scaling limits results thanks to these tools.

Definition 3.1 (The frequency process). Fix a generation g0 and an initial sample

Sg0 ⊂ ∪
mN
i=1V

N
g0+1−i,

that we call the type A individuals. Hence, ∪mNi=1V
N
g0+1−i\Sg0 is the set of type a individuals. For

g ≥ 0, set (omitting again the dependence to Sg0)

XN,i
g =

1

N
|{v ∈ V N

g0+g+1−i : v is not connected to u for some u ∈ ∪mNi=1V
N
g0+1−i\Sg0}|.

Then, define the process of the neutral frequency of type A individuals {X̄N
g }g≥0, by

X̄N
g = (XN,1

g , . . . , XN,mN
g ).

Set a vector x̄ = (x1, . . . , xmN ) ∈ ([N ]/N)mN . In the sequel, we suppose that the forward frequency
process starts from a fraction x1 of generation 0, a fraction x2 of generation −1, and so on... We
denote this sample by S0(x̄) = ∪mNi=1 ∪

xiN
k=1 {(1− i, k)} and we denote the law of the frequency process

starting from this configuration by Px̄.

Again for simplicity, we suppose that sup{i ≥ 1 : xi > 0} does not depend on N .
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Figure 3.3. In this case N = 8, mN = 3 and x̄ =
(

4
8 ,

4
8 , 0
)
. The gray circles

represent the members of S0(x̄) = {v1, v2, v3, v4, v5, v6, v7, v8} where, for example,
v3 = (−1, 3) and v6 = (0, 2). The light gray circles represent the sample’s offspring.
It is useful to observe that XN,i

g = XN,i+1
g+1 for i < mN .

Proposition 3.2. Fix the parameters N , µN and WN of the seed bank di-graph. The processes
{X̄N

g }g≥0 and {ĀNg }g≥0 are sampling duals: for every g ≥ 0, we have

Ex̄[h0(n̄, X̄N
g )] = En̄[h0(ĀNg , x̄)]

where h0(n̄, x̄) := Pn̄(AN1 ⊂ S0(x̄)).

Proof : Suppose that the ancestral process starts at generation g + 1 from the sample Sg+1(n̄), as
in Definition 2.2. Also suppose that the frequency process starts at generation 0 from the sample
S0(x̄), as in Definition 3.1. Introduce the functions

hg(n̄, x̄) := Pn̄(ANg+1 ⊂ S0(x̄)). (3.1)

We can write hg(n̄, x̄) in terms of the forward process by conditioning as follows.

hg(n̄, x̄) =
∑

ȳ∈([N ]/N)mN

h0(n̄, ȳ)Px̄(X̄N
g = ȳ)

= Ex̄[h0(n̄, X̄N
g )].

At this point it should be clear that we can also condition according to the backward process.

hg(n̄, x̄) =
∑

m̄∈[N ]mN

h0(m̄, x̄)Pn̄(ĀNg = m̄)

= En̄[h0(ĀNg , x̄)].

This implies that for all x̄ ∈ ([N ]/N)mN , n̄ ∈ [N ]mN and g ≥ 1,

En̄[h0(ĀNg , x̄)] = Ex̄[h0(n̄, X̄N
g )].
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�

The sampling duality provides a relation between the forward and the ancestral processes. How-
ever, in this case the relation is not a moment duality. It is possible to write explicitly this sampling
duality and to use it, but we will rather use the less natural window process which has the advantage
of being precisely the moment dual of the forward process.

Proposition 3.3. Fix the parameters N , µN and WN of the seed bank di-graph. The window
process {B̄N

g }g≥0 and the forward frequency process {X̄N
g }g≥0 are moment duals.

Proof : We will construct a sampling duality that is exactly moment duality i.e duality with respect
to the function H : ZmN+ × [0, 1]mN 7→ [0, 1],

H(n̄, x̄) =

mN∏
i=1

xnii (3.2)

Fix n̄ ∈ [N ]mN and x̄ ∈ ([N ]/N)mN , and set the samples S0(n̄) and S0(x̄) as in Definition 2.2 and
Definition 3.1 (with g0 = 0). Observe that S0(n̄) = {v = (1− i, Uj,i), i = 1, . . . ,mN , j = 1, . . . , ni}
where the Uj,i’s form a family of independent uniformly distributed random variables with values
in [N ]. Then, we have

h̃(n̄, x̄) := P(S0(n̄) ⊂ S0(x̄)) =

mN∏
i=1

ni∏
j=1

P((1− i, Uj,i) ∈ S0(x̄)) =

mN∏
i=1

ni∏
j=1

xi = H(n̄, x̄).

Now we prove sampling duality with respect to this function. As in the proof of Proposition 3.2,
condition on X̄N

g to obtain that Pn̄(BNg ⊂ S0(x̄)) = Ex̄[h̃(n̄, X̄N
g )] and condition on B̄N

g to obtain
that Pn̄(BNg ⊂S0(x̄)) = En̄[h̃(B̄N

g , x̄)]. �

Now we are able to state an analogue of Theorem 2.6 for the dual process, using the moment
duality.

