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Abstract. We investigate concentration properties of functions of random vectors with values in
the discrete cube, satisfying the stochastic covering property (SCP) or the strong Rayleigh property
(SRP).

Our results for SCP measures include subgaussian inequalities of bounded-difference type ex-
tending classical results by Pemantle and Peres and their counterparts for matrix-valued setting
strengthening recent estimates by Aoun, Banna and Youssef. Under the stronger assumption of the
SRP we obtain Bernstein-type inequalities for matrix-valued functions, generalizing recent bounds
for linear combinations of positive definite matrices due to Kyng and Song.

We also treat in detail the special case of independent Bernoulli random variables conditioned on
their sum for which we obtain strengthened estimates, deriving in particular modified log-Sobolev in-
equalities, Talagrand’s convex distance inequality and, as corollaries, concentration results for convex
functions and polynomials, as well as improved estimates for matrix-valued functions. These results
generalize inequalities for the uniform measure on slices of the discrete cube, studied extensively
by many authors. This case is based on a new, abstract condition implying strong concentration
inequalities on the discrete cube (which is of independent interest) and recent results by Hermon
and Salez.

1. Introduction

Investigating families of binary random variables with negatively dependent coordinates is an
important problem from the point of view of computer science, statistics and combinatorics, which
in the recent years has attracted considerable attention, see, e.g., Pemantle (2000); Shao (2000);
Borcea et al. (2009); Pemantle and Peres (2014); Kyng and Song (2018); Garbe and Vondrak (2018);
Bertail and Clémençon (2019); Anari et al. (2019); Aoun et al. (2020); Kathuria (2020). A wide
and important class of such variables is constituted by those satisfying the strong Rayleigh property
(abbrev. SRP) introduced in Borcea et al. (2009). More precisely, a probability measure π on the
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hypercube Bn := {0, 1}n satisfies the SRP if its generating polynomial

Cn 3 z 7→
∑
x∈Bn

π(x)

n∏
i=1

zxii

has no roots z whose all coordinates lie in the (strict) upper half-plane. The examples of such
measures are, e.g., the law of independent Bernoulli random variables conditioned on their sum,
determinantal measures, uniform measure on the bases of balanced matroids and laws of point
processes or measures obtained by running exclusion dynamics on the cube, cf. Pemantle and Peres
(2014).

The main purpose of this article is to deepen the understanding of the concentration of mea-
sure phenomenon in the context of strong Rayleigh distributions and related classes of probability
measures on the discrete cube. In some of our considerations we will exploit only a more general
notion of the stochastic covering property (abbrev. SCP, cf. Definition 2.1) introduced in Pemantle
and Peres (2014), since this condition already turns out to provide a useful framework for proving
concentration results, cf. Pemantle and Peres (2014); Hermon and Salez (2023); Aoun et al. (2020);
Kyng and Song (2018); Kathuria (2020); Adamczak et al. (2022). On the other hand for some more
specialized inequalities we will restrict our attention to independent Bernoulli variables conditioned
on their sum taking some fixed value. Distributions of this type generalize the uniform measure
on slices of the discrete cube, related to the Bernoulli–Laplace model, which has been extensively
studied, e.g., in Lee and Yau (1998); Bobkov and Tetali (2006); Gao and Quastel (2003) and more
recently in Samson (2017) and Sambale and Sinulis (2022). The non-uniform distribution given
by conditioned Bernoulli variables has found applications, e.g., in survey sampling being a model
of sampling without replacement from a finite population, with prescribed inclusion probabilities,
which maximizes the entropy (often referred to as conditional Poisson sampling). We refer to Chen
and Liu (1997); Chen (2000); Chen et al. (1994); Tillé (2006); Bertail and Clémençon (2019) for
properties and applications of this family of distributions.

1.1. State of the art. The landmark paper that initiated the study of concentration phenomenon
implied by the SCP is due to Pemantle and Peres (2014) who, using the martingale method, proved
a sub-Gaussian concentration bound for measures satisfying the SCP and functions that are Lip-
schitz with respect to the Hamming distance dH(x, y) =

∑
i 1xi 6=yi . Recently, Hermon and Salez

(2023) building on the works Lu and Yau (1993); Jerrum et al. (2004), retrieved this estimate by
proving that the SCP implies the modified log-Sobolev inequality. Their result is one of many re-
cent breakthrough achievements relating various types of negative dependence for binary random
variables to logarithmic Sobolev inequalities, see, e.g., Anari et al. (2019); Kaufman and Oppenheim
(2018); Cryan et al. (2021); Anari et al. (2021) – we provide a more detailed description of these
developments in subsequent sections.

These findings in terms of concentration of measure can be summarized as follows (for a proba-
bility measure π on Bn and f : Bn → R, we use the notation π(f) :=

∫
f dπ).

Theorem 1.1 (Pemantle and Peres (2014)). For a probability measure π on Bn satisfying the SCP
and any f : Bn → R such that

|f(x)− f(y)| ≤ dH(x, y) ∀x, y ∈ Bn

the following estimate holds for all t > 0:

π
(
f > π(f) + t

)
≤ exp(−t2/8n). (1.1)

If π is k-homogeneous (i.e., it is supported on the set of binary vectors with exactly k coefficients
equal to one), then n in the above expression can be replaced with k.
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Recently, a sub-exponential version of Theorem 1.1 for matrix-valued functions has been shown
in Aoun et al. (2020), where the authors develop a general framework for deducing concentra-
tion bounds for matrix-valued functions from the Poincaré inequality. A Bernstein-type bound
for measures with the SRP, which in certain situations may give stronger concentration, has been
also developed in Kyng and Song (2018) and Kaufman et al. (2022) for functions of the form
f(x) =

∑n
i=1 xiCi, where Ci are nonnegative definite matrices (see Theorem 2.8 and Remark 2.10

below).
While concentration estimates and functional inequalities for general SCP measures are rela-

tively recent, investigation of uniform measures on slices of the discrete cube in this context has
much longer history. Such measures are of interest in relation to the Bernoulli–Laplace models
of statistical physics and to uniform sampling without replacement. In particular Lee and Yau
studied the Poincaré and log-Sobolev inequalities for such measures, whereas Bobkov and Tetali
(2006) and independently Gao and Quastel (2003) investigated modified log-Sobolev inequalities
relevant for concentration estimates. Strong concentration results for this case can be also obtained
by projection from Talagrand’s convex distance inequality for uniform measure on the symmetric
group Talagrand (1995). Samson (2017) complemented this approach by proving corresponding
transportation inequalities. Very recently Sambale and Sinulis (2022), investigating general multi-
slices, recovered convex distance inequalities by means of functional inequalities and also obtained
concentration for polynomials. One should stress that concentration results for slices of the cube
provided by the above references are substantially stronger than those in the spirit of (1.1) coming
from more general inequalities for SCP or SRP measures.

The uniform measure on slices of the cube can be seen as a special case of the distribution
of independent Bernoulli random variables conditioned on their sum, when all the variables have
the same probability of success. Such general distributions are known to be strong Rayleigh. To
our best knowledge there has not been much work concerning refined concentration inequalities
for general measures of this type. The only exception we are aware of is a recent article Bertail
and Clémençon (2019), in which the authors, motivated by applications to survey sampling, obtain
precise Bernstein-type inequalities for linear functionals.

1.2. Overview of main results. As mentioned in the prequel, various breakthrough results concerning
negatively dependent measures on the discrete cube have been recently obtained, in particular in
the context of functional inequalities. They have lead to optimal rates for the speed of convergence
of the associated Markov chains allowing for improved sampling algorithms. Many of them also
yield concentration results in the spirit of Theorem 1.1. Despite these important developments, the
theory of concentration of measure for negatively dependent measures has not yet reached the level
of completeness comparable to its counterpart in the independent setting. This concerns among
others

• generalization of (1.1) to weighted Hamming distances, which would lead to a counterpart
of the bounded difference inequality and allow to treat many functionals naturally arising in
combinatorics or high dimensional geometry (see, e.g., the survey article McDiarmid (1998)
or the monograph Boucheron et al. (2013)),
• improved bounds for special classes of functions, e.g., subgaussian bounds for convex Lip-
schitz functions, which in the independent setting were obtained first by Talagrand from
his celebrated convex distance inequality (cf. Talagrand (1988, 1995)), or bounds for poly-
nomials which are especially important for the discrete cube due to their relation with the
Fourier–Walsh expansion (see, e.g., O’Donnell (2014); Kim and Vu (2000); Latała (2006);
Adamczak and Wolff (2015)),
• inequalities for general matrix-valued functions, see Tropp (2012); Paulin et al. (2016) for a
description of this rich theory in the independent setting (we note important results obtained
for linear combinations with coefficients in positive definite matrices due to Kyng and Song
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(2018); Kaufman et al. (2022) as well as a subexponential bound obtained in Aoun et al.
(2020) by means of the matrix Poincaré inequality).

In the case of independent random variables, the results mentioned above have been obtained
over the years by a mixture of many techniques, most importantly, the martingale approach, going
back to Azuma (1967), Talagrand’s powerful induction techniques (Talagrand (1995)) and functional
inequalities brought forward in Ledoux (1995/97) and developed by many authors (see Boucheron
et al. (2013) for a detailed list of references). The functional inequalities involved in the proofs in the
independent setting from a broader perspective correspond to a special case of Glauber dynamics
and involve changing just one coordinate in a product space at a time. This is in contrast with the
dynamics considered in the aforementioned papers on negatively-dependent variables, especially
in the homogeneous case. It turns out that the functional inequalities which are sufficient for
proving strong results on the speed of convergence of the associated Markov processes may not lead
directly to concentration results beyond (1.1). This in our opinion is the main obstacle in obtaining
counterparts of classical strong concentration inequalities in the negatively depending setting. Our
goal in this article is to explore such stronger concentration results, by adapting both the martingale
and functional approach. Below we present informally our main results, referring for the details to
the subsequent parts of the article.

The first series of results we obtain concerns general measures satisfying the SCP for which we
refine the Azuma type martingale argument used in Pemantle and Peres (2014) and generalize
Theorem 1.1 to Lipschitz functions with respect to more general weighted Hamming distances
dα(x, y) =

∑
αi1xi 6=yi obtaining a bounded-difference type inequality (which corresponds to the first

item on the list above). This is the content of Theorem 2.3. Next, we use the approach developed
for the scalar case together with matrix bounded-difference inequality due to Tropp (2012) to get
an analogous concentration for matrix-valued functions (Theorem 2.5), strengthening the results
of Aoun et al. (2020), in particular obtaining a subgaussian inequality in place of a subexponential
one. We note that the proof in Aoun et al. (2020) is based on the matrix Poincaré inequality,
whereas our approach relies on matrix martingale inequalities. Under a stronger assumption of
the SRP we are also able to extend the Bernstein-type inequality of Kyng and Song (2018) from
linear combinations with coefficients in nonnegative definite matrices to general functions satisfying
a matrix bounded-difference type assumptions (Theorem 2.8).

The second line of research presented in the article concerns the functional approach to im-
proved concentration inequalities. We develop an abstract condition (Definition 4.3) based on a
relation between the constant in the modified log-Sobolev inequality and some quantities related
to the generator of the associated Markov process and show that this condition implies not only
the bounded-difference type inequality but also Talagrand’s convex distance inequality, matrix-
Bernstein inequality and higher order concentration for tetrahedral polynomials.

It is natural to conjecture that our condition holds for an arbitrary SCP measure and an appro-
priately chosen Markov generator. While we are not able to prove it in such generality we show that
this is the case for the distribution of Bernoulli random variables conditioned on their sum being
equal to some constant, obtaining in particular all the aforementioned concentration results. This
extends various previous works that treated uniform measures on slices of the hypercube to the case
of non-uniform measures obtained by the above conditioning procedure. In particular, we extend
the results on the modified log-Sobolev inequality for the Bernoulli–Laplace model due to Gao and
Quastel (2003) and Bobkov and Tetali (2006), as well as the convex distance inequality and poly-
nomial concentration obtained recently in Sambale and Sinulis (2022). We remark that conditioned
Bernoulli distribution is a very natural generalization of the uniform measure on slices of the dis-
crete cube, due to its relevance in survey sampling as well as information theoretic properties (as
mentioned in the introduction, it is a measure with maximal entropy among all probability measures
with prescribed inclusion probabilities). We refer to the survey article Chen (2000) for a descrip-
tion of statistical applications of conditional Bernoulli distributions and to the monograph Tillé
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(2006) for an algorithmic perspective. We also mention that in recent years considerable attention
in statistics has been devoted to Donsker type CLTs for empirical processes of sampling schemes, in
particular for the conditional Poisson sampling (rejective sampling) relying on conditioned Bernoulli
distribution (see, e.g., Bertail et al. (2017); Han and Wellner (2021)). We expect that improved
concentration inequalities for this measure should lead to strengthened non-asymptotic estimates
for such processes, as it was the case in the theory of empirical processes in independent random
variables.

