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Abstract. We consider the Norros-Reittu random graph NRn(w), where edges are present inde-
pendently but edge probabilities are moderated by vertex weights, and use probabilistic arguments
based on martingales to study component sizes in this model when considered at criticality. In
particular, we obtain stronger bounds (with respect to those available in the literature) for the
probability of observing an unusually large maximal cluster and simplify the arguments needed to
derive (polynomial) bounds for the probability of observing an unusually small largest component.

1. Introduction

During the last few decades, much attention in the field of random graphs has been devoted to
create models capable of capturing the complexity of real-world networks. In Newman (2005) it
has been observed that many real-world networks are inhomogeneous, in the sense that they may
contain distinct groups of vertices behaving differently from a probabilistic point of view.

Inhomogeneous random graphs are random graph models in which edges are present indepen-
dently and the probability of presence of a given edge depends on the vertices incident to it. Such
random graphs were studied extensively in the seminal paper by Bollobás, Janson and Riordan
(Bollobás et al., 2007). In this paper (see Theorem 3.1 in Bollobás et al. (2007)) the size of the
largest components was analysed in the sub- and super-critical regimes. The class of models studied
in Bollobás et al. (2007) is very general and includes previous inhomogeneous random graphs like
the one introduced in Bollobás et al. (2005).

Other models of inhomogeneous random graphs were considered in Chung and Lu (2002, 2003,
2006), Norros and Reittu (2006), and in Britton et al. (2006). These models are called rank-1
inhomogeneous random graphs in Bollobás et al. (2007); see section 16.4 in Bollobás et al. (2007)
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for a discussion about how these models are related to the general inhomogeneous random graph
studied there.

van der Hofstad (2013) considered the Norros-Reittu model, in which vertices are endowed with
weights and each edge is present between a pair of distinct vertices (independently and) with a
probability that is approximately proportional to the product of the weights of the vertices in the
edge, and analysed component sizes in this model when considered at criticality. In particular,
in van der Hofstad (2013) it has been shown how the size of the largest components depends
sensitively on the asymptotic degree sequences of these graphs, i.e the sequences formed by the
limiting proportions of vertices with degree k, for k ≥ 1.

During the last years inhomogeneous random graphs were further investigated by Kang, Koch
and Pachon (Kang et al., 2015), Penrose (2018), and Kang, Pachon and Rodriguez (Kang et al.,
2018).

In the former work, the authors studied the near-critical behaviour of the so-called 2-type binomial
random graph. In this model, each one of the n vertices is either of type 1 or 2, so n = n1 +n2 where
ni is the number of vertices of type i = 1, 2. An edge between a pair of vertices of types i and j is
present with probability pi,j (i, j = 1, 2), independently of all other pairs. In the weakly supercritical
regime, i.e. when the distance to the critical point characterising the phase transition is given by
an ε = εn1,n2 → 0 (n1 ≥ n2 →∞), the behaviour of the random graph depends very sensitively on
the model parameters and, as a consequence, it could not be analysed using the parametrization
in Bollobás et al. (2007). However, the authors managed to show in Kang et al. (2015), that with
probability tending to one, the size of the largest component in this regime contains asymptotically
(2 + o(1))εn vertices and all other components are of size o(εn), whenever ε3n2(1∧ ε−1p2,1n1)→∞.

Concerning the work in Penrose (2018), the author considered a graph on randomly scattered
points in an arbitrary space in which any two elements v and u in this space are connected with
a probability depending on the points v and u, and studied the number of vertices of fixed degree,
the number of components of fixed order, and the number of edges.

Concerning Kang et al. (2018), instead, the authors considered an inhomogeneous random graph
obtained in a constructive way from the Erdős-Rényi random graph. Specifically, in their model the
n vertices of the Erdős-Rényi graph are grouped into N subsets of {1, . . . , n}, called super-vertices,
and then they defined a random graph on the N super-vertices by letting any two of them being
connected if, and only if, there is at least one edge between them in the Erdős-Rényi graph. For this
model, they studied the degree distribution, the threshold for connectedness, and further identified
the phase transition for the emergence of the giant component.

In this paper we consider the critical Norros-Reittu random graph as described in van der Hof-
stad (2013) and adapt the martingale method introduced by Nachmias and Peres (2010b,a) (used
by the authors to to study component sizes in the near-critical Erdős-Rényi random graph and
in the random graph obtained through near-critical percolation on a (simple) random d-regular
graph) to analyse the critical behaviour of the Norros-Reittu model (see also Joos and Perarnau
(2018), De Ambroggio (2022) and De Ambroggio and Roberts (2022, 2023) for recent results in this
direction).

In particular, we show that the martingale method of Nachmias and Peres yields better upper
bounds for the probability of observing unusually large maximal components with respect to those
established in van der Hofstad (2013) (provided we strengthen a condition related to the distribution
function that specifies the vertex weights, as we explain later).

We also derive upper bounds for the probability of observing unusually small maximal compo-
nents. Even though the latter bounds are not stronger than those in van der Hofstad (2013), our
proofs only rely on probabilistic arguments and avoid some of the involved analytical calculations
used in van der Hofstad (2013).

A similar approach to the one introduced by Nachmias and Peres (2010b,a) was used in Hatami
and Molloy (2012) to analyse the critical behaviour of a random graph with a given degree sequence.
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However, to the best of our knowledge, the martingale argument of Nachmias and Peres has never
been used to analyse inhomogeneous random graphs.

Structure of the paper. We start by formally introducing the model in Section 2, and proceed
by stating our main results in Section 3. Subsequently, in Section 4, we describe a connection
between clusters exploration in the random graph model considered in this paper and a particular
class of branching processes, and we conclude with Section 5 where we prove our results.

Notation. We denote by N0 the set of non-negative integers and set [n] := {1, . . . , n} for n ∈ N.
Given two sequences of real numbers (xn)n and (yn)n we write xn = O(yn) provided that, for all
large enough n, we have xn ≤ Cyn for some finite constant C > 0. We either write xn = o(yn) or
xn � yn if xn/yn → 0 as n→∞, and we write xn � yn if xn = O(yn) and yn = O(xn). Given any
two real numbers a and b, we set a ∧ b := min{a, b} and a ∨ b := max{a, b}. If G = (V (G), E(G))
is a (simple, undirected) graph, we write v ↔ u if there exists a path of occupied edges connecting
vertices v and u; we adopt the convention that v ↔ v for every vertex v. Moreover, we denote by
C(v) := {u ∈ V (G) : u ↔ v} the connected component (or simply component, cluster) of vertex v.
We denote the size of C(v) by |C(v)|, and define a largest component Cmax to be any cluster C(v)
for which |C(v)| is maximal; hence |Cmax| = maxv∈V (G)|C(v)|. The letters C,C ′, C ′′, c, c′, c′′ etc. are
reserved for constants appearing throughout the proofs, and each one of them could be used many
times in a single proof even though its actual value may change from line to line.

2. The model of Norros and Reittu

The random graph model that we investigate has vertex set [n] and vertices are endowed with
weights, which are used to model the tendencies of vertices to establish connections with other
nodes. Specifically, let w = (wi)i∈[n] be a sequence of positive real numbers, which we call the
sequence of vertex weights. Define ln :=

∑
i∈[n]wi, the sum of all weights.

The Norros-Reittu random graph, denoted by NRn(w) = ([n], E(w)) and introduced in Norros
and Reittu (2006), is an inhomogeneous random graph where, for 1 ≤ i < j ≤ n, the probability
that the edge ij is present is given by

P(ij ∈ E(w)) = 1− e−wiwj/ln , (2.1)

and edges are present independently. As explained in Janson (2010) and further remarked in section
1.3.5 in van der Hofstad (2013), the NRn(w) random graph is closely related to the model studied
in Chung and Lu (2002, 2003, 2006), so that the results proved for the NRn(w) random graph
apply as well to these other models.

It is intuitively clear that the topology of the graph is highly dependent upon the choice of the
sequence w, which we now specify.

Let F : R 7→ [0, 1] be a distribution function. We construct the weights as in van der Hofstad
(2013), namely we set

wj := [1− F ]−1(j/n), j ∈ [n], (2.2)
where [1− F ]−1 is the generalized inverse of 1− F , defined by [1− F ]−1(1) := 0 and

[1− F ]−1(u) := inf{s : 1− F (s) ≤ u}, u ∈ (0, 1). (2.3)

Notice that wi ≥ wi+1 for all 1 ≤ i ≤ n−1. Indeed, if 1−F (s) ≤ i/n then clearly 1−F (s) ≤ (i+1)/n
too, and therefore {s : 1− F (s) ≤ i/n} ⊂ {s : 1− F (s) ≤ (i+ 1)/n}, so that taking the infimum in
both sets we obtain wi ≥ wi+1.

In Bollobás et al. (2007) it has been shown that in the random graph NRn(w) with vertex weights
as in (2.2), the number of vertices having degree k, denoted by Nk, satisfies (as n→∞)

Nk

n

P−→ pk := E
(
e−W

W k

k!

)
k ≥ 0,
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where W is a (0,∞)-valued random variable with distribution function F (and P→ stands for con-
vergence in probability). We recognize the limiting sequence (pk)k≥0 as a so-called mixed Poisson
distribution with mixing distribution F . (Given a random variable Z with distribution function FZ ,
we say that X follows a mixed Poisson distribution with mixing distribution FZ when, conditionally
on Z = z, X is distributed as a Poisson random variable with mean z.)

In order to describe the phase transition in this model, we introduce the parameter

ν := E(W 2)/E(W ). (2.4)

As we explain in Section 4 (in particular, see Remark 4.3) this positive real number corresponds
to the (asymptotic) mean of the offspring distribution in a branching process approximation of the
clusters exploration in NRn(w).

In Bollobás et al. (2007) it was shown that the graph undergoes a phase transition as ν passes 1.
In particular, if ν > 1 the largest component contains approximately nγ vertices (where γ ∈ (0, 1)),
whereas if ν ≤ 1 a largest component contains a vanishing proportion of vertices. When ν > 1 the
random graph is said to be super-critical, whereas when ν < 1 it is called sub-critical. Finally, when
ν = 1, the random graph is said to be critical.

In van der Hofstad (2013) the author provided a complete picture of the component structure in
the critical NRn(w) model when 1− F (x) = P(W > x) decays as a power law and w = (wi)i∈[n] is
as in (2.2).

More specifically, in van der Hofstad (2013) (Theorems 1.1 and 1.2) it was shown that when ν = 1
and

1− F (x) ≤ cFx−(τ−1) (x ≥ 0) (2.5)

for some constants cF > 0, τ > 4, then there is a constant b > 0 such that, for any A > 1 and for
all n ≥ 1, the NRn(w) random graph satisfies

P(A−1n2/3 ≤ |Cmax| ≤ An2/3) ≥ 1− b/A. (2.6)

On the other hand, when ν = 1 and

lim
x→∞

x−(τ−1)(1− F (x)) = cF (2.7)

for some constants cF > 0, τ ∈ (3, 4), then there exists a constant b > 0 such that for any A > 1
and for all n ≥ 1, the NRn(w) model satisfies

P(A−1n(τ−2)/(τ−1) ≤ |Cmax| ≤ An(τ−2)/(τ−1)) ≥ 1− b/A. (2.8)

(Actually in van der Hofstad (2013) it is established a more general result, namely that (2.6) and
(2.8) remain valid also after a small perturbation of the vertex weights; see Theorems 1.1 and 1.2 in
van der Hofstad (2013).)

For an explanation of the critical behaviour described by (2.6) and (2.8), see section 1.3 in van der
Hofstad (2013), where the author also provided an heuristic description concerning the scaling limit
of cluster sizes in both regimes τ ∈ (3, 4) and τ > 4, studied extensively in Bhamidi et al. (2010)
and Bhamidi et al. (2012). (See also Dhara et al. (2017) for recent results concerning the scaling
limits in the critical configuration model.)

3. Results

Our main results are the following three theorems, which we prove using probabilistic arguments
based on martingales along the lines in Nachmias and Peres (2010b,a).

Theorem 3.1. Let w = (wi)i∈[n] be defined as in (2.2). Suppose that there exist constants τ > 4

and cF > 0 such that 1 − F (x) ≤ cFx
−(τ−1) for all x ≥ 0. Then, for any A ≥ 1 and for all large
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enough n we have

P(|Cmax| > An2/3) ≤ c1

A
(3.1)

and
P(|Cmax| < n2/3/A) ≤ c2

A1/4
, (3.2)

where c1, c2 > 0 are finite constants which depend on cF and τ .

Strengthening our assumption on the distribution function F which specifies the vertex weights
wi through (2.2), we can prove a similar result for the case τ ∈ (3, 4). In particular, for the next
two results we assume that there are constants cF > 0 and τ ∈ (3, 4) such that

F (x) = 1− cFx−(τ−1) for x ≥ c1/(τ−1)
F and F (x) = 0 for x < c

1/(τ−1)
F . (3.3)

As discussed in Bhamidi et al. (2012), in this case we have

E(W ) = c
1/(τ−1)
F

τ − 1

τ − 2
and E(W 2) = c

1/(τ−1)
F

τ − 1

τ − 3
,

whence

ν =
E(W 2)

E(W )
= c

1/(τ−1)
F

τ − 2

τ − 3
.

Therefore criticality is reached when c1/(τ−1)
F = (τ − 3)(τ − 1)−1. The main advantage for assuming

an explicit analytical form for 1 − F (x) as given by (3.3) is that, in this case, we have an exact
expression for the vertex weights, which helps the computations.

Theorem 3.2. Let w = (wi)i∈[n] be defined as in (2.2). Suppose that there exist constants τ ∈ (3, 4)
and cF > 0 such that (3.3) holds. Then, for any A ≥ 1 and for all large enough n, we have

P
(
|Cmax| > An(τ−2)/(τ−1)

)
≤ c3

A
, (3.4)

and

P
(
|Cmax| < n(τ−2)/(τ−1)/A

)
≤ c4

A
, (3.5)

where c3, c4 > 0 are finite constants which depend on cF and τ .

Remark 3.3. Throughout the rest of the article, sometimes we keep writing that constants depend on
τ and cF even though, in the case where (3.3) is assumed, the dependence is only in terms of τ since
in this case, as we have seen earlier, criticality (ν = 1) is reached when c1/(τ−1)

F = (τ − 3)(τ − 1)−1.

Remark 3.4. With some extra effort it would be possible to provide an expression for the constants
ci which appear in the statements of Theorems 3.1 and 3.2. However, we refrained to do so in order
to provide simpler calculations.

Next result shows that we can considerably improve the polynomial upper bounds which appear
in (3.1) and (3.4). To achieve this, however, we need to have at our disposal the precise analytical
form of 1− F (x) in both cases τ ∈ (3, 4) and τ > 4. That is, we need to assume that (3.3) holds in
both regimes. We believe though that the exponential bounds displayed in the next result can be
achieved without assuming (3.3). In particular, for the case τ > 4, assuming 1− F (x) ≤ cFx−(τ−1)

would suffice to obtain exponential tail probabilities.
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Theorem 3.5. Let w = (wi)i∈[n] be defined as in (2.2). Suppose that there exist constants τ > 3
and cF > 0 such that (3.3) holds. Then there exist constants n0 ∈ N and A0 ≥ 1 such that the

following statements hold. If τ > 4 then, for any A0 ≤ A = O
(
n

(τ−4)∧1
3(τ−1)

)
and for all n ≥ n0, we

have
P(|Cmax| > An2/3) ≤ c5

A
e−c6A

2(A−4),

for some finite constants c5, c6 > 0 which depend on τ . If 3 < τ < 4 then, for any A0 ≤ A =

O

(
n

(5−τ)
3(τ−1)

)
and for all n ≥ n0, we have

P(|Cmax| > An
τ−2
τ−1 ) ≤ c7

A
e−c8A,

for some finite constants c7, c8 > 0 which depend on τ .

Remark 3.6. We remark that it would be possible to provide expressions for the constants c6, c8

which appear in the argument of the exponential functions in the previous theorem; for instance,
we can compute that

c6 =

(
τ−2
τ−1

)2
128
(E(W 3)

E(W ) + 4
) .

However, most likely these constants are not the exact constants in the asymptotic expansion of
P(|Cmax| > k), whence we preferred to report only the dependence on A that we managed to obtain
with the martingale method. Moreover, the constant A0 could also be computed (actually do so in
our proof); but we preferred to be a bit less precise for the sake of readability.

Remark 3.7. Comparing our estimates in (3.1) and (3.4) with those appearing in (2.6) and (2.8),
we see that our arguments allow us to recover the bounds in van der Hofstad (2013) provided
that, for the case τ ∈ (3, 4), we strengthen our assumption concerning the distribution function
F which specifies the vertex weights. Indeed, for the case τ ∈ (3, 4), van der Hofstad (2013) only
assumed that limx→∞ x

τ−1(1 − F (x)) = cF , whereas in our proof of Theorem 3.2 we make use of
the precise analytical form of F (x) for every x, and not only for large x, whence the assumption
limx→∞ x

τ−1(1 − F (x)) = cF does not suffice. Under this stronger assumption, however, we can
considerably strengthen the polynomial bounds stated in (3.1) and (3.4), as we manage to obtain
exponential upper bounds as illustrated in Theorem 3.5. On the other hand, our upper bound in
(3.2) for the probability of observing an unusually small maximal component for the case τ > 4 is
weaker with respect to the one established in van der Hofstad (2013), but our proof only rely on
probabilistic arguments and do not require involved analytical calculations as in van der Hofstad
(2013).

To prove our main results we exploit a connection (which we describe in the next section) between
clusters exploration inNRn(w) and a suitable family of branching processes, first appeared in Norros
and Reittu (2006) and also used in van der Hofstad (2013).

