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Abstract. An aggregated model is proposed, of which the partial-sum process scales to the Karlin
stable processes recently investigated in the literature. The limit extremes of the proposed model,
when having regularly-varying tails, are characterized by the convergence of the corresponding point
processes. The proposed model is an extension of an aggregated model proposed by Enriquez (2004)
in order to approximate fractional Brownian motions with Hurst index H ∈ (0, 1/2), and is of a
different nature of the other recently investigated Karlin models which are essentially based on
infinite urn schemes.

1. Introduction and main results

1.1. Karlin stable processes. The Karlin stable processes are a family of self-similar symmetric α-
stable (SαS) stochastic processes, α ∈ (0, 2], with stationary increments that recently appeared in
the literature (Durieu and Wang, 2016; Durieu et al., 2020). A Karlin SαS process has a memory
parameter β ∈ (0, 1). In the case α = 2, the process becomes a fractional Brownian motion with
Hurst index H = β/2 ∈ (0, 1/2). Fractional Brownian motions (Kolmogorov, 1940; Mandelbrot
and Van Ness, 1968) are fundamental models in stochastic processes with long-range dependence
(Pipiras and Taqqu, 2017), and hence such an extension to stable processes is of its own interest.

Karlin stable processes was first discovered during the investigation of fractional Brownian mo-
tions via a limit-theorem point of view: what stochastic models may scale to a Brownian motion?
This is an extensively investigated question in the literature of applied probability; see Pipiras and
Taqqu (2017) for various such stochastic models. Remarkably, a few recent results focus on the
following question: since a simple random walk scales to a Brownian motion, would it be possible
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to find a correlated simple random walk (with dependent ±1-steps) that scales to a fractional Brow-
nian motion? This question was answered affirmatively first by Hammond and Sheffield (2013) for
H ∈ (1/2, 1), and later on by Durieu and Wang (2016) for H ∈ (0, 1/2). It is worth noting that
for two ranges of H the correlated random walks are of completely different natures. In particular,
in Durieu and Wang (2016), it was shown that the partial-sum process of the Karlin model with
Rademacher randomizations scales to a fractional Brownian motion with H ∈ (0, 1/2).

The original Karlin model is as an infinite urn scheme, of which the law on the urns has a
power-law decay (Karlin, 1967; Gnedin et al., 2007), and with Rademacher randomizations it can
be interpreted as a correlated random walk to be reviewed below. The Karlin stable processes first
appeared in a follow-up study (Durieu et al., 2020). Therein it was shown that if the randomizations
are replaced by heavy-tailed ones, that is, the random walks are now with correlated and heavy-
tailed steps, then the scaling limit becomes a new SαS stable process, to which we termed the name
Karlin stable process. Since then, the Karlin model and its variations have attracted attention
in the literature of stochastic processes as they serve as simple models that exhibit long-range
dependence. For example, the set-indexed Karlin stable random fields (Fu and Wang, 2020) include
and generalize the set-indexed fractional Brownian motions (Herbin and Merzbach, 2006), and
extensions to hierarchical models have also been considered (Iksanov et al., 2022; Iksanov and
Kotelnikova, 2022).

We first recall the Karlin stable process {ζα,β(t)}t≥0, and explain how it arises from the Karlin
model with randomization as in Durieu and Wang (2016); Durieu et al. (2020). Throughout, we
assume α ∈ (0, 2] and β ∈ (0, 1). Then, ζα,β is an SαS process, of which the characteristic function
of finite-dimensional distributions is, for any d ∈ N ≡ {1, 2, · · · }, t1, · · · , td ≥ 0, θ1, · · · , θd ∈ R,

E exp

i d∑
j=1

θjζα,β(tj)

 = exp

− β

Γ(1− β)Cα

∫ ∞
0

E

∣∣∣∣∣∣
d∑
j=1

θj1{N(tjq) odd}

∣∣∣∣∣∣
α

q−β−1dq

 , (1.1)

where on the right-hand side, N is a standard Poisson process (the probability spaces involved on
both sides are not necessarily the same), and

Cα =


(∫ ∞

0
x−α sinxdx

)−1

, if α ∈ (0, 2),

2, if α = 2.

(1.2)

See Samorodnitsky and Taqqu (1994, Eq. (1.2.9)) for other formula of Cα. It follows from the
representation above that the process is self-similar with index β/α and with stationary increments
(Durieu et al., 2020). Moreover, when α = 2 it is a fractional Brownian motion with Hurst index
H = β/2 up to a multiplicative constant (see (2.4) below).

It is a well-known fact on stable processes (Samorodnitsky and Taqqu, 1994) that when α ∈ (0, 2),
(1.1) has a corresponding series representation. However, for our discussions later we shall need to
work with another series representation of the process ζα,β restricted to t ∈ [0, 1] as follows. Let
{Γ`}`∈N denote the collection of consecutive arrival times of a standard Poisson process on R+,
{ε`}`∈N i.i.d. Rademacher random variables, {Qβ,`}`∈N i.i.d. copies of a β-Sibuya random variable
(see (2.1) below), and {U`,j}`,j∈N i.i.d. uniform random variables on (0, 1). Further, all four fam-
ilies of random variables are assumed to be independent. Then, we also have the following series
representation of the Karlin stable processes, restricted to t ∈ [0, 1],

{ζα,β(t)}t∈[0,1]

d
=


∞∑
`=1

ε`

Γ
1/α
`

1{∑Qβ,`
j=1 1{U`,j≤t} odd

}

t∈[0,1]

, α ∈ (0, 2), β ∈ (0, 1). (1.3)

The fact that the representations (1.1) and (1.3) are equivalent is recalled in Lemma 2.1 (following
a more general result in Fu and Wang (2021, Theorem 2.1)).
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Now we explain the so-called randomized Karlin model in Durieu and Wang (2016); Durieu et al.
(2020), for comparison purpose only (see Remark 1.6). Let {Yn}n∈N be i.i.d. N-valued random
variables with P(Y1 = k) ∼ k−1/β as k →∞ for some β ∈ (0, 1) (we only present a simple version; a
slowly varying function is allowed in general). Let {Xn}n∈N be i.i.d. random variables independent
from {Yn}n∈N, and assume in addition that X1 is symmetric with 1 − E exp(iθX1) ∼ σαX |θ|α as
θ → 0. Consider the partial-sum process

Sn :=
n∑
j=1

(−1)
Kj,Yj+1

XYj =
∞∑
`=1

X`1{Kn,` odd} with Kn,` :=
n∑
j=1

1{Yj=`}, n, ` ∈ N. (1.4)

Then, one can show that for some explicit constant Cα,β ,

1

nβ/α
{
Sbntc

}
t∈[0,1]

f.d.d.−−−→ Cα,β {ζα,β(t)}t∈[0,1] .

Note that when {Xn}n∈N are i.i.d. Rademacher random variables, in view of the first expression
in (1.4), one can write Sn = Z1 + · · · + Zn, where {Zi}i∈N is a sequence of dependent ±1-valued
random variables, and hence the above limit theorem can be interpreted as a correlated random walk
with ±1 steps scaling to a fractional Brownian motion with Hurst index H = β/2. This was the
motivation behind the introduction of randomization in Durieu and Wang (2016) for the original
Karlin model (Karlin, 1967).

1.2. An aggregated model. Since the fractional Brownian motions arise from various stochastic mod-
els, and Karlin stable processes extend fractional Brownian motions to stable processes, it is natural
to ask the question: whether the Karlin stable processes arise from other stochastic models? Of
particular interest are the models of aggregation nature. It has been well-known that stochastic
processes with short-range dependence, when aggregated and with appropriately chosen random
parameters, may exhibit long-range dependence, and in particular fractional Brownian motions
may arise in this way (Kaj and Taqqu, 2008; Mikosch and Samorodnitsky, 2007).

In this paper, we propose a one-dimensional aggregated model as follows and show that it scales
to a Karlin stable process. The model actually extends a previous one by Enriquez (2004), who
proposed an aggregated model that scales to a fractional Brownian motion with H ∈ (0, 1/2).
(However, our formulations are slightly different; see Remark 1.4 for the original description in
Enriquez (2004).) Let q be a random parameter taking values from (0, 1), and given q, let {η(q)

j }j∈N
be a sequence of conditionally i.i.d. Bernoulli random variables with parameter q. Let X be a
symmetric random variable, independent from q and {η(q)

j }j∈N. Let α′ > 0 be another parameter.
Then we introduce

Xj :=
X
q1/α′

· (−1)τ
(q)
j +1η(q)

j with τ (q)

j :=

j∑
k=1

η(q)

k , j ∈ N. (1.5)

In words, Xj = 0 whenever η(q)

j = 0, and for those j ∈ N such that η(q)

j = 1, Xj takes the same value
X/q1/α′ , but with alternating signs. One can check that {Xn}n∈N forms a stationary sequence of
random variables. The partial-sum process is then

Sn :=

n∑
j=1

Xj =
X
q1/α′

1{
τ
(q)
n odd

}, n ∈ N. (1.6)

Note that there is no summation involved in the second expression above, and Sn 6= 0 implies
necessarily that τ (q)

n is odd. The simple expression is essentially due to the alternating signs. Next,
introduce (

(Xi, qi, {η(qi)

i,j }j∈N, {τ
(qi)

i,j }j∈N)
)
i∈N

i.i.d.∼
(
X , q, {η(q)

j }j∈N, {τ
(q)

j }j∈N
)
, (1.7)
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and for each copy let {S(i)
n }n∈N denote the corresponding partial-sum process. We are interested in

the aggregated model, for an increasing sequence of positive integers {mn}n∈N,

X̂n,j :=

mn∑
i=1

Xi
q

1/α′

i

· (−1)τ
(qi)
i,j +1η

(qi)

i,j , n ∈ N, j = 1, . . . , n,

and its corresponding partial-sum process{
Ŝn(t)

}
t∈[0,1]

:=


bntc∑
j=1

X̂n,j


t∈[0,1]

≡

{
mn∑
i=1

S(i)

bntc

}
t∈[0,1]

≡

{
mn∑
i=1

Xi
q

1/α′

i

1{
τ
(qi)

i,bntc odd
}
}
t∈[0,1]

.

