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Abstract. In this paper, we considered the random binary contingency tables with non-uniform
margin. More precisely, for parameters n, δ,B,C, let X = (Xij) with Xij ∈ {0, 1} denote the
uniform sample from the set of ([nδ] + n)-dimensional binary matrices whose first [nδ] rows and
columns have margin [BCn] and the remaining n columns and rows have margin [Cn]. Various
asymptotic properties of X as n→∞ were obtained.

1. Introduction

1.1. Overview. In Statistics, contingency tables serve as a means to represent the interrelationship
within extensive datasets. From a mathematical perspective, these tables can be described as a
collection of matrices where both the row and column sums are predetermined. When the totals
of rows and columns are contingent upon the dimensions of the matrix, grasping the asymptotic
patterns exhibited by the contingency table as these dimensions expand becomes a formidable un-
dertaking. Combinatorists are interested in deriving a precise asymptotic formula for the cardinality
of the contingency tables. The study by Canfield and McKay (2010) employed the multi-variable
Cauchy integral formula to address the scenario of uniform margins, where both the row and column
sums are identical, often referred to as a magic square in Stanley (2012). Subsequently, Barvinok
and Hartigan (2012) obtained a precise asymptotic formula for scenarios with non-uniform margins,
utilizing the so-called Maximum entropy principle. Their fundamental approach involved represent-
ing the count of contingency tables through a probability density function evaluated at a specific
fixed point, subsequently applying the local central limit theorem for approximation. Their formula
remains valid under the condition that the entries of the typical table, which is a matrix representing
the expected values of each entry as the limit is approached, remain within bounded limits as the
limit is taken. The exact definition of the typical table will be postponed and provided in Defini-
tion 2.1. The case when some entries of the typical table blow up remain unsolved. For readers
intrigued by the various combinatorial aspects of contingency tables, see the survey paper Diaconis
and Gangolli (1995).
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In Probability Theory, the collection of contingency tables serves as the finite probability space
and we equip the uniform probability measure on this space. Notably, the sums of rows and
columns are contingent upon the dimension of matrix. It is a natural inquiry to pose when dealing
with a significantly large dimension: If we randomly sample a matrix from a uniform distribution,
what will it resemble? In greater detail, what can we discern about the approaching marginal
distribution of individual entries, as well as the joint distribution of sub-matrices? Additionally,
can any insights be gained regarding the spectrum in this scenario? I. J. Good introduced the
concept of the Maximum Entropy Principle in his work Good (1963), proposing its application in
the analysis of random contingency tables. After half a century, A. Barvinok ultimately validated
Good’s initial insight, as detailed in Barvinok (2010b) and its related references. Despite significant
advancements, the problem of determining the marginal distribution of individual entries remained
unsolved across a wide range of scenarios. Chatterjee, Diaconis, and Sly achieved a solution for
the class of doubly stochastic matrices, which are real matrices with equal row and column sums
equating to 1, as documented in Chatterjee et al. (2010). The author, in his work Wu (2023b),
addressed the discrete case with uniform margins. Dittmer, Lyu, and Pak, as discussed in Dittmer
et al. (2020), delved into the non-uniform margin scenario, elucidating the precise phase transitions
in terms of limiting behaviors. As applications, Lyu and Pak, in their work Lyu and Pak (2022),
obtained sharp asymptotic estimates on the number of n× n contingency tables with non-uniform
margins and showed that in the supercritical regime, the classical independence heuristic leads to a
large over-counting.

In this paper, we focus on asymptotic properties of random binary contingency tables with non-
uniform margins. It is worth noting that binary matrices with predetermined row and column sums
hold significant relevance in various mathematical disciplines. For instance, in Combinatorics, they
are closely tied to hypergraphs with fixed degrees of vertices and network flow analysis, as expounded
upon in van Lint and Wilson (2001). Moreover, these binary matrices emerge naturally as structural
constants in symmetric function theory, thus playing a pivotal role in the representation theory of
symmetric and general linear groups, as elucidated in Macdonald (1998).