Theorem 3.4 (Convergence of the forward frequency process). Assume that mN ≤ m <∞ for all
N ∈ Z+. Fix {WN}N≥1 and {µN}N≥1 (and the associated stationary distribution νN ) such that
either the assumptions of Theorem 2.6 hold or the assumptions of Theorem 2.8 hold. Suppose
that νN converges to a measure ν on [m] as N → ∞. Let {X̄N}N≥1 be the sequence of frequency
processes with parameters N , WN and µN and starting condition X̄N

0 = (bNx1c/N, . . . , bNxmc/N)
for some x̄ ∈ [0, 1]m.
i) Under the assumptions of Theorem 2.6,

lim
N→∞

{X̄N
btβ2

N/cN c
}t≥0 = {X̄t}t≥0

in the finite dimension sense, where X̄t is a vector with m identical coordinates Xt such that X0 =
x0 =

∑m
i=1 ν(i)xi a.s., and {Xt}t≥0 is the Wright-Fisher diffusion (dual of {NK

t }t≥0).
ii) Under the assumptions of Theorem 2.8,

lim
N→∞

{X̄N
bt/cN c}t≥0 = {X̄t}t≥0

in the finite dimension sense, where X̄t is a vector with m identical coordinates Xt such that X0 =

x0 =
∑m

i=1 ν(i)xi a.s., and {Xt}t≥0 is the moment dual of {NΞβ
t }t≥0.

Remark 3.5. It is surprising at first that the components of the limit are identical. However,
this becomes intuitive when observing that the support of µN vanishes on the limiting time scale.
Theorem 3.4 uses the more restrictive assumption that the support for {µN}N≥1 is bounded. This
seems to be more than a technical assumption, because it is hard to believe that an asymptotically
infinite dimensional sequence of processes would converge to an infinite dimensional process with
all entries being equal (even if the support of µN vanishes on the limiting time scale). A natural
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question is, what is the limit in this more general scenario? An interesting framework to study this
question, in which there are results in the literature, is taking µN := µ such that µ({j : j > i}) ∼ i−α
see Blath et al. (2013). If α > 1, Theorem 3.4 should essentially apply, but the convergence should
hold only for finitely (but arbitrarily big) many dimensions simultaneously. If α ∈ (0, 1/2) the limit,
if it exists, should be related to fractional Brownian motion (see Hammond and Sheffield (2013)
and Igelbrink and Wakolbinger, 2023). The frequency process in the case α ∈ (0, 1/2) is believed
to exist and was named by Blath and Spanò the Fractional Wright Fisher Diffusion. If one takes
µN = 1/Nδ1 + Geo(1/N) a modification of Theorem 3.4 leads to a criterion for convergence to
Ξ-seed bank diffusions, this is current work of the authors. The seed bank diffusion was introduced
in Blath et al. (2016) and can be thought of as a delayed stochastic differential equation Blath et al.
(2019) (see also Blath et al., 2023).

Proof : We only write the details for case i), case ii) follows identically. The proof is a consequence
of Proposition 3.3, Theorem 2.6 and the moment problem. Let us abuse the notation and write
X̄N

0 = x̄ for every N .
First, let us clarify the role of x0. Recall that the process {Xt}t≥0 is a martingale. In particular,

its expectation remains constant. We claim that for every i ∈ [m], limN→∞Ex̄[XN,i
btβ2

N/cN c
] = x0. To

see this we use duality and convergence to stationarity of a single dual particle.

lim
N→∞

Ex̄[XN,i
btβ2

N/cN c
] = lim

N→∞
Eei

 m∏
j=1

xj
BN,j

btβ2
N
/cN c

 =
m∑
i=1

xiν(i) = x0. (3.3)

The first equality comes from duality. For the second equality, recall that in both Theorem 2.6 and
Theorem 2.8 we suppose that β2

N/cN →∞ and thus that the process is in stationarity in the limit.
The third equality follows from the fact that there is only one positive entry of the unitary vector
B̄N
btβ2

N/cN c
and that the position of the entry with the one is ν-distributed in the limit.

Now let us study the limiting behavior of one coordinate. Let n ≥ 1.

lim
N→∞

Ex̄[(XN,1
btβ2

N/cN c
)n] = lim

N→∞
Ex̄[H(n.e1, X̄

N
btβ2

N/cN c
)]

= lim
N→∞

En.e1 [H(B̄N
btβ2

N/cN c
, x̄)]

= En.e1 [H(V t,K , x̄)]

= En[x
NK
t

0 ]

= Ex0 [Xn
t ].

The third equality follows from (2.5) and in the fourth equality we used the same argument as for
(3.3). This proves that all the moments of XN,1

btβ2
N/cN c

converge to the moments of the Wright-Fisher
diffusion.

