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Planar Brownian motion winds evenly along its trajectory

Isao Sauzedde
Department of Statistics, University of Warwick
E-mail address: isao.sauzedde@warwick.ac.uk
URL: http://perso.ens-lyon.fr/isao.sauzedde/index_en.html

Abstract. Let DN be the set of points around which a planar Brownian motion winds at least N
times. We prove that the random measure on the plane with density 2πN1DN with respect to the
Lebesgue measure converges almost surely weakly, as N tends to infinity, towards the occupation
measure of the Brownian motion.

1. Introduction

Let X : [0, 1] → R2 be a planar Brownian motion started from 0. Let X̄ be the oriented loop
obtained by concatenating X with the straight line segment joining X1 to X0.

For each point z in R2 outside the range of X̄, let θ(z) be the number of times X̄ winds around z.
For z on the range of X̄, we set θ(z) = 0. Define

DN = {z ∈ R2 : θ(z) ≥ N}.
The Lebesgue measure |DN | of this set is known to be of the order of 1

2πN . More precisely, Werner
proved in Werner (1994) that the following convergence holds:

2πN |DN |
L2

−→
N→∞

1. (1.1)

For all N ≥ 1, we denote by µN the random measure on the plane with density 2πN1DN with
respect to the Lebesgue measure:

dµN (z) = 2πN1DN (z) dz.

Let ν be the occupation measure of X, defined as the push-forward of the Lebesgue measure on
[0, 1] by X. In other words, ν is the random Borel probability measure on the plane characterised
by the fact that for every continuous test function f : R2 → R,∫

R2

f dν =

∫ 1

0
f(Xt) dt.
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The main result of this paper is the following.

Theorem 1.1. Almost surely, µN =⇒
N→∞

ν.

To be clear, we mean that almost surely, for all bounded continuous function f : R2 → R, the
following convergence holds:

lim
N→∞

2πN

∫
R2

f(z)1[N,+∞)(θ(z)) dz =

∫ 1

0
f(Xu) du.

The assumption that the test function is bounded is not essential, because almost surely, the supports
of the measures µN , N ≥ 1 and ν are contained in the convex hull of the range of X, which is
compact.

In the course of the proof, we will obtain an estimation of the rate of convergence in terms of the
modulus of continuity of the test function f (see Lemma 3.1).

The study of the windings of the planar Brownian motion has a long history. The first investiga-
tions were mostly concerned with the winding around a fixed point, the most prominent example
being the celebrated Spitzer theorem Spitzer (1958). There followed among other works a compu-
tation by Yor of the exact law of the winding Mansuy and Yor (2008); Yor (1980), as well as many
fine asymptotic results concerning related functionals (see for example Shi (1998) and references
therein).

In Werner (1994, 1995), Werner shifted the attention from the winding around a point to the
winding as a function, as well as to the set of points with a given winding number. He established,
for instance, in Werner (1994), the convergence (1.1). His results suggest in particular that when
N is large, the set DN , which is located near the trajectory X, is distributed very equally along the
trajectory, with each part of the trajectory carrying a portion of Dn proportional to the length of
the interval parameterising this part. Our main result gives a rigorous statement of this informal
idea.

The proof uses some results that we obtained in our previous work Sauzedde (2022) on this
subject, and which we recall briefly in the next section for the convenience of the reader.

2. Prior results

The Brownian motion X is defined under a probability that we denote by P.
Let T be a positive integer. For all i ∈ {1, . . . , T}, let Xi be the restriction of X to the interval

[ i−1T , iT ]. As we did for X, let us denote by X̄i the concatenation of Xi with a straight line segment
from X i

T
to X i−1

T
, and by θi the winding function of the loop X̄i, taken to be 0 on the trajectory.

We then set, for all N ≥ 1,

DiN = {z ∈ R2 : θi(z) ≥ N} and Di,jN = {z ∈ R2 : |θi(z)| ≥ N, |θj(z)| ≥ N},
with absolute values intended in the second definition.

Our proof of Theorem 1.1 relies on the following lemmas, which are mild reformulations of results
that we proved in Sauzedde (2022) (Equation (28), Theorem 1.5 and Lemma 2.4 in Sauzedde (2022)).

Lemma 2.1. Let µ be a Borel measure on R2, absolutely continuous with respect to the Lebesgue
measure. For all positive integers N,T,M such that T (M + 1) < N ,

T∑
i=1

µ
(
DiN+T+M(T−1)

)
−
∑

1≤i<j≤T
µ
(
Di,jM

)
≤ µ(DN ) ≤

T∑
i=1

µ
(
DiN−T−M(T−1)

)
+
∑

1≤i<j≤T
µ
(
Di,jM

)
.