Through the maximization of Shannon-Boltzmann entropy for Bernoulli random variables while
subject to first-order constraints, namely, fixed row and column sums, we have derived the limit-
ing marginal distribution for the uniformly sampled binary contingency tables. Furthermore, we
have demonstrated that the joint distribution of entries within each block tends toward a set of
independent and identically distributed (i.i.d.) Bernoulli variables, corroborating the independence
heuristic outlined in Good (1976); Good and Crook (1977). Finally, we have delved into the con-
vergence rates of higher moments of entries within random binary contingency tables, establishing
the validity of the strong law of large numbers for certain truncated rows.

1.2. Basic setups. Let r = (r1, . . . , rm) ∈ Nm and c = (c1, . . . , cn) ∈ Nn be two positive integer
vectors of length m and n respectively with the same total sum of entries N , i.e,

m∑
i=1

ri =

n∑
j=1

cj = N.

We call such vectors r and c margins. Let M {0,1}(r, c) denote the set of m× n binary contingency
tables with row sums ri and column sums cj , i.e.,

M {0,1}(r, c) :=

{
(dij) ∈ {0, 1}mn :

n∑
k=1

dik = ri,
m∑
k=1

dkj = cj for all 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
.
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For B,C > 0 and 0 ≤ δ ≤ 1, the Barvinok margins r̃ and c̃ as in Dittmer et al. (2020); Lyu and
Pak (2022) are defined as

r̃ = c̃ := ([BCn], . . . , [BCn]︸ ︷︷ ︸
[nδ] entries

, [Cn], . . . , [Cn])︸ ︷︷ ︸
n entries

∈ N[nδ]+n. (1.1)

Furthermore, let

M
{0,1}
n,δ (B,C) := M {0,1}(r̃, c̃),

and letX = (Xij)1≤i,j≤n+[nδ] be a uniform sample from M
{0,1}
n,δ (B,C). We call the random sampleX

a random binary contingency table. The main objective of this paper is to study various asymptotic
properties of X as n→∞.

First, the following trivial bounds on B and C need to hold so that the set M
{0,1}
n,δ (B,C) is always

non-empty as n→∞.

Lemma 1.1. Suppose the set M
{0,1}
n,δ (B,C) is non-empty, then we have{

0 < C ≤ 1

0 < B ≤ 1
C

if 0 ≤ δ < 1, and

{
0 < C ≤ 2

0 < B ≤ 2
C

if δ = 1.

Proof : Since every entry of the matrix is restricted to {0, 1}, we have BCn ≤ [nδ] + n and Cn ≤
[nδ] + n, which are equivalent to BC ≤ 1 + [nδ]

n and C ≤ 1 + [nδ]
n . The results then follow from

taking limits as n→∞. �

1.3. Notations.
(1) For two random variables X1, X2 taking values on N, the Total Variation Distance metric

is defined as
dTV (X1, X2) :=

∑
k≥0
|P(X1 = k)− P(X2 = k)|.

(2) A random variable X ∼ Ber(q) if P(X = 1) = q and P(X = 0) = 1− q.
(3) We use f(n) = O(g(n)) or f � g to denote the estimate that there exist some M > 0 and

real number x0 such that

f(n) ≤M · g(n) for all n ≥ x0.
(4) We use f(n) = o(g(n)) to denote the estimate that for any ε > 0, there exists a real number

x0 such that
f(n) ≤ ε · g(n) for all n ≥ x0.

1.4. Main results. In Dittmer et al. (2020), the authors established a sharp phase transition for
typical table in terms of B for non-negative integer-valued contingency tables with the Barvinok
margins (1.1). As a consequence, when incorporating additional constraints while extending the
characteristics of typical tables to contingency tables, a similar phase transition emerges concerning
the limiting behaviors of non-negative integer-valued random contingency tables.

Therefore, it is natural to inquire whether random binary contingency tables with Barvinok
margins exhibit a comparable phase transition. While all the entries of the typical table in binary
case cannot blow up as the super-critical case (B > 1+

√
1 + 1/C) in Dittmer et al. (2020, Lemma

5.1), it is still not entirely clear whether limiting values of entries of the typical table do not exhibit
any phase transition as as the ratio B between two margin values undergoes variation. In this
work, we show that indeed there is no phase transition for entries of the typical table in binary
case (Lemma 2.3). As a result, when incorporating some additional restrictions introduced by
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the estimate (3.1), there is no phase transition in terms of limiting behaviours of random binary
contingency tables with Barvinok margins.