Finally, we check that in the limit all the coordinates of X̄N
btβ2

N/cN c
must take the same value. To

do this we will calculate the square of the difference of two arbitrary coordinates. Let i, j ∈ [m].
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With the same arguments as before,

lim
N→∞

Ex̄[(XN,i
btβ2

N/cN c
−XN,j

btβ2
N/cN c

)2] = lim
N→∞

[
Ex̄[(XN,i

btβ2
N/cN c

)2] + Ex̄[(XN,j
btβ2

N/cN c
)2]

−2Ex̄[XN,i
btβ2

N/cN c
XN,j
btβ2

N/cN c
]
]

= lim
N→∞

[
Ex̄[H(2ei, X̄

N
btβ2

N/cN c
)] + Ex̄[H(2ej , X̄

N
btβ2

N/cN c
)]

−2Ex̄[H(ei + ej , X̄
N
btβ2

N/cN c
)]
]

= lim
N→∞

[
E2ei [H(B̄N

btβ2
N/cN c

, x̄)] + E2ej [H(B̄N
btβ2

N/cN c
, x̄)]

−2Eei+ej [H(B̄N
btβ2

N/cN c
, x̄)]

]
= E2ei [H(V t,K , x̄)] + E2ej [H(V t,K , x̄)]

− 2Eei+ej [H(V t,K , x̄)]

= 0.

This ends the proof.
�

4. Extended seed bank di-graph with mutations

It shall be interesting to study a variant of the model where mutations are added. There is a
classical duality relation between the Wright-Fisher diffusion with mutations

dXt = (u1(1−Xt)− u2Xt)dt+
√
Xt(1−Xt)dBt. (4.1)

and the block counting process of a Kingman coalescent with freezing, where every lineage can
disappear at rate u1 + u2. This relation was established in Etheridge and Griffiths (2009) (see also
Griffiths and Spanó (2010) and the seminal work of Ethier and Griffiths, 1993) and was generalized
in Etheridge et al. (2010) to Λ-coalescents with freezing.

These works motivate that we modify the seed bank di-graph to include mutations (Definition
4.1). In order to observe genealogies with freezing in the model we consider that mutations come
from a separate source and not from a reproduction event. This will let us establish a duality
relation even in the finite population case (Proposition 4.5) between a modification of the window
process and a modification of the forward frequency process, and hence, a duality relation in the
limit generalizing known results (Theorem 4.10). The limit genealogical processes obtained in this
relation are described in Theorems 4.7 and 4.9. They are general coalescents but with a freezing
component. We give a formal description of them that is more convenient for our setting than the
common definition in Definition 4.6. Most of the proofs of this section are very similar to those
of Sections 2 and 3. We emphasize the modifications and the intuitions in the proof of Theorem
4.7 and enunciate the other results without the proofs, leaving them to the reader. For sake of
simplicity, most of the notations of this section will be identical to those of the previous ones when
the objects describe the same concepts, although their definitions are slightly modified.

Definition 4.1 (The extended seed bank random di-graph). Set N,µN andWN as in Definition 2.1,
the vertex set V N , and also the random variables {W̄N

g }g∈Z, where W̄N
g = {WN

v }v∈V Ng , {JNv }v∈V N
and {UNv }v∈V N . Fix two more parameters uN,1, uN,2 ≥ 0 such that uN,0 := 1−uN,1−uN,2 ≥ 0, and
let {KN

v }v∈V N be a sequence of independent random variables with state space {0, 1, 2} such that
P(KN

v = i) = uN,i. Consider the extended vertex set V N ∪ {∆1} ∪ {∆2} and the random function
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F : V N 7→ V N ∪ {∆1} ∪ {∆2} defined by the rule

F (v) =

{
(g(v)− JNv , UNv ) if KN

v = 0
∆i if KN

v = i ∈ {1, 2}. (4.2)

Let EN be the set of directed edges

EN = {{v, F (v)}, for all v ∈ V N}.

The extended seed bank random di-graph with parameters N, µN , WN and uN,1, uN,2 is given by
GN := (V N ∪ {∆1} ∪ {∆2}, EN ).

In this extended version of the graph, we can define a modification of the original window process.

Definition 4.2 (The window process with mutations). Fix a generation g0, and Sg0 ⊂ ∪
mN
i=1V

N
g0+1−i.

The window process with mutations is the chain {B̄N
g , D

N
g }g≥0 where {B̄N

g }g≥0 is the window process
introduced in Definition 2.4 (but associated to the extended di-graph) and {DN

g }g≥0 is the process
counting the cumulate number of lineages connecting with ∆1 or ∆2 under the rule F , that is

DN
g = |{(v, v′) ∈ EN , g(v) ≥ g0 − g, v is an ancestor of some individual of Sg0 and v′ ∈ {∆1,∆2}}|

We denote by Pn̄ the law of the window process starting from Sg0(n̄) and with DN
0 = 0.