1.3. Organization of the article. In Section 2 we present our results concerning concentration for
general measures satisfying the SCP/SRP. In Section 3 we specialize our analysis to Bernoulli
random variables conditioned on their sum being equal to some constant. Then, in Section 4 we
formulate an abstract framework that allows to deduce the results of Section 3. Finally, all the
proofs are presented in Sections 5, 6 and 7.

2. Concentration under the SCP and SRP

In this section we present our concentration results for general measures satisfying the SCP or
SRP. We start with introducing some notation. For x = (x1, . . . , xn) ∈ Bn := {0, 1}n and any
S ⊂ {1, 2, . . . , n} =: [n] we use the shorthand notation xS = (xi)i∈S . For any r ∈ [n] we denote
x>r = (xi)i>r (and analogously with relations other than >)1. We also write xi for the vector
obtained from x ∈ Bn by flipping its i-th coordinate and xij for the vector obtained by swapping
the i-th and j-th coordinate, i.e., xi = x ± ei and if xi 6= xj then xij = x ± ei ∓ ej for i, j ∈ [n],
where ei ∈ Bn is the vector with one on the i-th and zeros on the remaining coordinates; whereas
xij = x if xi = xj . We remark that the notation xij should not be confused with (xi)j . The law
of a random variable X is denoted by L(X), whereas L(X|A) stands for the conditional law of X
given an event A (with an analogous convention for conditioning with respect to σ-fields or other
random variables).

Below we recall the definition of the SCP.

Definition 2.1 (Stochastic covering property). For x, y ∈ Bn, we say that x covers y, denoted x.y,
if x = y or x = y + ei for some i ∈ [n].

A random variable X taking values in Bn satisfies the SCP if for any S ⊂ [n] and any x, y ∈ Bn

such that P(XS = xS),P(XS = yS) > 0 and xS . yS , there exists a coupling (U, V ) between the
conditional distributions L(XSc |XS = yS) and L(XSc |XS = xS) such that U . V . A measure π
satisfies the SCP if X with law π does so.

Remark 2.2. As indicated in the introduction, the SCP is implied by the SRP, cf. Pemantle and
Peres (2014). The opposite however is not true, as is demonstrated in, e.g., Cryan et al. (2021,
Appendix A), where the authors study yet another possible generalization of the SRP, the strong
log-concavity. In particular, they construct a distribution that is supported on the bases of a
matroid, and that satisfies the SCP but violates the log-concavity (and hence violates also the
SRP).

For a finite sequence x, we denote by x↓ the non-increasing rearrangement of the elements of x
and for α ∈ [0,∞)n =: Rn+ and x, y ∈ Bn we define the α-weighted Hamming distance dα(x, y) =∑

i αi1xi 6=yi . Finally, for p ∈ [1,∞], |·|p is the `p norm on Rn and |·| := |·|2 denotes the Euclidean
norm.

The first main result of this paper is the following generalization of Theorem 1.1.

1We adopt the convention that if x ∈ Bn then x>n = ∅ and as a consequence, e.g., P (· |X>n = ∅) = P (·).
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Theorem 2.3. For a probability measure π on Bn satisfying the SCP, any f : Bn → R and α ∈ Rn+
such that

|f(x)− f(y)| ≤ dα(x, y) ∀x, y ∈ Bn

the following estimate holds for all t > 0:

π
(
f > π(f) + t

)
≤ exp(−t2/8|α|2).

If the measure π is k-homogeneous, then 8|α|2 in the above estimate can be replaced with 16
k∑
i=1

(α↓i )
2.

Remark 2.4. Theorem 2.3 implies Theorem 1.1 (up to an absolute constant in the exponent) by
taking α = (1, 1, . . . , 1). Moreover, by considering functions of the form f(x) =

∑
i cixi with |c|2 �

n|c|2∞ in the non-homogeneous or
∑k

i=1(c↓i )
2 � k|c|2∞ in the k-homogeneous case, one can see that

Theorem 2.3 can give substantially better concentration estimates than Theorem 1.1. We remark
that such general linear functionals are important both from the abstract geometric perspective on
high dimensional probability, but also from the statistical point of view. An important example
is the Horvitz–Thompson estimator build over a sampling scheme defined by a k-homogeneous
measure on the discrete cube (see, e.g., Bertail and Clémençon (2019)).

We now formulate the matrix analogue of Theorem 2.3. To this end, let us denote the space of
d-dimensional Hermitian matrices by Hd, the identity matrix in Hd by Id, the maximal eigenvalue
of H ∈ Hd by λmax(H) and the operator norm of H by ‖H‖.

Theorem 2.5. For a probability measure π on Bn satisfying the SCP, any f : Bn → Hd and α ∈ Rn+
such that

‖f(x)− f(y)‖ ≤ dα(x, y) ∀x, y ∈ Bn (2.1)

the following estimate holds for all t > 0:

π
(
λmax(f − π(f)) > t

)
≤ d exp(−t2/32|α|2).

If π is k-homogeneous then 32|α|2 in the above estimate can be replaced with 64
∑k

i=1(α↓i )
2.

Remark 2.6. Recently, Aoun et al. (2020) showed that for any k-homogeneous probability measure
π on Bn satisfying the SCP and any f : Bn → Hd such that

‖f(x)− f(y)‖ ≤ dH(x, y) ∀x, y ∈ Bn

the following estimate applies:

π
(
λmax(f − π(f)) > t

)
≤ d exp

(
− t2

8k + 2t
√

2k

)
. (2.2)

The exponent in (2.2) is proportional to−t/2
√

2k for t big enough and whence for such t Theorem 2.5
applied with α = (1, . . . , 1) strengthens on (2.2) (and on an analogous result from Kathuria (2020))
as it yields a sub-Gaussian estimate.

Remark 2.7. Using semigroup techniques together with matrix concentration results implied by
the Poincaré inequality due to Aoun et al. (2020), we are also able to derive a sub-exponential
concentration inequality for general measures satisfying the SCP under weaker assumptions on f
than those of Theorem 2.5, cf. Remark 3.8.

When comparing the inequality of Theorem 2.5 or the results from Aoun et al. (2020) with results
for matrix-valued functions of independent random variables, one can ask if it is possible to weaken
the assumptions on the function f and instead of the Lipschitz constant with respect to dα use
some weaker parameter, involving bounds on the increments of the function in terms of the positive
semidefinite order. In many situations one encounters functions for which (f(x)−f(xi))2 4 C2

i where



Concentration for negatively dependent binary random variables 1289

Ci are some positive semidefinite matrices and 4 stands for the positive semidefinite order (note
that considering arbitrary matrices Ci is a generalization of the condition (2.1), which corresponds
to the special case C2

i = α2
i Id). The simplest, yet important situation of this type is given by

f(x) =
∑n

i=1 xiCi. Inequalities for such functions together with algorithmic applications were
considered in Kyng and Song (2018). It turns out that their approach can be adapted to the setting
of general functions, yielding the following theorem.

Theorem 2.8. Let π be a k-homogeneous probability measure Bn satisfying the strong Rayleigh
property and f : Bn → Hd be such that there exists a sequence C1, . . . , Cn ∈ Hd satisfying

(f(x)− f(xi))2 4 C2
i ∀x ∈ Bn, i ∈ [n]. (2.3)

Then for any t > 0,

π
(
λmax(f − π(f)) > t

)
≤ d exp

(
− t2

8‖π(f̃)‖ log(ek) + 4
3Kt

)
, (2.4)

where f̃(x) =
∑n

i=1 xiC
2
i and K = maxi≤n ‖Ci‖.

Remark 2.9. In fact, the only place in the proof of Theorem 2.8 where we use the SRP in its full
strength is to get that P(Xi = 1 |Xi1 = 1, . . . , Xil = 1) ≤ P(Xi = 1) for X ∼ π and any i, l ∈ [n]
and {i1, . . . , il} ⊂ [n] \ {i}. Therefore, in Theorem 2.8 it suffices to assume that π satisfies the SCP
and negative association, which is implied by the SRP, cf. Pemantle and Peres (2014).

Remark 2.10. It is natural to expect that log(ek) in (2.4) is just an artefact of the proof. Very
recently, in Kaufman et al. (2022) the authors have obtained a Chernoff type inequality for functions
of the form f(x) =

∑n
i=1 xiCi for positive semidefinite matrices Ci, not containing this logarithmic

factor, which improved certain algorithmic constructions related to graph sparsifiers constructed via
random spanning trees, cf. Kyng and Song (2018).

Let us also point out that despite the logarithmic factor present in Theorem 2.8, when we spe-
cialize it to the linear function f as discussed above, it is not directly comparable with the re-
sult from Kaufman et al. (2022), which instead of ‖π(f̃)‖ uses a larger quantity K‖π(f̂)‖ with
f̂(x) =

∑n
i=1 xiCi (recall that Ci’s are nonnegative definite).

3. Concentration for conditional Bernoullis

In this section, we present our concentration results concerning Bernoulli random variables condi-
tioned on their sum being constant. These include Talagrand’s convex distance inequality, matrix-
Bernstein inequality and concentration for polynomials.

We start with introducing the notation. For a sequence p = (p1, . . . , pn) ∈ (0, 1)n, let B =
(B1, . . . , Bn) be a sequence of independent Bernoulli random variables with probabilities of success
pi, i.e., P(Bi = 1) = 1− P(Bi = 0) = pi for i ∈ [n]. We set X = (X1, . . . , Xn) ∼ L

(
B |
∑

iBi = k
)

for some k ∈ {0, . . . , n} and denote the distribution of X by π(p, k).
Our first contribution is a counterpart to the celebrated convex distance inequality, introduced

for the first time in Talagrand (1988) for product measures on the cube.

Theorem 3.1. If π = π(p, k) for some p ∈ (0, 1)n and k ∈ {0, . . . , n}, then for any A ⊂ Bn,

π(A)π
(
d2
T (·, A)/84

)
≤ 1,

where
dT (x,A) = sup

α : |α|≤1
dα(x,A) for x ∈ Bn, A ⊂ Bn .
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Let Mπf denote any median of f with respect to the measure π. A classical consequence of
Theorem 3.1 is the following fact regarding the concentration around the median of convex functions
(cf. Boucheron et al. (2013)). Let us recall the classical observation that subgaussian concentration
around median and mean for convex Lipschitz functions are equivalent up to the change of constants
by a universal factor.

Corollary 3.2. If π = π(p, k) for some p ∈ (0, 1)n and k ∈ {0, . . . , n}, then for any convex function
f : Rn → R that is L-Lipschitz with respect to the standard Euclidean distance on Rn and any t > 0,

π
(
|f −Mπf | > t

)
≤ 4 exp

(
− t2/84L2

)
.

Remark 3.3. If one is interested just in the lower tail of a convex function, then one can in fact
replace the Lipschitz constant L by π

(
|∇f |

)
or even certain quantiles of |∇f |. We do not pursue

this direction here and refer the reader to Adamczak and Strzelecki (2019).

Remark 3.4. If f : Bn → R is dα 1-Lipschitz, then it can be extended to a function on Rn which is
|α|-Lipschitz with respect to the standard Euclidean distance. Therefore, Corollary 3.2 counterparts
Theorem 2.3 in the sense that it yields the same concentration profile while allowing for a weaker
Lipschitz condition on f at the cost of assuming convexity. The standard Euclidean norm itself is
an example of a convex 1-Lipschitz function which is not 1-Lipschitz with respect to any dα with
|α|2 < n. In this case Corollary 3.2 gives a much better estimate than Theorem 2.3.

Remark 3.5. Among typical applications of Corollary 3.2 one can mention estimates for functions
of the form

f(x) =
∥∥∥ n∑
i=1

xivi

∥∥∥, (3.1)

where vi’s are vectors in a Banach space (F, ‖ · ‖). In this case the Lipschitz constant can be
expressed as

L = sup
w∈BF∗

( n∑
i=1

w(vi)
2
)1/2

,

where BF ∗ stands for the unit ball in the dual F ∗ of F . One of the consequences of Corollary 3.2
are, e.g., moment estimates of the form(

π(‖f − πf‖p)
)1/p

≤ C√pL

for a universal constant C. In the case of Rademacher variables they were proved in Talagrand (1988)
and are a strengthening of classical Khintchine–Kahane inequalities. Note that the class of functions
of the form (3.1) covers the case of suprema of empirical processes related to sampling schemes
which are of interest in statistics. We also remark that beyond geometric application, through
Corollary 3.2, Theorem 3.1 in the independent case allows for corollaries of combinatorial nature,
concerning, e.g., longest common subsequences of random words and other extremal functionals
(see Talagrand (1995); McDiarmid (1998)). Some of them may be of interest also in the dependent
case, however we do not pursue this direction here.