Theorem 1.2. For M
{0,1}
n,δ (B,C) with parameter n, δ,B,C, let X = (Xij) be sampled uniformly at

random from M
{0,1}
n,δ (B,C). Fix ε > 0 and we have the following:

(1) (Bottom right) When 0 ≤ δ < 1, 0 < C ≤ 1 and 0 < B ≤ 1
C , we have

dTV (Xn+1,n+1,Ber(C)) = O
(
nδ−1 + n−

1
2
+ε
)
.

(2) (Top left) When 1
2 < δ < 1, 0 < C ≤ 1 and 0 < B ≤ 1

C , we have

dTV

(
X11,Ber

(
B2(1− C)

B2 − 2B + 1/C

))
= O

(
nδ−1 + n

1
2
−δ+ε

)
.

(3) (Side blocks) When 0 < δ < 1, 0 < C ≤ 1 and 0 < B ≤ 1
C , we have

dTV (X1,n+1,Ber(BC)) = dTV (Xn+1,1,Ber(BC)) = O
(
nδ−1 + n−

δ
2
+ε
)
.

It is trivial to see that

dTV (Ber(λ1),Ber(λ2)) = 2|λ1 − λ2| = 2
∣∣∣E[Berk(λ1)]− E[Berk(λ2)]

∣∣∣ for all k ≥ 1, (1.2)

which immediately implies the following corollary on convergence of higher moments of X:

Corollary 1.3. For M
{0,1}
n,δ (B,C) with parameter n, δ,B,C, let X = (Xij) be sampled uniformly

at random from M
{0,1}
n,δ (B,C). Fix ε > 0 and for all k ≥ 1, we have the following:

(1) (Bottom right) When 0 ≤ δ < 1, 0 < C ≤ 1 and 0 < B ≤ 1
C , we have∣∣∣E [Xk

n+1,n+1

]
− C

∣∣∣ = O
(
nδ−1 + n−

1
2
+ε
)
.

(2) (Top left) When 1
2 < δ < 1, 0 < C ≤ 1 and 0 < B ≤ 1

C , we have∣∣∣∣E [Xk
11

]
− B2(1− C)
B2 − 2B + 1/C

∣∣∣∣ = O
(
nδ−1 + n

1
2
−δ+ε

)
.

(3) (Side blocks) When 0 < δ < 1, 0 < C ≤ 1 and 0 < B ≤ 1
C , we have∣∣∣E[Xk

1,n+1]−BC
∣∣∣ = O

(
nδ−1 + n−

δ
2
+ε
)
.

Our next result deals with the joint distribution of entries within each block. For k = k(n)
random variables R1, . . . , Rk, let the vector (R1, . . . , Rk) denote their joint distribution. Let Vk(γ)
denote the joint distribution of k i.i.d. Ber(γ) variables.

Theorem 1.4. For M
{0,1}
n,δ (B,C) with parameter n, δ,B,C, let X = (Xij) be sampled uniformly at

random from M
{0,1}
n,δ (B,C). Then we have the following:

(1) (Bottom right) When 0 < C ≤ 1, 0 < B ≤ 1
C , and

k = k(n) =

{
o
(

n
logn

)
if δ = 0,

o(n1−δ), if 0 < δ < 1,

we have

dTV

(
(X[nδ]+1,[nδ]+1, X[nδ]+1,[nδ]+2, . . . , X[nδ]+1,[nδ]+k), Vk(C)

)
→ 0.
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(2) (Top left) When 0 < C ≤ 1, 0 < B ≤ 1
C , and

k = k(n) =

{
o
(
n2δ−1

logn

)
if 1

2 < δ ≤ 2
3 ,

o(n1−δ), if 2
3 < δ < 1,

we have

dTV

(
(X11, . . . , X1k), Vk

(
B2(1− C)

B2 − 2B + 1/C

))
→ 0.

(3) (Side blocks)When 0 < C ≤ 1, 0 < B ≤ 1
C , and

k = k(n) =

{
o
(

nδ

logn

)
if 0 < δ ≤ 1

2 ,

o(n1−δ), if 1
2 < δ < 1,

we have
dTV

(
(X1,[nδ]+1, . . . , X1,[nδ]+k), Vk(BC)

)
→ 0.