Lemma 2.2. For all δ < 1
2 and p ≥ 2, there exists C > 0 such that for all N ≥ 1 and all R > 0,

P
(
N δ
∣∣2πN |DN | − 1

∣∣ ≥ R) ≤ CR−p.
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Lemma 2.3. For all ε > 0, there exists C > 0 such that for all positive integers T,M ,

E
[( ∑

1≤i<j≤T
|Di,jM |

)2]
≤ CM−4+εT 1+ε.

3. Proof of the theorem

Let f : R2 → R be a bounded continuous function. Let ωf be the modulus of continuity of f : for
all t ≥ 0,

ωf (t) = sup{|f(z)− f(w)| : z, w ∈ R2, ‖z − w‖ ≤ t} ∈ [0,+∞].

For all Borel subset E of R2, we also set f(E) =
∫
E f(z) dz.

For α ∈ (0, 12), let ‖X‖Cα denote the α-Hölder norm of the Brownian motion:

‖X‖Cα = sup
0≤s<t≤1

‖Xt −Xs‖
|t− s|α

.

We have the following quantitative estimation.

Lemma 3.1. For all t ∈ (0, 25) and α ∈ (0, 12), there exists η > 0 such that almost surely, there
exists a constant C such that for all bounded continuous function f : R2 → R and all N ≥ 1,∣∣∣∣2πNf(DN )−

∫ 1

0
f(Xu) du

∣∣∣∣ ≤ C(ωf (2‖X‖CαN−αt) + ‖f‖∞N−η
)
.

Let us explain why this lemma directly implies Theorem 1.1.

Proof of Theorem 1.1 assuming Lemma 3.1: Thanks to the Portmanteau theorem, is suffices to
show that P-almost surely, for any bounded Lipschitz continuous function f ,∣∣∣∣2πNf(DN )−

∫ 1

0
f(Xu) du

∣∣∣∣ −→N→+∞
0.

For such a function f , one has ωf (t) ≤ ‖f‖Lip t and the result follows from Lemma 3.1 applied for
instance to t = 1

5 and α = 1
4 . �

In order to prove Lemma 3.1, we introduce the following subset of N, which depends on a positive
real parameter γ > 1:

Nγ = {bKγc : K ∈ N} \ {0}.
Let us fix two positive real parameters t and m with m + t < 1 and set, for all N ≥ 1, T = bN tc
and M = bNmc. We advise the reader to think of m as being larger than 1

2 , and of t as a small
number. Precise conditions can be found in the statement of Lemma 3.3.

We also set N ′ = max{n ∈ Nγ : n ≤ N − T −M(T − 1)}, which is well defined when N is large
enough. The difference between N and N ′ is O(N1−1/γ +Nm+t).

We also define the following events, which depend on t and m, and also on other positive real
parameters s, ζ, δ:

EN =
{
∀i ∈ {1, . . . , T}, N ′δ

∣∣2πN ′|DiN ′ | − 1
T

∣∣ ≤ T− 1
2
+ s
t
}
,

FN =
{ ∑

1≤i<j≤T
|Di,jM | ≤ N

−1−ζ
}
,

GN =
{
∀i ∈ {1, . . . , T}, 2πN |DiN ′ | ≤ 2

T

}
.

The proof goes in three steps. In the first (Lemma 3.2), we show that with an appropriate choice
of γ, almost surely, the events EN , FN and GN are realised for all N ∈ Nγ large enough. In a
second step (Lemma 3.3), we show that on this almost sure event, for every bounded continuous
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function, and for all N ∈ Nγ , the conclusion of Lemma 3.1 holds. In the third step, we show that
the conclusion holds not only for N ∈ Nγ , but for all N ∈ N.

Let us collect in one place the assumptions that we make on the parameters that we introduced.
These assumptions are organised in such a way that if enforced in the natural reading order, they
are always satisfiable.

0 < α < 1
2 , 0 < t < 2

5 ,
1
2 + t

4 < m < 1− t , 0 < ζ < 2m− 1− t
2 ,

0 < s < 1
2 −

t
2 ,

t
2 + s < δ < 1

2 ,
γ > max

(
1
2s ,

1
4m−t−2−2ζ

)
.

(A)

From now on, we always assume that these assumptions are satisfied.

Lemma 3.2. The event
⋃
N0≥1

⋂
N∈Nγ
N≥N0

(EN ∩ FN ∩GN ) has probability 1.

Proof : The scaling properties of the Brownian motion imply that |DiN ′ | is equal in distribution to
T−1|DN ′ |. Thus,

1− P(EN ) ≤ TP(N ′
δ∣∣2πN ′|DN ′ | − 1

∣∣ ≥ T 1
2
+ s
t ).