Our next result concerns concentration for matrix-valued functions under weaker assumptions
than those in Theorem 2.5.

Theorem 3.6. Let π = π(p, k) for some p ∈ (0, 1)n and k ∈ {0, . . . , n}. Assume that f : Bn → Hd

is such that there is a sequence of positive semidefinite matrices C1, . . . , Cn satisfying

(f(x)− f(xi))2 4 C2
i , ∀ x ∈ Bn, i ∈ [n], (3.2)
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where 4 denotes the partial ordering of the set of positive semidefinite matrices. Define the variance
proxy

σ2 = 16 sup
{∥∥∑

i∈I
C2
i

∥∥ : |I| = k, I ⊂ [n]
}
.

Then for any t > 0,
π
(
λmax(f − π(f)) > t

)
≤ d exp

(
− t2/(σ2 + σt)

)
.

Remark 3.7. Condition (3.2) implies that f is 1-Lipschitz with respect to the distance dα with
αi = ‖Ci‖. On the other hand, for many choices of matrices C1, . . . , Cn it happens that σ2 �∑k

i=1

(
‖Ci‖2

)↓ as n, k → ∞. Therefore, while yielding only sub-exponential concentration as op-
posed to the sub-Gaussian one given by Theorem 2.5, Theorem 3.6 may improve significantly on
Theorem 2.5 through better parameters in the exponent.

Remark 3.8. By an adaptation of the proof of Theorem 3.6, one can obtain a similar result for
general k-homogeneous measures satisfying the SCP condition with the variance proxy parameter

σ2 = 8 sup
{∥∥∑

i∈I
C2
i

∥∥+ kmax
i/∈I

∥∥C2
i

∥∥ : |I| ≤ k, I ⊂ [n]
}
.

Finally, we turn to the higher order concentration. By the Fourier–Walsh expansion (see, e.g.,
O’Donnell (2014)), every function f : Bn → R can be written in a unique way as a tetrahedral
polynomial, i.e., a polynomial which is affine with respect to every variable (in particular the
degree of the polynomial is at most n). Therefore in what follows we restrict our attention to this
representation. In particular, when we speak about the gradient ∇f = (∂1f, . . . , ∂nf) or higher
order derivatives ∇kf , we always think of the usual derivatives of the polynomial function on Rn
given by the tetrahedral representation of f (sometimes referred to as the harmonic extension of
f). We remark that the directional derivatives ∂if coincide on Bn with the discrete derivatives of
f given by Dif(x) = f(max(x, xi)) − f(min(x, xi)), where the maximum and minimum are taken
coordinatewise.

In order to formulate concentration of measure estimates for tetrahedral polynomials, we need to
introduce a family of injective tensor product norms on d-index matrices (d-tensors). Let us recall
the notation introduced in Latała (2006).

Let |I| be the cardinality of a set I and for i = (i1, . . . , id) ∈ [n]d let |i| = maxj≤d ij and
|iI | = maxj∈I ij . Denote by Pd the set of partitions of [d] into nonempty, pairwise disjoint sets. For
a partition I = {I1, . . . , Ik} ∈ Pd, and a d-indexed matrix A = (ai)i∈[n]d , define

‖A‖I = sup
{ ∑

i∈[n]d

ai

k∏
l=1

x
(l)
iIl

: |(x(l)
iIl

)| ≤ 1, 1 ≤ l ≤ k
}
,

where |(xiIl )| =
√∑

|iIl |≤n
x2
iIl
. Therefore, for example,

‖(aij)i,j≤n‖{1,2} = sup
{ ∑
i,j≤n

aijxij :
∑
i,j≤n

x2
ij ≤ 1

}
= ‖(aij)i,j≤n‖HS ,

‖(aij)i,j≤n‖{1}{2} = sup
{ ∑
i,j≤n

aijxiyj :
∑
i≤n

x2
i ≤ 1,

∑
j≤n

y2
j ≤ 1

}
= ‖(aij)i,j≤n‖,

‖(aijk)i,j,k≤n‖{1,2}{3} = sup
{ ∑
i,j,k≤n

aijkxijyk :
∑
i,j≤n

x2
ij ≤ 1,

∑
k≤n

y2
k ≤ 1

}
,

where ‖ · ‖HS and ‖ · ‖ denote the Hilbert–Schmidt and the operator norm respectively.
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Theorem 3.9. If π = π(p, k) for some p ∈ (0, 1)n and k ∈ {0, . . . , n}, then for any tetrahedral
polynomial f : Bn → R of degree d,

π
(∣∣f − π(f)

∣∣ ≥ t) ≤ 2 exp
(
− 1

Cd
min

1≤r≤d
min
J∈Pr

( t

‖π(∇rf)‖J

)2/|J |)
,

where Cd is a constant depending only on the degree d of f .

Inequalities of this type for polynomials of arbitrary degree were introduced for the first time
by Latała (2006) for tetrahedral polynomials in i.i.d. standard Gaussian variables. Subsequently
they were extended to general polynomials in independent subgaussian random variables and to cer-
tain dependent situations related to Glauber dynamics (see Adamczak and Wolff (2015); Adamczak
et al. (2019); Sambale and Sinulis (2020, 2022); Adamczak et al. (2022)). We remark that in the
independent, subgaussian case and d = 2 they reduce to the well known Hanson–Wright inequality
for quadratic forms (see, e.g., Vershynin (2018, Chapter 6)),

P
(∣∣∣ n∑

i,j=1

aijXiXj − E
n∑

i,j=1

aijXiXj

∣∣∣ ≥ t) ≤ 2 exp
(
− cmin

( t2

‖A‖2HS + |EAX|2
,
t

‖A‖

))
.

This inequality has proved useful in non-asymptotic analysis of random matrices and in asymptotic
geometric analysis. It is worth mentioning that in the Gaussian case the inequalities in question may
be reversed up to the value of the absolute constants, thus Theorem 3.8 shows that the measures
π(p, k) exhibit Gaussian type concentration for polynomials. While calculating the norms ‖ · ‖J is
usually difficult, estimating them is sometimes possible, leading to applications involving subgraph
counts (in the Erdős-Rényi case or for some models of random graphs with dependencies Adamczak
and Wolff (2015); Sambale and Sinulis (2020, 2022)) or to statistical applications, e.g., in testing
Ising models Dagan et al. (2021) and signal processing Verzelen and Gassiat (2018).

4. Abstract formulations

In this section we recall some notions from the theory of Markov semigroups and formulate the
abstract counterparts of the results of Section 3 and of Theorem 2.3. We believe that the results
presented in this section might be of separate interest as they provide a general framework for
proving concentration on the hypercube. We stress that most of the proof techniques that we
exploit were known previously – our main contribution is the abstract formulation of these results
by means of the novel stability condition (cf. Definition 4.3).

Throughout this section we will rely on the usual notions from the theory of Markov processes
and Dirichlet forms specialized to finite state space. We will briefly recall them and refer to Liggett
(2010); Bakry et al. (2012); Bobkov and Tetali (2006) for details.

4.1. Modified log-Sobolev inequalities. Let L be the generator of a jump Markov process on some
finite probability space (M,π). In what follows we will sometimes treat L as a linear operator on
RM and sometimes identify it with the corresponding matrix, indexed by the elements of M.

Assume that L satisfies the detailed-balance condition

∀ x, y ∈M π(x)L(x, y) = π(y)L(y, x), (4.1)

which implies that π is a stationary measure for the Markov process and L is self-adjoint on L2(π).
In this article we consider only Markov processes satisfying the above condition, which may not be
stated explicitly in all the results.

For a given L, we define ∆(L) := maxx−L(x, x) = maxx
∑

y : y 6=x L(x, y) and write E(f, g) =

−π(fLg) for the Dirichlet form associated with L. In particular E(f, g) = π
(
Γ(f, g)

)
, where Γ: RM×
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RM → RM given by

Γ(f, g)(x) =
1

2

∑
y∈M

(f(x)− f(y))(g(x)− g(y))L(x, y) (4.2)

is the corresponding carré-du-champ operator. We use shorthand notation Γ(f, f) =: Γ(f) and
observe that by the detailed-balance condition (4.1) we have π

(
Γ(f)

)
= π(Γ+(f)), where

Γ+(f)(x) =
∑
y∈M

(f(x)− f(y))2
+L(x, y). (4.3)

Finally, we denote by ρ(L) the best (the greatest) constant such that the following modified
log-Sobolev inequality is satisfied

ρ(L) Entπ(f) ≤ E(f, log f) (4.4)

for all functions f : M → (0,∞), where Entπ(f) = π(f log f) − π(f) log π(f) is the entropy func-
tional. We remark that ρ(L) is positive iff L is irreducible on the support of π (see the discussion
in Bobkov and Tetali (2006) and Levin and Peres (2017, Chapter 12)). In what follows we will
restrict our attention to this situation, without mentioning this assumption explicitly in each state-
ment.

A classical observation, often referred to as Herbst’s argument (cf. the monographs Ledoux (2001)
and Boucheron et al. (2013)), says that for any f : M → R,

π
(
f > π(f) + t

)
≤ exp(−t2ρ(L)/4‖Γ+(f)‖∞), (4.5)

where ‖ · ‖∞ stands for the norm in L∞(π).

4.2. Flip-swap random walks. After Hermon and Salez (2023), we say that a kernel L generates a
flip-swap random walk if L(x, y) > 0 implies that x = yi for some i ∈ [n] (i.e., x and y differ by a
flip) or x = yij for some i 6= j, i, j ∈ [n] (i.e., x and y differ by a swap). The main contribution
of Hermon and Salez (2023) can be stated in the following way.

Theorem 4.1 (Hermon and Salez (2023)). For any measure π on Bn satisfying the SCP, there
exists a kernel L generating a reversible flip-swap random walk with stationary measure π such that
ρ(L) ≥ 1 and ∆(L) ≤ n. If π is also k-homogeneous, then ∆(L) ≤ 2k as well.

Theorem 4.1, by means of Herbst’s argument (4.5), implies (up to an absolute constant in the
exponent) the estimate from Theorem 1.1 after observing that for a flip-swap random walk and any
f : Bn → R that is 1-Lipschitz with respect to the Hamming distance dH ,

‖Γ+(f)‖∞ ≤ ∆(L) · max
x,y∈Bn

{ (f(y)− f(x))2
+ : L(x, y) > 0 } ≤ 4∆(L). (4.6)

Remark 4.2. There are many examples of flip-swap random walks on the hypercube in the literature,
including, e.g., the Bernoulli–Laplace model, Glauber dynamics or base exchange random walk on
matroids, cf. e.g., Bobkov and Tetali (2006); Goel (2004); Sambale and Sinulis (2020); Cryan et al.
(2021). We note that the results of this section apply to any flip-swap random walk as long as we
have control of its stability (cf. Definition 4.3) constant.

It turns out that for the proofs of all the statements of Section 3 it suffices to demonstrate that
the following condition is true for some reversible generator L with stationary measure π(p, k) for
which the modified log-Sobolev inequality (4.4) is known.

Definition 4.3 (Stability condition). Let L be a generator of a flip-swap random walk on Bn with
invariant probability distribution π. We say that the pair (L, π) meets the stability condition with
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constant R ≥ 0 (i.e., is R-stable) if it satisfies the modified log-Sobolev inequality (4.4) and

max
x∈suppπ; i∈[n]

∑
y : yi 6=xi

L(x, y) ≤ Rρ(L). (4.7)

If it is clear from the context which measure π is associated with L, we will often omit it in the
discussion and simply say that L is R-stable.

Remark 4.4. If π is not concentrated on a single point, then a random walk on Bn with a generator
L that satisfies the modified log-Sobolev inequality (4.4) may be at best 0.25-stable (i.e., R ≥ 0.25).
Indeed, in this case there exists i such that π({xi = 1}), π({xi = 0}) > 0. If L satisfies the modified
log-Sobolev inequality, then it also satisfies the Poincaré inequality 1

2ρ(L) Varπ(f) ≤ E(f, f), see
e.g., Adamczak et al. (2022, Proposition B.5). Let f(x) = 1{xi=1}. By the stability condition (4.7)
and reversibility of L we get that

Rρ(L)π({xi = 1}) ≥
∑

x : xi=1

∑
y : yi=0

L(x, y)π(x)

=
∑
x,y

(xi − yi)2
+L(x, y)π(x)

= E(f, f)

≥ 1

2
ρ(L) Varπ(f) =

1

2
ρ(L)π({xi = 1})π({xi = 0}),

which gives R ≥ 0.5 · π({xi = 0}). Similarly, by considering f(x) = 1{xi=0} we get that R ≥
0.5 · π({xi = 1}) as well, yielding R ≥ 0.25.