Therefore, within each block, the joint distribution of any k = k(n) entries are asymptotically
independen; In particular, it is true for any fixed number of entries.

Our final results deal with the Strong Law of Large Numbers (SLLN) for certain truncated rows.
Let

SS
n,δ(B,C) :=

n∑
k=1

X1,k+[nδ] and SBR
n,δ (B,C) :=

n∑
k=1

Xn+1,k+[nδ],

and we have the following two SLLN theorems:

Theorem 1.5. Let 0 < δ ≤ 1
2 , 0 < C ≤ 1 and 0 < B ≤ 1

C and let X = (Xij) be the uniform sample
from M

{0,1}
n,δ (B,C). Then we have

1

n
SS
n,δ(B,C)→ BC almost surely.

Theorem 1.6. Let 0 ≤ δ < 1, 0 < C ≤ 1 and 0 < B ≤ 1
C and let X = (Xij) be the uniform sample

from M
{0,1}
n,δ (B,C). Then we have

1

n
SBR
n,δ (B,C)→ C almost surely.

Remark 1.7. Notice that the expected values of SS
n,δ(B,C) converge to BCn, which is already the

entire row sum. Hence, we do not expect the Central Limit Theorem (CLT) holds for SS
n,δ(B,C)

since there is no room for the row sum to fluctuate. Likewise for SBR
n,δ (B,C). Similar reasoning

was also mentioned in Dittmer et al. (2020, Conjecture 3.1), where in the sub-critical case (B <

1 +
√

1 + 1/C), the expected row rum is already equal to the full row margin and therefore the
CLT is not expected to hold. On the contrary, in the super-critical case (B > 1 +

√
1 + 1/C), the

expected row sum is strictly less than the whole row margin and we do expect the CLT to hold
after suitable renormalizations.

1.5. Open problems and future research.
(1) In Nguyen (2014), the author showed that for uniformly doubly stochastic matrices, the

empirical eigenvalue distribution converges to the circular law. Nevertheless, when dealing
with non-uniform margins, the behavior of the spectrum remains elusive, and we lack even
a speculative limit hypothesis.
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(2) A straightforward extension of our findings involves examining scenarios where the elements
of matrix X can assume values within {0, 1, . . . , k}. The Maximum Entropy Principle sug-
gests that the limiting distribution of X is likely to be a truncated Geometric distribution.
Therefore, as k →∞, it should recover the results in Dittmer et al. (2020).

(3) Moreover, exploring the monotonic behavior of entropy becomes even more intriguing, as it
appears that entropy consistently rises with each incremental increase in both k and n. This
curiosity finds its inspiration in the well-known Shannon Monotonicity Conjecture related to
the classical CLT, a conjecture that was substantiated in Artstein et al. (2004) through the
application of Fisher information. It is feasible to explore an extension of this conjecture into
higher dimensions using random contingency tables. This extension offers a broader scope
as it not only involves an increase in dimensions but also entails a change in the nature
of constraints. For instance, in higher dimensions, second-order constraints or variance
constraints correspond to the use of uniformly distributed (also known as Haar distributed)
orthogonal or unitary matrices. This category of problems has been extensively studied,
and it is established that the marginal distribution of uniformly distributed orthogonal or
unitary matrices converges to the standard normal distribution when appropriately rescaled
to have a mean of 1. For further insights, readers can refer to works such as Diaconis and
Shahshahani (1994); Borel (1914) and their associated references.

2. Asymptotic analysis of the typical table

A. Barvinok introduced the notion of typical table in order to answer the question: What does
a random contingency tables look like? As the dimension of matrix increases, it becomes apparent
that the random contingency table exhibits a degree of similarity, in a specific context, to the typical
table. For further context and precise details, please refer to references Barvinok (2010b,a, 2012);
Barvinok and Hartigan (2010). Here, we’ll simply revisit the constructions by Barvinok and provide
some additional observations.

Fix margins r ∈ Nm and c ∈ Nn, the binary transportation polytope is defined to be

P{0,1}(r, c) :=

{
(xij) ∈ [0, 1]mn :

m∑
k=1

xik = ri,

n∑
k=1

xkj = cj ,∀1 ≤ i ≤ m, 1 ≤ j ≤ n

}
.