4. Branching process approximation of clusters exploration

We start by describing the clusters exploration in NRn(w) and subsequently we construct branch-
ing processes for which the exploration of (reduced versions of) their generated trees resembles that
of components in the random graph NRn(w). More specifically, we begin by describing three alter-
natives procedures to explore clusters in the NRn(w) model, which we callAlg.1, Alg.2 andAlg.3,
and subsequently we compare these three approaches to other three procedures, called Alg.1.BP,
Alg.2.BP and Alg.3.BP, which we later use to explore the above-mentioned branching process
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trees. In particular, we use Alg.1 and Alg.1.BP to prove our upper bounds for the probability
of observing unusually large maximal components in both ranges τ ∈ (3, 4) and τ > 4, while we
use Alg.2 and Alg.2.BP to bound the probability of observing unusually small maximal clusters
for the case τ > 4. The probability of observing unusually small maximal components for the
case τ ∈ (3, 4) is analysed by means of Alg.3 and Alg.3.BP. These three approaches only differ
in the way we choose the vertex from which we start exploring. Indeed, with Alg.1 we start the
exploration from a vertex selected uniformly at random, whereas in Alg.2 the vertex from which
we start the procedure is selected with probability proportional to its weight. Finally, in Alg.3
we (deterministically) start the procedure from vertex 1. In due course we will explain why these
three similar, yet different explorations are indeed useful for us. Our descriptions somehow follow
the one appearing in De Ambroggio and Roberts (2022); see also Nachmias and Peres (2010b),
De Ambroggio (2022) and references therein.

Let G = ([n], E) be any simple (undirected) random graph. During our exploration process,
each vertex will be active, explored or unseen and its status will change during the course of the
procedure. At each time t ∈ [n], a vertex is explored, so that at time t there are t explored vertices.
In particular, at time t = n all vertices in G are in status explored.

The exploration starts from a vertex Vn, which is selected in different ways according to the
algorithm at hand, as we now describe. In Alg.1, the vertex Vn is sampled uniformly at random
from the vertex set [n]; in Alg.2, we let Vn = i with probability wi/ln for i ∈ [n] (where we recall
that ln =

∑n
j=1wj is the sum of all weights); finally, in Alg.3 we (deterministically) choose Vn = 1.

At time t = 0 we set Vn to active and all the other vertices are declared unseen. Denote the set
of unseen, active and explored vertices at the end of step t, by Ut, At and Et, respectively. Hence
we have that A0 = {Vn}, U0 = [n] \ {Vn}, and E0 = ∅ (the empty set). At time t = 1 we reveal all
the unseen neighbours of Vn; that is, we reveal all the vertices directly connected to Vn in G. If we
denote by U∗1 this subset of U0, then we have U∗1 = {j ∈ U0 : Vn ∼ j}. Change the status of the
vertices in U∗1 to active and declare Vn explored, so that A1 = U∗1 , E1 = {Vn} and U1 = [n]\(A1∪E1).
Then we continue in this fashion. Namely, for every t > 1, we proceed as follows.

(a) If |At−1| ≥ 1 (i.e. if there is at least one active vertex at the end of step t− 1), we let ut be
the vertex in At−1 with the smallest label.

(b) If |At−1| = 0 and |Ut−1| ≥ 1, we let ut be a vertex chosen from Ut−1 = [n] \ Et−1 (the set of
unseen vertices at the end of step t− 1) with probability proportional to its weight, i.e. we
let ut = j with probability wj/l′n(t), where l′n(t) :=

∑
i∈[n]\Et−1

wi.
(c) If |At−1| = 0 = |Ut−1| then Et−1 = [n]; that is, all the vertices have been explored and we

halt the procedure.
Then we set

U∗t :=

{
{j ∈ Ut−1 : ut ∼ j}, if |At−1| ≥ 1

{j ∈ Ut−1 \ {ut} : ut ∼ j}, if |At−1| = 0,

we change the status of the vertices in U∗t to active and declare ut explored, so that At = (U∗t ∪
At−1) \ {ut}, Et = Et−1 ∪ {ut} and Ut = [n] \ (At ∪ Et).

Observe that

|At| =

{
|At−1|+ |U∗t | − 1, if |At−1| ≥ 1

|U∗t |, if |At−1| = 0.
(4.1)

Set t0 := 0 and denote by (ti : i ≥ 1) the ordered times (prior to n) at which the set of active
vertices becomes empty, so that |Atj | = 0 for each j. By (4.1) we see that

|Atj−1+t| = 1 +

t∑
i=1

(
|U∗tj−1+i| − 1

)
, 1 ≤ t ≤ tj − tj−1. (4.2)
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Also, denoting by Cj the j-th explored component (so that C1 = C(Vn)), we have that |Cj | = tj−tj−1

for all j.
Therefore, thanks to the exploration process that we have just described, we can rewrite the

probability of observing clusters of given sizes as the probability that the positive excursions of the
random process (|At|)t last for some specific number of steps.

Our next goal is to construct mixed Poisson branching processes for which the exploration of
their (reduced) trees resembles that of clusters in the NRn(w) random graph.

Before starting, let us introduce a random variable M with distribution

P(M = m) =
wm
ln

(m ∈ [n]); (4.3)

we call the law of M the mark distribution, and in this context elements of [n] are called marks.
The idea is to construct, sequentially, mixed Poisson branching processes and to explore thinned

versions of the their generated trees so that the exploration of different trees is comparable (in
distribution) to the clusters exploration in the NRn(w) random graph.

As it occurred for the clusters exploration of NRn(w), also in this setting we distinguish between
three alternatives procedures, which differ in the way we choose the mark of the root in the tree
from which we start the exploration. As anticipated at the beginning of this section, the three
procedures are called Alg.1.BP, Alg.2.BP and Alg.3.BP.

During the exploration of these (reduced) branching process trees, we adopt the following nota-
tion. For each step t ∈ N0 of the procedure, we denote by ABPt the set of active marks and by EBPt
the set of explored marks at the end of step t.

We start by constructing a (mixed) branching process as follows. We assign to the root of the
tree, call it ρ, a mark J0, which is chosen in different ways according to the procedure employed.
Specifically, in Alg.1.BP we let J0 be a mark selected uniformly at random from the mark space
[n]; in Alg.2.BP instead, we let J0 = i with probability wi/ln, for i ∈ [n]; finally, in Alg.3.BP
we (deterministically) choose J0 = 1. We give to ρ a Poisson(wJ0) number of children, say Yρ.
Iteratively, to the i-th individual in generation g ≥ 1 (if any) we assign a random mark Jgi distributed
as M in (4.3) and a Poisson(wJgi ) number of children, say Y g

i . Marks are assigned independently,
and they’re also independent of the marks produced in previous generations; moreover, vertices
produce offspring independently, so that the Y g

i are independent random variables. In particular,
we see that the Y g

i are i.i.d. since the (random) marks are all distributed as M . However, note that
in both settings where the mark J0 is sampled uniformly at random from [n] (i.e. when Alg.1.BP
is used) and when J0 is deterministically set equal to 1 (i.e. when Alg.3.BP is employed), then Yρ
is not distributed as the Y g

i , even though the random variables Yρ, Y
g
i are all independent.

The exploration starts as follows. At time t = 0, we declare J0 active (whence ABP0 = {J0}) and
we set EBP0 := ∅. For every t ∈ N, we proceed as follows.

(a) If |ABPt−1| ≥ 1 (i.e. if there is at least one active mark at the end of step t − 1), we let
mBP
t be the smallest element of ABPt−1 and denote by vt the corresponding vertex. Note that

mBP
1 = J0 and v1 = ρ.

(b) If |ABPt−1| = 0 and EBPt−1 6= [n] (so that there are still marks to be explored), we start exploring a
new mixed branching process tree defined as follows. We letmBP

t be a random mark selected
from [n]\EBPt−1 (the set of unexplored marks at the end of step t−1) with probability wj/l′n(t),
where l′n(t) :=

∑
i∈[n]\EBPt−1

wi, and we assign it to a vertex vt that constitutes the root of the
new tree. (Note that we have used the same notation for the sum of unexplored weights and
the sum of unexplored vertices in the clusters exploration; however, this should not cause
any confusion.) Then we give to vt a Poisson(wmBPt ) number of children. Iteratively, to
the i-th individual in generation g ≥ 1 (if any), we assign a random mark Jgi distributed
as M and a Poisson(wJgi ) number of children, say Y g

i . Marks are assigned independently
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to individuals in each generation, and they’re also independent of the marks produced in
previous generations; moreover, vertices produce offspring independently, so that the Y g

i are
independent random variables. In particular we see that the Y g

i are i.i.d. since the (random)
marks are all distributed as M , but the offspring of the root is not distributed like the Y g

i
(even though it is independent of these random variables).

(c) If |ABPt−1| = 0 and EBPt−1 = [n], then all the marks are in status explored and we stop the
procedure.

Denote by Jvt1 , . . . , J
vt
Xvt

the marks of the children (if any) of vertex vt, where Xvt denotes the
number of children of vt. DefineMt := {Jvtl : 1 ≤ l ≤ Xvt}, the collection of all marks assigned to
the children of vt. Note that |Mt| = Xvt .

Moreover, we construct another set of marks M̃t ⊂Mt as follows. If Xvt = 0 then we simply set
M̃t = ∅, otherwise we define:

• Lvt0 := ∅;
• Lvtl := (Jvt1 , . . . , J

vt
l ) for 1 ≤ l ≤ Xvt ,

and let (for 1 ≤ l ≤ Xvt)

Jvtl ∈ M̃t ⇔ Jvtl /∈ (ABPt−1 ∪ {mBP
t }) ∪ EBPt−1 ∪ L

vt
l−1. (4.4)

In words, the l-th mark Jvtl is added to the set M̃t if, and only if, it did not appear at a previous
step i ≤ t− 1 and it differs from its “sister marks”Jvt1 , . . . , J

vt
l−1 (if any).

Note that, if |ABPt−1| ≥ 1, then ABPt−1 ∪ {mBP
t } = ABPt−1 as mBP

t is taken from ABPt−1. On the other
hand, if |ABPt−1| = 0, then according to (4.4) we (rightfully) do not include within M̃t those marks
assigned to the children of vt which are equal to mBP

t , the mark of (their parent) vt.
By our construction, Mt is the set of all marks assigned to the children of vt, while M̃t is the

set of distinct marks of these offspring which also differ from all the marks that we have seen up to
the end of step t− 1.

We declare active all marks in the set M̃t and we eliminate from the tree all sub-trees rooted
at those children of vt whose marks have not been inserted into M̃t. We conclude step t by
declaring explored the mark mBP

t . Therefore we update ABPt = (M̃t ∪ABPt−1) \ {mBP
t } and EBPt =

EBPt−1 ∪ {mBP
t }. Note that at each step we explore precisely one mark.

Set τ0 := 0 and denote by (τi : i ≥ 1) the ordered times (prior to the termination of the procedure
that we have just described) at which the set of active marks becomes empty, so that |ABPτj | = 0
for all j. Observe that

|ABPt | =

{
|ABPt−1|+ |M̃t| − 1, if |ABPt−1| ≥ 1

|M̃t|, if |ABPt−1| = 0.
(4.5)

By (4.5) we see that

|ABPτj−1+t| = 1 +
t∑
i=1

(
|M̃τj−1+i| − 1

)
, 1 ≤ t < τj − τj−1. (4.6)

The following proposition establishes the connection between the clusters exploration in NRn(w)
and the exploration of the (reduced) branching process trees that we have just described. (Recall
that Cj denote the j-th explored component in NRn(w).)

Proposition 4.1. For i ∈ {1, 2, 3}In distribution we have that |Cj | = τj − τj−1 for all j, provided
we use Alg.i and Alg.i.BP to explore NRn(w) and the branching process tress, respectively.
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The interested reader can find a proof of Proposition 4.1 in the appendix at the end of the paper.
We conclude this section with a few remarks concerning some of the quantities that we have just
introduced.

Let Wn be a random variable with distribution function

Fn(x) :=
1

n

n∑
i=1

1{wi≤x}. (4.7)

Observe that, when J0 is selected uniformly at random from [n], then

P(wJ0 ≤ x) =
n∑
i=1

1{wi≤x}P(J0 = i) = Fn(x),

so that wJ0
d
= Wn. Next we show that wM has the same law as the size-biased distribution of Wn

(where M is specified in (4.3)).

Definition 4.2. For a non-negative random variable X with E(X) ∈ (0,∞), define X∗ through

P(X∗ ≤ x) :=
E
(
X1{X≤x}

)
E(X)

. (4.8)

We call X∗ the size-biased distribution of X.

Observe that, since wJ0
d
= Wn,

E
(
Wn1{Wn≤x}

)
= E

(
wJ01{wJ0≤x}

)
=

1

n

n∑
i=1

wi1{wi≤x}.

Also, E(Wn) = E(wJ0) = ln/n, and therefore

P (W ∗n ≤ x) =
E
(
Wn1{Wn≤x}

)
E(Wn)

=
1

ln

n∑
i=1

wi1{wi≤x} =
n∑
i=1

1{wi≤x}P(M = i) = P(wM ≤ x).

Thus W ∗n
d
= wM .

Remark 4.3. Let us briefly explain why the parameter ν defined in (2.4) is the one characterizing
the phase transition in the NRn(w) random graph. Let W be a random variable with distribution
function F , and suppose that F satisfies either (2.5) or (2.7). Then E[W 2] <∞ and, by dominated
convergence, it is possible to show that (as n→∞) n−1

∑
i∈[n]w

2
i → E

[
W 2
]
. Also, n−1

∑
i∈[n]wi →

E(W ) (so that in particular ln = Θ(n)) and therefore

νn :=

∑
i∈[n]w

2
i

ln
=

∑
i∈[n]w

2
i∑

i∈[n]wi
−→ E(W 2)

E(W )
= ν.

Since the mean offspring distribution is νn = E(wM ) = E(W ∗n), we conclude that E(W ∗n) converges
to ν as n→∞; that is, ν is the asymptotic mean offspring distribution of the branching processes
whose trees have been used to approximate the clusters exploration in NRn(w). The idea is that
the reduced trees, whose exploration is equivalent in distribution to the clusters exploration in the
NRn(w) model, are sufficiently close to the original trees, so that their mean offspring distribution
is roughly νn. In turns, this tells us that the average number of newly discovered vertices at each step
of the exploration in NRn(w) is approximately νn ∼ ν. Therefore, the random graph is expected
to be critical precisely when ν = 1.

Remark 4.4. We also remark that, when the exponent τ characterising the power-law behaviour
of the distribution function F (which specifies the vertex weights) is such that τ ∈ (4,∞) then,
denoting by W a random variable with distribution function F , we have E(W 3) <∞. On the other
hand, if τ ∈ (3, 4) then E(W 3) is not finite.
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5. Proofs

In this section we are going to prove Theorems 3.1, 3.2 and 3.5. Before proving these results,
however, we list some useful facts in the next subsection.

5.1. Preliminaries. The proofs of the next few results are postponed to Subsection 5.4. We start
by establishing a simple lemma, which gives us information concerning the order of growth of the
vertex weights.

Lemma 5.1. Let τ > 3 and cF > 0. If (3.3) holds, then wi = (ncF /i)
1/(τ−1) for 1 ≤ i ≤ n− 1. If

1− F (x) ≤ cFx−(τ−1) for all x ≥ 0, then wi ≤ (ncF /i)
1/(τ−1); in particular, w1 = O

(
n1/(τ−1)

)
.

The next result provides bounds on |νn−1|, the distance between the mean offspring distribution
of the branching processes that we use to approximate the clusters exploration in NRn(w) and the
critical value ν = 1. In particular, the next result quantifies the rate of convergence of νn to 1 and
it also provides information concerning the second moment of W ∗n (the size-biased distribution of
Wn).

Proposition 5.2. Let W be a random variable with distribution F , let Wn be a random variable
with distribution Fn as in (4.7), and let W ∗n be its size biased distribution. Suppose that 1−F (x) ≤
cFx

−(τ−1) for all x ≥ 0, where τ > 3 and cF is a positive constant. Then, for all large enough n,
we have that

|νn − 1| ≤ C1n
− τ−3
τ−1 (5.1)

for some finite constant C1 > 0 which depends on cF and τ . In addition, if τ > 4 then, for all large
enough n, we have that ∣∣∣∣E((W ∗n)2)− E(W 3)

E(W )

∣∣∣∣ ≤ C2n
− τ−4
τ−1 (5.2)

for some finite constant C2 > 0 which depends on cF and τ .

Next we introduce a stochastic domination result (the counterpart of Lemma 5 in Nachmias and
Peres (2010b) in this inhomogeneous setting) which involves a random walk that later on we will use
to dominate the process arising from the exploration of the reduced trees generated by the mixed
Poisson branching processes of Section 4.

Let (Υi)i≥1 be a sequence of independent random variables, such that each Υi has a mixed
Poisson distribution with random parameter wMi , where (Mi)i≥1 is a sequence of independent
random variables, all distributed as M in (4.3), with wi as in (2.2). Set S0 := 1 and define, for
t ∈ N0,

St = 1 +

t∑
i=1

(Υi − 1). (5.3)

Given any H ∈ N, we set
γ := inf{t ≥ 1 : St = 0 or St ≥ H}. (5.4)

The next result, which is the counterpart of Lemma 5 in Nachmias and Peres (2010b), states that
the (conditional) law of the overshoot Sγ − H, given Sγ ≥ H, is stochastically dominated by the
Poisson(w1) distribution.

Lemma 5.3. Let H ∈ N, and let St and γ be as above. Let Yw1 be a Poisson random variable with
mean w1, and let Σ ⊂ N be a set of positive integers. Then, for any k ≥ 1, we have that

P(Sγ −H ≥ k|Sγ ≥ H, γ ∈ Σ) ≤ P(Yw1 ≥ k).