This bound is optimal, as can be seen for π being the uniform measure on Bn and L(x, y) = 1 if
there exists i such that y = xi, L(x, y) = −n if y = x and L(x, y) = 0 otherwise (this corresponds
to the special case of Glauber dynamics, in which at rate n, a random coordinate is flipped). In this
case ρ(L) = 4 (see Bobkov and Tetali (2006, Example 3.7), note a different normalization of both
the Dirichlet form and the constant in the modified log-Sobolev inequality), whereas for all x ∈ Bn

max
i

∑
y : yi 6=xi

L(x, y) = L(x, xi) = 1 = 0.25 · ρ(L).

Let us illustrate the notion of R-stability with another classical example.

Example 4.5 (Bernoulli–Laplace model). Let π be the uniform measure on the slice of Bn consisting
of elements with exactly k ones and let L be given by Lf(x) = 1

n

∑
i<j(f(xij) − f(x)) (thus the

corresponding Markov process at rate (n− 1)/2 swaps a uniformly chosen pair of coordinates). In
the matrix form this corresponds to L(x, y) = 1

n if x 6= y and y = xij , L(x, x) = −k(n− k)/n and
L(x, y) = 0 otherwise. It has been proved in Gao and Quastel (2003) and independently in Bobkov
and Tetali (2006) that ρ0(L) ≥ 1/2. At the same time

∑
y : yi 6=xi L(x, y) equals to (n−k)/n if xi = 1

and to k/n otherwise. This shows that L is 2-stable, independently of n and k. As mentioned in
the introduction, the uniform measure on the slice of the discrete cube can be interpreted as the
distribution of i.i.d. Bernoulli variables conditioned on their sum being equal to k. In Theorem 7.3
we generalize the above observation on stability and show that if µ is the law of general independent
Bernoulli variables conditioned on their sum being equal to a fixed constant, there exists a 2-stable
generator of a random walk reversible with respect to µ.

Remark 4.6. Observe that the notion of stability is invariant under scaling of L (change of time),
i.e., if L is R-stable then so is aL for any a > 0. This leads to a tensorization property for measures
admitting an R-stable generator. More precisely, let π1, . . . , πm be measures on Bn1 , . . . ,Bnm ,
for which there exist reversible flip-swap random walks with R-stable generators L1, . . . , Lm. By
changing time, we can assume without loss of generality that ρ(Li) = ρ for all i ≤ m. Let n =
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n1 + . . . + nm and consider the product measure π = π1 ⊗ · · · ⊗ πm on Bn together with the
generator L = L1 + . . .+ Lm, where we think of Li as acting only on the i-th block of coordinates
on Bn = Bn1 × · · · × Bnm , i.e., we identify Li with its tensor product with identity on ⊗j 6=iRBnj . In
the matrix form we have the representation

L(x, y) =
m∑
i=1

Li(Pix, Piy)
∏
j 6=i

1{Pjx=Pjy},

where Pj : Bn → Bj is the projection onto the j-th factor in the product Bn = Bn1 × · · · × Bnm

Thanks to the well known tensorization property of the entropy (see, e.g., Ané et al. (2000, Chapter
3)) we have ρ(L) = ρ. Moreover, for i ∈ (n1 + . . .+ nj−1, n1 + . . .+ nj ],∑

y∈Bn : yi 6=xi

L(x, y) =
∑

y∈Bnj : yl 6=(Pjx)l

Lj((Pjx), y) ≤ Rρ,

where l = i− (n1 + . . .+ nj−1). Thus, L is indeed R-stable.
This observation allows in particular to extend all the theorems of Section 3 to product of measures

π(n, k) allowing for more general conditioning of Bernoulli variables.

4.3. Concentration results. Finally, we present the counterparts of the results of Section 3 and of
Theorem 2.3 from Section 2 in the abstract language of the stability condition (4.7). We stress here
that it is the sole property needed for their proofs, which are deferred to Section 7.

We start with a bounded-difference type inequality for real valued functions.

Proposition 4.7. If a flip-swap random walk on Bn with stationary distribution π and generator
L satisfies the stability condition (4.7), then for any f : Bn → R and α ∈ Rn+ such that

|f(x)− f(y)| ≤ dα(x, y) ∀x, y ∈ Bn

the following estimate holds for all t > 0

π
(
f > π(f) + t

)
≤ exp

(
− t2

8R|α|2
)
.

In the above estimate one can also replace 8|α|2 with 16
∑d∆(L)/Rρ(L)e

i=1 (α↓i )
2.

Remark 4.8. Using the definitions of R-stability and of ∆(L) one can see that ∆(L)/Rρ(L) ≤ n
and if π is k-homogeneous, then ∆(L)/Rρ(L) ≤ k.

We now pass to the matrix-valued case.

Proposition 4.9. Let a flip-swap random walk on Bn with stationary distribution π and generator
L satisfy the stability condition (4.7). Assume also that f : Bn → Hd is such that there is a sequence
of positive semidefinite matrices C1, . . . , Cn satisfying

(f(x)− f(xi))2 4 C2
i ∀ x ∈ Bn, i ∈ [n], (4.8)

where 4 denotes the positive semidefinite order on the set of symmetric matrices. Set the variance
proxy

σ2 = 8R · sup
{∥∥∑

i∈I
C2
i

∥∥ : |I| = d∆(L)/Rρ(L)e, I ⊂ [n]
}
.

Then for any t > 0,
π
(
λmax(f − π(f)) > t

)
≤ d exp

(
− t2/(σ2 + σt)

)
.

Our next proposition is the convex distance inequality under R-stability.
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Proposition 4.10. If a flip-swap random walk on Bn with some stationary distribution π and a
generator L satisfies the stability condition (4.7), then for any set A ⊂ Bn

π(A)π
(

exp
( 1

40R+ 4
· d2

T (·, A)
))
≤ 1.

Finally, we state the concentration result for polynomials in an abstract version.

Proposition 4.11. If a flip-swap random walk on Bn with some stationary distribution π and a
generator L satisfies the stability condition (4.7), then for any tetrahedral polynomial f : Bn → R of
degree d

π
(∣∣f − π(f)

∣∣ ≥ t) ≤ 2 exp
(
− 1

Cd
min

1≤r≤d
min
J∈Pr

( t

Rr/2‖π(∇rf)‖J

)2/|J |)
,

where Cd is a constant depending only on the degree d of f .

Remark 4.12. Although Proposition 4.7 gives a worse constant in the exponent than Theorem 2.3
even in the case of conditional Bernoulli distributions π(p, k), we state it here as in principle it does
not assume that π satisfies the SCP and thus potentially can be applied in other settings.

Remark 4.13. The above propositions can be transferred to more general random walks that change
at each step at most a fixed number of coordinates N (with N = 2 in the case of flip-swap random
walks). We do not pursue this direction though and do not write all the theorems in full generality
for the sake of readability.

Remark 4.14. Recently, in Cryan et al. (2021) the authors have shown a version of Theorem 4.1
for k-homogeneous strongly log-concave measures. Strong log-concavity is yet another possible
generalization of the SRP, which is in general incomparable with the SCP, cf. Cryan et al. (2021).
It is known, cf. Brändén and Huh (2020), that any k-homogeneous strongly log-concave measure is
supported on the set of bases of some matroid of rank k. Using this fact, and extending the previous
results for uniform measures on the bases of matroids from Anari et al. (2019) and Kaufman and
Oppenheim (2018), in Cryan et al. (2021), the authors explicitly construct a base-exchange random
walk, which has any given strongly log-concave measure as a stationary distribution, and verify that
it satisfies the modified log-Sobolev inequality (4.4).

Since the base-exchange random walk proposed therein is a particular instance of a flip-swap
random walk, a natural question is whether it satisfies the stability condition (4.7), which would
allow deducing concentration results presented in this section. Unfortunately, the answer seems to
be negative in full generality as can be seen already in the case of independent Bernoulli random
variables B = (B1, . . . , Bn) with different probabilities of success P(Bi = 1) = pi conditioned on
their sum being k, i.e., for the distribution π(p, k) = L(B |

∑
iBi = k). If one chooses p1 → 1−

and pj = c for j > 1 and some c ∈ (0, 1), then it is straightforward to verify that the base-
exchange random walk of Cryan et al. (2021) is at best k-stable. Therefore, applying propositions
of Section 4.3 to the base-exchange random walk gives much worse concentration constants than
those of Section 3. On the other hand, as we will show in Section 7, the abstract construction
of a flip-swap random walk proposed in Hermon and Salez (2023), when specialized to π(p, k)
and implemented with a proper choice of couplings, gives 2-stability. The appropriate selection of
couplings is the main ingredient in the proofs of results of Section 3.

In view of the above, it is an interesting problem to analyze what other known kernels satisfy the
stability condition (4.7) with good (dimension-independent) constant and to look for some other
criteria that would allow to deduce this condition.

5. Proofs of the results of Section 2

In this section we provide proofs of Theorems 2.3, 2.5 and 2.8. Our approach relies on certain
refinements of the Azuma type martingale argument originally used in Pemantle and Peres (2014).



Concentration for negatively dependent binary random variables 1297

For Theorems 2.3, 2.5 it is based on an appropriate choice of the filtration, adapted to the structure
of the function f , as described below.

Let X ∼ π be a random variable with values in Bn satisfying the SCP and denote suppX = { i ∈
{1, . . . , n} : Xi = 1 }. In the non-homogenous case define a filtration F = (F l)nl=0 by letting simply
F0 = {∅,Ω} and F l = σ(X1, . . . , Xl) for l = 1, . . . , n. In the k-homogenous case introduce a family
of random variables Y1, . . . , Yk given by the conditions

L(Y1 |X) = Unif(suppX\{1, . . . , k}) and (5.1)
L(Yl |X,Y1, . . . , Yl−1) = Unif(suppX \ {1, . . . , k, Y1, . . . , Yl−1}), for l = 2, . . . , k,

where Unif(A) stands for the uniform distribution on the set A, and for notational simplicity we set
Unif(∅) to be the Dirac mass at 0 and X0 ≡ 1 (i.e., we add to X an additional coordinate providing
no information and if the above sampling scheme yields all elements from suppX before sampling
some Yl, we set Yi to zero for all i ≥ l). Finally, define a filtration G = (Gl)2k

l=0 setting G0 = {∅,Ω}
and Gl = σ(X1, . . . , Xl) for l ∈ [k], Gk+r = σ(X1, . . . , Xk, Y1, . . . , Yr} for r ∈ [k].

In other words in the first k-steps the subsequent values ofX at the first k coordinates are revealed,
while in the last k steps one reveals in a uniformly random order the remaining coordinates at which
X takes the value 1. Note that if α is non-increasing (which we will assume without loss of generality)
and f is 1-Lipschitz with respect to dα then the first part of this sampling scheme promotes the
coordinates which may have the greatest impact on the value of f(X). The construction can be
thought of as a modification of the sampling scheme proposed by Pemantle and Peres in which one
immediately starts revealing in a random order the coordinates at which X takes the value 1, which
does not allow to capture the most sensitive coordinates.

The proof of Theorems 2.3 and 2.5 will be based on the following two lemmas.

Lemma 5.1. Let α ∈ Rn+ be non-increasing and let f : Bn → Hd be 1-Lipschitz with respect
to the distance dα. Assume that X is a Bn-valued random vector satisfying the SCP. Let Ml =
E[f(X) | F l]− E[f(X) | F l−1] for l ∈ [n]. Then for every l ∈ [n],

M2
l 4 4α2

l Id. (5.2)

Lemma 5.2. In the setting of Lemma 5.1, let us assume additionally that X is k-homogeneous.
For l ∈ [2k] define Nl = E[f(X) | Gl]− E[f(X) | Gl−1]. Then for l ∈ [k],

N2
l 4 4α2

l Id, (5.3)

while for l = k + 1, . . . , 2k,
N2
l 4 4α2

kId. (5.4)

We postpone for now the proof of the above lemmas and firstly show how they imply Theorems 2.3
and 2.5. To this end let us recall the matrix version of the Azuma–Hoeffding inequality due to Tropp
(2012, Theorem 7.1), which asserts that if Dl, l = 1, . . . , n are Hd-valued martingale differences and
D2
l 4 C

2
l for some deterministic matrices Cl ∈ Hd, then for all t ≥ 0,

P
(
λmax

( n∑
l=1

Dl

)
≥ t
)
≤ de−t2/8σ2

,

where σ2 = ‖
∑n

l=1C
2
l ‖. Note also that for d = 1 the classical Azuma–Hoeffding inequality (see,

e.g., Dubhashi and Panconesi (2009, Theorem 5.8)) allows to replace the constant 1/8 by 1/2.