Using Lemma 2.2 with p = 2 gives

1− P(EN ) ≤ CT−
2s
t ,

and for N large enough, this quantity is smaller than 2CN−2s. In particular,∑
N∈Nγ

(
1− P(EN )

)
≤ 2C

+∞∑
K=1

K−2sγ .

Besides, by Markov inequality,

1− P(FN ) ≤ N2+2ζ E
[( ∑

1≤i<j≤T
|Di,jM |

)2]
.

By Lemma 2.3, for any ε > 0, there exists C such that for all N ,

1− P(FN ) ≤ CN−4m+t+2+2ζ+ε.

In particular, ∑
N∈Nγ

(
1− P(FN )

)
≤ C

+∞∑
K=1

Kγ(−4m+t+2+2ζ+ε).

We assumed that γ > 1
4m−t−2−2ζ , so that there exists ε > 0 such that γ > 1

4m−t−2−2ζ−ε . Since we
also assumed that γ > 1

2s , the series
+∞∑
K=1

K−γ(4m−t−2−2ζ−ε) and
+∞∑
K=1

K−γ(2s)

are both convergent.
Using Borel–Cantelli lemma, we conclude the proof, but for the presence of GN . However, using

the fact that N ′ is not larger than N and equivalent to N as N tends to infinity, and the inequality
T ≤ N t, one verifies that if t + 2s < 2δ, then for N large enough, the inclusion EN ⊂ GN holds.
Hence, the proof is complete. �

We now turn to the second step of the proof.
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Lemma 3.3. Almost surely, there exists a constant C such that for all N ∈ Nγ and all bounded
continuous function f : R2 → R,∣∣∣∣2πNf(DN )−

∫ 1

0
f(Xu) du

∣∣∣∣
≤C

(
ωf
(
‖X‖CαT−α

)
+ ‖f‖∞(N−1+m+t +N

− 1
γ
+1

+N−δ+
t
2
+s +N−ζ)

)
.

Proof : We first assume that f is non-negative. Replacing C if necessary by a larger constant, it
suffices to show the inequality for N ≥ N0, for a possibly random N0 which does not depend on f .
Using Lemma 3.2, we can thus assume that the event EN ∩ FN ∩GN holds.

Using Lemma 2.1 to the measure µ = f dz (which is not signed, since f is non-negative), and
the fact that the sequence (DiN )N≥1 is non-increasing, we have

Nf(DN ) ≤
T∑
i=1

Nf(DiN−T−M(T−1)) +
∑

1≤i<j≤T
Nf(Di,jM )

≤
T∑
i=1

Nf(DiN ′) +
∑

1≤i<j≤T
Nf(Di,jM ). (3.1)

Besides, DiN ′ is contained in the convex hull of the trajectory of X between the times i
T and i+1

T ,
hence in the ball of center X i

T
and radius ‖X‖CαT−α, so that

Nf(DiN ′) ≤ N |DiN ′ |f(X i
T

) +N |DiN ′ |ωf (‖X‖CαT−α).

We replace in (3.1) and force the apparition of a Riemann sum by decomposing N |DiN ′ | into

1

2πT
+
N −N ′

2πTN ′
+N

(
|DiN ′ | − 1

2πTN ′

)
.

We obtain
T∑
i=1

Nf(DiN ′) ≤
T∑
i=1

1
2πT f(X i

T
) +

T∑
i=1

N−N ′
2πTN ′ f(X i

T
) +N

T∑
i=1

(
|DiN ′ | − 1

2πTN ′

)
f(X i

T
)

+N
T∑
i=1

|DiN ′ |ωf (‖X‖CαT−α).

Comparing the Riemann sum with the integral and f to its upper bound, we turn this inequality
into

2π

T∑
i=1

Nf(DiN ′) ≤
∫ 1

0
f(Xu) du+ ωf (‖X‖CαT−α) + ‖f‖∞N−N ′

N ′

+ ‖f‖∞N
T∑
i=1

(
2π|DiN ′ | − 1

TN ′

)
+ 2πωf (‖X‖CαT−α)N

T∑
i=1

|DiN ′ |.

Our next goal is to bound the last three terms of the right-hand side. Let us discuss the first, then
the third and finally the second.

For the first term, it follows from the definition of N ′ and by elementary arguments that for N
large enough, indeed larger than a certain N1 that does not depend on f ,

N −N ′

N ′
< 2(Nm+t−1 + γN

− 1
γ
+1

).
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For the third term, since the event GN holds, we have
T∑
i=1

|DiN ′ | ≤ T max
i∈{1,...,T}

|DiN ′ | ≤
1

πN
.