Definition 2.1 (Typical Table). For all X = (xij) ∈ (0, 1)mn, let

g(X) :=
∑
i,j

xij ln
1

xij
+ (1− xij) ln

1

1− xij
.

For fixed margin r and c, we define the typical table Z = (zij) to be the unique maximizer of g in
the interior of P{0,1}(r, c).

Remark 2.2. Note that
(1) For fixed i, j, the quantity xij ln 1

xij
+ (1 − xij) ln 1

1−xij is the Shannon-Boltzmann entropy
Shannon (1948) of the Ber(xij).

(2) Since g is strictly concave in the interior of P{0,1}(r, c), which is compact, the function g
attains the unique maximum in that region. Therefore Definition 2.1 is well-defined.

(3) For fixed i, j and notice that ∂
∂xij

g(X) = ln
(
1−xij
xij

)
. Therefore, for typical table Z = (zij),

we have the following Lagrange multiplier conditions:

ln

(
1− zij
zij

)
= λi + µj , for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Next, we delve into the asymptotic behavior of the elements within the typical table denoted
as Z = (zij). Our approach in this section closely aligns with the reasoning presented in Dittmer
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et al. (2020, Lemma 5.1, Proposition 5.2). The primary distinction lies in our optimization method,
which relies on the entropy of Bernoulli random variables instead of Geometric random variables.

By symmetry and the theory of Lagrange multiplier, there exist some α, β (possibly depend on
all the parameters) such that

ln

(
1− zij
zij

)
=


2α 1 ≤ i, j ≤ [nδ],

2β [nδ] < i, j ≤ [nδ] + n,

α+ β otherwise.

Let P = eα and Q = eβ and we have

zij =


1

P 2+1
1 ≤ i, j ≤ [nδ],

1
Q2+1

[nδ] < i, j ≤ [nδ] + n,
1

PQ+1 otherwise.
(2.1)

We also have the following two marginal conditions for Z = (zij):{
([nδ]/n)z11 + z1,n+1 = BC,

([nδ]/n)z1,n+1 + zn+1,n+1 = C.
(2.2)

From (2.2), we have {
zn+1,n+1 ≤ C,
z1,n+1 ≤ BC,

and

{
zn+1,n+1 = C +O(nδ−1),

z1,n+1 = BC +O(nδ−1),
(2.3)

since 0 < zij < 1 for all 1 ≤ i, j ≤ n+ [nδ].

Lemma 2.3. Let 0 < C ≤ 1 and 0 < B ≤ 1
C . Let Z = (zij) be the typical table for M

{0,1}
n,δ (B,C)

with 0 ≤ δ < 1, then we have

z11 =
B2(1− C)

B2 − 2B + 1/C
+O(nδ−1) and z1,n+1 = zn+1,1 = BC +O(nδ−1).

Proof : Since z11 is uniformly bounded in n, we have

|z1,n+1 −BC| ≤ nδ−1z11 = O(nδ−1), (2.4)

which implies that limn→∞ z1,n+1 = BC. Let P = P (n), Q = Q(n) be as in (2.1), then

lim
n→∞

z1,n+1 = lim
n→∞

1

PQ+ 1
= BC and lim

n→∞
zn+1,n+1 = lim

n→∞

1

Q2 + 1
= C,

which are equivalent to

Q→ q∗ :=

√
1

C
− 1 and PQ→ 1

BC
− 1.

Consequently, we have

P → p∗ :=

(
1

BC
− 1

)/√
1

C
− 1

and

z11 =
1

P 2 + 1
→ 1

(p∗)2 + 1
=

B2(1− C)
B2 − 2B + 1/C

≤ B2C.
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Next, we want to obtain the convergence rate for z11. Let h(x) = 1
x2+1

and h′(x) = −2x
(x2+1)2

. Since

|h′(x)| ≤ 3
√
3

8 for all x ∈ R, by Mean Value Theorem (see e.g. Lang (1998)), we have

|z11 − h(p∗)| = |h(P )− h(p∗)| ≤ sup
x∈R
|h′(x)| · |P − p∗|

=
3
√
3

8
· |P − p∗|.