Proof of Theorems 2.3 and 2.5: Since the SCP is invariant under permutations of coordinates of
X, we may and do assume that α = α↓. By Lemma 5.1 the martingale differences Ml satisfy
M2
l 4 C

2
l := 4α2

l Id. Clearly ∥∥∥ n∑
l=1

C2
l

∥∥∥ = 4|α|2. (5.5)
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If X is k-homogeneous, then by Lemma 5.2, N2
l 4 C̃

2
l := 4α2

min(l,k)Id. In this case∥∥∥ 2k∑
l=1

C̃2
l

∥∥∥ = 4
[( k∑

l=1

α2
l

)
+ kα2

k

]
≤ 8

k∑
l=1

α2
l . (5.6)

We have f(X) =
∑n

l=1Ml, whereas in the k-homogeneous case f(X) =
∑2k

l=1Nl (observe that
after 2k-steps of the sampling procedure all the nonzero coordinates of X are revealed and so X is
G2k-measurable). Thus, the conclusion of Theorem 2.3 follows by applying estimates (5.5) and (5.6)
for d = 1 together with the classical Azuma–Hoeffding inequality. Similarly, Theorem 2.5 follows
from the matrix version of the Azuma–Hoeffding inequality. �

It remains to prove Lemmas 5.1 and 5.2.

Proof of Lemma 5.1: Let Axl = {X1 = x1, . . . , Xl = xl} for x = (x1, . . . , xn) ∈ Bn and l = 0, . . . , n.
Then, for l = 1, . . . , n and any x ∈ Bn such that P(Axl ) > 0,

E[f(X) |Axl ]− E[f(X) |Axl−1] = E[f(X) |Axl−1, Xl = xl]− E[f(X) |Axl−1]

= P(Xl 6= xl |Axl−1)
(
E[f(X) |Axl−1, Xl = xl]− E[f(X) |Axl−1, Xl 6= xl]

)
.

If P(Xl 6= xl |Axl−1) 6= 0, then by the SCP there exists a coupling (X̂, Ŷ ) between the distri-
butions L(X |Axl−1, Xl = xl) and L(X |Axl−1, Xl 6= xl) that is supported on the set { (y, z) ∈
B2
n : dH((yi)i>l, (zi)i>l) ≤ 1 }. Using this coupling, the Lipschitz property of f , Jensen’s inequality

and the fact that αi ≤ αl for any i > l, we get that

‖E[f(X) |Axl ]− E[f(X) |Axl−1]‖

≤ P(Xl 6= xl |Axl−1)E ‖f((xi)i≤l, X̂i>l)− f((xi)i<l, 1− xl, Ŷi>l)‖
≤ P(Xl 6= xl |Axl−1) · 2αl ≤ 2αl,

which is equivalent to (5.2). �

Proof of Lemma 5.2: Note that for l ≤ k, we have Gl = F l. As a consequence Nl = Ml, where Ml

are martingale increments defined in Lemma 5.1, which implies (5.3).
Consider now l > k of the form l = k + r and for x = (x1, . . . , xk) ∈ Bk and v = (v1, . . . , vk) ∈

({0} ∪ {k + 1, . . . , n})k set Ax,vl = {X1 = x1, . . . , Xk = xk, Y1 = v1, . . . , Yr = vr}. Then F l is
generated by the sets Ax,vl . By the definition of the variables Yr, we have {Yr = i} ⊆ {Xi = 1} and
so for any x, v such that P(Ax,vl ) > 0,

E[f(X) |Ax,vl ] =
E[f(X)1Ax,v

l−1
1{Xvr=1}1{Yr=vr}]

P(Ax,vl−1, Xvr = 1, Yr = vr)
. (5.7)

For s ∈ [r] let ms = |{i ∈ [k] : xi = 1}|+ |{j ∈ [s− 1] : vj 6= 0}| be the number of ones sampled by
the time k + s− 1. It follows from (5.1) that if ms < k then P(Ax,vk+s) > 0 implies that vs 6= 0 and
P(Ys = vs|X,Y1, . . . , Ys−1) = 1

k−ms
on Ax,vk+s−1 ∩ {Xvs = 1}, whereas if ms = k, then P(Ax,vk+s) > 0

implies that vs = 0 and P(Ys = vs |X,Y1, . . . , Ys−1) = 1 on Ax,vk+s−1 ∩ {Xvs = 1} = Ax,vk+s−1. Going
back to (5.7) and using this observation for s = r, . . . , 1, we obtain that

E[f(X) |Ax,vl ] = E[f(X) |Bx,v
l ],

where Bx,v
l = {X1 = x1, . . . , Xk = xk, Xv1 = . . . = Xvl−k

= 1}. We thus obtain

E[f(X) |Ax,vl ]− E[f(X) |Ax,vl−1]

= P(Xvr 6= 1 |Bx,v
l−1)(E[f(X) |Bx,v

l−1, Xvr = 1]− E[f(X) |Bx,v
l−1, Xvr 6= 1]).

Note that the right-hand side may be non-zero only if vr 6= 0. In this case using the inequality
αvs ≤ αk for s ∈ [k] we can conclude as in the proof of Lemma 5.1. �
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We now pass to the proof of Theorem 2.8.

Proof of Theorem 2.8: Let X be a random vector with law π and define the random variables Yl for
l ≤ n as

L(Y1 |X) = Unif(suppX) and (5.8)
L(Yl |X,Y1, . . . , Yl−1) = Unif(suppX \ {Y1, . . . , Yl−1}), for l = 2, . . . , k,

i.e., Y ′l s reveal in a uniformly random order the elements of suppX. Let H0 = {∅,Ω} and Hl =
σ(Y1, . . . , Yl) for l = 1, . . . , k. Then

f(X)− E f(X) =

k∑
l=1

E[f(X) |Hl]− E[f(X) |Hl−1] =:

k∑
l=1

Dl.

We will use the matrix version of Freedman’s inequality due to Tropp (2011), which asserts (in a
version specialized for our application) that if ‖Dl‖ ≤ a a.s. for all l, and ‖

∑k
l=1 E[D2

l |Hl−1]‖ ≤ σ2

a.s., then for any t ≥ 0,

P
(
λmax(f(X)− E f(X)) ≥ t

)
≤ d exp

(
− t2

2σ2 + 2at/3

)
. (5.9)

Consider thus a sequence of pairwise distinct v1, . . . , vk ∈ [n] and denote Avl = {Y1 = v1, . . . , Yl =
vl}. Similarly, as in the proof of Lemma 5.2, if P(Avl ) > 0, then we have

E[f(X) |Avl ] = E[f(X) |Bv
l ],

where Bv
l = {Xv1 = . . . = Xvl = 1}. Therefore, we have

Dl1Av
l

= P(Xvl = 0 |Bv
l−1)

(
E[f(X) |Bv

l−1, Xvl = 1]− E[f(X)|Bv
l−1, Xvl = 0]

)
1Av

l
. (5.10)

Since the SRP implies the SCP, there exists a coupling (Z̃, Ẑ) between the distributions L(X |Bv
l )

and L(X |Bv
l−1, Xvl = 0) such that Z̃ and Ẑ differ just at coordinate vl and one additional coordinate

(at which by k-homogeneity Ẑ necessarily takes the value one). Let Ỹl be this coordinate. We have

E[f(X) |Bv
l−1, Xvl = 1]− E[f(X) |Bv

l−1, Xvl = 0] = E[f(Z̃)− f(Ẑ)], (5.11)

Since Ẑ Ỹl = Z̃vl , we have(
E[f(X) |Bv

l−1, Xvl = 1]− E[f(X) |Bv
l−1, Xvl = 0]

)2
=
(
E[f(Z̃)− f(Ẑ)]

)2

4 E
[(
f(Z̃)− f(Ẑ)

)2]
= E

[(
f(Z̃)− f(Z̃vl) + f(Ẑ Ỹl)− f(Ẑ)

)2]
4 2E

[(
f(Z̃)− f(Z̃vl)

)2]
+ 2E

[(
f(Ẑ Ỹl)− f(Ẑ)

)2]
4 2C2

vl
+ 2EC2

Ỹl
, (5.12)

where in the first and second inequality we used the fact that the function x 7→ x2 is operator
convex (i.e., for any A,B ∈ Hd and λ ∈ [0, 1], ((1 − λ)A + λB)2 4 (1 − λ)A2 + λB2, see Bhatia
(1997, Example V.1.3)), and in the last inequality the assumption (2.3).

In particular, using (5.10), we obtain ‖D2
l ‖ ≤ 4 maxi ‖C2

i ‖, so ‖Dl‖ ≤ 2K. Moreover, as on Avl
we have Yl = vl, by (5.10) and (5.12) we get that

D2
l 1Av

l
4 2(C2

Yl
+ EC2

Ỹl
)P(Xvl = 0 |Bv

l−1)21Av
l
.

Let us now slightly change our notation and think of Ỹl as of random variable defined on the
same probability space as X, with conditional distribution with respect to the σ-field Hl given on
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each of its atoms Avl by the above construction, using the corresponding coupling (which depends
on v1, . . . , vl). Then the above inequality can be written on Avl−1 as

D2
l 4 2

∑
vl∈[n]\{v1,...,vl−1}

(
C2
Yl

+ E[C2
Ỹl
|Avl ]

)
P(Xvl = 0 |Bv

l−1)21Av
l
. (5.13)

We now go back to the equations (5.10) and (5.11) and let us apply them in the special case of the
function f̃(x) =

∑n
i=1 xiC

2
i , denoting the corresponding martingale increment by D̃l. We obtain

that
D̃l1Av

l
= P(Xvl = 0 |Bv

l−1)
(
C2
Yl
− E[C2

Ỹl
|Avl ]

)
1Av

l
.

Thus, we get that

0 = E[D̃l |Avl−1] =
∑

vl∈[n]\{v1,...,vl−1}

E
[
P(Xvl = 0 |Bv

l−1)1Av
l

(
C2
Yl
− E[C2

Ỹl
|Avl ]

) ∣∣∣Avl−1

]
,

i.e., ∑
vl∈[n]\{v1,...,vl−1}

E
[
P(Xvl = 0 |Bv

l−1)1Av
l
C2
Yl

∣∣∣Avl−1

]
=

∑
vl∈[n]\{v1,...,vl−1}

E
[
P(Xvl = 0 |Bv

l−1)1Av
l
E(C2

Ỹl
|Avl )

∣∣∣Avl−1

]
,

which combined with the estimate (5.13) on D2
l (replacing P(Xvl = 0 |Bv

l−1)2 by P(Xvl = 0 |Bv
l−1))

gives

E[D2
l |Avl−1] 4 2

∑
vl∈[n]\{v1,...,vl−1}

E
[
(C2

Yl
+ E[C2

Ỹl
|Avl ])P(Xvl = 0 |Bv

l−1)1Av
l

∣∣∣Avl−1

]
= 4

∑
vl∈[n]\{v1,...,vl−1}

E
[
C2
Yl
P(Xvl = 0 |Bv

l−1)1Av
l

∣∣∣Avl−1

]
4 4

∑
vl∈[n]\{v1,...,vl−1}

C2
vl
P(Avl |Avl−1)

= 4
∑

vl∈[n]\{v1,...,vl−1}

C2
vl

1

k − l + 1
P(Xvl = 1 |Bv

l−1)

4 4
∑

vl∈[n]\{v1,...,vl−1}

C2
vl

1

k − l + 1
P(Xvl = 1),

where in the last inequality we used Kyng and Song (2018, Lemma 1.10), which asserts that P(Xvl =
1) ≥ P(Xvl = 1|Bv

l−1) (we remark that this is the only place in the proof in which we use the full
strength of the strong Rayleigh property).

Extending the summation to [n], we thus obtain

E[D2
l |Hl−1] 4 4

n∑
v=1

C2
v P(Xv = 1)

1

k − l + 1
,

whence
k∑
l=1

E[D2
l |Hl−1] 4 4

n∑
v=1

C2
v P(Xv = 1) log(ek) = 4 log(ek) · E

[ n∑
v=1

XvC
2
v

]
.