The following corollary is straightforward.
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Corollary 5.4. If Yw1 is a Poisson random variable with mean w1 and f is an increasing real
function, then with the notation of the previous lemma we have

E(f(Sγ −H)|Sγ ≥ H, γ ∈ Σ) ≤ E(f(Yw1)).

We conclude by recalling a basic result, the Optional Stopping Theorem, which we repeatedly
use in the sequel. Its proof can be found in any advanced probability textbook.

Theorem 5.5. Let (Xi)i∈N0 be a martingale and let τ1, τ2 be stopping times with 0 ≤ τ1 ≤ τ2.
Suppose that τ2 is bounded. Then

E(Xτ1) = E(Xτ2). (5.5)

If (Xi)i∈N0 is a submartingale then (5.5) has to be changed with E(Xτ1) ≤ E(Xτ2); if (Xi)i∈N0 is a
supermartingale, then (5.5) has to be changed with E(Xτ1) ≥ E(Xτ2).

5.2. Proof of Theorems 3.1, 3.2 and 3.5 – the probability of large maximal components. To prove
the results of this subsection, we explore clusters and branching process trees by means of Alg.1
and Alg.1.BP respectively; that is, we sample Vn and J0 uniformly at random from [n].

The upper bounds for the probabilities of observing maximal components containing more than
An2/3 and An

τ−2
τ−1 vertices stated in Theorems 3.1 and 3.2, respectively, are proved through Lemmas

5.6 and 5.7 below, which are unaffected by the specific value of τ (the exponent characterising the
power law decay of the distribution function F which specifies the vertex weights through (2.2)).

Specifically, with the first lemma we obtain an upper bound for the probability that |C(Vn)| is
larger than k, and then we use the second lemma to control an expected value which appears in our
upper bound for

P(|C(Vn)| > k). (5.6)

The upper bounds for the probabilities involving |Cmax| will be deduced from our upper bounds on
(5.6) by means of a standard argument, which consists in bounding the probability that |Cmax| > k
by the probability that there are more than k vertices lying in components containing at least k
nodes, and then using Markov’s inequality to bound the latter probability.

As a first step toward obtaining an upper bound for (5.6) we show how such probability can be
bounded from above by the probability that a random walk stays positive for k steps.

To this end note that, recalling the algorithmic procedure Alg.1.BP to explore the branching
process trees of Section 4, we have M̃t ⊂Mt (becauseMt is formed by all the marks of the children
of vt, whereas M̃t only contains those marks which did not appear at earlier steps). This implies
that |M̃t| ≤ |Mt| for all t and hence in particular

P(|C(Vn)| > k) = P
(

1 +

t∑
i=1

(
|M̃i| − 1

)
> 0 ∀t ∈ [k]

)
≤ P

(
1 +

t∑
i=1

(
|Mi| − 1

)
> 0 ∀t ∈ [k]

)
. (5.7)

Recall that the |Mi| = Xvi are independent random variables but they are not identically dis-
tributed. Indeed, |M1| has a Poisson(wJ0) distribution, with J0 uniformly distributed on [n],
whereas |Mi| (for 2 ≤ i ≤ k), on the event appearing in (5.7), has a mixed Poisson distribution
with random parameter wMi , where the marks Mi (i ≥ 2) are independent identically distributed
random variables with distribution as M in (4.3).

Thus, in order to obtain an upper bound for (5.7) involving a sequence of i.i.d. random variables,
we need to substitute |M1| with an independent mixed Poisson random variable with random
parameter wM1 , where M1 is distributed as M and is independent of (Mi)i≥2.
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To achieve this, let’s recall that if Z is any random variable and f, g are arbitrary increasing
functions, then E(f(Z)g(Z)) ≥ E(f(Z))E(g(Z)), see for instance Lemma 2.21 in Ross and Peköz
(2023). Therefore, if Z is a non-negative random variable with finite positive mean (so that we can
define its size-biased distribution), taking the increasing functions f(z) := z and g(z) := 1{z>x}, we
obtain E

(
Z1{Z>x}

)
≥ E(Z)P(Z > x), that is

P(Z∗ > x) =
E
(
Z1{Z>x}

)
E(Z)

≥ P(Z > x).

Therefore Z 4 Z∗, i.e. the random variable Z∗ stochastically dominates Z. Consequently, since
wJ0

d
= Wn and wM

d
= W ∗n (recall the discussion before Remark 4.3), then Wn 4W ∗n , and we obtain

that the random variable |M1|, which has the Poisson(wJ0) distribution, is stochastically dominated
by a mixed Poisson random variable with random parameter wM1 .

Now let (Υi)i≥1 be a sequence of independent random variables where each Υi has a mixed Poisson
distribution with random parameter wMi , with (Mi)i≥1 an i.i.d. sequence of random variables all
distributed as M in (4.3). From the previous paragraph we know that |M1| 4 Υ1, while |Mi| and
Υi are equal in distribution for i ≥ 2. Now consider the process defined in (5.3), where S0 := 1 and
Si := Si−1 + Υi − 1 for i ≥ 1, so that St = 1 +

∑t
i=1(Υi − 1), t ∈ N0. Since (|Mi|)i and (Υi)i are

sequence of independent random variables we obtain

P
(

1 +

t∑
i=1

(
|Mi| − 1

)
> 0 ∀t ∈ [k]

)
≤ P

(
St > 0 ∀ t ∈ [k]

)
. (5.8)

It follows from (5.7) and (5.8) that, in order to obtain an upper bound for P(|C(Vn)| ≥ k) which,
as we said earlier, we subsequently use to derive our upper bounds for the probabilities of observing
unusually large maximal clusters in both regimes τ ∈ (3, 4) and τ > 4, we need to estimate the
probability on the right-hand side of (5.8), i.e. the probability that a Z-valued random walk stays
positive for k ∈ N steps.

Lemma 5.6. Let k ≥ 1, and let H,H ′ be positive integers with H ′ ≥ k. Consider St as in (5.3)
and define

γ :=

{
inf{t < H ′ : St = 0 or St ≥ H} if {t < H ′ : St = 0 or St ≥ H} 6= ∅,
H ′ if {t < H ′ : St = 0 or St ≥ H} = ∅.

Then, setting γ∗ := γ ∧ k, we have

P(|C(Vn)| > k) ≤ P(Sγ∗ > 0) ≤ 1− (1− νn)E(γ)

H
+

E(γ)

k
. (5.9)

Proof : From (5.7) and (5.8) we can bound

P(|C(Vn)| > k) ≤ P(St > 0 ∀t ∈ [k])

≤ P(Sγ∗ > 0) + P(St > 0 ∀t ∈ [k], Sγ∗ ≤ 0)

= P(Sγ∗ > 0)

≤ P(Sγ∗ > 0, γ < k) + P(γ ≥ k)

≤ P(Sγ > 0, γ < k) +
E(γ)

k
. (5.10)

Observe that, if γ < k, then γ < H ′ (since H ′ ≥ k). If this happens and Sγ > 0, then we must have
Sγ ≥ H. Therefore we can bound

P(Sγ > 0, γ < k) ≤ P(Sγ ≥ H, γ < H ′) ≤ P(Sγ ≥ H). (5.11)
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Thus combining (5.10) and (5.11) we arrive at

P(|C(Vn)| > k) ≤ P(Sγ ≥ H) +
E(γ)

k
. (5.12)

The probability on the right-hand side of (5.12) can be bounded from above using Markov’s in-
equality; this is possible because Sγ is always non-negative. (Indeed, if γ < H ′ then Sγ ∈
{0, H,H + 1, . . . , } and hence, in particular, Sγ ≥ 0. If γ = H ′, then 1 ≤ SH′−1 ≤ H − 1 and
hence SH′ = SH′−1 + ΥH′ − 1 ≥ ΥH′ ≥ 0. Thus Sγ ≥ 0 always.) Consequently we can apply
Markov’s inequality to conclude that

P(Sγ ≥ H) ≤ E(Sγ)

H
. (5.13)

Recall that νn = E(W ∗n) = E(Υ1). Since St + t(1 − νn) is a martingale (with respect to the
filtration formed by the σ- fields Ft := σ(Υi, i ≤ t)) and γ ≤ H ′ is a bounded stopping time, we can
apply Theorem 5.5 (with τ1 = 0 and τ2 = γ) to obtain 1 = E(Sγ) + E(γ)(1 − νn), or equivalently
E(Sγ) = 1− E(γ)(1− νn). This shows that

P(Sγ ≥ H) ≤ 1− (1− νn)E(γ)

H
; (5.14)

substituting this bound into (5.12) yields the desired result. �

In order to obtain an upper bound for the expression on the right-hand side of (5.9) (and so for
the probability that C(Vn) contains more than k nodes) we need to evaluate E(γ). This is achieved
by means of the following

Lemma 5.7. Consider St and γ as in Lemma 5.6. Define bH := 2H2 ∨ (E((W ∗n)2) + 1 − νn). If
1− νn > 0 we have

E(γ)E((W ∗n)2)

(
1− 1− νn

E((W ∗n)2)
H − 2bH

E((W ∗n)2)H ′

)
≤ H + 3w1 +

w2
1

H
. (5.15)

On the other hand, if 1− νn ≤ 0 we have

E(γ)E((W ∗n)2)

(
1− νn − 1

E((W ∗n)2)

[
H + 3w1 +

w2
1

H
− 1

]
− 2bH

E((W ∗n)2)H ′

)
≤ H + 3w1 +

w2
1

H
. (5.16)

Proof : Observe that the process defined by

Mt = S2
t + t[νn − 1− E((W ∗n)2)]− 2(νn − 1)

t−1∑
k=0

Sk (5.17)

is a martingale (as before, with respect to the filtration formed by the σ-fields Ft := σ(Υi, i ≤ t)).
This easily follows from the fact that

E
(
S2
t+1|Ft

)
= E

(
S2
t + 2St(Υt+1 − 1) + (Υt+1 − 1)2|Ft

)
= S2

t + 2St(νn − 1) + νn + E((W ∗n)2)− 2νn + 1

= S2
t + 2St(νn − 1)− (1− νn − E((W ∗n)2)).

Then, by Theorem 5.5 with τ1 := 0 and τ2 = γ ≤ H ′, we obtain

1 = E(S2
γ)− E(γ)

(
E((W ∗n)2) + 1− νn

)
− 2(νn − 1)E

( γ−1∑
k=0

Sk

)
,

from which we arrive at

E(γ)
(
E((W ∗n)2) + 1− νn

)
+ 2(νn − 1)E

[ γ−1∑
k=0

Sk

]
≤ E(S2

γ). (5.18)
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Next we bound from above the expected value of S2
γ . We have that

E(S2
γ) = E

(
S2
γ1{γ<H′}

)
+ E

(
S2
γ1{γ=H′}

)
. (5.19)

Since S2
t = S2

t−1 + 2St−1(Υt − 1) + (Υt − 1)2 for all t ≥ 1, we can write

E
(
S2
γ1{γ=H′}

)
= E

(
S2
H′−11{γ=H′}

)
+ 2E

(
SH′−1(ΥH′ − 1)1{γ=H′}

)
+ E

(
(ΥH′ − 1)2

1{γ=H′}
)
.

On the event {γ = H ′} (which belongs to the σ-algebra generated by the the first H ′ − 1 random
variables Υi) we have that 1 ≤ SH′−1 < H and hence S2

H′−1 < H2. Moreover, SH′−11{γ=H′} and
ΥH′ − 1 are independent, as well as (ΥH′ − 1)2 and 1{γ=H′}. Therefore, when n is large enough we
can write (using Markov’s inequality)

E
(
S2
γ1{γ=H′}

)
≤ H2P(γ = H ′) + 2E

(
SH′−11{γ=H′}

)
(νn − 1)

+ E
(
(ΥH′ − 1)2

)
P(γ = H ′)

≤ H2E(γ)

H ′
+ 2H|1− νn|

E(γ)

H ′
+ E

(
(ΥH′ − 1)2

)E(γ)

H ′

≤ 2
E(γ)

H ′
(2H2 ∨ (E((W ∗n)2) + 1− νn))

= 2
E(γ)

H ′
bH , (5.20)

where the last inequality follows from the facts that

E
(
(ΥH′ − 1)2

)
= E

(
wM + w2

M

)
+ 1− 2νn = E((W ∗n)2) + 1− νn, H|1− νn| ≤ H

and we set bH := 2H2 ∨ (E((W ∗n)2) + 1− νn). Next we consider the term E
(
S2
γ1{γ<H′}

)
. Note that

on the event {γ < H ′} we have either Sγ = 0 or Sγ ≥ H. Therefore we can write

E
(
S2
γ1{γ<H′}

)
= E

(
S2
γ1{γ<H′}1{Sγ≥H}

)
≤ E

(
S2
γ1{Sγ≥H}

)
= P(Sγ ≥ H)E

(
S2
γ |Sγ ≥ H

)
.

Now, setting f(x) := 2Hx + x2 (which is increasing for x ≥ 0) and decomposing S2
γ = 2H(Sγ −

H) + (Sγ −H)2 +H2 = f(Sγ −H) +H2, applying Corollary 5.4 we obtain

E(f(Sγ −H)|Sγ ≥ H) ≤ E(2HYw1 + Y 2
w1

) = 2Hw1 + w1 + w2
1.

Therefore, since H ≥ 1, we arrive at

E(S2
γ |Sγ ≥ H) ≤ H2 + 2Hw1 + w1 + w2

1 ≤ H2 + 3Hw1 + w2
1. (5.21)

Thus, using (5.14), we obtain

E
(
S2
γ1{γ<H′}

)
≤ P(Sγ ≥ H)

(
H2 + 3Hw1 + w2

1

)
≤ 1− (1− νn)E(γ)

H

(
H2 + 3Hw1 + w2

1

)
= [1− (1− νn)E(γ)]

(
H + 3w1 + w2

1/H
)
. (5.22)

Consequently, combining (5.19), (5.20) and (5.22) we arrive at

E(S2
γ) ≤ [1− (1− νn)E(γ)]

(
H + 3w1 + w2

1/H
)

+ 2
E(γ)

H ′
bH .

Therefore using (5.18) we obtain

E(γ)
(
E((W ∗n)2) + 1− νn

)
+ 2(νn − 1)E

( γ−1∑
k=0

Sk
)

≤ [1− (1− νn)E(γ)]
(
H + 3w1 + w2

1/H
)

+ 2
E(γ)

H ′
bH . (5.23)
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Now observe that, by definition of γ, we have 1 ≤ Sk ≤ H − 1 for 1 ≤ k ≤ γ − 1 and so

γ ≤
γ−1∑
k=0

Sk ≤ γ(H − 1). (5.24)

If 1− νn > 0 then, using (5.24) and rearranging the terms in (5.23) we obtain

E(γ)E((W ∗n)2)
(

1− 1− νn
E((W ∗n)2)

[
H − 3(w1 + 1)− w2

1

H

]
− 2bH

E((W ∗n)2)H ′

)
≤ H + 3w1 +

w2
1

H
.

Since trivially
1− νn

E((W ∗n)2)

[
H − 3(w1 + 1)− w2

1

H

]
<

1− νn
E((W ∗n)2)

H,

we arrive at

E(γ)E((W ∗n)2)
(

1− 1− νn
E((W ∗n)2)

H − 2bH
E((W ∗n)2)H ′

)
≤ H + 3w1 +

w2
1

H
.

On the other hand, if 1− νn ≤ 0, using (5.24) and rearranging the terms in (5.23) we obtain

E(γ)E((W ∗n)2)
(

1 − νn − 1

E((W ∗n)2)

[
H + 3w1 +

w2
1

H
− 1

]
− 2bH

E((W ∗n)2)H ′

)
≤ H + 3w1 +

w2
1

H
,

completing the proof. �

5.2.1. Proof of Theorem 3.1 (case τ > 4) – |Cmax| is unlikely to be larger than An2/3. Note that,
since

|1− νn|
E((W ∗n)2)

H ≤ |1− νn|
E((W ∗n)2)

[
H + 3w1 +

w2
1

H
− 1
]
,

we can use Lemma 5.7 to bound

E(γ)E((W ∗n)2)
(

1 − |1− νn|
E((W ∗n)2)

[
H + 3w1 +

w2
1

H
− 1
]
− 2bH

E((W ∗n)2)H ′

)
≤ H + 3w1 +

w2
1

H
, (5.25)

and this holds independently of the sign of 1 − νn. Let H = bn1/3c and observe that, since
w1 = O(n1/(τ−1)) (see Lemma 5.1) then, as n → ∞, we obtain w1/H � n

− τ−4
3(τ−1) � 1 and hence,

for all sufficiently large n,

H + 3w1 +
w2

1

H
= O(H). (5.26)

Moreover, we know from Proposition 5.2 that |1 − νn| = O(n−
τ−3
τ−1 ) and hence |1 − νn|H =

O(n
−2 τ−4

3(τ−1) ) = o(1). Furthermore, again from Proposition 5.2, we know that∣∣∣E((W ∗n)2)− E(W 3)

E(W )

∣∣∣ = O(n−
τ−4
τ−1 ). (5.27)

Taking H ′ in such a way that H2 = o(H ′) (whence bH/H ′ = o(1)) we thus see that the expression
within round brackets in (5.25) is strictly positive for all sufficiently large n. Therefore we can write
(when n is large enough)

E(γ) ≤
H + 3w1 +

w2
1
H

E((W ∗n)2)

(
1−O(n

−2 τ−4
3(τ−1) )−O

(bH
H ′

))−1
. (5.28)
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Using (5.26) and (5.27), together with the inequality
∑∞

k=2 x
k ≤ 2x2 (which is valid for all x ∈

[0, 1/2]), it is not difficult to show that the quantity which appears on the right-hand side of (5.28)
is bounded from above (for all large enough n) by 4HE(W )/E(W 3). Therefore we obtain

E(γ) ≤ 4H
E(W )

E(W 3)
. (5.29)

Thus using Lemma 5.6 we can bound

P(|C(Vn)| > k) ≤ 1

H
+
|1− νn|E(γ)

H
+

E(γ)

k
. (5.30)

Since |1 − νn|H � 1, substituting into (5.30) the bound for E(γ) stated in (5.29) we obtain that
(for all large enough n)

P(|C(Vn)| > k) ≤ 2

H
+ 4k−1H

E(W )

E(W 3)
. (5.31)

Finally, denoting by Nk :=
∑n

i=1 1{|C(i)|>k} the number of vertices contained in components formed
by more than k nodes, using Markov’s inequality we obtain

P(|Cmax| > k) ≤ P(Nk > k) ≤ E(Nk)

k
≤ nP(|C(Vn)| > k)

k
≤ 2

n

Hk
+ 4

nH

k2

E(W )

E(W 3)
.