Above, we provide three equivalent representations to better understand the process. We shall
mostly use the third one in our analysis.

Now we specify the assumptions on q and X . The random parameter q is assumed to have the
probability density function

p(x) = x−ρL(1/x), x ∈ (0, 1), for some ρ < 1, (1.8)

where L is a slowly varying function at infinity. The random variable X is assumed to be symmetric,
and either to have finite second moment, or

F |X |(x) ≡ P (|X | > x) ∼ CXx−α, x > 0, for some α > 0 and CX > 0. (1.9)

1.3. Main results. Our main results are the following two limit theorems. The first is a multivariate
central limit theorem.

Theorem 1.1. Assume (1.8) holds. Assume the symmetric random variable X satisfies one of the
following two conditions:
(i) EX 2 <∞, and in this case set α = 2, CX := EX 2.
(ii) (1.9) holds with α ∈ (0, 2).
Further assume

β := γ − 1 + ρ ∈ (0, 1) with γ :=
α

α′
. (1.10)

Then, with mn satisfying

lim
n→∞

mnL(n)

n1−ρ =∞, (1.11)

and

an =

(
CX

Γ(1− β)

β
· nβmnL(n)

)1/α

, (1.12)

we have {
Ŝn(t)

an

}
t∈[0,1]

f.d.d.−−−→ {ζα,β(t)}t∈[0,1].

Regarding scaling limits of extremes, our second result is a convergence of point processes.

Theorem 1.2. Assume (1.8), (1.9) with α > 0 and (1.10). Assume that, in addition to (1.11),
mn ≤ Cnκ for some κ ∈ (0, 2β/(α − 2)) if α ≥ 2 (so α = 2 means that mn grows at a polynomial
rate). We have

ξn :=

n∑
j=1

δ(∑mn
i=1 Xiη

(qi)
i,j /(anq

1/α′
i ),j/n

) ⇒ ξ :=

∞∑
`=1

Qβ,`∑
j=1

δ(
ε`Γ
−1/α
` ,U`,j

), (1.13)

in Mp((R \ {0})× [0, 1]), where the random variables involved in the definition of ξ are as those in
(1.3).
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Above and below, Mp(E) is the space of Radon point measures on the metric space E, equipped
with vague topology. Our reference for point processes and convergence is Resnick (1987). In the
case α < 2, Theorem 1.2 contains more information regarding the limit of the partial-sum process,
and provides a second proof for Theorem 1.1, as discussed in Section 4.3. Moreover, Theorem 1.2
also implies extremal limit theorems regarding the proposed model, as explained in Section 4.4. In
particular, the choice of an in (1.12) is such that

P
(
|X |
q1/α′

> anx, τ
(q)
n 6= 0

)
∼ x−α

mn
, for all x > 0. (1.14)

As the key of Theorem 1.2, a more refined conditional limit theorem given the event above is in
Proposition 4.2.

We conclude the introduction with a few remarks.

Remark 1.3. For the central limit theorem, we only prove the convergence of finite-dimensional
distributions to the Karlin stable process for α ∈ (0, 2], without the tightness. The tightness is
a challenging issue and actually, in Durieu et al. (2020), the tightness for the randomized Karlin
model was only proved for α ∈ (0, 1), and the tightness remains an open question for α ∈ [1, 2) (for
the Gaussian case the tightness was proved in Durieu and Wang (2016)). It is also an open question
to show that the Karlin stable process has a version in D (the Skorokhod space with J1 topology
(Billingsley, 1999)), for α ∈ [1, 2).

Remark 1.4. The main inspiration of this paper came from a paper of Enriquez (2004), and our
model is in fact a generalization of a model proposed therein, and our limit theorems extend his to
(non-Gaussian) stable domain of attractions.

The goal of Enriquez (2004) was to provide an approximation of fractional Brownian motion
with Hurst index H ∈ (0, 1) by aggregation of independent correlated random walks. Two models
were proposed therein and the second was for H ∈ (0, 1/2), recalled here. Consider again random
variable q with probability density function

(1− 2H)21−2Hq−2H1{q∈(0,1/2)}.

Then a sequence of random variables {εn}n∈N is constructed as follows: ε1 is a ±1-valued symmetric
random variable and for each n ≥ 1, the law of εn is determined by

q = P(ε2n = ε2n−1 | ε1, · · · , ε2n−1, q) = 1− P(ε2n = −ε2n−1 | ε1, · · · , ε2n−1, q), n ∈ N,

and ε2n+1 = −ε2n, n ∈ N. Then, consider Xn := (ε2n−1 + ε2n)/(2
√
q), n ∈ N. In this way, their

model fits into our setup with α = α′ = 2, ρ = 2H (see Enriquez (2004, p. 209) for details), whereas
we consider the general case with α ∈ (0, 2] and α′ > 0. Our Theorem 1.1 includes Enriquez (2004,
Corollary 3) as a special case for α = 2 (but without tightness).

Remark 1.5. There is non-trivial dependence between the magnitude Xi/q1/α′

i and the locations
{j = 1, . . . , n : η

(qi)

i,j = 1}, via q, in the aggregated model. However, the dependence disappears
in the limit. It is also remarkable that while our model has three parameters ρ, α, α′, the limiting
Karlin stable process has only two: α ∈ (0, 2) and β = ρ+ α/α′ − 1 ∈ (0, 1).

Both observations can be explained by the following representation of ζα,β (compare also (3.3) in
the proof of Theorem 1.1 later): essentially, the factor q−1/α′ in (1.5) introduces an effect of change
of measures in the limit. Recall the characteristic function of ζα,β in (1.1), and write

∫ ∞
0

E

∣∣∣∣∣∣
d∑
j=1

θj1{N(tjq) odd}

∣∣∣∣∣∣
α

q−β−1dq =

∫ ∞
0

E

∣∣∣∣∣∣
d∑
j=1

θj
1

qγ/α
1{N(tjq) odd}

∣∣∣∣∣∣
α

q−ρdq.



1192 Yi Shen, Yizao Wang and Na Zhang

Equivalently, for α < 2 we have another series representation as follows

{ζα,β(t)}t≥0

d
=

{ ∞∑
`=1

ε`

Γ
1/α
`

q
−γ/α
` 1{N`(tq`) odd}

}
t≥0

,

where Γ` and q` are such that
∑∞

`=1 δ(Γ`,q`) is a Poisson point process on R+ × R+ with intensity
measure dx(β/Γ(1− β))q−ρdq, independent from the Rademacher random variables {ε`}`∈N. So in
the limit process ζα,β , q−γ/α above eventually comes from the normalization q−1/α′ in (1.5) and q−ρ
comes from the density of q (both after 1/n-scaling as can be read from the proof later).

Remark 1.6. In the randomized Karlin models (Durieu and Wang, 2016; Durieu et al., 2020),
there are two sources of dependence. First, in (1.4), the dependence is determined by the law of
certain counting numbers being odd. For {Sn}n∈N in (1.4), with all X` = 1 it is known as an
odd-occupancy process, counting by time n how many urns have been sampled by an odd number
of times. This process has been already investigated by Karlin (1967), and the motivation of such a
consideration dates back to Spitzer (1964). So with i.i.d. {X`}`∈N, {Sn}n∈N becomes a randomized
odd-occupancy process. The law of the occupancy numbers being odd, eventually, plays a crucial
role in the underlying dependence structure of the limit Karlin stable process in (1.1) and (1.3).
Second, the original Karlin model also has a strong combinatorial flavor, as the sampling {Yn}n∈N
induces a random partition of N, essentially related to the Pitman–Yor partition with parameters
(β, 0), to which the β-Sibuya distribution is intrinsically related (Pitman, 2006). There have been
recent interests regarding various counting statistics for other combinatorial models, and often they
lead to new stochastic processes of their own interest. For an example with a similar flavor, see
Alsmeyer et al. (2017).

In a sense, our proposed aggregated model and the limit theorems indicate that the counting
of odd-occupancy numbers is much more fundamental than the underlying random partitions for
the randomized Karlin models: our proposed model has a much less combinatorial flavor than the
Karlin models, and yet they lead to the same scaling limits.