Combining this with the already obtained bound ‖Dl‖ ≤ 2K allows us to apply (5.9) with a = 2K
and σ2 = 4‖E

∑n
v=1XvC

2
v‖ log(ek), which ends the proof of the theorem. �
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6. Proofs of the results of Section 4

6.1. Propositions 4.7 and 4.9. The main idea behind the proof of Proposition 4.7 is to find an
estimate on ‖Γ+(f)‖∞ in terms of α, refining (4.6), and then to use the Herbst argument. We will
need the following lemma which we state in the matrix setting as it will be useful for the proof of
Proposition 4.9 as well.

Lemma 6.1. Let t = (t1, . . . , tn) be a sequence of nonnegative numbers and let D1, . . . , Dn ∈ Hd

be positive semidefinite matrices. Then for any T1 ≥ |t|1 and T∞ ≥ |t|∞∥∥ n∑
i=1

tiDi

∥∥ ≤ T∞ · sup
{∥∥∑

i∈I
Di

∥∥ : I ⊂ [n], |I| ≤ dT1/T∞e
}
. (6.1)

Proof : By homogeneity, we may assume without loss of generality that T∞ = 1. We may also
assume that T1 is a positive integer. Let

X =
{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ T1

}
, Y =

{
y ∈ {0, 1}n :

n∑
i=1

yi ≤ T1

}
.

Since the right-hand side of (6.1) equals to max{‖
∑n

i=1 yiDi‖ : y ∈ Y}, whereas the left-hand side
is a convex function of t, the lemma will follow once we prove that X ⊂ convY. To this end, by the
Krein–Milman theorem, it is enough to show that Y is the set of all extreme points of the closed
convex set X . Consider any x ∈ X \ Y. Let i0 ∈ [n] be such that xi0 ∈ (0, 1). If

∑
i xi < T1 then

for ε sufficiently close to zero, x + εei0 , x − εei0 ∈ X and so x = 1
2(x + εei0) + 1

2(x − εei0) is not
an extreme point of X . If

∑
i xi = T1, then since T1 is an integer, there exists i1 6= i0 such that

xi1 ∈ (0, 1). Then x = 1
2u+ 1

2v, where u = x+ εei0 − εei1 , v = x− εei0 + εei1 . For ε close to zero
u, v ∈ X , thus again, x is not an extreme point. �

Proof of Proposition 4.7: We recall that for x ∈ Bn and i, j ∈ [n], xi and xij denote the vectors
obtained from x by flipping the i-th and swapping the i-th and j-th coordinates respectively. For any
x ∈ Bn, using the definition (4.3) of Γ+, Lipschitz property of f and inequality (a+ b)2 ≤ 2(a2 + b2)
we get

Γ+(f)(x) =

n∑
i=1

(f(x)− f(xi))2
+L(x, xi) +

1

2

n∑
i,j=1

(f(x)− f(xij))2
+L(x, xij)

≤
n∑
i=1

α2
iL(x, xi) +

1

2

n∑
i,j=1

(αi + αj)
2L(x, xij)1{x 6=xij}

≤
n∑
i=1

α2
iL(x, xi) + 2

n∑
i=1

α2
i

n∑
j=1

L(x, xij)1{x 6=xij}

≤ 2
n∑
i=1

α2
i

∑
y : yi 6=xi

L(x, y).

(6.2)

Therefore, by the stability condition (4.7) we estimate ‖Γ+(f)‖∞ ≤ 2Rρ(L)|α|2. Herbst’s argu-
ment (4.5) allows to conclude the first part.

The second part of the proposition follows by observing that for a flip-swap random walk
n∑
i=1

∑
y : yi 6=xi

L(x, y) ≤ 2 ·∆(L)
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so by (6.2), Lemma 6.1 applied in the scalar setting d = 1 with ti = 2
∑

y : yi 6=xi L(x, y), Di = α2
i ,

T1 = 4∆(L) and T∞ = 4Rρ(L) we can estimate

‖Γ+(f)‖∞ ≤ 4Rρ(L)

d∆(L)/Rρ(L)e∑
i=1

(α↓i )
2

and conclude again in virtue of Herbst’s argument (4.5). �

The proof of Proposition 4.9 follows along similar lines to the proof of Proposition 4.7, the
difference being that in the end, instead of Herbst’s argument, we apply the concentration result
of Aoun et al. (2020), which asserts that if L satisfies the matrix Poincaré inequality with constant
CP > 0

Var(f) 4 −CPπ(fLf) ∀ f : Bn → Hd, (6.3)
(where L acts on the matrix-valued function f element-wise and fLf is the matrix product), then
it satisfies the exponential concentration bound of the form

π
(
λmax(f − π(f)) > t

)
≤ d exp

( −t2

2CP vf + t
√

2CP vf

)
, (6.4)

where vf = supx‖Γ(f)(x)‖ (where Γ is defined via (4.2), again with matrix multiplication, and ‖ · ‖
stands for the operator norm). Note that for d = 1, (6.3) is just the usual scalar Poincaré inequality.

Proof of Proposition 4.9: For any x ∈ Bn and i, j ∈ [n], using operator convexity of the function
x 7→ x2, i.e., the fact that ((1 − λ)A + λB)2 4 (1 − λ)A2 + λB2 for any A,B ∈ Hd and λ ∈ [0, 1]
(see Bhatia (1997, Example V.1.3)), we get that(

f(x)− f(xij)
)2

=
[(
f(x)− f(xi)

)
+
(
f(xi)− f(xij)

)]2
4 2
(
f(x)− f(xi)

)2
+ 2
(
f(xi)− f(xij)

)2
. (6.5)

Therefore, by the definition (4.2) of Γ, by the assumed Lipschitz property (4.8) of f and by (6.5),
for any x ∈ Bn,

Γ(f)(x) =
1

2

n∑
i=1

(f(x)− f(xi))2L(x, xi) +
1

4

n∑
i,j=1

(f(x)− f(xij))2L(x, xij)

4
1

2

n∑
i=1

C2
i L(x, xi) +

1

2

n∑
i,j=1

(C2
i + C2

j )L(x, xij)1{x 6=xij}

4
n∑
i=1

C2
i ·
[ ∑
y : yi 6=xi

L(x, y)
]
.

(6.6)

As both hand sides of (6.6) are positive semidefinite, their norms compare as well. Therefore, as in
the proof of Proposition 4.7, by Lemma 6.1 with ti =

∑
y : yi 6=xi L(x, y), T1 = 2∆(L), T∞ = 2Rρ(L)

and Di = C2
i

sup
x∈Bn
‖Γ(f)(x)‖ ≤ 2Rρ(L) · sup

{∥∥∑
i∈I

C2
i

∥∥ : I ⊂ [n], |I| ≤ d∆(L)/Rρ(L)e
}
.

Since L satisfies the (scalar) modified log-Sobolev inequality (4.4), then it satisfies the (scalar)
Poincaré inequality with constant CP = 2/ρ(L) (see, e.g., Bobkov and Tetali (2006, p. 292),
noting slightly different definitions of constants in functional inequalities used therein) and whence
by Huang and Tropp (2021, Proposition 2.2) or Garg et al. (2021, Theorem 1.1) it satisfies the matrix
Poincaré inequality (6.3) with the same constant, which yields the conclusion in virtue of (6.4). �
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6.2. Proposition 4.10. The proof of Proposition 4.10 is based on the idea introduced in Boucheron
et al. (2009) for independent random variables and then developed in Paulin (2014) for Glauber
dynamics under the Dobrushin condition. We follow the exposition introduced in the recent works
of Sambale and Sinulis (2021, 2022) in the context of sampling without replacement and adapt it
to the more abstract setting involving the stability condition given in Definition 4.3.

We start with the following lemmas.

Lemma 6.2. For any flip-swap random walk with generator L satisfying the stability condition (4.7)
and for any A ⊂ Bn,

Γ+(d2
T (·, A))(x) ≤ 8Rρ(L) · d2

T (x,A). (6.7)
Moreover, for any x, y ∈ Bn and any set A ⊂ Bn,

d2
T (x,A)− d2

T (y,A) ≤ dH(x, y). (6.8)

Proof : For x ∈ Bn, α ∈ Rn and a probability measure µ on Bn, let hx(µ, α) =
∑

i αiµ(z : zi 6= xi).
By Sion’s minmax theorem, cf. Boucheron et al. (2013, p. 227),

dT (x,A) = inf
µ∈M(A)

sup
α∈Bn

2

hx(µ, α), (6.9)

where M(A) is the set of probability measures on A and Bn
2 = {x ∈ Rn : |x| ≤ 1 } is the unit

ball in Rn. Let α∗ ∈ Rn+ ∩ Bn
2 , µ∗ ∈ M(A) be such that dT (x,A) = hx(µ∗, α∗) and set νy =

argminν∈M(A) hy(ν, α
∗). Then

Γ+

(
dT (·, A)

)
(x) =

∑
y

[
hx(µ∗, α∗)− inf

ν∈M(A)
sup
α∈Bn

2

hy(ν, α)
]2
+
L(x, y)

≤
∑
y

[
hx(µ∗, α∗)− hy(νy, α∗)

]2
+
L(x, y)

≤
∑
y

[
hx(νy, α

∗)− hy(νy, α∗)
]2
+
L(x, y)

=
∑
y

[∑
i

α∗i
(
νy(z : zi 6= xi)− νy(z : zi 6= yi)

)]2
+
L(x, y)

≤
∑
y

[∑
i

α∗i 1{xi 6=yi}
]2
L(x, y)

≤ 2
∑
i

(α∗i )
2
∑

y : yi 6=xi

L(x, y) ≤ 2Rρ(L),

where the penultimate inequality follows since L is a flip-swap random walk and therefore L(x, y) > 0
implies that dH(x, y) ≤ 2 and so at most two elements of the sum

∑
i α
∗
i 1{xi 6=yi} are non-zero,

whence we may apply the inequality (a+ b)2 ≤ 2(a2 + b2). The last inequality is a consequence of
the condition α∗ ∈ Bn

2 and the stability condition (4.7). We conclude (6.7) using the definition of
Γ+ and estimating (a− b)2

+(a+ b)2
+ ≤ 4a2(a− b)2

+.
To show the second part, note that (6.9) together with the Cauchy–Schwarz inequality imply

that
d2
T (x,A) = inf

µ∈M(A)

∑
i

(
µ(z : zi 6= xi)

)2
=
∑
i

(
µ∗x(z : zi 6= xi)

)2
for some µ∗x ∈M(A). Therefore, for any x, y ∈ Bn,

d2
T (x,A)− d2

T (y,A) ≤
∑
i

[(
µ∗x(z : zi 6= xi)

)2 − (µ∗x(z : zi 6= yi)
)2]

≤
∑
i

1{xi 6=yi},
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as desired. �

Using the inequality 1− e−z ≤ z we observe that for any f : Bn → R,

E(ef , f) =
∑
x

π(x)ef(x)
[∑

y

(f(x)− f(y))+(1− ef(y)−f(x))L(x, y)
]

≤ π
(
efΓ+(f)

)
.

Therefore, the modified log-Sobolev inequality (4.4) implies the following inequality stated in Bobkov
and Götze (1999):

ρ(L) Entπ(ef ) ≤ π
(
ef Γ̃(f)2

)
(6.10)

with operator Γ̃(f) =
√

Γ+(f) (note that in Bobkov and Götze (1999) Γ̃ is denoted by Γ, we use Γ̃ to
avoid a conflict of notation). As a consequence, the hypothesis of Bobkov and Götze (1999, Theorem
2.1) (formula (1.1)) therein holds under the assumption of the modified log-Sobolev inequality (4.4)
(with c = 2/ρ(L)). As a result, the following lemma follows directly by the derivation of Bobkov
and Götze (1999, equation (2.4)) with a slight adjustment of constants (see also Aida et al. (1994)).

Lemma 6.3. If a measure π on Bn satisfies the modified log-Sobolev inequality (4.4) and f : Bn →
[0,∞) is such that Γ+(f) ≤ Cf for some constant C > 0, then for all t > C/ρ(L),

π
(

exp(f/t)
)
≤ exp

( π(f)

t− C/ρ(L)

)
. (6.11)

We are finally in position to prove Proposition 4.10.