Taking k = bAn2/3c and recalling the definition of H we see that there is a finite constant c1 > 0
(which depends on cF and τ) such that

P(|Cmax| > k) ≤ c1

A
(5.32)

for all large enough n, which concludes the proof since An2/3 ≥ bAn2/3c = k.

5.2.2. Proof of Theorem 3.2 (case τ ∈ (3, 4)) – |Cmax| is unlikely to be larger than An
τ−2
τ−1 . Before

starting with the actual proof we need a simple result, whose proof is postponed to Subsection
5.4, which guarantees that, when F (i.e. the distribution function determining the vertex weights)
satisfies (3.3) for some τ ∈ (3, 4) and cF > 0, then 1− νn > 0 for all sufficiently large n.

Lemma 5.8. Suppose that there exist τ > 3 and cF > 0 such that (3.3) holds. Then, for all

sufficiently large n, we have that 1− νn > n
− τ−3
τ−1

τ−1 > 0.

We can now proceed with the proof of Theorem 3.2. Since 1 − νn > 0 for all large enough n, it
follows from Lemma 5.7 that

E(γ)E((W ∗n)2)
(

1− 1− νn
E((W ∗n)2)

H − 2bH
E((W ∗n)2)H ′

)
≤ H + 3w1 +

w2
1

H
. (5.33)

Let H := bδn1/(τ−1)c, where δ ∈ (0, 1) is some constant that we specify later. From Proposition
5.2 we know that, for all large enough n, |νn − 1| ≤ C1n

− τ−3
τ−1 for some positive constant C1 which

depends on cF and τ . Since 1− νn > 0 for all large enough n, we obtain

(1− νn)H = |1− νn|H ≤ δC1n
4−τ
τ−1 . (5.34)

Next, we bound the second moment of W ∗n . Since

E((W ∗n)2) = l−1
n

n∑
j=1

w3
j =

(cFn)3/(τ−1)

ln

n∑
j=1

j−3/(τ−1),

then, using the fact that∫ b+1

1
x−rdx ≤

b∑
i=1

i−r ≤ 1 +

∫ b

1
x−rdx (r > 0),
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we can write 0.5(τ − 1)(τ − 2)−1c
1/(τ−1)
F n ≤ ln ≤ 2(τ − 1)(τ − 2)−1c

1/(τ−1)
F n and

C2n
4−τ
τ−1 ≤ E((W ∗n)2) ≤ C3n

4−τ
τ−1 (5.35)

for all large n and for some finite constants 0 < C2 < C3 which depend on cF and τ . (We remark
that here we do not need an upper bound for E((W ∗n)2), but only a lower bound. However, later on
we will need the upper bound too; we decided to state both bounds here for referencing purposes).
Therefore, combining (5.34) and (5.35) we obtain

1− νn
E((W ∗n)2)

H ≤ δC1

C2

and the quantity on the right-hand side of the last inequality can be made at most 1/2 by choosing
δ ≤ C2/2C1. Since the term 2bH/E((W ∗n)2)H ′ can be made as small as we like by choosing a proper
value of H ′ (in particular, a value H ′ > n

τ−2
τ−1 would do the job) we conclude that, for all large

enough n (and taking δ ≤ C2/2C1)

E((W ∗n)2)
(

1− 1− νn
E((W ∗n)2)

H − 2bH
E((W ∗n)2)H ′

)
≥ C4n

4−τ
τ−1 , (5.36)

for some positive constant C4 which depends on cF and τ . Since w1 = O(n1/(τ−1)), we can combine
(5.33) and (5.36) together to obtain that E(γ) ≤ Cn

τ−3
τ−1 for some finite constant C > 0 which

depends cF and τ . Using Lemma 5.6 together with our previous estimate on E(γ) we arrive at

P(|C(Vn)| > k) ≤ 1− E(γ)(1− νn)

H
+

E(γ)

k
≤ 1

H
+

E(γ)

k
≤ 1

H
+ C

n
τ−3
τ−1

k
. (5.37)

Proceeding as in the proof of Theorem 3.1 we obtain

P(|Cmax| > k) ≤ n

kH
+
nCn

τ−3
τ−1

k2
=

n

kH
+
Cn2 τ−2

τ−1

k2
.

Taking k = bAn
τ−2
τ−1 c and recalling the definition of H we finally conclude that

P(|Cmax| > k) ≤ c3

A

for some finite constant c3 > 0 that depends on cF and τ . Since An
τ−2
τ−1 ≥ k, the desired result

follows.

5.2.3. Proof of Theorem 3.5 – The exponential upper bound. Here we wish to improve the polynomial
upper bounds stated in Theorems 3.1 and 3.2.

In what follows we work under the assumption that (3.3) is satisfied for some τ > 3 and cF > 0.
Let Qt := 1 +

∑t
i=1(|Mi| − 1) for t ≤ β, with β defined as γ in Lemma 5.6 but using Qt instead

St, and set β∗ = β ∧ k, where k will be chosen later (and its actual value will depend on the range
of tau). Note that |ABPt | ≤ Qt for t ≤ β, and so in particular |ABPβ∗ | ≤ Qβ∗.

Define, for t ≤ T � n,

Zt :=
t∑

j=1

(
|M̃β∗+j | − 1

)
(5.38)

and observe that, if |ABPβ∗+j | > 0 for all 1 ≤ j ≤ t, then

Zj
def
=

j∑
i=1

(
|M̃β∗+i| − 1

)
=

β∗+j∑
h=β∗+1

(
|M̃h| − 1

)
= |ABPβ∗+j | − |ABPβ∗ |.



Upper Bounds for the Largest Component in Critical Inhomogeneous Random Graphs 1333

Thus, setting P := P(Qβ∗ > 0) and using the law of total expectation we obtain

P
(
|ABPβ∗+j | > 0 ∀j ∈ [t]|Qβ∗ > 0

)
= P−1E

(
EQβ∗

(
1{|ABP

β∗+j |>0 ∀j∈[t]}1{Qβ∗>0}
))

≤ P−1E
(
1{Qβ∗>0}PQβ∗ (Zt > −|A

BP
β∗ |)

)
, (5.39)

where we denote by PQβ∗ (·) the probability measure P(·|Qβ∗ > 0) and we write EQβ∗ (·) for the
expectation operator with respect to PQβ∗ (·). Since |ABPβ∗ | ≤ Qβ∗ , using Markov’s inequality we
obtain (for any r > 0)

P−1E
(
1{Qβ∗>0}PQβ∗ (Zt > −|A

BP
β∗ |)

)
≤ P−1E

(
1{Qβ∗>0}PQβ∗ (Zt > −Qβ∗)

)
≤ P−1E

(
1{Qβ∗>0}PQβ∗ (e

rZt > e−rQβ∗ )
)

≤ P−1E
(
1{Qβ∗>0}e

rQβ∗EQβ∗ (e
rZt)

)
= EQβ∗ (e

rZt)EQβ∗ (e
rQβ∗ ). (5.40)

With the next lemma (whose proof is given in Subsection 5.4) we establish an upper bound for the
first expectation in (5.40), i.e. the EQβ∗(·)-expectation of erZt .

Lemma 5.9. Let r ≤ 1/w1 and suppose that t ≤ T � n. Then, for all large enough n, we have
that

EQβ∗ (e
rZt) = EQβ∗

(
er

∑t
j=1(|M̃β∗+j−1)

)
≤ 2 exp

{
r2tE((W ∗n)2)(1 + c′/w1)− rνn

τ − 2

τ − 1

t2

2n

}
·

· exp
{
rt(νn − 1) + c̄

T 3

n2w1
+ 3r2tνn

}
(5.41)

for some finite constants c′, c̄ > 0.

Consequently, taking r = 1/w1 � n−1/(τ−1) � 1 throughout and recalling the definition of
EQβ∗ (·), we see that the expression in (5.40) is at most

2 exp
{
r2tE((W ∗n)2)(1 + c′/w1)− rνn

τ − 2

τ − 1

t2

2n

}
·

· exp
{
rt(νn − 1) + c̄

( T 3

n2w1

)
+ 3r2tνn

}
E
(
erQβ∗ |Qβ∗ > 0

)
. (5.42)

To bound the second expectation in (5.40) we argue as follows. Lemma 5.3 states that the (condi-
tional) law of the overshoot Sγ −H, given Sγ ≥ H, is stochastically dominated by the Poisson(w1)
distribution. This result also holds for the overshoot Qβ −H. (To see this, it is enough to follow
the proof of Lemma 5.3 using Qβ = Qβ−1 + |Mβ| − 1 in place of Sγ = Sγ−1 + |Υγ | − 1 together
with the fact that |M1| 4 Υ1.) Clearly Corollary 5.4 holds too, so that

E
(
erQβ∗ |Qβ > 0, β ∈ [k]

)
= E

(
erQβ |Qβ > 0, β ∈ [k]

)
= erHE

(
er(Qβ−H)|Qβ > 0, β ∈ [k]

)
= erHE

(
er(Qβ−H)|Qβ ≥ H,β ∈ [k]

)
≤ erHE

(
erYw1

)
= erHew1(er−1). (5.43)
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Since r � 1 we can bound er−1 ≤ r+r2 and hence the expression in (5.43) is at most ew1r+w1r2+rH .
Since {β > k} and {Qβ > 0, β ∈ [k]} are disjoint events whose union is {Qβ∗ > 0}, and because the
(conditional) expected value of erQβ∗ given β > k is at most erH (since in this case Qβ∗ = Qk < H),
we conclude that (as r = 1/w1)

E
(
erQβ∗ |Qβ∗ > 0

)
≤ erH + ew1r+w1r2+rH ≤ (1 + e1+1/w1)erH ≤ 9erH (5.44)

provided n is large enough. Therefore, combining (5.39), (5.41) and (5.44) we arrive at

P
(
|ABPβ∗+j | > 0 ∀j ∈ [t]|Qβ∗ > 0

)
≤ 10 exp

{
r2tE((W ∗n)2)(1 + c′/w1)− rνn

τ − 2

τ − 1

t2

2n

}
·

· exp
{
rt(νn − 1) + c̄

( T 3

n2w1

)
+ 3r2tνn

}
erH . (5.45)

Observe that, taking H � n1/3 for τ > 4 and H � n1/(τ−1) for τ ∈ (3, 4) we see that erH =

O(n
τ−4

3(τ−1) ) when τ > 4, whereas erH = O(1) if 3 < τ < 4. Moreover, T ∼ An2/3 for τ > 4 while
T ∼ An

τ−2
τ−1 for 3 < τ < 4 and consequently we can write

c̄
( T 3

n2w1

)
=

O(1), if τ > 4 and A = O
(
n

(τ−4)∧1
3(τ−1)

)
O(1), if 3 < τ < 4 and A = O

(
n

5−τ
3(τ−1)

)
Using these estimates in (5.45) and recalling that r = 1/w1 � n−1/(τ−1) we see that, for all large
enough n,

P
(
|ABPβ∗+j | > 0 ∀j ∈ [t]|Qβ∗ > 0

)
≤

C ′ exp
{
r2t
(
E((W ∗n)2) + 3νn + c

E((W ∗n)2)

n1/(τ−1)

)
− τ − 2

τ − 1

t2rνn
2n

+ rt(νn − 1) + rH
}

for some finite constant C ′ > 0. Now, setting

f(r, t) := r2t
(
E((W ∗n)2) + 3νn + c

E((W ∗n)2)

n1/(τ−1)

)
− rνn

τ − 2

τ − 1

t2

2n
+ rt(νn − 1) + rH,

we see that the derivative (with respect to r) of f(r, t) vanishes if, and only if,

r = r0 :=
νn

τ−2
τ−1

t2

2n − t(νn − 1)−H

2t
(
E((W ∗n)2) + 3νn + cE((W ∗n)2)

n1/(τ−1)

) .
Since the second derivative of f(r, t) with respect to r is always positive, the value r0 indeed
minimizes f(r, t).

Therefore

f(r, t) ≥ f(r0, t) = −

(
νn

τ−2
τ−1

t2

2n − t(νn − 1)−H
)2

4t
(
E((W ∗n)2) + 3νn + cE((W ∗n)2)

n1/(τ−1)

)
Let t = T−k. When τ > 4 take k = H2 where H = bn1/3c and T = bAn2/3c, with A = O

(
n

(τ−4)∧1
3(τ−1)

)
.

Using (5.1), (5.2) and since n2/3(A− 2) < t < n2/3(A− 1/2) and νn τ−2
τ−1

t2

2n − t(νn − 1)−H > 0 for
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A > 2, then we obtain(
νn

τ−2
τ−1

t2

2n − t(νn − 1)−H
)2

4t
(
E((W ∗n)2) + 3νn + cE((W ∗n)2)

n1/(τ−1)

)
≥

(
(1− C1n

− τ−3
τ−1 )( τ−2

τ−1)n
4/3(A−2)2

2n − n2/3(A− 1/2)C1n
− τ−3
τ−1 − n1/3

)2

4n2/3(A− 1/2)
(
E((W 3))
E((W )) + 4

)
which, for n large enough, is greater than((

τ−2
τ−1

) (A−2)2

2 − 2
)2

4(A− 1/2)
(
E(W 3)
E(W ) + 4

) .
Since ((τ − 2

τ − 1

)(A− 2)2

2
− 2
)2

>
((τ − 2

τ − 1

)A
2

(A
2
− 2
))2

for A > (4 +
√

32)/2, and (A/2− 2)/(A− 1/2) > 1/4 for A > 8, when n is large enough and A > 8
we obtain

ef(r0,T−k) ≤ exp

{
−
(
τ−2
τ−1

)2
A2(A− 4)

128
(E(W 3)

E(W ) + 4
) }.

When τ ∈ (3, 4), let k = Hτ−2 where H = bn1/(τ−1)c and T = bAn
τ−2
τ−1 c, with A = O

(
n

5−τ
3(τ−1)

)
.

Using (5.1), (5.35), (5.8) and since n
τ−2
τ−1 (A−2) < t < n

τ−2
τ−1 (A−1/2), for A > 2 we obtain, expanding

the squared term at the numerator,(
νn

τ−2
τ−1

t2

2n − t(νn − 1)−H
)2

4t
(
E((W ∗n)2) + 3νn + cE((W ∗n)2)

n1/(τ−1)

)
≥
ν2
n

(
τ−2
τ−1

)2 t4

4n2 + νn
(
τ−2
τ−1

)
t3

n (1− νn) +H2 + t2(1− νn)2 − 2t(1− νn)H − 2νn
(
τ−2
τ−1

)
t2

2nH

4n
τ−2
τ−1 (A− 1/2)(C3n

4−τ
τ−1 + 4)

,

which for n large enough and A > 8 is greater than A(A−2τ)
4(τ−1)2(A−1/2)(C3+1)

. Consequently we obtain,

for 8 < A = O
(
n

5−τ
3(τ−1)

)
and for all large enough n,(
νn

τ−2
τ−1

t2

2n − t(νn − 1)−H
)2

4t
(
E((W ∗n)2) + 3νn + cE((W ∗n)2)

n1/(τ−1)

) > A− 2τ

4(τ − 1)2(C3 + 1)
,

Thus we can bound

ef(r0,T−k) ≤ exp
{
− A− 2τ

4(τ − 1)2(C3 + 1)

}
.

Therefore, for τ > 4 we arrive at

P
(
|ABPβ∗+j | > 0 ∀j ∈ [T − k]|Qβ∗ > 0

)
≤ C ′ exp

{
−
(
τ−2
τ−1

)2
A2(A− 4)

128
(E(W 3)

E(W ) + 4
) }, (5.46)
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whereas for 3 < τ < 4 we have

P
(
|ABPβ∗+j | > 0 ∀j ∈ [T − k]|Qβ∗ > 0

)
≤ C ′′ exp

{
− A− 2τ

4(τ − 1)2(C3 + 1)

}
. (5.47)

Note that, since |ABPt | ≤ Qt for 0 < t ≤ β∗, when T > k (≥ β∗) we obtain

P
(
|C(Vn)| > T ) ≤ P(|ABPβ∗ | > 0, |ABPβ∗+j | > 0,∀j ∈ [T − k]

)
≤ P(Qβ∗ > 0, |ABPβ∗+j | > 0,∀j ∈ [T − k]

)
= P(Qβ∗ > 0)P

(
|ABPβ∗+j | > 0 ∀j ∈ [T − k]|Qβ∗ > 0

)
,

and the second probability on the right-hand side of the last expression is bounded from above in
(5.46) and (5.47) for the cases τ > 4 and τ ∈ (3, 4), respectively.