Remark 1.7. We learned from Rafał Kulik the following illuminating remark regarding the factor
q−1/α′ from a different aspect as in Remark 1.5. In view of (1.14), and if one ignores the restriction
τ (q)
n 6= 0, then it is known by Breiman’s lemma (Breiman, 1965) that the tail of |X/q1/α′ | is deter-
mined by the heavier one of X and q−1/α′ , which is the one of the latter here. More precisely, one
readily checks that F q−1/α′ (x) ∈ RV−κ with κ = (1 − ρ)α′, and β > 0 in our assumption (1.10) is
exactly κ < α, and then by Resnick (2007, Proposition 7.5) we have

1

bn

mn∑
i=1

δ
|Xi|/q

1/α′
i

⇒
∞∑
`=1

δ
Γ
−1/κ
`

,

for some bn ∈ RV1/κ. At the same time, (1.14) implies (see Proposition 4.2)

1

an

mn∑
i=1

δ
|Xi|/q

1/α′
i

1{
τ
(qi)
i,n >0

} ⇒ ∞∑
`=1

δ
Γ
−1/α′
`

.

So, the restriction τ (qi)

i,n 6= 0 could be understood as a thinning property.

The paper is organized as follows. Section 2 collects a few facts about Karlin stable processes.
In Section 3 we prove Theorem 1.1. In Section 4 we prove Theorem 1.2 and explain its further
connection to the so-called Karlin random sup-measures.
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2. Representations for Karlin stable processes

We collect some facts on the Karlin stable processes that can be derived from the general Karlin
stable set-indexed processes (Fu and Wang, 2021). Let Qβ denote the β-Sibuya distribution (Sibuya,
1979), so that

P(Qβ = `) =
β

Γ(1− β)

Γ(`− β)

Γ(`+ 1)
, ` ∈ N. (2.1)

Let C` :=
⋃`
i=1{Ui} denote the union of ` i.i.d. random variables {Ui}i∈N that are uniformly dis-

tributed over (0, 1). If ` is a random variable, then assume in addition that {Ui}i∈N are independent
from `.

Lemma 2.1. For α > 0 and β ∈ (0, 1),∫ ∞
0

Eq

∣∣∣∣∣∣
d∑
j=1

θj1{N(tjq) odd}

∣∣∣∣∣∣
α

β

Γ(1− β)
q−β−1dq = E

∣∣∣∣∣∣
d∑
j=1

θj1{|CQβ∩[0,tj ]| odd
}
∣∣∣∣∣∣
α

. (2.2)

Therefore, (1.3) holds with α ∈ (0, 2).

Remark 2.2. Throughout, with a little abuse of notations, when writing Eq(· · · ) or Pq(· · · ), we
mean that the q appears in (· · · ) is viewed as a fixed constant instead of a random variable (e.g.,
Eq(· · · ) on the left-hand side of (2.2) is viewed then as a function of q).

Proof of Lemma 2.1: First, let {N (q)(t)}t≥0 denote a Poisson process on R+ with constant intensity
density q on R+. Then, for every q > 0 fixed,

Eq

∣∣∣∣∣∣
d∑
j=1

θj1{N(tjq) odd}

∣∣∣∣∣∣
α

= Eq

∣∣∣∣∣∣
d∑
j=1

θj1{N(q)(tj) odd}

∣∣∣∣∣∣
α

=

∞∑
`=1

Eq

∣∣∣∣∣∣
d∑
j=1

θj1{N(q)(tj) odd}

∣∣∣∣∣∣
α ∣∣∣∣∣∣ N (q)(1) = `

Pq(N (q)(1) = `)

=

∞∑
`=1

Eq

∣∣∣∣∣∣
d∑
j=1

θj1{|C`∩[0,tj ]| odd}

∣∣∣∣∣∣
α

Pq(N (q)(1) = `).

Then, the left-hand side of (2.2) becomes, by Fubini’s theorem,

∞∑
`=1

E

∣∣∣∣∣∣
d∑
j=1

θj1{|C`∩[0,tj ]| odd}

∣∣∣∣∣∣
α

· β

Γ(1− β)

∫ ∞
0

Pq(N (q)(1) = `)q−β−1dq.

It remains to notice that the second factor above is simply

β

Γ(1− β)

∫ ∞
0

Pq(N (q)(1) = `)q−β−1dq =
β

Γ(1− β)

∫ ∞
0

q`

Γ(`+ 1)
e−qq−β−1dq = P(Qβ = `).

The desired identity (2.2) now follows. (1.3) then follows by the well-known equivalence between
stochastic-integral and series representations of SαS processes (Samorodnitsky and Taqqu, 1994,
Theorem 3.10.1). �

The Karlin stable process ζα,β has the following stochastic-integral representation (Samorodnitsky
and Taqqu, 1994)

{ζα,β(t)}t≥0

d
=

{∫
R+×Ω′

1{N ′(tq)(ω′) odd}Mα(dq, dw′)

}
t≥0

, (2.3)
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where Mα is a SαS random measure on R+ × Ω′, for another probability space (Ω′,P′) different
from the one where the stochastic integral is defined on, with control measure dm = (β/(Γ(1 −
β)Cα))q−β−1dqP′ (dω′). N ′ is a standard Poisson process on (Ω′,P′). This is a standard so-called
doubly stochastic representation, where the random measure Mα is defined on the by-default prob-
ability space (Ω,P), and (Ω′,P′) is a different space. This representation is notationally convenient
but not needed in our proofs. We refer the readers to Samorodnitsky and Taqqu (1994) for more
details regarding stochastic-integral representation for stable processes.

Note that the characteristic function (1.1) and the stochastic-integral representation (2.3) both
allow α = 2, and in this case the Karlin stable process becomes (up to a multiplicative constant) a
fractional Brownian motion with Hurst index β/2. A quick derivation is as follows, using (2.3) and
stochastic integrals with respect to Gaussian random measures: for 0 < s < t,

Cov (ζ2,β(s), ζ2,β(t)) =
β

CαΓ(1− β)

∫ ∞
0

Pq (N(sq) odd, N(tq) odd) q−β−1dq

=
β

CαΓ(1− β)

∫ ∞
0

1

2
(1− e−2qs)

1

2
(1 + e−2q(t−s))q−β−1dq

=
1

4

β

CαΓ(1− β)

∫ ∞
0

(1− e−2qs − e−2qt + e−2q(t−s))q−β−1dq.

(Recall that for a Poisson random variable N with λ = EN , P (N is odd) =
(
1− e−2λ

)
/2.) Using∫ ∞

0
(1− e−rq)q−β−1dq = rβ

Γ(1− β)

β
,

we have
Cov (ζ2,β(s), ζ2,β(t)) = 2β−1C−1

α ·
1

2

(
sβ + tβ − |t− s|β

)
, s, t ≥ 0. (2.4)

So {ζ2,β(t)}t≥0
d
= 2(β−1)/2C

−1/2
α

{
Bβ/2(t)

}
t≥0

, where {Bβ/2(t)}t≥0 is a fractional Brownian motion
with Hurst index β/2.

3. Proof of Theorem 1.1

The proof is by computing the asymptotic characteristic function. Consider the characteristic
function φX (θ) := E exp(iθX ). It is known that the two assumptions on X in Theorem 1.1 can be
unified into the following condition

1− φX (θ) ∼ σαX |θ|
α as θ → 0,

where σ2
X := EX 2/2 < ∞ and σαX := CX /Cα when α ∈ (0, 2) (see Bingham et al. (1987, Theo-

rem 8.1.10) for the second). Cα is defined in (1.2), and CX is the constant such that F |X |(x) ≡
P (|X | > x) ∼ CXx−α, x > 0 for α ∈ (0, 2), as in (1.9).

Recall the characteristic function of the Karlin stable process in (1.1). We shall rewrite it in a
more convenient expression for our proof. Throughout, for d ∈ N, write

Λd := {0, 1}d \ {(0, · · · , 0)},

and for θ = (θ1, . . . , θd) ∈ Rd, δ = (δ1, . . . , δd) ∈ Λd,

〈θ, δ〉 :=

d∑
j=1

θjδj .

Recall that N(t) is a standard Poisson process on R+. For δ ∈ Λd and t = (t1, . . . , td) ∈ [0, 1]d,
define

{N(qt) = δ mod 2} := {N(qtj) = δj mod 2 for all j = 1, · · · , d} .
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For k ∈ N0, we write k mod 2 = 1 if k is odd and 0 otherwise. Observe

Eq

∣∣∣∣∣∣
d∑
j=1

θj1{N(tjq) odd}

∣∣∣∣∣∣
α

=
∑
δ∈Λd

|〈θ, δ〉|αPq(N(qt) = δ mod 2).

Therefore, with

mα,β(t, δ) :=
β

Γ(1− β)Cα

∫ ∞
0

Pq (N(qt) = δ mod 2) q−β−1dq,

we see that (1.1) becomes

E exp

i d∑
j=1

θjζα,β(tj)

 = exp

−∑
δ∈Λd

|〈θ, δ〉|αmα,β(t, δ)

 .