Example 4.3. Modify Figure 2.1 such that individual (−2, 7) is connected to ∆1. The window
process with mutations has the following values: {B̄8

0 , D
8
0} = {(4, 1), 0}, {B̄8

1 , D
8
1} = {(2, 3), 0},

{B̄8
2 , D

8
2} = {(5, 0), 0}, {B̄8

3 , D
8
3} = {(1, 1), 1}, {B̄8

4 , D
8
4} = {(2, 0), 1}, {B̄8

5 , D
8
5} = {(1, 0), 1}.

The state ∆1 can be seen as the source of type a mutations and the state ∆2 as the source of
type A mutations. So we can slightly modify Definition 3.1 to obtain the new forward frequency
process.

Definition 4.4 (The frequency process with mutations). Fix a generation g0 and an initial sample
Sg0 ⊂ ∪

mN
i=1V

N
g0+1−i, that we call the type A individuals. Hence, ∪mNi=1V

N
g0+1−i\Sg0 is the set of type

a individuals. For g ≥ 0, set (omitting again the dependence to Sg0)

XN,i
g =

1

N
|{v ∈ V N

g0+g+1−i : v is not connected to ∆1 nor to u for some u ∈ ∪mNi=1V
N
g0+1−i\Sg0}|.

Then, define the process of the neutral frequency of type A individuals {X̄N
g , θ

N}g≥0, where
θN = uN,1/(uN,1 + uN,2) and

X̄N
g = (XN,1

g , . . . , XN,mN
g ).

Set a vector x̄ = (x1, . . . , xmN ) ∈ ([N ]/N)mN . In the sequel, we suppose that the forward frequency
process starts from a fraction x1 of generation 0, a fraction x2 of generation −1, and so on. We
denote this sample by S0(x̄) = ∪mNi=1 ∪

xiN
k=1 {(1− i, k)} and we denote the law of the frequency process

starting from this configuration by Px̄.

We obtain a duality result, which is the analogue of the moment duality obtained in Proposition
3.3, and that can easily be proved adapting the proofs of Section 3. It is inspired by Etheridge and
Griffiths (2009) and Griffiths and Spanó (2010).

Proposition 4.5. Fix N , µN , WN and uN,1, uN,2. The window process {B̄N
g , D̄

N
g }g≥0 and the

frequency process with mutations {X̄N
g , θ

N}g≥0 are moment duals, in the sense that for any g ≥ 0,

Ex̄

[
mN∏
i=1

(XN,i
g )ni

]
= En̄

[
(θN )D

N
g

mN∏
i=1

x
BN,ig

i

]
.
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Let us recall the concept of coalescent with freezing. Usually this model describes an exchangeable
coalescent where, apart from participating to merging events, lineages can disappear (or freeze) at
a constant rate, independent of each other. It appears in general population models with mutations
in Etheridge et al. (2010). Its Kingman version is also crucial in the infinite alleles model, where
Ewens’ sampling formula is established Ewens (1972), but also to provide asymptotics to the seed
bank (or peripatric) coalescent González Casanova et al. (2022b).

As could be anticipated from Definition 4.2, we will modify a bit this object keeping track of the
whole genealogy and of the frozen lineages separately. We only need to consider its block counting
process for our purpose

Definition 4.6 (The block counting process of a coalescent with freezing). The block counting
process of a Ξ-coalescent with freezing parameter u is the process {MΞ

t , Dt}t≥0 where MΞ
t counts

the number of (remaining) blocks at time t and Dt counts the cumulate number of frozen blocks
until time t. This process jumps from (n,m) to (n−k,m) when a coalescent event occurs (for some
k ∈ [n − 1]) and to (n − 1,m + 1) when a freezing event occurs. In the special case of a Kingman
coalescent with freezing, we use the notation {MK

t , Dt}t≥0.

We obtain the following analogue of Theorem 2.6.

Theorem 4.7 (Convergence of the window process I: Kingman limit). Consider an extended seed
bank di-graph with parameters N,µN ,WN and uN,1, uN,2. Assume that conditions of Theorem 2.6
hold, plus the following

uN,0 → u0,
uN,1βN
cN

→ u1,
uN,2βN
cN

→ u2,

where u0 ∈ (0, 1] and u1, u2 > 0. Consider the window process with mutations starting at B̄N
0 = n̄

and DN
0 = 0 for all N ∈ Z+ big enough. Then,

lim
N→∞

{|B̄N
btβ2

N/cNu
2
N,0c
|, DN
btβ2

N/cNu
2
N,0c
}t≥0 = {MK

t , Dt}t≥0 (4.3)

in the finite dimension sense, where {MK
t , Dt}t≥0 is the block counting process of a Kingman coa-

lescent with freezing parameter (u1 + u2)/u2
0.

Before proving this result, we need to modify the coupling particle system introduced in section
2.5. Let Y N

g = (RNg , L
N
g ) define a Markov chain with state space (N× [N ])∪{∆1,∆2} and transition

probabilities, conditional on the weights W̄N
g ,

P
(
Y N
g = (i, k)|{W̄N

g }g, Y N
g−1 = (1, j)

)
= WN

(g0−g+1−i,k)µ
N (i)uN,0

for every i ≥ 1, k ∈ [N ],

P
(
Y N
g = ∆i|{W̄N

g }g, Y N
g−1 = (1, j)

)
= uN,i

for i ∈ {1, 2}, and
P
(
Y N
g = (i, k)|{W̄N

g }g, Y N
g−1 = (i+ 1, j)

)
= WN

(g0−g,k)

for every i ≥ 1 and k ∈ [N ]. We enunciate the coupling result without proof.