To complete the proof, we thus need an upper bound for P(Qβ∗ > 0). To this end, we use
Lemma 5.6, in which we have established an upper bound for P(Sγ∗ > 0) with St being a random
walk with independent increments having distribution Poi(wMi) − 1, where the random variables
Mi are independent with distribution M as in (4.3). In particular, we now construct such a process
St starting from the random variables |Mi|, in such a way that P(Qβ∗ > 0) ≤ P(Sγ∗ > 0). To
this end, recall that |M1| is a random variable with the mixed Poi(wJ0) distribution (where J0

is uniformly distributed on [n]). Thanks to our discussion prior to the statement of Lemma 5.6
we know that, if Y1 is a random variable with the Poi(wM ) distribution, then there is a coupling
(D1, Ŷ1) of |M1| and Y1 such that D1 ≤ Ŷ1 almost surely. For i ≥ 2, let |̂M|i be independent copies
of the |Mi|, defined on the same probability space where both D1 and Ŷ1 are defined. Set Q̂0 := 1

and Q̂i := Q̂i−1 + D̂i − 1 for i ≥ 1, where D̂1 := D1 and D̂i := |̂M|i for i ≥ 2. Moreover, we set
S0 := 1 and Si := Si−1 + Υi − 1 for i ≥ 1, where Υ1 := Ŷ1 and Υi := |̂M|i for i ≥ 2. Define γ to
be the first time t ≥ 1 at which either St = 0 or St ≥ H, and similarly define β̂ to be the first time
t ≥ 1 at which either Q̂t = 0 or Q̂t ≥ H. Let γ∗ := γ ∧ k and β̂∗ := β̂ ∧ k. Note that, almost surely,
Q̂t ≤ St for every t ∈ N0, because S1 = Υ1 = Ŷ1 ≥ D1 = D̂1 = Q̂1 almost surely and for t ≥ 2 we
have that

St = Υ1 +

t∑
i=2

(Υi − 1) ≥ D̂1 +

t∑
i=2

(Υi − 1) = D̂1 +

t∑
i=2

(D̂i − 1) = Q̂t.

Moreover, Qβ∗ has the same distribution as Q̂
β̂∗
. Therefore we can write

P(Qβ∗ > 0) = P(Q̂
β̂∗
> 0) = P(Q̂k > 0, β̂ > k) + P(Q̂

β̂
> 0, β̂ ≤ k)

= P(β̂ > k) + P(Q̂
β̂
> 0, β̂ ≤ k). (5.48)

We claim that
P(β̂ > k) = P(β̂ > k, Sγ∗ > 0). (5.49)

To see this, suppose that β̂ > k and Sγ∗ = 0. Since β̂ > k, then Q̂t ∈ (0, H)∩N for all t ≤ k and so in
particular St > 0 for all t ≤ k. If γ ≤ k then we obtain 0 < Sγ = Sγ∗ = 0, a contradiction. Similarly,
if γ > k then we obtain 0 < Sk = Sγ∗ = 0, also a contradiction. Therefore P(β̂ > k, Sγ∗ = 0) = 0,
proving the claim. Next we claim that

P(Q̂
β̂
> 0, β̂ ≤ k) = P(Q̂

β̂
> 0, β̂ ≤ k, Sγ∗ > 0). (5.50)

To see this, suppose that Q̂
β̂
> 0, β̂ ≤ k and Sγ∗ = 0. Since Q̂

β̂
> 0, by definition of β̂ we must

have Q̂
β̂
≥ H. This implies that S

β̂
≥ H, and hence γ ≤ β̂. Also, since Q̂t > 0 for all t < β̂ and

Q̂
β̂
> 0, we must have Sγ ≥ Q̂γ > 0 and so (by definition of γ) we get Sγ ≥ H. Since γ ≤ β̂ and
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β̂ ≤ k, it follows that γ ≤ k. Therefore Sγ∗ = Sγ ≥ H, which contradicts the initial assumption
that Sγ∗ = 0, thus proving the claim. It follows from (5.48), (5.49) and (5.50) that

P(Qβ∗ > 0) = P(β̂ > k, Sγ∗ > 0) + P(Q̂
β̂
> 0, β̂ ≤ k, Sγ∗ > 0)

≤ P(β̂ > k, Sγ∗ > 0) + P(β̂ ≤ k, Sγ∗ > 0) = P(Sγ∗ > 0).

By Lemma 5.6, (5.31) and taking k = H2 when τ > 4 we obtain that P(Qβ∗ > 0) = O(1/H).
Consequently there is a finite constant C > 0 (which depends on cF and τ such that

P(|Cmax| > T ) ≤ nC

TH
exp

{
−
(
τ−2
τ−1

)2
A2(A− 4)

128
(E(W 3)

E(W ) + 4
) } ≤ c5

A
exp

{
−
(
τ−2
τ−1

)2
A2(A− 4)

128
(E(W 3)

E(W ) + 4
) }

for some finite constant c5 > 0 (which depends on cF and τ). Similarly, by Lemma 5.6, (5.37), and
taking k = Hτ−2 � n

τ−2
τ−1 when τ ∈ (3, 4) we obtain P(Qβ∗ > 0) = O(1/H). Consequently there are

finite constants c6, c7 > 0 which depend on cF and τ such that

P(|Cmax| > T ) ≤ c6

A
exp

{
− A− 2τ

4(τ − 1)2(C3 + 1)

}
,

completing the proof of the theorem.

5.3. Proof of Theorems 3.1 and 3.2 – the probability of small maximal components. To prove the
results of this section we use Alg.2 and Alg.2.BP to establish the bound for the case τ > 4,
whereas we use Alg.3 and Alg.3.BP to handle the case τ ∈ (3, 4). That is, when τ > 4 we
start the exploration process from a node (resp. mark) selected with probability proportional to its
weight, i.e. Vn = i (resp. J0 = i) with probability wi/ln for i ∈ [n], whereas when τ ∈ (3, 4) we
(deterministically) start the procedure from vertex Vn = 1 (resp. mark J0 = 1). In a moment we
will explain why it is actually useful to start the exploration processes in different ways for the two
regimes τ > 4 and τ ∈ (3, 4).

Recall that our goal here is to show that, when τ > 4, a largest component is unlikely to contain
less than n2/3/A vertices; similarly we prove that, if 3 < τ < 4, then a largest component is unlikely
to contain less than n

τ−2
τ−1 /A nodes.

Let T2 = T2(n) ∈ N. By Proposition 4.1, independently of the way we choose the vertex from
which to start the exploration process, we can write

P (|Cmax| < T2) = P (τj − τj−1 < T2 ∀j) , (5.51)

where τ0 = 0 and (τj : j ≥ 1) are the ordered times (prior to the termination of the procedure) at
which the set of active marks becomes empty.

Let T1 = T1(n) ∈ N. Following Nachmias and Peres (2010b,a), the idea is to prove that, with
sufficiently high probability, the process |ABPt | reaches some (high) level h = h(n) before time T1

and then it remains positive for at least T2 steps.
Intuitively, if we want this strategy to be successful, we need h to be substantially larger than√
T2, so that for the process of active marks (which, in some sense, it behaves like a mean-zero,

integer-valued random walk) started at height h it becomes indeed likely to remain positive for T2

steps. It is at this stage that it becomes useful to work with the two procedures Alg.2.BP and
Alg.3.BP for the cases τ > 4 and τ ∈ (3, 4), respectively.

Indeed, let us start by considering the case τ ∈ (3, 4). In this regime, the mark J0 from which
we start the exploration process is (deterministically) chosen to be vertex 1. By Lemma 5.1, wi =

(ncF /i)
1/(τ−1) and hence, since ln � n, it follows that at the end of the first step in the procedure
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we expect to have approximately
n∑
j=2

(
1− e−w1wj/ln

)
≈ w1

n∑
j=2

wj
ln

= w1

(
1− w1

ln

)
� n

1
τ−1 (1− o(1)) ∼ n

1
τ−1

active marks (which correspond to the nodes directly connected to Vn = 1). In this regime (i.e.
when τ ∈ (3, 4)) we have that

n
1

τ−1 � n
τ−2

2(τ−1) =

√
n
τ−2
τ−1

and therefore, taking h = n
1

τ−1 and T2 = dn
τ−2
τ−1 /Ae, we do have that h is much larger than

√
T2.

This means that, after one step only, our process already reached a height which is sufficient to
guarantee that it will remain positive for T2 steps.

In other words, taking T1 = 2 and h, T2 as above, we can indeed show that our process reaches
level h at time t = 1 < T1 and then remains positive for T2 steps. This approach, however, can’t work

for the case τ > 4 (unless we make unpleasant assumptions on A of the type A = A(n) ≥ n
2(τ−4)
3(τ−1) ).

Indeed, when τ > 4, since n
1

τ−1 � n1/3 =
√
n2/3, it becomes unlikely that our process remains

positive for T2 = dn2/3/Ae steps after having reached height h � n
1

τ−1 in one step.
In other words, when τ > 4 it is not sufficient to analyse the component of vertex 1 to draw

conclusions on |Cmax|; to do this, we need to explore the components of multiple vertices and, in
this setting, it is convenient that the nodes from which we start exploring new components are
selected from the set of unexplored nodes with probability proportional to their weights. We then
need to perform two separate analysis for the cases τ > 4 and τ ∈ (3, 4).

In particular, following our previous discussion, we let h ∈ N be some positive integer and bound,
for the case τ > 4,

P(|Cmax| < T2) = P (τj − τj−1 < T2 ∀j) ≤ P
(
|ABPt | < h ∀t ∈ [T1 − 1]

)
+ P

(
τj − τj−1 < T2 ∀j,∃t ∈ [T1 − 1] : |ABPt | ≥ h

)
, (5.52)

while for the case τ ∈ (3, 4) we write

P(|Cmax| < T2) ≤ P(|C1| < T2) = P(τ1 < T2) ≤ P(|ABP1 | < h) + P(τ1 < T2, |ABP1 | ≥ h), (5.53)

where we recall that C1 is the first component to be explored in NRn(w) (the component of node
1).

The probabilities on the right-hand sides of (5.52) and (5.53) are bounded in separate ways,
specifically by means of Propositions 5.10 and 5.11 below for the case τ > 4, while using Propositions
5.12 and 5.13 when τ ∈ (3, 4). Before stating such results, however, we recall a few useful estimates
from previous sections that we use again here.

From Proposition 5.2 we know that, whenever n is sufficiently large,

|1− νn| ≤ C1n
− τ−3
τ−1 (5.54)

for some finite constant C1 > 0 which depends on cF and τ ; moreover, if τ > 4, we also have that∣∣∣∣E((W ∗n)2)− E(W 3)

E(W )

∣∣∣∣ = O
(
n−

τ−4
τ−1
)
. (5.55)

We also recall from (5.35) that, when τ ∈ (3, 4), we can bound

C2n
4−τ
τ−1 ≤ E((W ∗n)2) ≤ C3n

4−τ
τ−1 (5.56)

for all large enough n, with C2, C3 > 0 two finite constants which depend on cF and τ .
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Proposition 5.10. Let τ > 4 and set T1 := bn2/3/A1/4c, h := bn1/3/A1/4c. Then, for all large
enough n, we have that

P
(
|ABPt | < h ∀t ∈ [T1 − 1]

)
≤ C ′

A1/4
,

where C ′ > 0 is some finite constant which depends on cF and τ .

Proposition 5.11. Let τ > 4 and set T1 := bn2/3/A1/4c, h := bn1/3/A1/4c and T2 := dn2/3/Ae.
Then, for all large enough n, we have that

P
(
τj − τj−1 < T2 ∀j,∃t ∈ [T1 − 1] : |ABPt | ≥ h

)
≤ C

A1/2
,

where C > 0 is some finite constant which depends on cF and τ .

Proposition 5.12. Let τ ∈ (3, 4) and set h := bδn1/(τ−1)c, with δ > 0 some sufficiently small
(fixed) quantity. Let T2 = dn

τ−2
τ−1 /Ae. Then, for all large enough n, we have that

P(|ABP1 | < h) ≤ C ′

n
τ−2
τ−1

,

for some finite constant C ′ = C ′(δ) > 0 which also depends on cF and τ .

Proposition 5.13. Let τ ∈ (3, 4) and set h := bδn1/(τ−1)c, with δ > 0 some sufficiently small
(fixed) quantity. Let T2 = dn

τ−2
τ−1 /Ae. Then, for all large enough n, we have that

P(τ1 < T2, |ABP1 | ≥ h) ≤ C

A
,

for some finite constant C = C(δ) > 0 which also depends on cF and τ .

We are now in the position to establish the upper bounds for the probability of observing unusually
small components stated in Theorems 3.1 and 3.2. Indeed, when τ > 4 it follows from (5.52) together
with Propositions 5.10 and 5.11 that

P(|Cmax| < n2/3/A) ≤ P(|Cmax| < T2) ≤ c2

A1/4

for some constant c2 > 0 which depends on cF and τ . On the other hand, when 3 < τ < 4, it
follows from (5.53) together with Propositions 5.12 and 5.13 that

P(|Cmax| < n
τ−2
τ−1 /A) ≤ P(|Cmax| < T2) ≤ c4(A−1 ∨ n−

τ−2
τ−1 ),

for some constant c4 > 0 which depends on cF and τ . Note that, without loss of generality, we can
assume that A < n

τ−2
τ−1 (otherwise the probability on the left-hand side of the last display would be

zero) and hence the expression on the right hand side of the last inequality is c4/A, as required.
Before starting with the actual proofs of the above propositions, we establish a technical lemma

which we will need throughout. We remind the reader that Xvt = |Mt| is the number of children
of node vt in the exploration of the branching process trees.

Lemma 5.14. Let T = T (n) = o(n) and set

Ii := |Mi| − |M̃i| =
Xvi∑
l=1

1{
J
vi
l ∈(ABPi−1∪{mBPi })∪EBPi−1∪L

vi
l−1

}, (5.57)

for 1 ≤ i ≤ T . Then
E(I1) = O(w2

1/n) when τ ∈ (3, 4) and E(I1) = O(1/n) when τ > 4. (5.58)

Moreover, if i ≥ 2 and τ > 3, we have

E(Ii) = O
(w1 ∨ i ∨ E((W ∗n)2)

n

)
.
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Proof : Suppose first that i = 1 and τ ∈ (3, 4). Recall that, in this regime, we start exploring a
branching process tree whose root carries the deterministic mark J0 = 1. Consequently, the random
variable Xv1 (that corresponds to the random number of children of the root node) has the Poisson
distribution with parameter w1. Now observe that, since ABP0 = {1} and EBP0 = ∅, we have

I1 =

Xv1∑
l=1

1{
J
v1
l ∈{1}∪L

v1
l−1

} =
∑
k≥1

1{Xv1=k}

k∑
l=1

1{
J
v1
l ∈{1}∪L

v1
l−1

}
≤
∑
k≥1

1{Xv1=k}

k∑
l=1

1{
J
v1
l ∈{1}

} +
∑
k≥1

1{Xv1=k}

k∑
l=1

1{
J
v1
l ∈L

v1
l−1

}. (5.59)

Recalling that the Jv1l are i.i.d. with distribution M given in (4.3) we have

P(Jv1l ∈ L
v1
l−1) =

n∑
j=1

wj
ln

(1− P(Jv1r 6= j ∀r ≤ l − 1)) =

n∑
j=1

wj
ln

[
1−

(
1− wj

ln

)l−1
]

and hence, after taking expectation on both sides of (5.59) we obtain (since P(Jv1l ∈ {1}) = w1l
−1
n )

E(I1) ≤ w1

ln

∑
k≥1

P(Xv1 = k)k +
∑
k≥1

P(Xv1 = k)

k∑
l=1

n∑
j=1

wj
ln

(
1−

(
1− wj

ln

)l−1
)
.

Since (1 − wj/ln)l−1 ≥ 1 − (l − 1)wj/ln (and Xv1 has the Poisson law with mean w1) a short
computation shows that

E(I1) ≤ w2
1

ln
+
νn
2ln

(w2
1 + w1) = O(w2

1/ln) = O(w2
1/n),

where for the last identity we have used that ln � n. The previous expression establishes the lemma
for the case i = 1, τ ∈ (3, 4). Hence, in the remainder of the proof, we assume that either i ≥ 2 and
τ > 3, or i = 1 and τ > 4. Let’s consider the former case first; that is, we let i ≥ 2 and τ > 3.
Denote by FBPi the σ-algebra collecting all the information revealed by the exploration process of
the branching process trees until the end of step i, with FBP0 being the trivial σ-field. Note that,
by definition of Ii, we have

Ii ≤
Xvi∑
l=1

1{
J
vi
l ∈(ABPi−1∪{mBPi })∪EBPi−1

} +

Xvi∑
l=1

1{
J
vi
l ∈L

vi
l−1

}. (5.60)

We start focusing on the first sum appearing on the right-hand side of (5.60) and subsequently we
take into account the second sum. From Section 4 we know that, if |ABPi−1| ≥ 1, then mBP

i ∈ ABPi−1
and hence

(ABPi−1 ∪ {mBP
i }) ∪ EBPi−1 = ABPi−1 ∪ EBPi−1 ,

while if |ABPi−1| = 0 we have

(ABPi−1 ∪ {mBP
i }) ∪ EBPi−1 = {mBP

i } ∪ EBPi−1 .