Next, by triangle inequality,

|P − p∗| ≤
∣∣∣∣P − 1/BC − 1

Q

∣∣∣∣+ ( 1

BC
− 1

) ∣∣∣∣ 1Q − 1

q∗

∣∣∣∣ . (2.5)

Next, since zn+1,n+1 = h(Q), C = h(q∗), by Mean Value Theorem,

BCnδ−1 ≥ |zn+1,n+1 − C| = |h(Q)− h(q∗)| ≥ 3
√
3

8
· |Q− q∗|

for sufficiently large n. Hence, |Q − q∗| = O(nδ−1). Since Q → q∗, the second term in (2.5) is of
order O(nδ−1). For the first term in (2.5), we have∣∣∣∣P − 1/BC − 1

Q

∣∣∣∣ = (PQ+ 1)/BC

Q
·
∣∣∣∣ 1

PQ+ 1
−BC

∣∣∣∣
=

(PQ+ 1)/BC

Q
· |z1,n+1 −BC|

= O(nδ−1)

(2.6)

since both P and Q converge as n → ∞ and by (2.4), we have |z1,n+1 − BC| = O(nδ−1). Thus
|P − p∗| = O(nδ−1) and this completes the proof. �

As an application of the Lemma 2.3, the author in Wu (2023a) obtained a sharp asymptotic
formula for the number of binary contingency tables with Bavinok margins (1.1), following closely
from the work of Lyu and Pak (2022). Compared with Lyu and Pak (2022, Theorem 2.2), where
there exist a sharp phase transition in terms of the asymptotics on the number of non-negative
integer valued contingency tables with Barvinok margins, there is no phase transition in the binary
case Wu (2023a, Theorem 1.2).

Furthermore, it is quite interesting to see that, in the binary case, the independence heuristic, as
defined in Wu (2023a, (2)), is proven to overestimate by a large factor, whereas in the non-negative
integer valued case, the independence heuristic, as defined in Lyu and Pak (2022, (1.3)), leads to a
large under-counting.

3. Estimations on total variation distance and Proof of Theorems 1.2 and 1.4

In this section, we use concentration inequality to prove Theorems 1.2 and 1.4. The proof is
verbatim to that of Dittmer et al. (2020, Theorem 2.1) and Chatterjee et al. (2010, Theorem 1).
First, we recall the following theorem in Barvinok (2012).

Theorem 3.1 (Barvinok (2012)). Fix row margin r = (r1, . . . , rm) and column margin c =

(c1, . . . , cn). Let Z = (zij)1≤i≤m,1≤j≤n be the typical table for M {0,1}(r, c). Let Y = (yij)1≤i≤m,1≤j≤n
be an matrix with independent Bernoulli random variables with yij ∼ Ber(zij). Then we have the
following conclusions:

(1) There exists an absolute constant γ such that

(mn)−γ(m+n)eg(Z) ≤
∣∣∣M {0,1}(r, c)

∣∣∣ ≤ eg(Z).
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(2) Conditioned on being in M {0,1}(r, c), the matrix Y is uniform on M {0,1}(r, c). In other
words, the probability mass function of Y is constant on the set M {0,1}(r, c). More precisely,
for any D ∈M {0,1}(r, c), we have P(Y = D) = e−g(Z).

(3) There exists some absolute constant γ > 0 such that

P
(
Y ∈M {0,1}(r, c)

)
= e−g(Z) ·

∣∣∣M {0,1}(r, c)
∣∣∣ ≥ (mn)−γ(m+n).

Remark 3.2. By Theorem 3.1, for any fixed measurable set A ⊆ [0, 1]mn, we have

P(Y ∈ A ) ≥ P
(
Y ∈ A |Y ∈M {0,1}(r, c)

)
· P
(
Y ∈M {0,1}(r, c)

)
≥ P(X ∈ A ) · (mn)−γ(m+n).

(3.1)

Subsequently, our goal is to derive an approximation for the total variation distance between the
elements of the uniformly sampled matrix X and the maximum entropy matrix Y . In this endeavor,
we employ the identical large deviation estimation method as introduced in Dittmer et al. (2020);
Chatterjee et al. (2010).