Now for the aggregated model, we start by computing the characteristic function of the finite-
dimensional distributions of Sbntc/an (recall Sn in (1.6)). Write

An,q :=
{
τ (q)
n is odd

}
and Aδ :=

{
A, if δ = 1,

Ac, if δ = 0.

For any d ∈ N, t ∈ [0, 1]d, write nj := bntjc , j = 1, · · · , d, and

An,q,t,δ :=
d⋂
j=1

A
δj
nj ,q.

Then, for θ ∈ Rd,

E exp

i d∑
j=1

θj
Sbntjc

an

 = E exp

i d∑
j=1

θjX
anq1/α′

1Anj,q

 = E exp

i ∑
δ∈Λd

〈θ, δ〉X
anq1/α′

1An,q,t,δ


= E

E

exp

i ∑
δ∈Λd

〈θ, δ〉X
anq1/α′

1An,q,t,δ

 ∣∣∣∣∣∣ X , q
 . (3.1)

In the second step we used the fact that An,q,t,δ are disjoint for different δ ∈ Λd. Using the
disjointness again, the inner conditional expectation of (3.1) becomes

E

∏
δ∈Λd

exp

(
i 〈θ, δ〉 X
anq1/α′

1An,q,t,δ

) ∣∣∣∣∣∣ X , q
 = E

∑
δ∈Λd

exp

(
i 〈θ, δ〉 X
anq1/α′

)
1An,q,t,δ + 1An,q,t,0

∣∣∣∣∣∣ X , q


= E

1−
∑
δ∈Λd

(
1− exp

(
i 〈θ, δ〉 X
anq1/α′

))
1An,q,t,δ

∣∣∣∣∣∣ X , q
 ,

where in the second step above we used the fact that
∑
δ∈{0,1}d 1An,q,t,δ = 1. Indeed, each δ

corresponds to one particular combination of oddness and evenness for the sequence {τ (q)
nj }j=1,...,d.

Since exactly one of such combination is realized, the sum of the indicators is always 1. So we arrive
at

E exp

i d∑
j=1

θj
Sbntjc

an

 = 1−
∑
δ∈Λd

E
((

1− φX
(
〈θ, δ〉
anq1/α′

))
Pq(An,q,t,δ)

)
.
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The key is now to establish

Φn := E
[(

1− φX
(
〈θ, δ〉
anq1/α′

))
Pq(An,q,t,δ)

]
∼ 1

mn
|〈θ, δ〉|αmα,β(t, δ) as n→∞. (3.2)

It then follows that

lim
n→∞

E exp

i d∑
j=1

θj
Ŝn(tj)

an

 = lim
n→∞

E exp

i d∑
j=1

θj
Sbntjc

an

mn

= exp

−∑
δ∈Λd

|〈θ, δ〉|αmα,β(t, δ)

 = E exp

i d∑
j=1

θjζα,β(tj)

 .

Therefore, it remains to prove (3.2). As a preparation, note that for q > 0 fixed, by standard
Poisson approximation for binomial distribution with parameter (n, q/n), the point process

n∑
i=1

δi/n1
{
η
(q/n)
i =1

}
converges in distribution to a Poisson point process on (0, 1) with intensity q. As a consequence,

lim
n→∞

Pq(An,q/n,t,δ) = Pq (N(qt) = δ mod 2) , for all q > 0.

Moreover, the above convergence is uniform on any neighborhood of zero, that is,

lim
n→∞

sup
q∈[0,ε]

Pq(An,q/n,t,δ)
Pq (N(qt) = δ mod 2)

= 1, for all ε > 0.

This can be checked by writing explicitly the expressions for the two probabilities. For the sake of
simplicity we write only for d = 2, t1 < t2 and δ1 = δ2 = 1:

Pq(An,q/n,(t1,t2),(1,1)) =
1

2

(
1−

(
1− 2q

n

)bnt1c)
· 1

2

(
1 +

(
1− 2q

n

)bnt2c−bnt1c)

→ 1

2

(
1− e−2qt1

)
· 1

2

(
1 + e−2q(t2−t1)

)
= Pq(N(qt1) odd, N(qt2) odd),

and the uniform convergence is readily checked.
We first establish a lower bound for Φn in (3.2). If we restrict expectation to q ∈ [ε/n, ε−1/n] for

ε ∈ (0, 1) instead of q ∈ [0, 1], then it follows that

Φn ≥ Φn,ε :=

∫ ε−1

ε

(
1− φX

(
〈θ, δ〉

ann−1/α′q1/α′

))
Pq(An,q/n,t,δ)

( q
n

)−ρ
L(n/q)

dq

n

∼
∫ ε−1

ε
σαX |〈θ, δ〉|α(ann

−1/α′q1/α′)−αPq(N(qt) = δ mod 2)
( q
n

)−ρ
L(n/q)

dq

n
(3.3)

=
|〈θ, δ〉|α

mn

β

Γ(1− β)Cα

∫ ε−1

ε

L(n/q)

L(n)
q−γ−ρPq(N(qt) = δ mod 2)dq

∼ |〈θ, δ〉|
α

mn

β

Γ(1− β)Cα

∫ ε−1

ε
q−γ−ρPq(N(qt) = δ mod 2)dq,

which is the same as the right-hand side of (3.2) by taking ε ↓ 0. In the second line above we
need ann−1/α′ → ∞ as n → ∞, which is the same as our assumption on mn in (1.11). Note that
according to the uniform convergence theorem of the slowly varying functions (see, for example,
Bingham et al. (1987)), we need to restrict to a compact interval [ε, ε−1] bounded away from 0 to
have the uniform convergence in the second and the fourth steps above.
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It remains to show that limδ↓0 lim supn→∞mn(Φn − Φn,ε) = 0, and we need to work with the
intervals [0, ε/n] and [ε−1/n, 1]. This part can be done, and a similar treatment shows up in the
proof of Theorem 1.2 (more precisely, see (4.5) and (4.6)). Since Theorem 1.2 is a stronger result
than Theorem 1.1, we provide full details therein and omit the rest of the proof here.

4. Limit theorems for point processes

We first prove Theorem 1.2 in Section 4.2. It leads to a second proof of Theorem 1.1 in Section
4.3, and also the convergence of the so-called Karlin random sup-measures introduced in Durieu
and Wang (2018) in Section 4.4.

4.1. A preparation. We start by proving a weaker version of Theorem 1.2. Recall that

an =

(
CX

Γ(1− β)

β
· nβmnL(n)

)1/α

.

We shall provide two versions in the following proposition, the second with the alternating signs

(−1)τ
(qi)
i,j taken into account but the first not. For each ` ∈ N, let U`,1:Qβ,` < · · · < U`,Qβ,`:Qβ,` denote

the order statistics of {U`,j}j=1,...,Qβ,` .

Proposition 4.1. Under the assumption of Theorem 1.2, we have

ξ̃n :=

mn∑
i=1

n∑
j=1

η
(qi)

i,j δ
(
Xi/(anq

1/α′
i ),j/n

) ⇒ ξ :=

∞∑
`=1

Qβ,`∑
j=1

δ(
ε`Γ
−1/α
` ,U`,j

), (4.1)

where ξ is as in (1.13), and

ξ̂n :=

mn∑
i=1

n∑
j=1

η
(qi)

i,j δ
(

(−1)
τ
(qi)
i,j

+1Xi/(anq
1/α′
i ),j/n

) ⇒ ξ̂ :=
∞∑
`=1

Qβ,`∑
j=1

δ(
(−1)j+1ε`Γ

−1/α
` ,U`,j:Qβ,`

). (4.2)

Throughout, we let Ṽα denote a symmetrized α-Pareto random variable (symmetric and P(|Ṽα| >
x) = x−α, x ≥ 1). The following is the key step.

Proposition 4.2. Introduce

Ωn(x) :=

{
|X |

anq1/α′
> x, τ (q)

n 6= 0

}
.

Then,

P (Ωn(x)) ∼ 1

mn
x−α, for all x > 0, (4.3)

and

L
(
τ (q)
n , nq,

X
anq1/α′

∣∣∣∣ Ωn(x)

)
 L

(
Qβ, G(Qβ − β), xṼα

)
, for all x > 0, (4.4)

where on the right-hand side G(Qβ−β) is a Gamma random variable with random parameter Qβ−β,
and Ṽα a symmetrized α-Pareto random variable, independent from the first two.

The convergence (4.4) reads as the weak convergence of the conditional law of the random vector
(τ (q)
n , nq,X/(anq1/α′)) given Ωn(x) to the law of the random vector (Qβ, G(Qβ − β), xṼα).

Remark 4.3. The convergence to G(Qβ − β) is not needed in our proof. Nevertheless, it has
a probability density in closed form that can be derived as follows. Notice that G(Qβ − β)

d
=

G(1−β)+
∑Qβ−1

j=1 Gj(1), where G(1−β) is Gamma with parameter 1−β, {Gj(1)}j∈N are standard
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exponential random variables and all these random variables and Qβ are independent. Recall also
the identity that EzQβ = 1− (1− z)β . Then, it follows that

Ee−θG(Qβ−β) = Ee−θG(1−β)E
((

Ee−θG(1)
)Qβ−1

)
= (1 + θ)β−1E

(
(1 + θ)−Qβ

)
(1 + θ) = (1 + θ)β − θβ.