Therefore, when |ABPi−1| ≥ 1 we have

Xvi∑
l=1

1{
J
vi
l ∈(ABPi−1∪{mBPi })∪EBPi−1

} =

Xvi∑
l=1

1{
J
vi
l ∈A

BP
i−1∪EBPi−1

}, (5.61)
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whereas when |ABPi−1| = 0 we have

Xvi∑
l=1

1{
J
vi
l ∈(ABPi−1∪{mBPi })∪EBPi−1

} =

Xvi∑
l=1

1{
J
vi
l ∈{m

BP
i }∪EBPi−1

}. (5.62)

Thus, when |ABPi−1| ≥ 1, we obtain

E
( Xvi∑
l=1

1{
J
vi
l ∈(ABPi−1∪{mBPi })∪EBPi−1

}|FBPi−1

)
=
∑
k≥1

k∑
l=1

P(Xvi = k, Jvil ∈ A
BP
i−1 ∪ EBPi−1 |FBPi−1)

= E(Poi(wM ))

n∑
m=1

wm
ln

1{m∈ABPi−1∪EBPi−1}

= νn

n∑
m=1

wm
ln

1{m∈ABPi−1∪EBPi−1}
.

For |ABPi−1| = 0, observe that

E
( Xvi∑
l=1

1{
J
vi
l ∈(ABPi−1∪{mBPi })∪EBPi−1

}|FBPi−1

)
=
∑
k≥1

k∑
l=1

P(Xvi = k, Jvil ∈ {m
BP
i } ∪ EBPi−1 |FBPi−1). (5.63)

Since |ABPi−1| = 0, the random mark mBP
i equals m ∈ [n] \ EBPi−1 with probability wm/l′n(i), where we

recall that l′n(i) = ln −
∑

j∈EBPi−1
wj . We have

l′n(i) = ln −
∑
j∈EBPi−1

wj ≥ ln −
i−1∑
j=1

wj ≥ ln −
T−1∑
j=1

wj

≥ ln −O
(
n

1
τ−1

∫ T

1
x−

1
τ−1dx

)
= ln

[
1−O

((T
n

) τ−2
τ−1
)]

= ln(1− o(1)) � n,

where we have used that (by assumption) i ≤ T � n. Moreover, given mBP
i = m, we know that Xvi

has the Poi(wm) distribution and (since
∑n

m=1w
2
m/ln = νn = O(1)) a short computation reveals

that the expression on the right-hand side of (5.63) is at most

1

l′n(i)

∑
m∈[n]\EBPi−1

w3
m

ln
+
( ∑
m∈[n]\EBPi−1

w2
m

ln

)( n∑
j=1

wj
ln

1{j∈EBPi−1}

)

= O
(E((W ∗n)2)

n

)
+O

( n∑
j=1

wj
ln

1{j∈EBPi−1}

)
. (5.64)

Next we bound the second sum on the right-hand side of (5.60). Proceeding in a similar way as
before (when we considered the case i = 1, τ > 3), we arrive at

E
( Xvi∑
l=1

1{Jvil ∈L
vi
l−1}
|FBPi−1

)
= O

(E[X2
vi |F

BP
i−1 ]

n

)
.

The expectation which appears at the numerator in the ratio on the right-hand side of the last
expression equals E((W ∗n)2) if |ABPi−1| ≥ 1, whereas it is O(E((W ∗n)2)) if |ABPi−1| = 0. All in all, we
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have shown that when i ≥ 2 and τ > 3, if |ABPi−1| ≥ 1 then E(Ii|FBPi−1) is at most

νn

n∑
m=1

wm
ln

1{m∈ABPi−1∪EBPi−1}
+O

(E((W ∗n)2)

n

)
= O

( n∑
m=1

wm
ln

1{m∈ABPi−1∪EBPi−1}
∨ E((W ∗n)2)

n

)
;

similarly, if |ABPi−1| = 0 then E(Ii|FBPi−1) is at most

O

( n∑
j=1

wj
ln

1{j∈EBPi−1}

)
+O

(E((W ∗n)2)

n

)
= O

( n∑
m=1

wm
ln

1{m∈EBPi−1}
∨ E((W ∗n)2)

n

)
.

Thus we arrive at

E(Ii) = E(E(Ii|FBPi−1)) = O

( n∑
m=1

wm
ln

P(m ∈ ABPi−1 ∪ EBPi−1) ∨ E((W ∗n)2)

n

)
.

There remains to bound (from above) the probability that m is in ABPi−1 ∪EBPi−1 , where i ≤ T . There
are three ways for m to be either active or explored at the end of step i − 1 in the exploration of
the branching process trees. Indeed:

(a) either at a step s ≤ i − 1 one of the marks (Jvsl : l ∈ [Xvs ]) assigned to the children of vs
was equal to m;

(b) or at some step s ≤ i − 1 we had |ABPs−1| = 0 and mBP
s = m (meaning that the root of the

new tree started at time s received mark m);
(c) or J0 = m.

The event in (c) has probability wm/n when we use Alg.BP.2 to explore the branching process
trees (which occurs when τ > 4), whereas when we use Alg.BP.3 (which occurs when 3 < τ < 4)
it has probability one if m = 1 (and probability 0 otherwise). Thus we obtain

n∑
m=1

wm
ln

P(J0 = m) =
w1

ln
when τ ∈ (3, 4) and

n∑
m=1

wm
ln

P(J0 = m) =
νn
ln

when τ > 4,

so that (since νn � w1) we have
∑n

m=1(wm/ln)P(J0 = m) ≤ w1/ln whenever τ > 3. Consider the
event in (a) next. By a union bound we obtain that

P(∃s ≤ i− 1 : Jvsl = m for some l ∈ [Xvs ]) ≤
i−1∑
s=1

P(Jvsl = m for some l ∈ [Xvs ])

=

i−1∑
s=1

∑
k≥1

P(Xvs = k)P(Jvsl = m for some l ∈ [k])

=
i−1∑
s=1

∑
k≥1

P(Xvs = k)(1− (1− wm/ln)k)

≤ wm
ln

i−1∑
s=1

E(Xvs) = O

(
wmi

ln

)
,

whence
n∑

m=1

wm
ln

P(∃s ≤ i− 1 : Jvsl = m for some l ∈ [Xvs ]) = O(i/ln).

There remains to consider the event in (b). In this case, a union bound and our previous estimate
of l′n(i) yields

P(∃s ≤ i− 1 : |ABPs−1| = 0,mBP
s = m) = O(wmi/ln)
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so that also in this case we have
n∑

m=1

wm
ln

P(∃s ≤ i− 1 : |ABPs−1| = 0,mBP
s = m) = O(i/ln).

Consequently we arrive at
n∑

m=1

wm
ln

P(m ∈ ABPi−1 ∪ EBPi−1) = O

(
w1 ∨ i
n

)
.

Finally, let’s consider the case where i = 1 and τ > 4. In this case it is not difficult to see that
E(I1) = O(1/n), completing the proof of the lemma.

�

Proof of Proposition 5.10
Let us start by introducing an auxiliary process Wt defined as follows. We set W0 := |ABP0 | = 1
and define recursively Wt in the following way:

• Wt = Wt−1 + |Mt| − 1, if |ABPt−1| ≥ 1;
• Wt = Wt−1 + |Mt| if |ABPt−1| = 0.

Note that Wt ≥ |ABPt | at all times t < T1 (and so in particular Wt ≥ 0 for all t). Indeed, for t = 1

we see that W1 = |M1| ≥ |M̃1| = |ABP1 |. If the inequality is true for some 1 ≤ t < T1 − 1, we see
that, if |ABPt | ≥ 1, then Wt+1 ≥Wt + |M̃t+1| − 1 ≥ |ABPt |+ |M̃t+1| − 1 = |ABPt+1|. Similarly, when
|ABPt | = 0 we obtain that Wt+1 = Wt + |Mt+1| ≥ |ABPt |+ |M̃t+1| = |M̃t+1| = |ABPt+1|, establishing
the claim. Define the (bounded) stopping time

τ̃h :=

{
inf{t < T1 : Wt ≥ 2h}, if {t < T1 : Wt ≥ 2h} 6= ∅,
T1, if {t < T1 : Wt ≥ 2h} = ∅.

(5.65)

Note that

P(|ABPt | < h ∀t ∈ [T1 − 1])

≤ P(Wt < 2h ∀t ∈ [T1 − 1]) + P(∃t < T1 : Wt − |ABPt | ≥ h)

= P(τ̃h = T1) + P(∃t < T1 : Wt − |ABPt | ≥ h).

We claim that, for t < T1,

Wt − |ABPt | ≤
t∑
i=1

Ii, (5.66)

where we recall that (by definition) Ii = |Mi| − |M̃i|. We establish (5.66) by induction on t. For
t = 1 we have W1 − |ABP1 | = I1 and so the inequality is trivially true. Next, suppose that it
holds for 1 ≤ t < T1 − 1. Note that, if |ABPt | = 0, then using the inductive hypothesis we obtain
Wt+1−|ABPt+1| = Wt+It+1 = Wt−|ABPt |+It+1 ≤

∑t+1
i=1 Ii. Similarly, if |ABPt | ≥ 1, by the inductive

hypothesis we obtain Wt+1 − |ABPt+1| = Wt − |ABPt | + It+1 ≤
∑t+1

i=1 Ii. This establishes (5.66). It
follows that

P(∃t < T1 : Wt − |ABPt | ≥ h) ≤ P(∃t < T1 :

t∑
i=1

Ii ≥ h) ≤ P(

T1−1∑
i=1

Ii ≥ h) ≤
∑T1−1

i=1 E[Ii]

h
,

where the second inequality exploits the fact that each Ii is non-negative. By Lemma 5.14 we know
that (since ln � n) E[Ii] = O(i/n) for every i < T1. Therefore the ratio on the right-hand side of
the last expression is O(T 2

1 /(hn) and hence we arrive at

P(|ABPt | < h ∀t ∈ [T1 − 1]) ≤ P(τ̃h = T1) +O
(T 2

1

hn

)
. (5.67)
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By Markov’s inequality, P(τ̃h = T1) ≤ T−1
1 E(τ̃h) and so to complete the proof we need to bound the

expected value of the stopping time τ̃h. This is achieved by means of Theorem 5.5 in the following
way. First of all, note that each Wt is FBPt -measurable and, if |ABPt−1| ≥ 1, then

E(W 2
t | FBPt−1) = W 2

t−1 + 2Wt−1E(|Mt| − 1 | FBPt−1) + E((|Mt| − 1)2 | FBPt−1), (5.68)

while if |ABPt−1| = 0 then (since Wt−1|Mt| ≥ 0)

E(W 2
t | FBPt−1) ≥W 2

t−1 + E(|Mt|2 | FBPt−1). (5.69)

We wish to estimate (from below) the expressions on the right-hand side of (5.68) and (5.69). First
of all, note that if |ABPt−1| ≥ 1, then |Mt| = Xvt has a mixed Poisson distribution with random
parameter M (given in (4.3)) and hence E(|Mt| | FBPt−1) = νn,E(|Mt|2 | |FBPt−1 |) = νn + E((W ∗n)2),
so that

−C1n
− τ−3
τ−1 ≤ νn − 1 = E(|Mt| − 1 | FBPt−1) ≤ C1n

− τ−3
τ−1

and, since E((W ∗n)2) ≥ E(W 3)/E(W )− o(1),

E(|M2
t | | FBPt−1) ≥ 1 + E(W 3)/E(W )− o(1).

On the other hand, if |ABPt−1| = 0 then |Mt| has a mixed Poisson distribution with random parameter
mBP
t which takes values m ∈ [n] \ EBPt−1 with probability wm/l′n(t− 1) � wm/ln and in this case we

have (since l′n(i) ≤ ln for every i and t < T1)

E(|M2
t | | FBPt−1) =

∑
m∈[n]\EBPt−1

wm
l′n(t)

(wm + w2
m) ≥ νn + E((W ∗n)2)−

t−1∑
m=1

w2
m

ln
−

t−1∑
m=1

w3
m

ln

≥ 1 +
E(W 3)

E(W )
−O

((T1

n

) τ−4
τ−3

)
− o(1)

= 1 +
E(W 3)

E(W )
− o(1). (5.70)

Therefore, going back to (5.68), we see that if |ABPt−1| ≥ 1 then

E(W 2
t | FBPt−1) ≥W 2

t−1 − 2C1n
− τ−3
τ−1Wt−1 +

E(W 3)

E(W )
− o(1).

If we also require Wt−1 < 2h then, since hn−
τ−3
τ−1 = O(n

−2 τ−4
3(τ−1) )� 1 (recall that τ > 4), we obtain

that the expression on the right-hand side of the last inequality is at least

W 2
t−1 +

E(W 3)

E(W )
− o(1).

Thanks to (5.69) and (5.70) we know that that same is true when |ABPt−1| = 0, whence we conclude
that the process defined by

W 2
t∧τ̃h − (t ∧ τ̃h)

E(W 3)

2E(W )

is a submartingale. By the Optional Stopping Theorem 5.5 applied with the stopping times τ1 = 0
and τ2 = τ̃h we arrive at

E(τ̃h) ≤
E(W 2

τ̃h
)

E(W 3)/(2E(W ))
.

Since E(W 2
τ̃h

) ≤ 4h2 for all large enough n, we conclude that

P(|ABPt | < h ∀t ∈ [T1 − 1]) ≤ P(τ̃h = T1) +O
(T 2

1

hn

)
= O

(h2

T1
∨ T

2
1

hn

)
.
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Plugging the values of h � n1/3/A1/4 and T1 � n2/3/A1/4 into the last expression yields that |ABPt |
stays below h for T1 − 1 steps with probability O(1/A1/4), as desired.

Proof of Proposition 5.12

Recall that 3 < τ < 4. Since |ABP1 | = |M̃1| = |M1| − I1 we can write

P(|ABP1 | < h) = P(|M1| < h+ I1) ≤ P(|M1| < 2h) + P(I1 ≥ h).

By Lemma 5.14 and using Markov’s inequality we have

P(I1 ≥ h) = O
(w2

1

hn

)
.

Therefore, we obtain

P(|ABP1 | < h) ≤ P(|M1| < 2h) +O
(w2

1

hn

)
= P(Poi(w1) < 2h) +O

(w2
1

hn

)
.

Since h = bδn
1

τ−1 c ≤ δc1/(τ−1)
F w1, by taking a small enough δ < 1/(4c

1/(τ−1)
F ) and using Chernoff’s

inequality we see that P(Poi(w1) < 2h) ≤ P(Poi(w1) < w1/2) can be made exponentially small (in
n). Moreover,

w2
1

hn
= O

(
n

2
τ−1

n1+ 1
τ−1

)
= O

(
1

n
τ−2
τ−1

)
and therefore we conclude that

P(|ABP1 | < h) ≤ C

n
τ−2
τ−1

for some finite constant C > 0 which depends on cF and τ .

Proof of Proposition 5.11
Recall that here we want to bound from above

P(τj − τj−1 < T2 ∀j,∃t ∈ [T1 − 1] : |ABPt | ≥ h). (5.71)

Define τh := min{t < T1 : |ABPt | ≥ h} if this set is nonempty, otherwise let τh := T1. Note that, on
the event {∃t ∈ [T1− 1] : |ABPt | ≥ h}, we have |ABPτh | ≥ h. Moreover, if τj − τj−1 is smaller than T2

for every j, then there must be a time t < T2 such that |ABPτh+s| > 0 for all s ≤ t−1 and |ABPτh+t| = 0.
Consequently, recalling that |ABPi | = |ABPi−1|+ |M̃i|−1 if |ABPi−1| > 0 and |M̃i| = |Mi|− Ii for every
i, we conclude that there must be a time t < T2 such that the process

R′τh+s := |ABPτh+s|+
s∑
i=1

(|Mτh+i| − 1)

stays above
∑s

i=1 Iτh+i for all s ≤ t− 1 and R′τh+t ≤
∑t

i=1 Iτh+i. It follows from Lemma 5.14 that,
since τh ≤ T1 and T2 ≤ T1, with probability at least 1−O((T1T2)/(hn)) we have

∑T2
i=1 Iτh+i ≤ h/2.

All in all, we can conclude that there must be a time t < T2 at which the process

Rτh+t := |ABPτh+t| −
h

2
+

t∑
i=1

(|Mτh+i| − 1) ≤ 0.

Define τ0 := min{t ≥ 1 : Rτh+t ≤ 0} if this set is nonempty, otherwise let τ0 := T2. Based on our
previous discussion we conclude that the probability in (5.71) is at most

P(τ0 < T2 | |ABPτh | ≥ h) +O
(T1T2

hn

)
. (5.72)
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Write Ph(·) for the conditional probability given {|ABPτh | ≥ h} and denote by Eh[·] for conditional
expectation given that event. Define

Ws :=
h

2
−
(h

2
∧Rτh+s

)
.

Note that, if 0 < Ws−1 < h/2 (which means that 0 < Rτh+s−1 < h/2) then it is not hard to show
that

W 2
s −W 2

s−1 ≤ (|Mτh+s| − 1)2 + 2(1− |Mτh+s|)Ws−1. (5.73)
Taking (conditional) expectation on both sides of (5.73) given Rτh+s−1, τh, and since

E(|Mτh+s| | Rτh+s−1, τh) = νn, E(|Mτh+s|2 | Rτh+s−1, τh) = νn + E((W ∗n)2) and h|1− νn| � 1,

we arrive at

E(W 2
s −W 2

s−1 | Rτh+s−1, τh) ≤ 1 + E((W ∗n)2) + o(1) ≤ 2 + E(W 3)/E(W ).

Since the same bound holds true when Rτh+s−1 ≥ h, we conclude that the process

W 2
s∧τ0 − (2 + E(W 3)/E(W ))(s ∧ τ0), 0 ≤ s ≤ T2

is a supermartingale. Moreover, under Eh such a supermartingale starts at 0 and so we can use
Theorem 5.5 to conclude that

Eh(W 2
T2∧τ0) ≤ (2 + E(W 3)/E(W ))(T2 ∧ τ0) ≤ (2 + E(W 3)/E(W ))T2 =: c0(w)T2.

Whence we arrive at

Ph(τ0 < T2) ≤ Ph(W 2
T2∧τ0 ≥ h

2/4) ≤
4Eh(W 2

T2∧τ0)

h2
≤ 4c0(w)T2

h2
,

which together with (5.72) yields the desired result.