Proof of Proposition 4.10: To lighten notation, denote f(x) = d2
T (x,A) for x ∈ Bn and some fixed

set A ⊂ Bn. Denote also h(z) = (ez − 1)/z for z ∈ [0,∞) and Dfy(x) = f(x)− f(y) for x, y ∈ Bn,
and note that h is an increasing function. Starting with the modified log-Sobolev inequality (4.4)
we have for all λ > 0,

Entπ(e−λf ) ≤ λ/ρ(L) · E(e−λf ,−f)

= λ/ρ(L)
∑
x,y

(
Dfy(x)

)
+

(
e−λf(y) − e−λf(x)

)
L(x, y)π(x) (by reversibility of L)

= λ2/ρ(L)
∑
x

π(x)e−λf(x)
[∑

y

(
Dfy(x)

)2
+
h
(
λDfy(x)

)
L(x, y)

]
≤ λ2h(2λ)/ρ(L) · π

(
e−λfΓ+(f)

)
(by (6.8))

≤ 8Rλ2h(2λ) · π
(
e−λff

)
(by (6.7))

≤ 8Rλ2h(2λ) · π(e−λf )π(f),

where the last inequality follows from non-positive correlation between the functions f and e−λf .
Therefore, using the entropy method (cf., e.g., Boucheron et al. (2013, Chapter 6)) and monotonicity
of h, we have for every λ > 0,

π
(

exp(λ(π(f)− f)
)

= exp
(
λ

∫ λ

0

d

ds

[1

s
log π(e−sf )

]
ds
)

= exp
(
λ

∫ λ

0

Entπ(e−sf)

s2π(e−sf )
ds
)

≤ exp
(
λ · 8Rπ(f)

∫ λ

0
h(2s) ds

)
≤ exp

(
4Rλ(e2λ − 1)π(f)

)
.

By Chebyshev’s exponential inequality

π(A) = π
(
π(f)− f ≥ π(f)

)
≤ exp

(
λ
(
4R(e2λ − 1)− 1

)
π(f)

)
.
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Taking λ = 1
2 log(1 + 1

8R) and estimating log(1 + x) ≥ x/(x+ 1) for x ≥ 0 gives

π(A) ≤ exp
(
− 1

4
log
(
1 +

1

8R

)
π(f)

)
≤ exp

(
− π(f)

32R+ 4

)
. (6.12)

We conclude by dividing (6.12) by its right hand side and using Lemma 6.3 with t = 4 + 40R and
C = 8Rρ(L) (in virtue of Lemma 6.2). �

6.3. Proposition 4.11. Before we move to the proof of Proposition 4.11, we comment a bit on a
background result. Using the equivalence between the modified log-Sobolev inequality (4.4) and the
family of Beckner inequalities together with the approach developed in Boucheron et al. (2005), it
was shown in Adamczak et al. (2022, Proposition 3.1) that the following moment estimate is implied
by the modified log-Sobolev inequality. Below we will denote by ‖ · ‖p the norm in Lp(π).

Proposition 6.4. If a probability measure π on Bn satisfies the modified log-Sobolev inequality (4.4),
then for any p ≥ 2,

‖(f − π(f))+‖p ≤ C
√
p/ρ(L)‖

√
Γ+(f)‖p, (6.13)

where C =
√

3
√
e/(
√
e− 1).

A general method of deriving estimates for polynomials from moment inequalities of the
form (6.13) has been presented in Adamczak and Wolff (2015) in the continuous case, and in Adam-
czak et al. (2019, 2022) in the context of Glauber dynamics. To obtain results for flip-swap random
walks we will adapt a version of this method introduced recently by Sambale and Sinulis (2022) for
multislices.

Proof of Proposition 4.11: Below we write C to denote universal constants and Ca to denote con-
stants depending only on the parameter a. In both cases the constants may change values between
occurrences. Let f : Bn → R be a tetrahedral polynomial. By ∂i we denote the partial derivative
with respect to the i-th coordinate. If x, y ∈ Bn differ at the i-th coordinate only, then by the fact
that f is linear in each coordinate

|f(x)− f(y)| =
∣∣∂if(x)

∣∣.
Similarly, if x and y differ only by a swap of the i-th and j-th coordinate, we have

|f(x)− f(y)| = |∂if(x)(yi − xi) + ∂jf(x)(yj − xj) + ∂i∂jf(x)(yi − xi)(yj − xj)|
≤ |∂if(x)|+ |∂jf(x)|+ |∂i∂jf(x)|.

Thus,

Γ(f)(x) =
1

2

n∑
i=1

(f(x)− f(xi))2L(x, xi) +
1

2

∑
1≤i<j≤n

(f(x)− f(xij))2L(x, xij)

≤ 1

2

n∑
i=1

|∂if(x)|2L(x, xi) +
3

2

∑
1≤i<j≤n

xij 6=x

(|∂if(x)|2 + |∂jf(x)|2 + |∂i∂jf(x)|2)L(x, xij)

≤ Rρ(L)
(

3.5
n∑
i=1

|∂if(x)|2 + 0.75
n∑

i,j=1

|∂i∂jf(x)|2
)
,

where in the last inequality we used the stability condition (4.7). Note that since f is tetrahedral,
∂i∂if(x) = 0 for all i.
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Combining the above equality with Proposition 6.4 we obtain that for every tetrahedral polyno-
mial f : Bn → R

‖f − π(f)‖p ≤ C
√
p
√
R
(∥∥|∇f |∥∥

p
+
∥∥‖∇2f‖HS

∥∥
p

)
, (6.14)

where C is a universal constant.
In the subsequent part of the proof we are going to need some auxiliary notation. For d-tensors

A = (ai)i∈[n]d , B = (bi)i∈[n]d define

〈A,B〉 =
∑
i∈[n]d

aibi.

Let us now consider a family of stochastically independent random tensors {GI : I ⊆ N, |I| ∈
{1, 2}}, given by G{m} = (g

{m}
i )i∈[n], G{l,k} = (g

{l,k}
i,j )i,j∈[n], with coefficients being i.i.d. standard

Gaussian variables. Denote by Pd,≤2 the family of all partitions of the set [d] into non-empty subsets
of cardinality at most 2. Finally, for any positive integers d and l and J = {J1, . . . , Jl} ∈ Pd,≤2

define the random d-tensor GJ = (
∏l
j=1 g

Jj
iJj

)i∈[n]d . For instance G{{1,3},{2}} = (g
{1,3}
i1i3

g
{2}
i2

)i1,i2,i3∈[n].

Using the fact that the p-th moment of a mean zero Gaussian variable with variance σ2 is for
p ≥ 2 comparable to √pσ up to universal constants, we can rewrite (6.14) as

‖f(X)− E f(X)‖p ≤ C
√
R
(
‖〈∇f(X), G{1}〉‖p + ‖〈∇2f(X), G{1,2}〉‖p

)
, (6.15)

where X is a random vector with law π, independent of the family {GI}.
The inequality (6.15) constitutes a basis for the induction argument leading to the following

inequality valid for any f : Bn → R, d ≥ 1 and p ≥ 2,

‖f(X)− E f(X)‖p ≤Cd
( 2d∑
l=d

∑
J∈Pl,≤2

R|J |/2‖〈∇lf(X), GJ 〉‖p

+
2d−2∑
l=1

∑
J∈Pl,≤2

R|J |/2‖〈EX ∇lf(X), GJ 〉‖p
)
.

(6.16)

Before we prove the above estimate, let us show how it implies the statement of the proposition.
If f is a tetrahedral polynomial of degree d, then ∇lf = 0 for l > d, moreover ∇df is constant and
so ∇df(X) = E∇df(X). Thus, (6.16) reduces to

‖f(X)− E f(X)‖p ≤ Cd
d∑
l=1

∑
J∈Pl,≤2

R|J |/2‖〈EX ∇lf(X), GJ 〉‖p.

We can now use moment estimates for tetrahedral homogeneous polynomials in i.i.d. standard
Gaussian variables due to Latała (2006), which assert that for any l-tensor A = (ai)i∈[n]l and p ≥ 2,

‖〈A,G{{1},...,{l}}〉‖p ≤ Cl
∑
J∈Pl

p|J |/2‖A‖J .

Applying this inequality to 〈EX ∇lf(X), GJ 〉 (we treat here EX ∇lf(X) as a |J |-tensor by merg-
ing the indices according to the partition J ), we obtain

‖f(X)− E f(X)‖p ≤ Cd
d∑
l=1

∑
J∈Pl,≤2

R|J |/2
∑

I∈Pl : I�J
p|I|/2‖E∇lf(X)‖I ,
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where I � J if every element of I is a union of certain elements of J . Rearranging the terms and
taking into account that in a non-trivial case R is bounded away from zero by an absolute constant
(see Remark 4.4), which gives R|J |/2 ≤ CdRl/2 for J ∈ Pl,≤2, we get

‖f(X)− E f(X)‖p ≤ Cd
d∑
l=1

∑
I∈Pl

Rl/2p|I|/2‖E∇lf(X)‖I

for p ≥ 2. This implies the tail inequality of the proposition in the standard way by the use of
Chebyshev’s inequality P(|f(X)−E f(X)| ≥ e‖f(X)−E f(X)‖p) ≤ e−p followed by an appropriate
change of variables and adjustment of constants. We leave the details to the reader and turn to the
proof of (6.16).

We will proceed by induction on d. For d = 1, using the definitions of G{1} and G{{1,2}} one can
easily see that (6.16) reads as

‖f(X)− E f(X)‖p ≤C
(√

R‖〈∇f(X), G{1}〉‖p +
√
R‖〈∇2f(X), G{1,2}〉‖p

+R‖〈∇2f(X), G{{1},{2}}〉‖p
)
,

which is clearly weaker than (6.15). Let us thus assume that the inequality holds for all positive
integers smaller than d. Applying the inequality with d − 1 and combining it with the triangle
inequality in Lp we get (recall that the value of Cd may change between occurrences)

‖f(X)− E f(X)‖p ≤Cd
( 2d−2∑
l=d−1

∑
J∈Pl,≤2

R|J |/2‖〈∇lf(X), GJ 〉‖p

+
2d−4∑
l=1

∑
J∈Pl,≤2

R|J |/2‖〈EX ∇lf(X), GJ 〉‖p
)

≤Cd
( 2d−2∑
l=d−1

∑
J∈Pl,≤2

R|J |/2‖〈∇lf(X), GJ 〉 − 〈EX ∇lf(X), GJ 〉‖p

+
2d−2∑
l=1

∑
J∈Pl,≤2

2R|J |/2‖〈EX ∇lf(X), GJ 〉‖p
)
.

(6.17)

An application of inequality (6.15) conditionally on GJ to the functions hl,J (x) = 〈∇lf(x), GJ 〉
for l = d− 1, . . . , 2d− 2 and J ∈ Pl,≤2 (note that hl,J ’s are tetrahedral polynomials), followed by
the Fubini theorem, gives

‖〈∇lf(X), GJ 〉 − 〈EX ∇lf(X), GJ 〉‖p ≤ C
√
R
(
‖〈∇l+1f(X), GJ∪{{l+1}}〉‖p

+ ‖〈∇l+2f(X), GJ∪{{l+1,l+2}}〉‖p
)
,

which combined with (6.17) concludes the induction step, thus proving (6.16). �

7. Proofs of the results of Section 3

By virtue of the abstract results of Section 4, all the results of Section 3 will follow if one
proves that there exists a flip-swap random walk on Bn with stationary measure π = π(p, k) which
satisfies the stability condition (4.7) with constant R = 2 for all p ∈ (0, 1)n and k = 0, . . . , n
(cf. Theorem 7.3). The rest of this section is devoted to proving this theorem.

Before we proceed with the proof, let us present its outline. Our approach to defining an R-
stable generator Lπ will be based on the inductive construction of Hermon and Salez (2023). The
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construction is quite abstract and at each induction step it uses the coupling resulting from the
definition of the stochastic covering property. For obtaining the modified log-Sobolev inequality
sufficient to investigate the speed of convergence of the Markov chain or concentration inequality as
in (1.1), the form of the coupling is not relevant, as long as it satisfies the SCP. In turn, in order to
establish the stability condition, one needs to control additional properties of the couplings used at
various steps of the construction. The main technical challenge is to choose them in an appropriate,
balanced way. For conditioned Bernoulli distributions it is obtained by an explicit construction of
the coupling, given in the following lemma, the proof of which is postponed until the end of this
section.