Proposition 4.8. Set n =
∑
ni to be the total size of the initial sample. For every g ≥ 0, consider

n (conditional on {W̄N
g }g) independent realizations of Y N

g , that we call Y N,j
g = (RN,jg , LN,jg ) for

1 ≤ j ≤ n, and set
γN,j = inf{g ≥ 1 : Y N,j

g ∈ {∆1,∆2}}.
Recall {σN,j}nj=1 from Proposition 2.5. For all i ≥ 1, set

∑n
j=1 1{RN,j0 =i} = BN,i

0 . Then, the i-th com-

ponent BN,i
g of the random vector B̄N

g is equal in distribution to
∑n

j=1 1{RN,jg =i}1{σN,j≥g}1{γN,j≥g},
for all g ≥ 0 and DN

g is equal in distribution to
∑g

k=1

∑n
j=1 1{γN,j=k}1{σN,j≥k}.
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We are now ready to prove Theorem 4.7.

Proof of Theorem 4.7: As in the proof of Theorem 2.6, recall the invariant measure νN defined in
(2.2), define Y N,j

g = (RN,jg , LN,jg ) where {RN,jg }g≥0 is a sequence of independent νN -distributed
random variables, and let σN,1 =∞ and for 2 ≤ j ≤ n,

σN,j = inf{g ≥ 1 : Y N,j
g = Y N,j′

g = (1, k), for some j′ < j such that σN,j
′
> g, k ∈ [N ]}.

To couple the variables (γN,j)nj=1, observe that each of them can be associated to a geometric r.v.
of parameter uN,1 +uN,2. More precisely, let (GN,1, . . . , GN,n) be a family of independent geometric
r.v.s of parameter uN,1 + uN,2. Then we define

γN,j = 1 + inf{g ≥ 1 :

g∑
k=0

1{RN,jk =1} = GN,j}.

Hence, we define an artificial window process with mutations {Z̄Ng , INg }g≥0 where

Z̄Ng = (ZN,1g , . . . , ZN,mNg )

has coordinates given by

ZN,ig =
n∑
j=1

1{RN,jg =i}1{σN,j≥g}1{γN,j≥g}

and

INg =

g∑
k=1

n∑
j=1

1{γN,j=k}1{σN,j≥k}.

The process {|Z̄Ng |, INg }g≥0 is Markovian.
First, we calculate the generator of {(|Z̄Ng |, INg )}g≥0 in order to discover its scaling limit. Let

f : Z+ × Z+ → R2 be a bounded function. Then

GNf(n,m) = E[f(|Z̄N1 |, IN1 )− f(n,m)]

= P((|Z̄N1 |, IN1 ) = (n− 1,m))[f(n− 1,m)− f(n,m)]

+ P((|Z̄N1 |, IN1 ) = (n− 1,m+ 1))[f(n− 1,m+ 1)− f(n,m)]

+O(P(|Z̄N1 | = n− 2))

=

(
n

2

)
cN (νN (1)uN,0)2[f(n− 1,m)− f(n,m)]

+ nνN (1) (uN,1 + uN,2) [f(n− 1,m+ 1)− f(n,m)]

+O
(
dN (νN (1)uN,0)3 +

(
νN (1) (uN,1 + uN,2)

)2
+ cN (νN (1))3u2

N,0 (uN,1 + uN,2)
)

=
cNu

2
N,0

β2
N

[(
n

2

)
[f(n− 1,m)− f(n,m)]

+ n

(
uN,1βN
cNu2

N,0

+
uN,2βN
cNu2

N,0

)
[f(n− 1,m+ 1)− f(n,m)]

+O

(
dN
βNcN

uN,0 +
cN
β2
N

(
uN,1βN
cNuN,0

+
uN,2βN
cNuN,0

)2

+
cN
β2
N

(
uN,1βN
cN

+
uN,2βN
cN

))]
.

So we conclude that

{|Z̄Nbtβ2
N/cNu

2
N,0c
|, INbtβ2

N/cNu
2
N,0c
}t≥0 ⇒ {MK

t , Dt}t≥0, (4.4)



1184 Adrián González Casanova, Lizbeth Peñaloza and Arno Siri-Jégousse

the block counting process of a Kingman coalescent with freezing parameter (u1 + u2)/u2
0.