Proof of Proposition 5.13
The proof follows that same step carried out in the proof of Proposition 5.11. Specifically, by
noticing that in this case we have τh = 1, following precisely the same steps we see that the process

W 2
s∧τ0 − (2 + E((W ∗n)2))(s ∧ τ0), 0 ≤ s ≤ T2

is a supermartingale and so we obtain

Eh(W 2
T2∧τ0) ≤ (2 + E((W ∗n)2))(T2 ∧ τ0) ≤ (2 + E((W ∗n)2))T2.

Whence we arrive at

Ph(τ0 < T2) ≤ Ph(W 2
T2∧τ0 ≥ h

2/4) ≤
4Eh(W 2

T2∧τ0)

h2
= O

(E((W ∗n)2)T2

h2

)
.

Plugging the exact values of h and T2 in the ratio above and using the fact that E((W ∗n)2) = O(n
4−τ
τ−1 )

yields the desired result.

5.4. Proofs of Lemma 5.1, Proposition 5.2 and Lemmas 5.3, 5.8 and 5.9. In this subsection we
prove all the auxiliary results that have been used to obtain the bounds stated in Theorems 3.1, 3.2
and 3.5.

Proof of Lemma 5.1: Suppose first that (3.3) holds. Then we have

wi = [1− F ]−1(i/n) = inf{s : 1− F (s) ≤ i/n}

= inf
{
s : s ≥

(ncF
i

)1/(τ−1)}
=
(ncF

i

)1/(τ−1)
, ∀i ∈ [n]. (5.74)
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Now suppose that 1 − F (x) ≤ cFx
−(τ−1) (for every x ≥ 0) for some cF > 0, τ > 3. Let f(x) and

g(x) be two functions such that for all x ≥ 0, f(x) ≤ g(x). Since for any s ≥ 0, g(s) ≤ t implies
f(s) ≤ t, then {s : g(s) ≤ t} ⊆ {s : f(s) ≤ t}, so inf{s : g(s) ≤ t} ≥ inf{s : f(s) ≤ t}. Taking
f(x) = 1 − F (x), g(x) = cFx

−(τ−1) and t = i/n it follows from (5.74) that wi ≤ (ncF /i)
1/(τ−1).

Thus in particular ω1 = maxi∈[n]ωi = O
(
n1/(τ−1)

)
.

�

Proof of Proposition 5.2: To prove Proposition 5.2 we need Lemma A.1 in van der Hofstad
(2013), which we state here for the reader’s convenience.

Lemma 5.15. Let W have distribution F and let Wn have distribution Fn as in (4.7). Let h :

[0,∞) → C be a differentiable function with h(0) = 0 such that |h′(x)|[1 − F (x)] is integrable on
[0,∞). Then for every a > 0

|E(h(Wn))− E(h(W ))| ≤
∫ ∞
a
|h′(x)|[1− F (x)]dx+

1

n

∫ a

0
|h′(x)|dx.

Suppose first that τ > 3. Taking h(x) = x in Lemma 5.15 we get

|E(Wn)− E(W )| ≤
∫ ∞
a

(1− F (x))dx+
a

n

≤ cF
τ − 2

a−(τ−2) +
a

n
.

Taking a = (cFn)1/(τ−1) we obtain

|E(Wn)− E(W )| ≤ c1/(τ−1)F
τ − 1

τ − 2
n−

τ−2
τ−1 .

Next, let h(x) = x2 and observe that |h′(x)|(1− F (x)) ≤ 2cFx
−(τ−2) is integrable since τ − 2 > 1.

Thus we can apply Lemma 5.15 to obtain

|E(W 2
n)− E(W 2)| ≤ 2cF

τ − 3
a−(τ−3) +

a2

n
.

Taking a = (cFn)1/(τ−1) we arrive at

|E(W 2
n)− E(W 2)| ≤

2c
2/(τ−1)
F

τ − 3
n−

τ−3
τ−1 (1 +O(n−1/(τ−1))).

Therefore we obtain
(i) E(W )− c1/(τ−1)

F n−
τ−2
τ−1 τ−1

τ−2 ≤ E(Wn);

(ii) E(Wn) ≤ E(W ) + c
1/(τ−1)
F n−

τ−2
τ−1 τ−1

τ−2 ;

(iii) E(W 2)− 2c
2/(τ−1)
F
τ−3 n−

τ−3
τ−1
(
1 +O(n−1/(τ−1))

)
≤ E(W 2

n);

(iv) E(W 2
n) ≤ E(W 2) +

2c
2/(τ−1)
F
τ−3 n−

τ−3
τ−1
(
1 +O(n−1/(τ−1))

)
.

Consequently, letting N ∈ N be so large that

E(W )− c1/(τ−1)
F N−

τ−2
τ−1

τ − 1

τ − 2
> 0

we see that, for n ≥ N ,

E(W 2
n)

E(Wn)
≤

E(W 2) +
2c

2/(τ−1)
F
τ−3 n−

τ−3
τ−1

(
1 +O(n−1/(τ−1))

)
E(W )− c1/(τ−1)

F n−
τ−2
τ−1 τ−1

τ−2
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and

E(W 2
n)

E(Wn)
≥

E(W 2)− 2c
2/(τ−1)
F
τ−3 n−

τ−3
τ−1

(
1 +O(n−1/(τ−1))

)
E(W ) + c

1/(τ−1)
F n−

τ−2
τ−1 τ−1

τ−2

.

Using the fact that E(W 2)/E(W ) = 1 we obtain, for n ≥ N ,∣∣∣E(W 2
n)

E(Wn)
− 1
∣∣∣ ≤ pn

E(W )− c1/(τ−1)
F n−

τ−2
τ−1 τ−1

τ−2

where we set

pn :=
2c

2/(τ−1)
F

τ − 3
n−

τ−3
τ−1

(
1 +O(n−1/(τ−1))

)
+ c

1/(τ−1)
F n−

τ−2
τ−1

τ − 1

τ − 2
.

Therefore for all large enough n ≥ N we obtain

|νn − 1| ≤
4
c
2/(τ−1)
F
τ−3 n−

τ−3
τ−1

E(W )− c1/(τ−1)
F

τ−1
τ−2n

− τ−2
τ−1

, (5.75)

establishing the first part of the proposition. Next note that, if τ > 4 then |h′(x)|(1 − F (x)) ≤
3cFx

−(τ−3) is integrable and hence we can use once again Lemma 5.15 to bound

|E(W 3
n)− E(W 3)| ≤ 3cF

τ − 4
a−(τ−4) +

a2

n
. (5.76)

Taking a = (cFn)1/(τ−1) we see that

|E(W 3
n)− E(W 3)| ≤ 3

c3/(τ−1)F

τ − 4
n−

τ−4
τ−1

(
1 +O(n−1/(τ−1))

)
. (5.77)

Consequently we arrive at∣∣∣E(W 3
n)

E(Wn)
− E(W 3)

E(W )

∣∣∣ ≤ E(W )5
c
3/(τ−1)
F
τ−4 n−

τ−4
τ−1

E(W )
(
E(W )− c1/(τ−1)

F
τ−1
τ−2n

− τ−2
τ−1

) , (5.78)

completing the proof. �

Proof of Lemma 5.3: Since Sγ = Sγ−1 + Υγ − 1 we obtain

P(Sγ −H ≥ k|Sγ ≥ H, γ ∈ Σ)

=
H−1∑
h=1

∑
m∈Σ

P(Sm −H ≥ k, Sm ≥ H, γ = m,Sm−1 = H − h)

P(Sγ ≥ H, γ ∈ Σ)
. (5.79)

Now setting NH := {n ∈ N : n ≥ H} we see that

{γ = m} =
{
Sj ∈ (0, H) ∩ N ∀j ≤ m− 1, Sm ∈ {0} ∪ NH

}
and on the event {Sm − H ≥ k} = {Sm ≥ H + k} we clearly have Sm ∈ {0} ∪ NH , whence the
numerator of the ratio in (5.79) can be written as

P(Sm −H ≥ k, Sm ≥ H, γ = m,Sm−1 = H − h)

= P(Sm −H ≥ k, Sm ≥ H,Sj ∈ (0, H) ∩ N ∀j ≤ m− 1, Sm−1 = H − h)

= P(Υm ≥ h+ 1 + k, Sj ∈ (0, H) ∩ N ∀j ≤ m− 1, Sm−1 = H − h)

= P(Υm ≥ h+ 1 + k)P(Sj ∈ (0, H) ∩ N ∀j ≤ m− 1, Sm−1 = H − h), (5.80)
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where last equality follows from the fact that Υm is independent of (Sj)1≤j≤m−1. Now

P(Υm ≥ h+ 1 + k) = P(Υ1 ≥ h+ 1 + k)

= P(Υ1 ≥ h+ 1 + k,Υ1 ≥ h+ 1)

= P(Υ1 ≥ h+ 1 + k|Υ1 ≥ h+ 1)P(Υ1 ≥ h+ 1)

= P(Υ1 ≥ h+ 1 + k|Υ1 ≥ h+ 1)P(Υm ≥ h+ 1)

and also

P(Υm ≥ h+ 1)P(Sj ∈ (0, H) ∩ N ∀j ≤ m− 1, Sm−1 = H − h)

= P(Υm ≥ h+ 1, Sj ∈ (0, H) ∩ N ∀j ≤ m− 1, Sm−1 = H − h). (5.81)

Note that if Sm−1 = H − h and Υm ≥ h+ 1 then

Sm = Sm−1 + Υm − 1 = H − h+ Υm ≥ H.

Thus the probability in (5.81) is at most

P(Sm ≥ h, Sj ∈ (0, H) ∩ N ∀j ≤ m− 1, Sm−1 = H − h)

= P(Sm ≥ H,Sj ∈ (0, H) ∩ N ∀j ≤ m− 1, Sm ∈ {0} ∪ NH , Sm−1 = H − h)

= P(Sm ≥ H, γ = m,Sm−1 = H − h).

Consequently the probability in (5.80) is at most

P(Υ1 ≥ k + h+ 1|Υ1 ≥ h+ 1)P(Sm ≥ H, γ = m,Sm−1 = H − h) (5.82)

and hence the ration in (5.79) is bounded from above by

H−1∑
h=1

∑
m∈Σ

P(Υ1 ≥ k + h+ 1|Υ1 ≥ h+ 1)P(Sm ≥ H, γ = m,Sm−1 = H − h)

P(Sγ ≥ H, γ ∈ Σ)

=
H−1∑
h=1

P(Υ1 ≥ k + h+ 1|Υ1 ≥ h+ 1)P(Sγ−1 = H − h|Sγ ≥ H, γ ∈ Σ).

Next we evaluate the probabilities P(Υ1 ≥ h+k+1|Υ1 ≥ h+1) appearing within last sum. Since Υ1

follows a mixed Poisson distribution Poi(wM1), then, conditional on M1 = j, Υ1 is distributed as a
Poisson random variable with mean wj , j ∈ [n]. Let {Ywj}j∈[n] be a sequence of random variables
such that Ywj ∼ Poi(wj), j ∈ [n]. Then a short calculation reveals that

P(Υ1 ≥ h+ k + 1|Υ1 ≥ h+ 1)

=
n∑
i=1

P(Ywi ≥ h+ k + 1|Ywi ≥ h+ 1)P(M1 = i|Υ1 ≥ h+ 1). (5.83)

We will show that, for i ∈ [n],

P(Ywi ≥ h+ k + 1|Ywi ≥ h+ 1) ≤ P(Yw1 ≥ k). (5.84)

Note that, if (5.84) were true, then we would obtain

n∑
i=1

P(Ywi ≥ h+ k + 1|Ywi ≥ h+ 1)P(M1 = i|Υ1 ≥ h+ 1)

≤
n∑
i=1

P(Yw1 ≥ k)P(M1 = i|Υ1 ≥ h+ 1) = P(Yw1 ≥ k)
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and hence

P(Sγ −H ≥ k|Sγ ≥ H, γ ∈ Σ) ≤ P(Yw1 ≥ k)

H−1∑
h=1

P(Sγ−1 = H − h|Sγ ≥ H, γ ∈ Σ)

= P(Yw1 ≥ k),

which is the required result. To establish (5.84), observe that

P(Ywi ≥ h+ k + 1|Ywi ≥ h+ 1) =
P(Ywi ≥ h+ k + 1)

P(Ywi ≥ h+ 1)
. (5.85)

For N ≥ dw1e (≥ wi) let BN,wi/N be a random variable with the Bin(N,wi/N) distribution. Then
for every k ≥ 0 we see that

P(Ywi ≥ h+ k + 1) = lim
N→∞

P(BN,wi/N ≥ h+ k + 1)

and hence
P(Ywi ≥ h+ k + 1)

P(Ywi ≥ h+ 1)
= lim

N→∞

P(BN,wi/N ≥ h+ k + 1)

P(BN,wi/N ≥ h+ 1)

= lim
N→∞

P(BN,wi/N − (h+ 1) ≥ k|BN,wi/N ≥ h+ 1).

Using Lemma 5 in Nachmias and Peres (2010b) we obtain

P(BN,wi/N − (h+ 1) ≥ k|BN,wi/N ≥ h+ 1) ≤ P(BN,wi/N ≥ k)

whence

lim
N→∞

P(BN,wi/N − (h+ 1) ≥ k|BN,wi/N ≥ h+ 1) ≤ lim
N→∞

P(BN,wi/N ≥ k)

= P(Ywi ≥ k) ≤ P(Yw1 ≥ k),

where for the last inequality we have used the fact that wi ≥ wi+1 for 1 ≤ i ≤ n− 1.
�

Proof of Lemma 5.8: Note that

1− νn = 1− E(W ∗n) = 1− E(W 2
n)

E(Wn)
(5.86)

By Lemma 5.1 we have

E(Wn) = c
1/(τ−1)
F n

2−τ
τ−1

∑
i∈[n]

i−1/(τ−1) (5.87)

and

E(W 2
n) = c

2/(τ−1)
F n

3−τ
τ−1

∑
i∈[n]

i−2/(τ−1). (5.88)

Since ∫ b+1

1
x−rdx ≤

b∑
x=1

x−r ≤ 1 +

∫ b

1
x−rdx

for every r > 0 and all x ≥ 1, it is not difficult to see that
n∑
i=1

i−
1

τ−1 ≥ τ − 1

τ − 2
(n+ 1)

τ−2
τ−1 − τ − 1

τ − 2
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and
n∑
i=1

i−
2

τ−1 ≤ 1 +
τ − 1

τ − 3
n
τ−3
τ−1 − τ − 1

τ − 3
.

Substituting these estimates into (5.88) and (5.87) and recalling that, under (3.3), we have c1/(τ−1)
F =

(τ − 3)(τ − 1)−1, we easily see that (for all large enough n) (5.86) is at least

n−
τ−3
τ−1

τ − 1
> 0,

completing the proof. �

Proof of Lemma 5.9: Note that for every i we have

|M̃i| =
∣∣∣{l ∈ [Xvi ] : Jvil /∈ (ABPi−1 ∪ {mBP

i }) ∪ EBPi−1 ∪ L
vi
l−1}

∣∣∣ ≤ ∣∣∣{l ∈ [Xvi ] : Jvil /∈ EBPi−1}
∣∣∣ =: Fi.

Intuitively, the reason why this is a good upper bound for |M̃i| is that the number of active
marks never grows too much and hence (at least for i sufficiently large) the main contribution to
|(ABPi−1 ∪ {mBP

i }) ∪ EBPi−1 ∪ L
vi
l−1| comes from |EBPi−1 | = i − 1 (recall that at each step during the

exploration of the branching process trees we explore precisely one mark). It follows that

EQβ∗
(
er|M̃β∗+j |−1

)
≤ EQβ∗

(
er(Fβ∗+j−1)

)
.

Now observe that, for l ∈ [Xvβ∗+j ], we have

PQβ∗ (J
vβ∗+j
l /∈ EBPβ∗+j−1) = 1− PQβ∗ (J

vβ∗+j
l ∈ EBPβ∗+j−1)

≤ 1− PQβ∗ (J
vβ∗+j
l ∈ {n− j + 1, . . . , n}),

where the last inequality follows from the fact that |EBPβ∗+j−1| = β∗ + j − 1 ≥ j and wi ≥ wi+1 for
1 ≤ i ≤ n− 1. Now recalling that ln is the sum of all the weights, we obtain

1− PQβ∗ (J
vβ∗+j
l ∈ {n− j + 1, . . . , n}) =

n∑
m=1

wm
ln
−

n∑
m=n−j+1

wm
ln

=

n−j∑
m=1

wm
ln
,

whence

PQβ∗ (J
vβ∗+j
l /∈ EBPβ∗+j−1) ≤

n−j∑
m=1

wm
ln
.

Since the number of children of vertices different to Vn are i.i.d. random variables with distribution
X ∼ Poi(wM ), we obtain

EQβ∗
(
erFβ∗+j

)
≤ EQβ∗

(
erBin(X,

∑n−j
m=1(wm/ln))

)
= EQβ∗

(
E
(
erBin(X,

∑n−j
m=1(wm/ln))|X

))
= EQβ∗

((
1 + (er − 1)

n−j∑
m=1

wm
ln

)X)

=
∑
h≥0

(
1 + (er − 1)

n−j∑
m=1

wm
ln

)h
EQβ∗ (P(X = h|M))

≤
∑
h≥0

eh(er−1)
∑n−j
m=1

wm
ln EQβ∗

(
e−wM

whM
h!

)
,



1352 Umberto De Ambroggio and Angelica Pachon

where for the last inequality we have used the standard bound 1 + x ≤ ex, which is valid for all x.
Since

EQβ∗
(
e−wM

whM
h!