Lemma 7.1. For every n ∈ N, p ∈ (0, 1)n and k ∈ [n], there exists a coupling (Z,Z ′) of measures
π(p, k) and π(p, k − 1) such that for all x ∈ suppπ(p, k − 1), and r ∈ [n] such that xr = 0,

P(Z = x+ er |Z ′ = x) = E
[ 1{Zr=1}∑n

l=1 1{Zl=1}1{xl=0}

]
(7.1)

and for all x ∈ suppπ(p, k), and r ∈ [n] such that xr = 1,

P(Z ′ = x− er |Z = x) = E
[ 1{Z′r=0}∑n

l=1 1{Z′l=0}1{xl=1}

]
. (7.2)

Let us now recall the inductive construction of Hermon and Salez (2023) in the k-homogeneous
case. It works for any k-homogeneous probability measure π on Bn, satisfying the SCP and produces
a generator of a π-reversible flip-swap random walk Q∗ such that ρ(Q∗) ≥ 1 and ∆(Q∗) ≤ 2k.

To simplify the notation, we are going to treat vectors x 6=l for x ∈ Bn and l ∈ [n] sometimes as
elements of {0, 1}[n]\{l} (this is how they were defined at the beginning of Section 2) and sometimes
as elements of Bn−1 (with the natural identification, i.e., preserving the order of coordinates). The
exact meaning will be clear from the context. The same convention will apply to random vectors,
e.g., to X6=l.

In the case n = 1, we let Q be the zero matrix, which restricted to the support of π gives the
trivial generator on the one-point space. Clearly then ρ(Q) =∞ and ∆(Q) = 0.

For n > 1, l ∈ [n] and x, y ∈ suppπ, x 6= y, we set

Q(l)(x, y) =

{
P (U = y6=l |V = x 6=l)P (Xl 6= xl) if xl 6= yl,

Q
(l)
xl (x6=l, y6=l) else,

(7.3)

where X is a random vector with law π and (U, V ) is any coupling between L(X6=l |Xl = yl) and
L(X6=l |Xl = xl) given by the SCP and Q

(l)
xl is any flip-swap generator on Bn−1 with stationary

distribution L(X6=l |Xl = xl) such that ρ(Q
(l)
xl ) ≥ 1 and ∆(Q

(l)
xl ) ≤ 2(k− xi), the existence of which

is provided by the induction scheme. We define the diagonal elements of Q(l) so that the row sums
vanish. Finally, put

Q∗ =
1

n

n∑
l=1

Q(l). (7.4)

Then by (the proof of) Hermon and Salez (2023, Theorem 2), Q is π-reversible and we have ρ(Q∗) ≥
1, ∆(Q∗) ≤ 2k.

Now we are in position to construct the generator Lπ. Let X ∼ π = π(p, k) for some p ∈ (0, 1)n

and k ∈ {0, . . . , n}. Observe that for any yl ∈ {0, 1}, we have L(X6=l |Xl = yl) = π(p 6=l, k − yl), in
particular in the above recursive construction we can restrict our attention to the class of conditional
Bernoulli distributions and use as Q(l)

xl the generators defined for such measures in dimension n− 1.
Moreover, for (U, V ) we can take the coupling (Z,Z ′) (if yl = 0) or (Z ′, Z) (if yl = 1) given by
Lemma 7.1 applied in dimension n − 1 with p 6=l instead of p (note that since the right-hand side
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of (7.1) summed over r such that xr = 0 gives one, we indeed have Z . Z ′, which makes this
coupling a legitimate choice in the Hermon–Salez construction). Let us define Lπ as the outcome of
the Hermon–Salez construction with the above choices of Q(l)

xl and (U, V ). Thus, formally for n = 1
we let Lπ be the trivial generator and for n > 1 and l ∈ [n] we set

Lπ =
1

n

n∑
l=1

L(l) (7.5)

with

L(l)(x, y) =

{
P (U = y6=l |V = x 6=l)P (Xl 6= xl) if xl 6= yl,

Lπl(x6=l, y6=l) else,
(7.6)

for x 6= y, where (U, V ) is the coupling of π(p6=l, k− yl) and π(p 6=l, k−xl) given by Lemma 7.1, and
πl = π(p 6=l, k − yl) (again the diagonal elements are adjusted so that the row sums vanish).

Then, the results by Hermon and Salez, specialized to Lπ give

Proposition 7.2. The generator Lπ constructed according to (7.5) generates a reversible flip-swap
random walk with stationary measure π such that ρ(Lπ) ≥ 1 and ∆(Lπ) ≤ 2k.

Our main result concerning conditional Bernoulli distributions, underlying all the results from
Section 3 is

Theorem 7.3. The generator Lπ constructed according to (7.5) with stationary measure π satisfies
the stability condition (4.7) with R = 2.

Proof of Theorem 7.3: We proceed by induction in the dimension n.
For n = 1 the only possibilities are k = 0 and k = 1 and in both cases the left-hand side of (4.7)

vanishes. Thus, the stability condition (4.7) is satisfied with any nonnegative R.
Assume the induction hypothesis holds for n− 1 and fix x ∈ suppπ and i ∈ [n]. We may and do

assume that k ∈ {1, . . . , n− 1} as otherwise Lπ trivializes.
Since ρ(Lπ) ≥ 1, it is enough to show that

max
x∈suppπ; i∈[n]

∑
y : yi 6=xi

Lπ(x, y) ≤ 2. (7.7)

As in the definition of Lπ we will denote by X a random variable with distribution π.

If xi = 0, then by (7.5),

∑
y : yi 6=xi

Lπ(x, y) =
∑

j : xj=1

1

n

n∑
l=1

L(l)(x, xij)

=
1

n

∑
j : xj=1

∑
l∈[n]\{i,j}

L(l)(x, xij) +
1

n

∑
j : xj=1

L(i)(x, xij)

+
1

n

∑
j : xj=1

L(j)(x, xij),

(7.8)

where we recall that xij = x+ ei − ej . We estimate each term on the right hand side separately.
For l ∈ [n] let ζl be the unique increasing bijection between [n] \ {l} and [n− 1]. If l 6= i, j, then

for y = xij we have yl = xl and so, by (7.6), L(l)(x, y) = Lπl(x 6=l, y6=l), where πl = π(p6=l, k − xl).
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Thus, denoting rl = ζl(i), we get

1

n

∑
j : xj=1

∑
l∈[n]\{i,j}

L(l)(x, xij) =
1

n

∑
l∈[n]\{i}

∑
j 6=l : xj=1

Lπl(x 6=l, (x
ij)6=l)

=
1

n

∑
l∈[n]\{i}

∑
y∈Bn−1 : yrl 6=(x 6=l)rl

Lπl(x 6=l, y) ≤ n− 1

n
· 2, (7.9)

where the last inequality follows from the induction assumption applied to πl.
The second term of (7.8) is estimated again using the definition (7.6). Indeed, if xj = 1, then for

y = xij we have xi 6= yi. Thus, recalling that (U, V ) is a coupling between the laws L(X6=i |Xi = 1)
and L(X6=i |Xi = 0) such that V . U , we obtain

1

n

∑
j : xj=1

L(i)(x, xij) =
1

n

∑
j : xj=1

P
(
U = (xij) 6=i |V = x 6=i

)
P (Xi 6= xi)

=
1

n
P
(
Xi = 1

)
≤ 1

n
.

(7.10)

Let us pass to the last term of (7.8). We stress that this is the crucial part of the proof, the only
one in which we use the specific form of the coupling (U, V ) used in the construction of Lπ.

To estimate this last term we use (7.1) from Lemma 7.1 combined with the fact that if xi = 0
and xj = 1, then for y = xij , yj = 0 6= xj and so (U, V ) from (7.6) is the coupling between the
laws π(p6=j , k) and π(p 6=j , k − 1) given by Lemma 7.1 (in dimension n − 1). For j ∈ [n] consider a
Bn−1-valued random vector Z(j) ∼ L(X6=j |Xj = 0) = π(p 6=j , k). Note also that since X,x have the
same number of ones, we have

n∑
l=1

1{Xl=0}1{xl=1} =
n∑
l=1

1{Xl=1}1{xl=0}. (7.11)

Putting all the above observations together and using Lemma 7.1 together with (7.6) in the first
step, we obtain

1

n

∑
j : xj=1

L(j)(x, xij) =
1

n

∑
j : xj=1

E
[ 1{Z(j)

i =1}∑
l 6=j 1{Z(j)

l =1}1{xl=0}

]
P
(
Xj = 0

)
=

1

n

∑
j : xj=1

E
[
1{Xi=1}

1{Xj=0}∑
l 6=j 1{Xl=1}1{xl=0}

]
xj = 1

=
1

n

∑
j : xj=1

E
[
1{Xi=1}

1{Xj=0}∑
l 1{Xl=1}1{xl=0}

]
(7.11)

=
1

n

∑
j : xj=1

E
[
1{Xi=1}

1{Xj=0}∑
l 1{Xl=0}1{xl=1}

]
=

1

n
P
(
Xi = 1

)
≤ 1

n
.

(7.12)

Combining the estimates (7.9), (7.10) and (7.12) with (7.8) yields (7.7) and thus the stability
condition (4.7) with R = 2 in the case xi = 0. The case xi = 1 is analogous, the main difference
being that in (7.12) we use (7.2) in place of (7.1) from Lemma 7.1.

Together the two cases give the induction step and conclude the proof of the theorem. �

We conclude this section with the proof of Lemma 7.1.



Concentration for negatively dependent binary random variables 1311

Proof of Lemma 7.1: For x ∈ Bn, let κ(x) =
∑

i xi and let B be a vector of independent Bernoulli
random variables with probabilities of success given by p = (p1, . . . , pn). Consider three Bn-valued
random variables: Ẑ ∼ L(B |κ(B) = k), Z ′ ∼ L(B |κ(B) = k−1) and Z such that for all x, y ∈ Bn,

P(Z = y|Z ′ = x) = h(y, x), (7.13)

where

h(y, x) = E
[ 1{Ẑr=1}∑

l 1{Ẑl=1}1{xl=0}

]
if y = x+er for some r ∈ [n] and κ(x) = k−1, and h(y, x) = 0 otherwise. Note that for x ∈ Bn such
that κ(x) = k− 1,

∑
l 1{Ẑl=1}1{xl=0} > 0 with probability one, so h(y, x) is well-defined. Moreover,

for such x, ∑
y∈Bn

h(y, x) =
∑

r : xr=0

h(x+ er, x) = 1,

which guarantees the existence of the couple (Z,Z ′) satisfying (7.13). Thus, to prove (7.1) it is
enough to show that Z ∼ Ẑ, i.e., that

∑
x∈Bn h(y, x)P(Z ′ = x) = P(Ẑ = y) for any y ∈ Bn such

that κ(y) = k.
Observe that for any r ∈ [n] such that xr = 0 and κ(x) = k − 1,

P (Z ′ = x)

P(Ẑ = x+ er)
=

P (B = x)

P (B = x+ er)

P (κ(B) = k)

P (κ(B) = k − 1)
=

1− pr
pr

P (κ(B) = k)

P (κ(B) = k − 1)
. (7.14)

Moreover, for any f : Bn → R and r ∈ [n],

E
[
f(B)1{Br=1}

]1− pr
pr

= E
[
f(B + er)1{Br=0}

]
. (7.15)

We use (7.14) and (7.15) to get that for any such y and any r ∈ [n] such that yr = 1 and κ(y) = k,

h(y, y − er)P(Z ′ = y − er)
P(Ẑ = y)

(7.14)
= h(y, y − er)

1− pr
pr

P (κ(B) = k)

P (κ(B) = k − 1)

= E
[ 1{Br=1}1{κ(B)=k}

1{Br=1} +
∑

l 6=r 1{Bl=1}1{yl=0}

] (1− pr)/pr
P (κ(B) = k − 1)

(7.15)
= E

[ 1{Br=0}1{κ(B)=k−1}

1{Br=0} +
∑

l 6=r 1{Bl=1}1{yl=0}

] 1

P (κ(B) = k − 1)

= E
[ 1{Br=0}1{κ(B)=k−1}

1{Br=0} +
∑

l 6=r 1{Bl=0}1{yl=1}

] 1

P (κ(B) = k − 1)

= E
[ 1{Z′r=0}∑

l 1{Z′l=0}1{yl=1}

]
,

(7.16)

where the penultimate step comes from the fact that for any u, v such that κ(u) = κ(v) one has∑
1{u=0}1{v=1} =

∑
1{u=1}1{v=0} applied to u = ξr(B), v = ξr(y), where ξr is the projection from

Bn to Bn−1 obtained by skipping the r-th coordinate (note that if Br = 0 and κ(B) = k − 1 then
κ(u) = κ(v) = k − 1). Therefore, by (7.16),∑

x h(y, x)P(Z ′ = x)

P(Ẑ = y)
=

∑
r : yr=1 h(y, y − er)P(Z ′ = y − er)

P(Ẑ = y)
= 1,

which completes the proof of (7.1). The equality (7.2) follows again by (7.16). �
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