To see that {|B̄N
btβ2

N/cNu
2
N,oc
|, DN
btβ2

N/cNu
2
N,0c
}t≥0 ⇒ {MK

t , Dt}t≥0, we couple {|Z̄Nbtβ2
N/cN c

|}t≥0

and {|B̄N
btβ2

N/cN c
|}t≥0 mimicking the proof of Theorem 2.6 to show that the same limit is true for the

rescaled window process (since uN,0 → u0 with no scaling, we can suppose that uN,0 = 1). In this
case, we still denote, for any p, q ∈ [n], ρN,p,qk = inf{g > ρN,p,qk−1 : LN,pg = LN,qg } (with ρN,p,q0 = 0), but
now the potential jump times are ρi = inf{g > ρi−1 : g = ρN,p,qk for some p, q ∈ [n] and some k ∈ Z+

or g = GN,j for some j ∈ [n]} (with ρ0= 0). Recall that (GN,1, . . . , GN,n) is a family of independent
geometric r.v.s of parameter uN,1 + uN,2. The probability that the coupling is successful is

pN := inf
n̄∈[N ]mN

Pn̄((RN,1ρ̂1
, . . . , RN,mNρ̂1

) = (RN,1ρ̂1
, . . . , RN,mNρ̂1

))

= 1− sup
n̄∈[N ]mN

Pn̄((RN,1ρ̂1
, . . . , RN,mNρ̂1

) 6= (RN,1ρ̂1
, . . . , RN,mNρ̂1

))

= 1− sup
n̄∈[N ]mN

‖Pn̄((RN,1ρ̂1
, . . . , RN,mNρ̂1

) = ·)− (νN )⊗mN (·)‖TV

where Pn̄ stands for the law of {RN,1g , . . . , RN,mNg }g≥0 (or {RN,1g , . . . , RN,mNg }g≥0) starting at the
state n̄ ∈ [N ]mN and where Proposition 4.7 in Levin and Peres (2017) is used for the last equality. To
prove that pN → 1 whenN →∞, take ε > 0 such thatN ετNcN → 0 (and thus τNN ε(uN,1+uN,2)→
0) . The condition µN (1) > 0 implies that, for any i ≥ 1, the processes {RN,ig }g≥0 are irreducible.
So, by Theorem 4.9 in Levin and Peres (2017), we have

||Pn̄((RN,1NετN
, . . . , RN,mNNετN

) = ·)− (νN )⊗mN (·)||TV < (1/4)N
ε
.

Then observe that, stochastically, ρ1 ≥ ΓN where ΓN is a geometric random variable of parameter
n2cN + n(uN,1 + uN,2) and thus P(ρ1 ≤ N ετN ) ≤ P(ΓN ≤ N ετN )→ 0.

Let TN1 = inf{i ≥ 1 : |Z̄Nρi | = 1}. The jump times are reduced compared to those of the proof of
Theorem 2.6, so the inequality (2.11) still holds and we obtain (4.3) with similar arguments �

A multiple merger version of this result is also obtained. Note that in this case the hypothesis
that βN → β <∞ involves that uN,0 → 1.

Theorem 4.9 (Convergence of the window process II: Ξ limit). Fix {µN}N∈N such that βN =
E[JNv ] → β < ∞ and fix the distribution WN . Assume that the ancestral process of a Cannings
model driven by WN , that we denote by {CNg }g≥0 is such that

lim
N→∞

{CNbt/cN c}t≥0 = {NΞ
t }t≥0

where {NΞ
t }t≥0 stands for the block counting process of a Ξ-coalescent. Assume that

uN,1
βNcN

→ u1,
uN,2
βNcN

→ u2,

where u1, u2 > 0. Consider the window process with mutations starting at B̄N
0 = n̄ and DN

0 = 0 for
all N ∈ Z+ big enough. Then,

lim
N→∞

{|B̄N
bt/cN c|, D

N
bt/cN c}t≥0 = {MΞβ

t , Dt}t≥0. (4.5)

in the finite dimension sense, where {MΞβ
t , Dt}t≥0 is the block counting process of a Ξβ-coalescent

with freezing parameter u1 + u2.

Finally we obtain a convergence result for the frequency processes. Because of the two coordinate
notation of the block counting process of a coalescent with freezing, its moment dual is now written
as {Xt, θt}t≥0
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Theorem 4.10 (Convergence of the forward frequency process). Assume that mN ≤ m < ∞
for all N ∈ Z+. Fix {WN}N≥1 , {µN}N≥1 (and the associated stationary distribution νN ) and
uN,1, uN,2 such that either the assumptions of Theorem 4.7 hold or the assumptions of Theorem 4.9
hold. Suppose that νN converges to a measure ν on [m] as N → ∞. Let {X̄N , θN}N≥1 be the
sequence of frequency processes with parameters N , WN , µN and uN,1, uN,2 and starting condition
X̄N

0 = (bNx1c/N, . . . , bNxmc/N) for some x̄ ∈ [0, 1]m. i) Under that assumptions of Theorem 4.7,

lim
N→∞

{X̄N
btβ2

N/cN c
}t≥0 = {X̄t}t≥0

in the finite dimension sense, where X̄t is a vector with m identical coordinates Xt such that X0 =
x0 =

∑m
i=1 ν(i)xi a.s., and {Xt, u1/(u1 + u2)}t≥0 is the moment dual of {MK

t , Dt}t≥0.
ii) Under the assumptions of Theorem 4.9,

lim
N→∞

{X̄N
bt/cN c}t≥0 = {X̄t}t≥0

in the finite dimension sense, where X̄t is a vector with m identical coordinates Xt such that X0 =

x0 =
∑m

i=1 ν(i)xi a.s., and {Xt, u1/(u1 + u2)}t≥0 is moment dual of {MΞβ
t , Dt}t≥0.