Lemma 3.3. Let X = (Xij) be uniformly distributed on M
{0,1}
n,δ (B,C) and Z = (zij) be the typical

table associated to M
{0,1}
n,δ (B,C). Let Y = (Yij) be the matrix of independent Bernoulli random

variables with mean zij, i.e. Yij ∼ Ber(zij). Then, for any fixed ε > 0, we have



dTV (X11, Y11) = O
(
n

1
2
−δ+ε

)
,

dTV (X1,n+1, Y1,n+1) = O
(
n−

δ
2
+ε
)
,

dTV (Xn+1,1, Yn+1,1) = O
(
n−

δ
2
+ε
)
,

dTV (Xn+1,n+1, Yn+1,n+1) = O
(
n−

1
2
+ε
)
.

Proof : By exchangeability of entries in the top left block and the Azuma-Hoeffding inequality, for
any fixed measurable set A ⊆ [0,∞), we have

P

∣∣∣∣∣∣ 1

[nδ]2

∑
1≤i≤[nδ]

∑
1≤j≤[nδ]

1{Yij∈A} − P (Y11 ∈ A)

∣∣∣∣∣∣ > t

 ≤ exp
(
−2t2[nδ]2

)
.

Moreover, by (3.1),

P

∣∣∣∣∣∣ 1

[nδ]2

∑
1≤i≤[nδ]

∑
1≤j≤[nδ]

1{Xij∈A} − P (Y11 ∈ A)

∣∣∣∣∣∣ > t


≤
(
n+ [nδ]

)γ′(n+[nδ])
· exp

(
−2t2

(
[nδ]
)2)
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for some absolute constant γ′ > 0. Therefore, we have

|P(X11 ∈ A)− P(Y11 ∈ A)|

=

∣∣∣∣∣∣E
 1

[nδ]2

∑
1≤i,j≤[nδ]

1{Xij∈A}

− P(Y11 ∈ A)

∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣ 1

[nδ]2

∑
1≤i,j≤[nδ]

1{Xij∈A} − P(Y11 ∈ A)

∣∣∣∣∣∣


≤ tP

∣∣∣∣∣∣ 1

[nδ]2

∑
1≤i,j≤[nδ]

1{Xij∈A} − P(Y11 ∈ A)

∣∣∣∣∣∣ ≤ t


+ 2P

∣∣∣∣∣∣ 1

[nδ]2

∑
1≤i,j≤[nδ]

1{Xij∈A} − P (Y11 ∈ A)

∣∣∣∣∣∣ > t


≤ t+ 2

(
n+ [nδ]

)γ′(n+[nδ])
· exp

(
−2t2[nδ]2

)
.

Fix ε > 0 and let t = n
1
2
−δ+ε. Then

|P(X11 ∈ A)− P(Y11 ∈ A)| = O
(
n

1
2
−δ+ε

)
.

By the exactly same argument,

|P(X1,n+1 ∈ A)− P(Y1,n+1 ∈ A)| ≤ t+ 2
(
n+ [nδ]

)γ′′(n+[nδ])
· exp

(
−2t2 · [nδ] · n

)
.

Let t = n−
δ
2
+ε, then

|P(X1,n+1 ∈ A)− P(Y1,n+1 ∈ A)| = O
(
n−

δ
2
+ε
)
.

Finally,

|P(Xn+1,n+1 ∈ A)− P(Yn+1,n+1 ∈ A)| ≤ t+ 2
(
n+ [nδ]

)γ′′′(n+[nδ])
· exp

(
−2t2 · n2

)
.

Let t = n−
1
2
+ε, then

|P(Xn+1,n+1 ∈ A)− P(Yn+1,n+1 ∈ A)| = O
(
n−

1
2
+ε
)
.

Therefore, we have 

dTV (X11, Y11) = O
(
n

1
2
−δ+ε

)
,

dTV (X1,n+1, Y1,n+1) = O
(
n−

δ
2
+ε
)
,

dTV (Xn+1,1, Yn+1,1) = O
(
n−

δ
2
+ε
)
,

dTV (Xn+1,n+1, Yn+1,n+1) = O
(
n−

1
2
+ε
)
.