This is the Laplace transform of the probability density function

(1− e−x)βx−β−1

Γ(1− β)
, x ≥ 0.

(See Prudnikov et al. (1992, 2.2.4.2).)

Proof of Proposition 4.2: Write

P(Ωn(x)) = P
(
τ (q)
n 6= 0,

|X |
anq1/α′

> x

)
= E

(
E
(

(1− (1− q)n)1{|X |>anq1/α′x}
∣∣∣ q))

= E
(

(1− (1− q)n)F |X |

(
anq

1/α′x
))

= Ψn,δ(x) + Ψn,δ,1(x) + Ψn,δ,2(x), (4.5)

with, for δ ∈ (0, 1),

Ψn,δ(x) := E
(

(1− (1− q)n)F |X |

(
anq

1/α′x
)

; q ∈ [δ/n, δ−1/n]
)
,

Ψn,δ,1(x) := E
(

(1− (1− q)n)F |X |

(
anq

1/α′x
)

; q > δ−1/n
)
,

Ψn,δ,2(x) := E
(

(1− (1− q)n)F |X |

(
anq

1/α′x
)

; q < δ/n
)
.

First, for all δ ∈ (0, 1),

Ψn,δ(x) =

∫ δ−1

δ

( q
n

)−ρ
L(n/q)

(
1−

(
1− q

n

)n)
F |X |

(
an

( q
n

)1/α′

x

)
dq

n

∼ CXa−αn x−αnρ+γ−1L(n)

∫ δ−1

δ
q−ρ

L(n/q)

L(n)

(
1−

(
1− q

n

)n)
q−γdq

∼ β

Γ(1− β)

x−α

mn

∫ δ−1

δ
(1− e−q)q−γ−ρdq.

In the second line, we applied F |X |(an(q/n)1/α′x) ∼ CX (anx)−α(q/n)−γ uniformly in q ∈ [δ, δ−1],
and for this purpose we shall need ann−1/α′ →∞, or equivalently nβ−γmnL(n)→∞, which is our
standing condition (1.11). Restricted to the same interval we also have L(n/q)/L(n)→ 1 uniformly
in q. Moreover, we used the fact that limn→∞(1− q/n)n = e−q uniformly over any compact interval
[0, C], C > 0. Recalling that β = γ + ρ− 1, we see that

lim
δ↓0

∫ δ−1

δ
(1− e−q)q−γ−ρdq =

∫ ∞
0

(1− e−q)q−β−1dq =
Γ(1− β)

β
.

Thus lim infn→∞ P(Ωn(x)) ≥ limn→∞Ψn,δ(x) and this lower bound is tight as it becomes the desired
limit in (4.3) as δ ↓ 0.

For the upper bound, it remains to show that

lim
δ↓0

lim sup
n→∞

mnΨn,δ,i(x) = 0, i = 1, 2. (4.6)
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We first show (4.6) with i = 1. This time we use

Ψn,δ,1(x) ≤
∫ 1

δ−1/n
F |X |

(
anq

1/α′x
)
q−ρL(1/q)dq.

For n large enough, the condition on mn (1.11) and the lower bound δ−1/n on q guarantee that
anq

1/α′ is bounded away from 0. Hence by (1.9), F |X |(anq1/α′x) ≤ (1 + δ)CX (anq
1/α′x)−α, for all

q in the range of the integral. Therefore, the above is bounded by, for n large enough,

(1 + δ)CX

∫ 1

δ−1/n
(anq

1/α′x)−αq−ρL(1/q)dq =
(1 + δ)CX

(anx)α

∫ δn

1
qγ+ρ−2L(q)dq

∼ (1 + δ)CX
(anx)α

β−1(δn)βL(δn) ∼ 1

mn

1 + δ

Γ(1− β)
δβx−α.

In the second step we invoked Karamata’s theorem. Now (4.6) with i = 1 follows.
Next we show (4.6) with i = 2. Pick Dδ be such that for all x > Dδ,

sup
x>Dδ

F |X |(x)

CXx−α
< 1 + δ. (4.7)

Write Dn,δ,x = (Dδ/(anx))α
′ . One checks readily that the convergence limn→∞ nDn,δ,x = 0 is the

same as limn→∞ n
β−γmnL(n) = ∞. We decompose further the integral area with respect to q ∈

[0, δ/n] into [0, Dn,δ,x] and [Dn,δ,x, δ/n], and write respectively Ψn,δ,2(x) = Ψn,δ,2,1(x) + Ψn,δ,2,2(x).
Then,

Ψn,δ,2,2(x) =

∫ δ

nDn,δ,x

( q
n

)−ρ
L(n/q)

(
1−

(
1− q

n

)n)
F |X |

(
an

( q
n

)1/α′

x

)
dq

n

≤ (1 + δ)CXa
−α
n x−α

∫ δ

nDn,δ,x

( q
n

)−ρ
L(n/q)

(
1−

(
1− q

n

)n)( q
n

)−γ dq
n

≤ (1 + δ)CXx
−αn

βL(n)

aαn

∫ δ

0

L(n/q)

L(n)

(
1−

(
1− q

n

)n)
q−γ−ρdq.

In the first inequality above we applied (4.7), and in the second we used β+1 = ρ+γ and extended
the lower bound of the integral region to zero. Then, for n large enough, so that L(n/q)/L(n) <
(1 + δ)q−δ for all q ∈ (0, δ) (Potter’s bound (Resnick, 2007)), the above is bounded by, for δ ∈
(0, 2− (γ + ρ)),

1

mn

(1 + δ)2βx−α

Γ(1− β)

∫ δ

0

(
1−

(
1− q

n

)n)
q−γ−ρ−δdq ∼ 1

mn

(1 + δ)2βx−α

Γ(1− β)

∫ δ

0
(1− e−q)q−γ−ρ−δdq.

The right-hand side above has the expression Rδ(x)/mn with limδ↓0Rδ(x) = 0. Next, for δ > 0
small enough,

Ψn,δ,2,1 ≤
∫ nDn,δ,x

0

(
1−

(
1− q

n

)n)( q
n

)−ρ
L(n/q)

dq

n

= L(n)nρ−1

∫ nDn,δ,x

0

(
1−

(
1− q

n

)n) L(n/q)

L(n)
q−ρdq

≤ (1 + δ)L(n)nρ−1

∫ nDn,δ,x

0
(1− e−q)q−ρ−δdq ∼ 1 + δ

2− ρ− δ
L(n)nρ−1

(
n

(
Dδ

anx

)α′)2−ρ−δ

,

where in the second inequality above we used Potter’s bound again, for n large enough. We want
to show the above is asymptotically of a smaller order than m−1

n , or equivalently, dropping the
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dependence on ρ,Dδ, x,

(mnL(n))1−(2−ρ−δ)/γn1−δ−β(2−ρ−δ)/γ = (mnL(n))(γ+ρ+δ−2)/γn(γ(1−δ)−β(2−ρ−δ))/γ → 0.

Indeed, since ρ + γ ∈ (1, 2) and ρ < 1, one could take δ > 0 small enough (precisely, ρ + δ <
1, γ + ρ+ δ < 2) so that

n
γ(1−δ)−β(2−ρ−δ)

γ+δ−(2−ρ) mnL(n) = n
β(2−ρ−δ)−γ(1−δ)

2−(γ+ρ+δ) mnL(n) ≥ nβ−γmnL(n)→∞,

where the last step is our standing assumption. Combining the above we have proved (4.6) with
i = 2, and hence (4.3).

Similarly, one can show that

P
(
nq ∈ (a, b), τ (q)

n = k,
|X |

anq1/α′
> x

)
=

∫ b/n

a/n

(
n

k

)
qk(1− q)n−kF |X |

(
anq

1/α′x
)
q−ρL(1/q)dq

∼ 1

mn

βx−α

Γ(1− β)

∫ b

a

nk

k!

( q
n

)k−ρ (
1− q

n

)n
(nβ−γqγ)−1dq

n

∼ 1

mn

βx−α

Γ(1− β)

∫ b

a

e−q

k!
qk−1−βdq.

The asymptotic equivalence above follows from the dominated convergence theorem and is much
simpler than before. We omit the details. So, we have

P
(
nq ∈ (a, b), τ (q)

n = k,
|X |

anq1/α′
> x

)
∼ x−α

mn

β

Γ(1− β)

Γ(k − β)

Γ(k + 1)
P(G(k − β) ∈ (a, b))

=
x−α

mn
P(Qβ = k,G(k − β) ∈ (a, b)),

where G(k − β) is a Gamma random variable with parameter k − β, independent from Qβ . The
desired (4.4) then follows. �

Proof of Proposition 4.1: The second convergence (4.2) can be proved in exactly the same way as
(4.1), and the only difference is the alternating signs in both the discrete-time aggregated model
and the limit point process. Therefore, we prove only (4.1) for the sake of notational simplicity.