Acknowledgements

The authors would like to thank Jochen Blath for their conversations and input during this
project and an anonymous referee for adding several improvements to the preliminary version.

References

Birkner, M., Liu, H., and Sturm, A. Coalescent results for diploid exchangeable population models.
Electron. J. Probab., 23, Paper No. 49, 44 (2018). MR3814243.

Blath, J., Buzzoni, E., González Casanova, A., and Wilke-Berenguer, M. Structural properties of
the seed bank and the two island diffusion. J. Math. Biol., 79 (1), 369–392 (2019). MR3975877.

Blath, J., Eldon, B., González Casanova, A., and Kurt, N. Genealogy of a Wright-Fisher model with
strong seedbank component. In XI Symposium on Probability and Stochastic Processes, volume 69
of Progr. Probab., pp. 81–100. Birkhäuser/Springer, Cham (2015). MR3558137.

Blath, J., González Casanova, A., Kurt, N., and Spanò, D. The ancestral process of long-range seed
bank models. J. Appl. Probab., 50 (3), 741–759 (2013). MR3102512.

Blath, J., González Casanova, A., Kurt, N., and Wilke-Berenguer, M. A new coalescent for seed-
bank models. Ann. Appl. Probab., 26 (2), 857–891 (2016). MR3476627.

Blath, J., González Casanova, A., Kurt, N., and Wilke-Berenguer, M. The seed bank coalescent
with simultaneous switching. Electron. J. Probab., 25, Paper No. 27, 21 (2020). MR4073688.

Blath, J., Hammer, M., and Nie, F. The stochastic Fisher-KPP equation with seed bank and
on/off branching coalescing Brownian motion. Stoch. Partial Differ. Equ. Anal. Comput., 11 (2),
773–818 (2023). MR4588623.

Cannings, C. The latent roots of certain Markov chains arising in genetics: a new approach. I.
Haploid models. Advances in Appl. Probability, 6, 260–290 (1974). MR343949.

Cannings, C. The latent roots of certain Markov chains arising in genetics: a new approach. II.
Further haploid models. Advances in Appl. Probability, 7, 264–282 (1975). MR371430.

Etheridge, A. and Griffiths, R. A coalescent dual process in a Moran model with genic selec-
tion. Theoret. Population Biol., 75 (4), 320–330 (2009). Sam Karlin: Special Issue. DOI:
10.1016/j.tpb.2009.03.004.

Etheridge, A. M., Griffiths, R. C., and Taylor, J. E. A coalescent dual process in a Moran model
with genic selection, and the lambda coalescent limit. Theoret. Population Biol., 78 (2), 77–92
(2010). DOI: 10.1016/j.tpb.2010.05.004.

http://www.ams.org/mathscinet-getitem?mr=MR3814243
http://www.ams.org/mathscinet-getitem?mr=MR3975877
http://www.ams.org/mathscinet-getitem?mr=MR3558137
http://www.ams.org/mathscinet-getitem?mr=MR3102512
http://www.ams.org/mathscinet-getitem?mr=MR3476627
http://www.ams.org/mathscinet-getitem?mr=MR4073688
http://www.ams.org/mathscinet-getitem?mr=MR4588623
http://www.ams.org/mathscinet-getitem?mr=MR343949
http://www.ams.org/mathscinet-getitem?mr=MR371430
http://dx.doi.org/10.1016/j.tpb.2009.03.004
http://dx.doi.org/10.1016/j.tpb.2009.03.004
http://dx.doi.org/10.1016/j.tpb.2010.05.004


1186 Adrián González Casanova, Lizbeth Peñaloza and Arno Siri-Jégousse

Ethier, S. N. and Griffiths, R. C. The transition function of a Fleming-Viot process. Ann. Probab.,
21 (3), 1571–1590 (1993). MR1235429.

Ewens, W. J. The sampling theory of selectively neutral alleles. Theoret. Population Biol., 3 (1),
87–112 (1972). MR325177.

Freund, F. Cannings models, population size changes and multiple-merger coalescents. J. Math.
Biol., 80 (5), 1497–1521 (2020). MR4071423.

González Casanova, A., Miró Pina, V., and Siri-Jégousse, A. The symmetric coalescent and Wright-
Fisher models with bottlenecks. Ann. Appl. Probab., 32 (1), 235–268 (2022a). MR4386526.

González Casanova, A., Peñaloza, L., and Siri-Jégousse, A. The shape of a seed bank tree. J. Appl.
Probab., 59 (3), 631–651 (2022b). MR4480072.