)
=

n∑
x=1

e−wx
whx
h!

wx
ln

(5.89)

we obtain

∑
h≥0

eh(er−1)
∑n−j
m=1

wm
ln EQβ∗

(
e−wM

whM
h!

)
=

n∑
x=1

e−wx
wx
ln

∑
h≥0

(
e(er−1)

∑n−j
m=1

wm
ln wx

)h
h!

=
n∑
x=1

e−wx
wx
ln

exp
{
e(er−1)

∑n−j
m=1

wm
ln wx

}
=

n∑
x=1

wx
ln

exp
{
wx

[
e(er−1)

∑n−j
m=1

wm
ln − 1

]}
.

Next we bound the term e(er−1)
∑n−j
m=1

wm
ln appearing within the last expression. Recall that wx =(

cFn
x

) 1
τ−1 . Then

n−j∑
m=1

wm
ln

=
(cFn)

1
τ−1

ln

n−j∑
m=1

m−
1

τ−1 .

Now
n−j∑
m=1

m−
1

τ−1 ≤ τ − 1

τ − 2
(n− j)

τ−2
τ−1 + 1 (5.90)

and

ln ≥ c1/(τ−1)
F

τ − 1

τ − 2
n−O

(
n1/(τ−1)

)
, (5.91)

where the constant in the O−notation depends on cF and τ . Using jointly (5.90) and (5.91) we see
that

n−j∑
m=1

wm
ln
≤(cFn)1/(τ−1)

τ−1
τ−2(n− j)

τ−2
τ−1 + 1

c
1/(τ−1)
F

τ−1
τ−2n−O

(
n1/(τ−1)

)
=

(cFn)1/(τ−1) τ−1
τ−2(n− j)

τ−2
τ−1

c
1/(τ−1)
F

τ−1
τ−2n−O

(
n1/(τ−1)

) +O
(
n−

τ−2
τ−1

)
. (5.92)

Using the inequalities log(1−x) > −x−x2 and ey ≤ 1+y+y2, valid for x ∈ (0, 0.69) and 0 ≤ y ≤ 1,
respectively, a simple computation yields

(cFn)1/(τ−1) τ−1
τ−2(n− j)

τ−2
τ−1

c
1/(τ−1)
F

τ−1
τ−2n−O

(
n1/(τ−1)

) ≤ (cFn)1/(τ−1) τ−1
τ−2(n− j)

τ−2
τ−1

c
1/(τ−1)
F

τ−1
τ−2n

(
1 +O

(
n−

τ−2
τ−1

))

=
(

1− j

n

) τ−2
τ−1
(

1 +O
(
n−

τ−2
τ−1

))
. (5.93)

Since log(1 + x) ≤ x for all x > −1 and e−x ≤ 1− x+ x2 for x ≥ 0 we obtain(
1− j

n

) τ−2
τ−1

= e
τ−2
τ−1

log(1−j/n) ≤ e−
τ−2
τ−1

j
n ≤ 1− τ − 2

τ − 1

j

n
+
(τ − 2

τ − 1

)2( j
n

)2
.
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Now (
1− τ − 2

τ − 1

j

n
+
(τ − 2

τ − 1

)2( j
n

)2
)
O
(
n−

τ−2
τ−1

)
= O

(
n−

τ−2
τ−1

)
(5.94)

and hence by (5.92), (5.93) and (5.94) we obtain

n−j∑
m=1

wm
ln
≤ 1− τ − 2

τ − 1

j

n
+
(τ − 2

τ − 1

)2( j
n

)2
+O

(
n−

τ−2
τ−1

)
.

Therefore, taking r ∈ (0, 1) we arrive at

e(er−1)
∑n−j
m=1

wm
ln ≤ exp

{
(r + r2)

(
1 − τ − 2

τ − 1

j

n
+
(τ − 2

τ − 1

)2
(
j

n

)2)
+ rO

(
n−

τ−2
τ−1

)}
.

Using once more the bound ex ≤ 1 + x + x2, valid for x ∈ [0, 1], we see that last exponential is at
most

1 + (r + r2)

(
1− τ − 2

τ − 1

j

n
+
(τ − 2

τ − 1

)2( j
n

)2
)

+ 2r2 + rO
(
n−

τ−2
τ−1

)
.

Consequently

e(er−1)
∑n−j
m=1

wm
ln − 1 ≤(r + r2)

(
1− τ − 2

τ − 1

j

n
+
(τ − 2

τ − 1

)2( j
n

)2
)

+ 2r2 + rO
(
n−

τ−2
τ−1

)
=(r + r2)a(j, τ, n) + 2r2 + rO

(
n−

τ−2
τ−1

)
,

where we set

a(j, τ, n) := 1− τ − 2

τ − 1

j

n
+
(τ − 2

τ − 1

)2( j
n

)2
.

Summarizing, so far we managed to show that

EQβ∗
[
erFβ∗+j

]
≤

n∑
x=1

wx
ln

exp

{
wx

[
(r + r2)a(j, τ, n) + 2r2 + rO

(
n−

τ−2
τ−1

)]}
.

If r ≤ 1/w1 then the exponential term within last sum is at most

1 + wx

[
(r + r2)a(j, τ, n) + 2r2 + rO

(
n−

τ−2
τ−1

)]
+ w2

x

[
(r + r2)a(j, τ, n) + 2r2 + rO

(
n−

τ−2
τ−1

)]2

and [
(r + r2)a(j, τ, n) + 2r2 + rO

(
n−

τ−2
τ−1

)]2
= r2a(j, τ, n)2 +O(r3) ≤ r2 +O(r3).

Consequently, since a(j, τ, n) ≤ 1 we obtain

exp
{
wx

[
(r + r2)a(j, τ, n) + 2r2 + rO

(
n−

τ−2
τ−1

)]}
≤ 1 + wx

[
(r + r2)a(j, τ, n) + 2r2 + rO

(
n−

τ−2
τ−1

)]
+ w2

x

[
r2 +O(r3)

]
.
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Therefore when r ≤ 1/w1 we arrive at

EQβ∗
(
erFβ∗+j

)
≤

n∑
x=1

wx
ln

(
1 + wx

[
(r + r2)a(j, τ, n) + 2r2 + rO

(
n−

τ−2
τ−1

)]
+ w2

x(r2 +O(r3))
)

= 1 +
[
(r + r2)a(j, τ, n) + 2r2 + rO

(
n−

τ−2
τ−1

)] n∑
x=1

w2
x

ln
+ (r2 +O(r3))

n∑
i=1

w3
x

ln

= 1 + (r + r2)a(j, τ, n)νn + 2r2νn + rO
(
n−

τ−2
τ−1

)
νn + (r2 +O(r3))E((W ∗n)2)

≤ exp
{

(r + r2)a(j, τ, n)νn + 2r2νn + rO
(
n−

τ−2
τ−1

)
νn + (r2 +O(r3))E((W ∗n)2)

}
,

where last inequality follows from the fact that 1 + x ≤ ex for all x ∈ R. Using once more the
inequality a(j, τ, n) ≤ 1 and since νn = O(1) we see that the last expression is at most

exp
{
ra(j, τ, n)νn + 3r2νn + rO

(
n−

τ−2
τ−1

)
+ (r2 +O(r3))E((W ∗n)2)

}
.

Thus, using the definition of a(j, τ, n), we arrive at

EQβ∗
[
er(Fγ∗+j−1)

]
≤ exp

{
(r2 +O(r3))E((W ∗n)2)− rνn

τ − 2

τ − 1

j

n

}
·

· exp

{
r(νn − 1) + rνn

(τ − 2

τ − 1

)2( j
n

)2
+ 3r2νn + rO

(
n−

τ−2
τ−1

)}
and hence we obtain

EQβ∗
[
er

∑t
j=1(|M̃j |−1)

]
≤ exp

{
(r2 +O(r3))tE((W ∗n)2)− rνn

τ − 2

τ − 1

t2

2n

}
·

· exp

{
rt(νn − 1) + rνn

(τ − 2

τ − 1

)2
O
( t3
n2

)
+ 3r2tνn + rtO

(
n−

τ−2
τ−1

)}
.

Now since t ≤ T � n, r ≤ 1/w1 and w1 � n1/τ−1 we see that

rtO
(
n−

τ−2
τ−1

)
= O

( T
w1
n−

τ−2
τ−1

)
= O(T/n)� 1.

Moreover,

rνn

(τ − 2

τ − 1

)2
O
( t3
n2

)
= O

( T 3

n2w1

)
and consequently for n large enough we arrive at

EQβ∗
(
er

∑t
j=1(|M̃j |−1)

)
≤2 exp

{
(r2tE((W ∗n)2)

(
1 +

c′

w1

)
− rνn

τ − 2

τ − 1

t2

2n

}
·

· exp

{
rt(νn − 1) + c̄

( T 3

n2w1

)
+ 3r2tνn

}
for some finite constants c′, c̄ > 0, which is the desired result. �
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Appendix

Proof of Proposition 4.1: Consider the graph NRn(w) and the cluster exploration process Alg.1
(resp. Alg.2 and Alg.3) with Vn denoting the vertex from which Alg.1 (resp. Alg.2 and Alg.3)
starts. Consider (At)t≥0, (Et)t≥0 and (U∗t )t≥1, the sequences of active and explored vertices and the
sequence of unseen neighbors of ut, respectively, where ut is the vertex under investigation at time
t ≥ 1 by Alg.1 (resp. Alg.2 and Alg.3). Recall that A0 = {Vn} and u1 = Vn.

Consider also the procedure Alg.1.BP (resp. Alg.2.BP and Alg.3.BP) exploring the thinned
Poisson branching processes, with J0 denoting the mark of the root of the corresponding tree from
which Alg.1.BP (resp. Alg.2.BP and Alg.3.BP) starts. Consider (ABPt )t≥0, (EBPt )t≥0 and
(M̃t)t≥1, the sequences of active and explored marks and the sequence of sets of distinct marks
assigned to the children of vt, respectively, where vt is the vertex corresponding to the mark mBP

t

in Alg.1.BP (resp. Alg.2.BP and Alg.3.BP). Recall that ABP0 = {J0} and mBP
1 = J0.

We claim that the sequence
(
(At, Et)

)
t
has the same distribution as the sequence

(
(ABPt , EBPt )

)
t
.

Assuming the claim is true, recalling that t0 = τ0 = 0 and (for j ≥ 1) tj = min{t > tj−1 : At > 0}
while τj = min{t > τj−1 : ABPt > 0}, then the two sequences of stopping times (tj)j≥0 and (τj)j≥0

are equal in distribution. Finally, since |Cj | = tj− tj−1, then in distribution |Cj | = τj−τj−1. Hence
in the rest of the proof we focus on establishing the claim.

We proceed by induction. By definition, Vn and J0 have the same distribution. Since A0 = {Vn},
E0 = [n] \ A0, ABP0 = {J0} and EBP0 = [n] \ ABP0 , then (A0, E0) and (ABP0 , EBP0 ) have the same
distribution . Let’s now assume that the claim is true until t− 1 (for some t ∈ N).

Suppose that |At−1| > 0. In the procedure Alg.1 (resp. Alg.2 and Alg.3), take a vertex ut
which is the vertex in At−1 with the smallest label. Given that ut = m, then ut is connected
with the vertex j ∈ U∗t with probability 1− exp(wmwj/ln). Moreover, the connections to different
vertices in U∗t are independent by assumption. For an integer L, let us denote by [n]L stand for the
collection of all L-elements subsets of [n]. Thus, if {j1, . . . , jL} ∈ [n]L \

(
At−1 ∪ Et−1

)
, then

P
(
U∗t = {j1, . . . , jL}|ut = m,

(
(Ai, Ei) : i ∈ [1, t− 1]

))
= P

(
mjh ∈ E(w) ∀h ∈ [L],mjh /∈ E(w) ∀h ∈ [L]|ut = m,

(
(Ai, Ei) : i ∈ [1, t− 1]

))
= e
−wm

∑
j∈[n]\{j1,...,jL}

wj
ln

∏
h∈[L]

(
1− e−wmwjh/ln

)
. (5.95)

Now assume that |ABPt−1| > 0 and define, for j ∈ [n]

N
(t)
j :=

∣∣{l ∈Mt : Jvtl = j}
∣∣ , (5.96)

the number of children of vt carrying the mark j in Alg.1.BP (resp. Alg.2.BP and Alg.3.BP),
where vt is the vertex corresponding to the mark mBP

t , and mBP
t is the smallest element in ABPt−1.

Given mBP
t = m, the random variable |Mt| = Xvt follows a Poisson distribution with rate

wm; thus, conditionally on mBP
t = m, the random variable N (t)

j counts the number of outcomes
equal to j in a multinomial experiment with Poisson(wm) (independent) trials. Therefore, setting
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k =
∑

j∈[n] kj we obtain

P(N
(t)
j = kj ∀j ∈ [n]|mBP

t = m) = P(N
(t)
j = kj ∀j ∈ [n], Xvt = k|mBP

t = m)

= P(Xvt = k|mBP
t = m)P(N

(t)
j = kj ∀j ∈ [n]|X = k,mBP

t = m)

= e−wm
wkm
k!

(
k

k1, . . . , kn

)(w1

ln

)k1
· · ·
(wn
ln

)kn
= e−wm

∏
j∈[n]

(wmwj/ln)kj

kj !

= e−wm
∑
j∈[n]

wj
ln

∏
j∈[n]

(wmwj/ln)kj

kj !

=
∏
j∈[n]

e−wmwj/ln
(wmwj/ln)kj

kj !
.

That is, conditionally on mBP
t = m, (N

(t)
j : j ∈ [n]) is a sequence of independent random variables

such that N (t)
j has the Poisson(wmwj/ln) distribution, for j ∈ [n].

Recall also that |Mt| ≥ |M̃t|, where M̃t is the set of distinct marks of children of vt (that is, the
set of marks which did not appear at previous steps and which does not contain duplicates).

Then observe that, for {j1, . . . , jL} ∈ [n]L \
(
ABPt−1 ∪ EBPt−1

)
,

P
(
M̃t = {j1, . . . , jL}|mBP

t = m,
(
(ABPi , EBPi ) : i ∈ [1, t− 1]

))
= P

(
N

(t)
jh
≥ 1 ∀h ∈ [L], N

(t)
j = 0 ∀j ∈ [n] \ {j1, . . . , jL}|mBP

t = m,
(
(ABPi , EBPi ) : i ∈ [1, t− 1]

))
= e
−wm

∑
j∈[n]\{j1,...,jL}

wj
ln

∏
h∈[L]

(
1− e−wmwjh/ln

)
. (5.97)

Consequently we obtain that (ut ∪ U∗t ) and (mBP
t ∪ M̃t), have the same distribution.

When At−1 = 0 and Et−1 6= n, ut is a random vertex chosen from [n] \ Et−1 with probability
proportional to its weight, that is with probability wj/l′n(t), for j ∈ [n] \ Et−1, and where l′n(t) :=∑

i∈[n]\Et−1
wi. Thus, given ut = m and

(
(Ai, Ei) : i ∈ [1, t−1]

)
, for {j1, . . . , jL} ∈ [n]L\

(
{m}∪Et−1

)
we obtain

P
(
U∗t = {j1, . . . , jL}|ut = m,

(
(Ai, Ei) : i ∈ [1, t− 1]

))
= P

(
jhm ∈ E(w) ∀h ∈ [L], jm /∈ E(w) ∀j ∈ [n] \ {j1, . . . , jL}|ut = m,

(
(Ai, Ei) : i ∈ [1, t− 1]

))
= e
−wm

∑
j∈[n]\{j1,...,jL}

wj
ln

∏
h∈[L]

(
1− e−wmwjh/ln

)
. (5.98)

Similarly, when ABPt−1 = 0 and EBt−1 6= n, mBP
t is a random mark chosen from [n] \ EBPt−1 with

probability proportional to its weight, that is with probability wj/l
′
n(t), for j ∈ [n] \ EBPt−1 , and

where l′n(t) :=
∑

i∈[n]\EBPt−1
wi. Thus, given mBP

t = m and
(
(ABPi , EBPi ) : i ∈ [1, t − 1]

)
, for
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{j1, . . . , jL} ∈ [n]L \
(
{m} ∪ EBPt−1

)
we obtain

P
(
M̃t = {j1, . . . , jL}|mBP

t = m,
(
(ABPi , EBPi ) : i ∈ [1, t− 1]

))
= P

(
N

(t)
jh
≥ 1 ∀h ∈ [L], N

(t)
j = 0 ∀j ∈ [n] \ {j1, . . . , jL}|mBP

t = m,
(
(ABPi , EBPi ) : i ∈ [1, t− 1]

))
= e
−wm

∑
j∈[n]\{j1,...,jL}

wj
ln

∏
h∈[L]

(
1− e−wmwjh/ln

)
. (5.99)

Therefore we conclude that also in this case (ut∪U∗t ) and (mBP
t ∪M̃t), have the same distribution.

Finally, assuming that At−1 > 0, we have At = (U∗t ∪ At−1) \ {ut} and Et = (Et−1 ∪ {ut}); also,
when ABPt−1 > 0 we have ABPt = (M̃t ∪ABPt−1) \ {mBP

t } and EBPt = (EBPt−1 ∪{mBP
t }). Similarly, when

At−1 = 0 we have At = U∗t and Et = (Et−1 ∪ {ut}), and when ABPt−1 = 0 we have ABPt = M̃t and
EBPt = (EBPt−1 ∪{mBP

t }). Then using the inductive hypothesis and our previous findings we conclude
that (At, Et) is distributed like (ABPt , EBPt ), and the sequences

(
(Ai, Ei)

)
i≤t and

(
(ABPi , EBPi )

)
i≤t

are equal in distribution until time t. �
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