We prove by computing the Laplace transform. Let f(x, y) be a bounded and continuous function
from R× [0, 1] to R+ such that f(x, y) = 0 for all |x| ≤ κ for some κ > 0. Then,

Ee−ξ̃n(f) = E exp

− mn∑
i=1

n∑
j=1

f
(
Xi/(anq1/α′

i ), j/n
)
η
(qi)

i,j


=

E exp

− n∑
j=1

f
(
X/(anq1/α′), j/n

)
η(q)

j

mn

= (P(Ωn(κ))Ψn(κ) + 1− P(Ωn(κ)))mn ,

with

Ψn(κ) := E

exp

− n∑
j=1

f
(
X/(anq1/α′), j/n

)
η(q)

j

 ∣∣∣∣∣∣ Ωn(κ)

 .
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Then, by Proposition 4.2, writing Ωn,`(κ) := {|X |/(anq1/α′) > κ, τ (q)
n = `},

Ψn(κ) =
∞∑
`=1

E

exp

− n∑
j=1

f
(
X/(anq1/α′), j/n

)
η(q)

j

 ∣∣∣∣∣∣ Ωn,`(κ)

P (Ωn,`(κ) | Ωn(κ))

→
∞∑
`=1

E exp

−∑̀
j=1

f(κṼα, Uj)

P(Qβ = `) = E exp

− Qβ∑
j=1

f(κṼα, Uj)

 =: Ψ(κ).

The convergence above follows from the observation that given Ωn,`(κ), {η(q)

j }j=1,...,n is exchangeable;
from this we derive that since

∑n
j=1 η

(q)

j = `, the law of {j/n}
j=1,...,n,η

(q)
j =1

follows the law of

`-sampling without replacement from {1, . . . , n}, which has the limit as {Uj}j=1,...,`, and their
independence from Ṽα follows from the conditional independence of {η(q)

j }j=1,...,n from X/(anq1/α′).
Therefore, it follows that, recalling P(Ωn(κ)) ∼ κ−α/mn in (4.3),

Ee−ξ̃n(f) = (1− P(Ωn(κ))(1−Ψn(κ)))mn

→ exp
(
− lim
n→∞

mnP(Ωn(κ))(1−Ψ(κ))
)

= exp
(
−κ−α(1−Ψ(κ))

)
.

At the same time, let Nκ denote a Poisson random variable with intensity κ−α. Then,

Ee−ξ(f) = E exp

− Nκ∑
i=1

Qβ,i∑
j=1

f(Ṽα,i, Ui,j)

 = E
(
Ψ(κ)Nκ

)
= e−κ

−α(1−Ψ(κ)),

where (Ṽα,i, Qβ,i, {Ui,j}j∈N), i ∈ N are i.i.d. copies of (Ṽα, Qβ, {Uj}j∈N). This completes the proof.
�

4.2. Proof of Theorem 1.2. Set

X̃n,j :=
1

an

mn∑
i=1

Xiη(qi)

i,j

q
1/α′

i

.

Recall the notations around (1.7). Recall also that ρ+ γ = β + 1 ∈ (1, 2), γ = α/α′ > 0 and ρ < 1.
Introduce for ε > 0,

X̃n,j,ε :=
1

an

mn∑
i=1

Xiη(qi)

i,j

q
1/α′

i

1{
|Xi|>anq

1/α′
i ε

}.
The idea of the proof is to compare

ξn,ε :=
n∑
j=1

δ(X̃n,j,ε,j/n) and ξ̃n,ε :=
∑

i=1,...,mn

|Xi|>anq
1/α′
i ε

n∑
j=1

η
(qi)

i,j δ
(
Xi/(anq

1/α′
i ),j/n

). (4.8)

We have seen in Proposition 4.1 that ξ̃n,ε converges to the desired point process ξ in (1.13) restricted
to ([−∞,−ε] ∪ [ε,∞])× [0, 1]. Introduce also

Ĉn,ε(i) :=

{
j = 1, . . . , n :

|Xi|
q

1/α′

i

η
(qi)

i,j > anε

}
and Ĉn,ε :=

mn⋃
i=1

Ĉn,ε(i),

and furthermore
εn := n−β0/α, n ∈ N, (4.9)
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for any β0 ∈ (0, β). We begin by analyzing X̃n,j − X̃n,j,ε, which is the same as Zn,j,ε,εn + Wn,j,εn

with

Zn,j,ε,εn :=

mn∑
i=1

Xi
anq

1/α′

i

η
(qi)

i,j 1
{
|Xi|/

(
anq

1/α′
i

)
∈[εn,ε]

},
Wn,j,εn :=

mn∑
i=1

Xi
anq

1/α′

i

η
(qi)

i,j 1
{
|Xi|/

(
anq

1/α′
i

)
<εn

}, j = 1, . . . , n.

Lemma 4.4. We have, for r ≡ rβ,β0 := b1/(β − β0)c+ 1,

lim
n→∞

P
(

max
j=1,...,n

|Zn,j,ε,εn | ≥ rε
)

= 0, for all ε > 0, (4.10)

and

lim
n→∞

P

(
max
j∈Ĉn,ε

|Zn,j,ε,εn | > 0

)
= 0. (4.11)

Lemma 4.5. We have

lim
n→∞

P
(

max
j=1,...,n

|Wn,j,εn | > λ

)
= 0, for all λ > 0. (4.12)

Proof of Lemma 4.4: We shall need

P
(
|X |

anq1/α′
> εn, η

(q)

1 = 1

)
≤ C(anεn)−α, for all n ∈ N. (4.13)

Here and below, we let C denote a positive constant that may change from line to line. To see the
above, we write the probability on the left-hand side of (4.13) as

∫ 1
0 q

1−ρL(1/q)F |X |(anq
1/α′εn)dq,

and let dn be such that

dn ↓ 0, dn(anεn)α
′ →∞ and d2−ρ

n L(1/dn)(anεn)α → 0. (4.14)

(One readily checks that such a sequence exists since (anεn)−α
′ � (anεn)−α/(2−ρ), which is equivalent

to α′ > α/(2− ρ), or 2− ρ− γ > 0.) Decompose the integral into
∫ dn

0 and
∫ 1
dn
, we bound the first

by
∫ dn

0 q1−ρL(1/q)dq ∼ (2− ρ)−1d2−ρ
n L(1/dn), and the second by

C

∫ 1

dn

q1−ρL(1/q)(anεnq
1/α′)−αdq = C(anεn)−α

∫ 1

dn

q1−ρ−γL(1/q)dq ∼ C(anεn)−α.

Note that in the above, we need dn(anεn)α
′ → ∞ (the second condition in (4.14)), and the third

condition in (4.14) now implies that the integral over [dn, 1] is dominant. We have proved (4.13).
Now, to prove (4.10), it suffices to prove

lim
n→∞

P

(
max

j=1,...,n

mn∑
i=1

η
(qi)

i,j 1
{
|Xi|>anq

1/α′
i εn

} ≥ r
)

= 0.

In words, with probability going to zero, at some location j there are more than r different indices i
such that |Xi| is large and also η(qi)

i,j = 1 (in the complement of this event, the largest possible value
of |Zn,j,ε,εn | is (r − 1)εn, for all j). An upper bound of the probability of interest above is then

n

(
mn

r

)(
P
(
|X |

anq1/α′
> εn, η

(q)

1 = 1

))r
≤ Cnmr

n(anεn)−αr.

We see that our choices of β0 ∈ (0, β) and r entail that the right-hand side above decays to zero.
We have thus proved (4.10).
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Next, we prove (4.11). By a similar argument as above, we have

P

(
max
j∈Ĉn,ε

mn∑
i=1

η
(qi)

i,j 1
{
|Xi|>anq

1/α′
i εn

} > 0

)
≤ P

(
|Ĉn,ε| > K

)
+KmnP

(
|X |

anq1/α′
> εn, η

(q)

1 = 1

)
.

The second term on the right-hand side above is bounded from above by CKmn(anεn)−α → 0, for
all K > 0 fixed. So we have

lim sup
n→∞

P

(
max
j∈Ĉn,ε

mn∑
i=1

η
(qi)

i,j 1
{
|Xi|>anq

1/α′
i εn

} > 0

)
≤ lim sup

n→∞
P
(
|Ĉn,ε| > K

)
,

where the right-hand side tends to zero by taking K →∞. Indeed, first notice that by Proposition
4.1, |Ĉn,ε| ≤

∑mn
i=1 |Ĉn,ε(i)| ⇒

∑Nε
i=1Qβ,i, where Nε is a Poisson random variable with parameter

ε−α, and {Qβ,i}i∈N are i.i.d. random variables independent from Nε. Therefore,

lim sup
n→∞

P
(
|Ĉn,ε| > K

)
≤ P

(
Nε∑
i=1

Qβ,i > K

)
.