González Casanova, A. and Spanò, D. Duality and fixation in Ξ-Wright-Fisher processes with
frequency-dependent selection. Ann. Appl. Probab., 28 (1), 250–284 (2018). MR3770877.

Griffiths, R. C. and Spanó, D. Diffusion processes and coalescent trees. In Probability and math-
ematical genetics, volume 378 of London Math. Soc. Lecture Note Ser., pp. 358–379. Cambridge
Univ. Press, Cambridge (2010). MR2744247.

Hammond, A. and Sheffield, S. Power law Pólya’s urn and fractional Brownian motion. Probab.
Theory Related Fields, 157 (3-4), 691–719 (2013). MR3129801.

Hobolth, A., Siri-Jégousse, A., and Bladt, M. Phase-type distributions in population genetics.
Theoret. Population Biol., 127, 16–32 (2019). DOI: 10.1016/j.tpb.2019.02.001.

Igelbrink, J. L. and Wakolbinger, A. Asymptotic Gaussianity via coalescence probabilities in
the Hammond-Sheffield urn. ALEA Lat. Am. J. Probab. Math. Stat., 20 (1), 53–74 (2023).
MR4535240.

Kaj, I., Krone, S. M., and Lascoux, M. Coalescent theory for seed bank models. J. Appl. Probab.,
38 (2), 285–300 (2001). MR1834743.

Kallenberg, O. Foundations of modern probability, volume 99 of Probability Theory and Stochastic
Modelling. Springer, Cham, third edition (2021). ISBN 978-3-030-61871-1; 978-3-030-61870-4.
MR4226142.

Kersting, G., Siri-Jégousse, A., and Wences, A. H. Site frequency spectrum of the Bolthausen-
Sznitman coalescent. ALEA Lat. Am. J. Probab. Math. Stat., 18 (2), 1483–1505 (2021).
MR4282195.

Koopmann, B., Müller, J., Tellier, A., and Živković, D. Fisher–Wright model with deterministic seed
bank and selection. Theoret. Population Biol., 114, 29–39 (2017). DOI: 10.1016/j.tpb.2016.11.005.

Lambert, A. and Ma, C. The coalescent in peripatric metapopulations. J. Appl. Probab., 52 (2),
538–557 (2015). MR3372091.

Levin, D. A. and Peres, Y. Markov chains and mixing times. American Mathematical Society,
Providence, RI, second edition (2017). ISBN 978-1-4704-2962-1. MR3726904.

Möhle, M. and Sagitov, S. A classification of coalescent processes for haploid exchangeable popula-
tion models. Ann. Probab., 29 (4), 1547–1562 (2001). MR1880231.

Sagitov, S. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab.,
36 (4), 1116–1125 (1999). MR1742154.

Schweinsberg, J. Coalescent processes obtained from supercritical Galton-Watson processes. Sto-
chastic Process. Appl., 106 (1), 107–139 (2003). MR1983046.

Schweinsberg, J. R. Coalescents with simultaneous multiple collisions. ProQuest LLC, Ann Arbor,
MI (2001). ISBN 978-0493-31022-0. PhD Thesis – University of California, Berkeley. MR2702298.

Siri-Jégousse, A. and Wences, A. H. Exchangeable coalescents beyond the Cannings class. ArXiv
Mathematics e-prints (2022). arXiv: 2212.02154.

http://www.ams.org/mathscinet-getitem?mr=MR1235429
http://www.ams.org/mathscinet-getitem?mr=MR325177
http://www.ams.org/mathscinet-getitem?mr=MR4071423
http://www.ams.org/mathscinet-getitem?mr=MR4386526
http://www.ams.org/mathscinet-getitem?mr=MR4480072
http://www.ams.org/mathscinet-getitem?mr=MR3770877
http://www.ams.org/mathscinet-getitem?mr=MR2744247
http://www.ams.org/mathscinet-getitem?mr=MR3129801
http://dx.doi.org/10.1016/j.tpb.2019.02.001
http://www.ams.org/mathscinet-getitem?mr=MR4535240
http://www.ams.org/mathscinet-getitem?mr=MR1834743
http://www.ams.org/mathscinet-getitem?mr=MR4226142
http://www.ams.org/mathscinet-getitem?mr=MR4282195
http://dx.doi.org/10.1016/j.tpb.2016.11.005
http://www.ams.org/mathscinet-getitem?mr=MR3372091
http://www.ams.org/mathscinet-getitem?mr=MR3726904
http://www.ams.org/mathscinet-getitem?mr=MR1880231
http://www.ams.org/mathscinet-getitem?mr=MR1742154
http://www.ams.org/mathscinet-getitem?mr=MR1983046
http://www.ams.org/mathscinet-getitem?mr=MR2702298
http://arxiv.org/abs/2212.02154

	1. Introduction
	2. A random graph version of the model of Kaj, Krone and Lascoux
	3. The forward frequency process
	4. Extended seed bank di-graph with mutations
	Acknowledgements
	References