Finally, since the event EN holds, and for N large enough,
T∑
i=1

(
2π|DiN ′ | − 1

TN ′

)
≤ N ′−1−δT

1
2
+ s
t ≤ 2N−1−δ+

t
2
+s.

Here the second inequality holds for N larger than a certain N2 which does not depend on f .
We end up with

2π
T∑
i=1

Nf(DiN ′)−
∫ 1

0
f(Xu) du

≤ 3ωf (‖X‖CαT−α) + 2‖f‖∞(Nm+t−1+γN
− 1
γ
+1

+N−δ+
t
2
+s). (3.2)

We now turn to the second term of the right-hand side of (3.1). Since FN holds,

N
∑

1≤i<j≤T
f(Di,jM ) ≤ N‖f‖∞

∑
1≤i<j≤T

|Di,jM | ≤ ‖f‖∞N
−ζ . (3.3)

Using (3.1), (3.2) and (3.3), we get that almost surely, for N ≥ max(N0, N1, N2),

2πNf(DN )−
∫ 1

0
f(Xu) du

≤ 3ωf (‖X‖CαT−α) + 2‖f‖∞(Nm+t−1 + γN
− 1
γ
+1

+N−δ+
t
2
+s +N−ζ). (3.4)

To obtain this upper bound, we used the second inequality of Lemma 2.1, and the definition of N ′
which was suggested by the term N − T −M(T − 1) that appears in it. A repetition of the exact
same arguments, with the difference that N ′ is now defined as the largest element of Nγ smaller
than N + T +M(T − 1), and using the first inequality of Lemma 2.1 instead of the second, yields
the corresponding lower bound, saying that the left-hand side of (3.4) is larger than the opposite of
the right-hand side of (3.4).

This concludes the proof when f is non-negative. To remove this assumption, it suffices to
decompose f into the sum of its positive and negative parts. �

We now extend Lemma 3.3 from N ∈ Nγ to N ∈ N∗, in order to obtain Lemma 3.1.

Proof of Lemma 3.1: The reals t and α being given, choose positive real numbers s, ζ,m, δ, γ which
satisfy the assumptions (A). Set η = min(1−m−t, 1γ − 1, δ − t

2 − s, ζ) > 0.
Let us first assume f is non-negative. Set Ñ = max{n ∈ Nγ : n ≤ N}, the largest integer smaller

than N in Nγ .
Since the sequence (f(DN ))N≥1 is non-increasing, we have

2πNf(DN )−
∫ 1

0
f(Xu) du ≤ 2πNf(DÑ )−

∫ 1

0
f(Xu) du

=
N

Ñ

(
2πÑf(DÑ )−

∫ 1

0
f(Xu) du

)
+
(N
Ñ
− 1
)∫ 1

0
f(Xu) du.

The first term is taken care of by Lemma 3.3 and the fact that N ≤ 2Ñ for N large enough. The
second term is bounded above, for N sufficiently large, by 2γ‖f‖∞N−

1
γ
+1. Altogether, we find the
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upper bound

2πNf(DN )−
∫ 1

0
f(Xu) du ≤ C

(
ωf (‖X‖CαT−α) + ‖f‖∞N−η

)
for some constant C. The corresponding lower bound is obtained by the same argument with Ñ
defined as min{n ∈ Nγ : n ≥ N}. This concludes the proof when f is non-negative. For the
general case, we simply decompose f into its positive and negative parts. This concludes the proof
of Lemma 3.1, and also the proof of Theorem 1.1. �

4. Further perspectives

It is possible that a similar result also holds when we consider the joint windings of independent
Brownian motions. To be more specific, for two independent planar Brownian motions X,X ′, we
can define their intersection measure `, which is carried by the plane (see Geman et al. (1984)).

One possible way to approximate the mass of this measure is to look at the Lebesgue measure of
the intersection of Wiener sausages with small radius ε around X and X ′. In Le Gall (1986) (and
also in Le Gall (1992)), it is shown that `(R2) can be obtained as the properly normalized limit of
these measures as ε→ 0.

For two independent planar Brownian motions X,X ′, define

D(2)
N = {z ∈ R2 : θX(z) ≥ N, θX′(z) ≥ N}.

Conjecture 4.1. There exists a constant C which depends only ‖X0−X ′0‖ and such that CN2|D(2)
N |

converges, as N → ∞, towards `(R2). The converges holds both in Lp for any p ∈ [1,+∞) and
almost surely.

Besides, almost surely, the measure CN2
1D(2)

N

dz converges weakly towards `.

For such a result to hold, it is necessary that the exponent of N is equal to 2. Nonetheless, we
cannot exclude that some logarithmic corrections should be added.
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