(This inequality is actually an equality, as later on we shall see that |Ĉn,ε| =
∑mn

i=1 |Ĉn,ε(i)| with
probability tending to one; i.e., limn→∞ P(Ecn,1,ε) = 0 in the proof of Theorem 1.2.) It thus follows
that

lim
K→∞

lim
n→∞

P
(
|Ĉn,ε| > K

)
= 0, for all ε > 0. (4.15)

We have proved (4.11). �

Proof of Lemma 4.5: Now we prove (4.12). Write

Wn,1,εn =

mn∑
i=1

Vn,i,εn with Vn,i,εn :=
Xi

anq
1/α′

i

η
(qi)

i,1 1{
|Xi|/

(
anq

1/α′
i

)
<εn

}.
Observe that |Vn,i,εn | ≤ εn and write wn := mnEV 2

n,1,εn . By union bound first and then the Bernstein
inequality (Boucheron et al., 2013, (2.10)) , we have

P
(

max
j=1,...,n

|Wn,j,εn | > λ

)
≤ nP(|Wn,1,εn | > λ) ≤ 2n exp

(
− λ2

2(wn + εnλ/3)

)
, (4.16)

for all λ > 0 and n ∈ N. We shall compute at the end

wn ≤



C
mn

aαn
ε2−αn , if α ∈ (0, 2),

C
mn

a2
n

(1 + log(anεn)+), if α = 2,

C
mn

a2
n

, if α > 2.

(4.17)

Then, by (4.16) and our choice of εn, it suffices to check that wn → 0 at a polynomial rate. This is
true for α ∈ (0, 2), and for α ≥ 2 an additional assumption on mn is needed. Indeed, with α = 2 the
log(anεn) might be problematic if mn grows at an exponential rate, while any polynomial growth
of mn would cause no problem; and with α > 2,

mn

a2
n

= C
aα−2
n

nβL(n)
= C

m
1−2/α
n

(nβL(n))2/α
→ 0

at a polynomial rate is guaranteed by mn ≤ Cnκ for any κ < 2β/(α − 2). Therefore, the desired
(4.12) follows from (4.16) and (4.17).
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It remains to prove (4.17). We have

wn = mnE

((
X

anq1/α′

)2

η(q)1{|X |<anεnq1/α′}

)

=
mn

a2
n

∫ 1

0
q1−ρ−2/α′L(1/q)E

(
X 21{|X |<anεnq1/α′}

)
dq. (4.18)

Now the discussions shall depend on the values of α > 0 in three cases.
(i) Assume α < 2. Introduce a parameter dn = (anεn)−α

′ ↓ 0 (we no longer need the same
constraints on dn as in (4.14) before as we only need an upper bound now). Again decompose the
integral in (4.18) into two parts on

∫ dn
0 and

∫ 1
dn
, respectively. Applying Karamata’s theorem on the

expectation, the second part (with the factor mn/a
2
n in front) can be bounded by,

C
mn

a2
n

∫ 1

dn

q1−ρ−2/α′L(1/q)(anεnq
1/α′)2−αdq = C

mnε
2−α
n

aαn

∫ 1

dn

q1−ρ−γL(1/q)dq.

The first part can be bounded by

mnε
2
n

∫ dn

0
q1−ρL(1/q)dq ≤ Cmnε

2
nd

2−ρ
n L(1/dn)

= C
mnε

2−α
n

aαn
(anεn)α−α

′(2−ρ)L(1/dn) = o

(
mnε

2−α
n

aαn

)
. (4.19)

(Note that α− α′(2− ρ) = α′(γ + ρ− 2) < 0.)
(ii) If α > 2, then

wn ≤ EX 2mn

a2
n

∫ 1

0
q1−ρ−2/α′L(1/q)dq ≤ Cmn

a2
n

.

(iii) If α = 2, under the assumption P(|X | > x) ∼ CXx−2, there exists a constant C such that

E
(
|X |21{|X |<x}

)
≤ 1 + C(log x)+, for all x > 0. (4.20)

Then, (4.18) with the integrals restricted to [0, dn] (we use the same bound as in (4.19)) and [dn, 1]
(we use the bound (4.20) above) are bounded from above by respectively

C
mn

a2
n

(anεn)2−α′(2−ρ)L(1/dn) and C
mn

a2
n

(1 + (log(anεn))+).

Again the part over [dn, 1] is dominant. We have thus proved (4.17). �

Proof of Theorem 1.2: Consider a Lipschitz continuous and bounded non-negative function f(x, y)
such that f(x, y) = 0 for all x ∈ [−κ, κ], with Lipschitz constant Cf . Let r = rβ,β0 = b1/(β − β0)c+1
as in Lemma 4.4, and ε ∈ (0, κ/(r + 1)). Introduce

En,1,ε :=

{{
Ĉn,ε(i)

}
i=1,...,mn

are all disjoint
}
,

En,2,ε :=

{
max

j=1,...,n

∣∣∣X̃n,j − X̃n,j,ε

∣∣∣ ≤ (r + 1)ε

}
,

En,3,ε,K :=
{
|Ĉn,ε| ≤ K

}
,

En,4,ε,λ :=

{
max
j∈Ĉn,ε

∣∣∣X̃n,j − X̃n,j,ε

∣∣∣ ≤ λ} ,
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and En,ε,K,λ := En,1,ε ∩En,2,ε ∩En,3,ε,K ∩En,4,ε,λ. Recall ξn,ε and ξ̃n,ε in (4.8). The key relation in the
approximation is for all K > 0,

e−ξ̃n,ε(f)e−λKCf ≤ e−ξn(f) ≤ e−ξ̃n,ε(f)eλKCf , restricted to En,ε,K,λ. (4.21)

We prove the upper-bound part only as the lower-bound part is similar. Restricted to En,ε,K,λ, we
have

e−ξn(f) = exp

− ∑
j∈Ĉn,ε

f
(
X̃n,j , j/n

) ≤ exp

− ∑
j∈Ĉn,ε

f
(
X̃n,j,ε, j/n

) eλKCf

= e−ξn,ε(f)eλKCf = e−ξ̃n,ε(f)eλKCf ,

where we used the restrictions to En,2,ε in the first equality (since for j /∈ Ĉn,ε, X̃n,j = X̃n,j − X̃n,j,ε,
which is small when restricted to En,2,ε), to En,3,ε,K ∩ En,4,ε,λ in the first inequality by Lipschitz
continuity, and to En,1,ε in the third equality, respectively. (In the third equality, we used the
observation that restricted to the event En,1,ε, ξn,ε = ξ̃n,ε. Indeed, on the event En,1,ε if X̃n,j,ε 6= 0

for some j, then necessarily X̃n,j,ε = Xiη(qi)

i,j /(anq
1/α′

i ) for a unique index i ∈ {1, . . . ,mn} and for all

other i′, |Xi′ |η
(qi′ )

i′,j ≤ anq
1/α′

i′ ε.)
Recall our choice of εn in (4.9). Then, the upper bound in (4.21) becomes

lim sup
n→∞

Ee−ξn(f) ≤ lim sup
n→∞

E
(
e−ξ̃n,ε(f)+λKCf1En,ε,K,λ

)
+ lim sup

n→∞
E
(
e−ξn(f)1Ecn,ε,K,λ

)
≤ lim sup

n→∞
E
(
e−ξ̃n,ε(f)+λKCf

)
+ lim sup

n→∞
P
(
Ecn,ε,K,λ

)
= Ee−ξ(f) · eλKCf + lim sup

n→∞
P
(
Ecn,ε,K,λ

)
.

In the last step we used first ξ̃n,ε(f) = ξ̃n(f) thanks to the assumption that f(x, y) = 0 for x ∈
[−κ, κ], and then limn→∞ Ee−ξ̃n(f) = Ee−ξ(f) by Proposition 4.1. A similar argument yields the
lower bound

lim inf
n→∞

Ee−ξn(f) ≥ lim inf
n→∞

E
(
e−ξ̃n,ε(f)−λKCf1En,ε,K,λ

)
≥ lim inf

n→∞
E
(
e−ξ̃n,ε(f)−λKCf

)
− lim sup

n→∞
P
(
Ecn,ε,K,λ

)
= Ee−ξ(f) · e−λKCf − lim sup

n→∞
P
(
Ecn,ε,K,λ

)
.

Combining these two bounds gives

Ee−ξ(f)e−λKCf − lim sup
n→∞

P
(
Ecn,ε,K,λ

)
≤ lim inf

n→∞
Ee−ξn(f)

≤ lim sup
n→∞

Ee−ξn(f) ≤ Ee−ξ(f)eλKCf + lim sup
n→∞

P
(
Ecn,ε,K,λ

)
.

Now, the desired convergence limn→∞ Ee−ξn(f) = Ee−ξ(f) follows by first taking λ ↓ 0 and then
K →∞, combined with the following facts:

lim sup
n→∞

P
(
Ecn,ε,K,λ

)
≤ lim sup

n→∞
P
(
Ecn,3,ε,K

)
, for all K,λ > 0,

and
lim
K→∞

lim sup
n→∞

P
(
Ecn,3,ε,K

)
= 0.

To see the above we examine each of the four events separately.



1206 Yi Shen, Yizao Wang and Na Zhang

(i) limn→∞ P(Ecn,1,ε) = 0. Asymptotically, there are Nε (a Poisson random variable with mean
ε−α) number of Ĉn,ε(i) that are non-empty. Therefore, it suffices to show that

lim
n→∞

P
(
Ĉn,ε(1) ∩ Ĉn,ε(2) 6= ∅

∣∣∣ Ĉn,ε(i) 6= ∅, i = 1, 2
)

= 0. (4.22)

Again, we can restrict to the event |Ĉn,ε(i)| ≤ K0, i = 1, 2 for K0 ∈ N, and it is clear that

lim
n→∞

P
(
Ĉn,ε(1) ∩ Ĉn,ε(2) 6= ∅, |Ĉn,ε(i)| ≤ K0, i = 1, 2

)
= 0,

and by (4.15)

lim
K0→∞

lim sup
n→∞

P
(
|Ĉn,ε(i)| > K0, for i = 1 or 2

)
= 0.

The desired (4.22) then follows.
(ii) limn→∞ P(Ecn,2,ε) = 0. This follows from (4.10) and (4.12), and the identity that X̃n,j−X̃n,j,ε =

Zn,j,ε,εn +Wn,j,εn .
(iii) limK→∞ limn→∞ P(Ecn,3,ε,K) = 0. We already proved this in (4.15).
(iv) limn→∞ P(Ecn,4,ε,λ) = 0. To see this, use the relation

P
(
Ecn,4,ε,λ

)
≤ P

(
max
j∈Ĉn,ε

|Zn,j,ε,εn | > 0

)
+ P

(
max

j=1,...,n
|Wn,j,εn | > λ

)
.

Then recall (4.11) and (4.12).
We have completed the proof. �

4.3. A second proof of Theorem 1.1. In the case of i.i.d. random variables with regularly-varying tails
of tail index α ∈ (0, 2), it is a classical result that once the point-process convergence is established,
the functional central limit theorem holds (Resnick, 1986, proof of Proposition 3.4). Here we can also
obtain another proof of Theorem 1.1 following Proposition 4.2. However, as mentioned in Remark
1.3, the tightness is hard for Karlin stable processes. We only manage to prove the convergence of
finite-dimensional distributions.

The proof consists of an approximation argument. Let T2,ε be as in Resnick (1986, proof of
Proposition 3.4). This is a mapping from Mp(R \ {0} × [0, 1]) to D([0, 1]), with, for any ζ =∑

i δ(yi,ui) ∈Mp(R \ {0} × [0, 1]),

[T2,εζ](t) :=
∑
i

yi1{ui≤t,|yi|>ε}, t ∈ [0, 1].

Thus, by continuous mapping theorem applied to Proposition 4.1, T2,εξ̂n ⇒ T2,εξ̂ (T2,ε is almost
surely continuous with respect to law induced by ξ̂), which is the same as (compare with (1.3)){

1

an

mn∑
i=1

Xi
q

1/α′

i

1{
τ
(qi)

i,bntc odd
}1{

|Xi|>anq
1/α′
i ε

}
}
t∈[0,1]

⇒


∞∑
`=1

ε`

Γ
1/α
`

1{∑Qβ,`
j=1 1{U`,j≤t} odd

}1{
Γ
−1/α
` >ε

}

t∈[0,1]

in D([0, 1]). The above implies the convergence of finite-dimensional distribution of the truncated
process, and it remains to show that for every t ∈ [0, 1],

lim
ε↓0

lim sup
n→∞

P

(∣∣∣∣∣ 1

an

mn∑
i=1

Xi
q

1/α′

i

1{
|Xi|≤anq

1/α′
i ε

}1{
τ
(qi)

i,bntc odd
}
∣∣∣∣∣ > λ

)
= 0, for all λ > 0.
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(See Dehling et al. (2009, Theorem 2).) It suffices to prove for a fixed t, and without loss of generality
we take t = 1. In this case the above follows from Chebychev inequality and, for all ε > 0,

lim sup
n→∞

vn,ε ≤ Cε2−α with vn,ε := mnE

((
X

anq1/α′

)2

1{|X |≤anq1/α′ε}1
{
τ
(q)
n odd

}
)
. (4.23)

We first compute vn,ε, with the expectation restricted to q ∈ [1/n, 1]. An upper bound is then
(bounding the second indicator function by 1), for n large enough,

mn

a2
n

∫ 1

1/n
q−ρ−2/α′L(1/q)Eq

(
X 21{|X |≤anq1/α′ε}

)
dq ≤ Cmnε

2−α

aαn

∫ 1

1/n
q−ρ−γL(1/q)dq ≤ Cε2−α.

(More precisely, ε > 0 is fixed, C can be taken independent of ε, while the above holds only for all
n > nC,ε for some nC,ε.) For vn,ε with the expectation restricted to q ∈ [0, 1/n], note that then
Pq
(
τ (q)
n odd

)
= (1− (1− 2q)n)/2 and

sup
q∈[0,1/n]

(1− (1− 2q)n)

qn
= 2.

Therefore,

mn

a2
n

∫ 1/n

0
Eq
(
X 21{|X |≤anq1/α′ε}

)
Pq
(
τ (q)

bntc odd
)
q−ρ−2/α′L(1/q)dq

≤ mn

a2
n

∫ 1/n

0
Eq
(
X 21{|X |≤anq1/α′ε}

)
nq1−ρ−2/α′L(1/q)dq

≤ Cmnn

a2
n

∫ 1/n

0

(
anq

1/α′ε
)2−α

q1−ρ−2/α′L(1/q)dq =
Cmnn

aαn
ε2−α

∫ ∞
n

qβ−2L(q)dq

≤ Cmnn

aαn
nβ−1L(n)ε2−α = Cε2−α.

We have thus proved (4.23).

Remark 4.6. If we want to enhance the result to a functional central limit theorem in D([0, 1]), a
sufficient condition would be

lim
ε↓0

lim sup
n→∞

P

(
sup
t∈[0,1]

∣∣∣∣∣ 1

an

mn∑
i=1

Xi
q

1/α′

i

1{
|Xi|≤anq

1/α′
i ε

}1{
τ
(qi)

i,bntc odd
}
∣∣∣∣∣ > λ

)
= 0, for all λ > 0.

Whether the above is true remains an open question. This is closely related to the tightness issues
in Remark 1.3.

4.4. A limit theorem for Karlin random sup-measures. Now we explain how Theorem 1.2 entails
the convergence of random sup-measures. Random sup-measures provide a natural framework to
characterize scaling limits of extremes, although they are not commonly used yet in the literature.
For background on random sup-measures, see O’Brien et al. (1990); Vervaat (1997); Molchanov
(2017). For the sake of simplicity, we shall treat random sup-measures as α-Fréchet max-stable
set-indexed process {Mα,β(I)}I∈I , with I the collection of all open sets of [0, 1], denoted by

Mα,β(I) := sup
`∈N

1

Γ
1/α
`

1{(⋃Qβ,`
j=1 {U`,j}

)
∩I 6=∅

}, I ⊂ I,
and prove the convergence of finite-dimensional distributions of the set-indexed processes (for max-
stable processes, see de Haan (1984); Kabluchko (2009); Stoev (2010)). For Mα,β , it has the
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following multivariate α-Fréchet finite-dimensional distributions (although we do not need to work
with the explicit formula):

P (Mα,β(I1) ≤ x1, . . . ,Mα,β(Id) ≤ xd) = exp

−E
 max
k=1,...,d

1{CQβ∩Ik 6=∅}
xαk

 ,

for all I1, . . . , Id ∈ I, x1, . . . , xd > 0.
The following result on the convergence of max-stable processes can be strengthened immediately

to convergence of random sup-measures (which is defined for all subsets of [0, 1]). We just mention
that Karlin random sup-measures are translation-invariant and β/α-self-similar, and they are a
special case of the recently introduced Choquet random sup-measures (Molchanov and Strokorb,
2016). We refer to Durieu and Wang (2018) for more results on the Karlin random sup-measures.

Introduce

Mn(I) := max
j/n∈I

1

an

∣∣∣∣∣
mn∑
i=1

Xi
q

1/α′

i

η
(qj)

i,j

∣∣∣∣∣ , I ⊂ I, n ∈ N,

Corollary 4.7. Under the assumption of Theorem 1.2,

{Mn(I)}I∈I
f.d.d.−−−→ {Mα,β(I)}I∈I .

Proof : By definition, it suffices to show

lim
n→∞

P (Mn(I1) ≤ x1, . . . ,Mn(Id) ≤ xd) = P (Mα,β(I1) ≤ x1, . . . ,Mα,β(Id) ≤ xd) , (4.24)

for all d ∈ N, xi > 0, Ii ∈ I, i = 1, . . . , d. Now, Theorem 1.2 implies that, ignoring the signs of the
values and working with point processes in Mp((0,∞]× [0, 1]),

ξ∗n :=
n∑
j=1

δ(∣∣∣∑mn
i=1 Xiη

(qi)
i,j /(anq

1/α′
i )

∣∣∣,j/n) ⇒ ξ∗ :=
∞∑
`=1

Qβ,j∑
j=1

δ(
Γ
−1/α
` ,U`

).
The above then implies in particular, with B :=

⋃d
k=1 ((xk,∞]× Ik),

lim
n→∞

P (ξ∗n(B) = 0) = P(ξ∗(B) = 0).

The above is exactly the desired convergence in (4.24). This completes the proof. �
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