This completes the proof. �



On Properties of Random Binary Contingency Tables with Non-Uniform Margin 1377

Proof of Theorem 1.2: By (1.2), Lemma 2.3 and (2.3), we have
dTV (Ber(zn+1,n+1),Ber(C)) = 2|zn+1,n+1 − C| = O(nδ−1),

dTV (Ber(z1,n+1),Ber(BC)) = 2|z1,n+1 −BC| = O(nδ−1),

dTV (Ber(zn+1,1),Ber(BC)) = 2|zn+1,1 −BC| = O(nδ−1),

dTV

(
Ber(z11),Ber

(
B2(1−C)

B2−2B+1/C

))
= 2

∣∣∣z11 − B2(1−C)
B2−2B+1/C

∣∣∣ = O(nδ−1).

(3.2)

By Lemma 3.3, 

dTV (X11, Y11) = O
(
n

1
2
−δ+ε

)
,

dTV (X1,n+1, Y1,n+1) = O
(
n−

δ
2
+ε
)
,

dTV (Xn+1,1, Yn+1,1) = O
(
n−

δ
2
+ε
)
,

dTV (Xn+1,n+1, Yn+1,n+1) = O
(
n−

1
2
+ε
)
.

(3.3)

Therefore, by triangle inequality, we have

dTV (Xn+1,n+1,Ber(C)) ≤ dTV (Xn+1,n+1,Ber (zn+1,n+1)) + dTV (Ber(zn+1,n+1),Ber(C))

= O
(
nδ−1 + n−

1
2
+ε
)
,

dTV (X1,n+1,Ber(BC)) ≤ dTV (X1,n+1,Ber (z1,n+1)) + dTV (Ber(z1,n+1),Ber(BC))

= O
(
nδ−1 + n−

δ
2
+ε
)
,

dTV (Xn+1,1,Ber(BC)) ≤ dTV (Xn+1,1,Ber (zn+1,1)) + dTV (Ber(zn+1,1),Ber(BC))

= O
(
nδ−1 + n−

δ
2
+ε
)
,

and

dTV

(
X11,Ber

(
B2(1− C)

B2 − 2B + 1/C

))
≤ dTV (X11,Ber (z11)) + dTV

(
Ber(z11),Ber

(
B2(1− C)

B2 − 2B + 1/C

))
= O

(
nδ−1 + n

1
2
−δ+ε

)
.

This completes the proof. �

Proof of Theorem 1.4: We first prove (1). For k = k(n), let A ⊆ Rk be a fixed measurable subset
and let

X (`) = {(i(`)1 , j
(`)
1 ), . . . , (i

(`)
k , j

(`)
k ) : [nδ] + 1 ≤ i(`)r , j(`)r ≤ [nδ] + n}

be a k-subset of indices of the bottom right block with X (`)∩X (`′) = ∅ if ` 6= `′ and 1 ≤ ` ≤ [n2/k].
In other words, we divide the bottom right block into [n2/k] disjoint subsets, each with size k.

Let X(`) = (X
(i

(`)
1 ,j

(`)
1 )
, . . . , X

(i
(`)
k ,j

(`)
k )

) be the random vector of k entries, indexed by X (`), in

the bottom right block of X. By symmetry, X(`) has the same distribution with X(`′) for all
1 ≤ `, `′ ≤ [n2/k]. Similarly, let Y (`) = (Y

(i
(`)
1 ,j

(`)
1 )
, . . . , Y

(i
(`)
k ,j

(`)
k )

), where Y = (Yij)1≤i,j≤n+[nδ] is the
matrix of independent Bernoulli random variables with Yij ∼ Ber(zij). By the Azuma-Hoeffding
inequality, we have

P

∣∣∣∣∣∣ 1

[n2/k]

[n2/k]∑
`=1

1{X(`)∈A} − P
(
Y (1) ∈ A

)∣∣∣∣∣∣ > 1

2
ε

 ≤ c′ exp(n log n)

exp
(
− ε2

8 · [n2δ/k]
)
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for sufficiently large n. Hence, when k = o
(

n
logn

)
, we have

P

∣∣∣∣∣∣ 1

[n2/k]

[n2/k]∑
`=1

1{X(`)∈A} − P
(
Y (1) ∈ A

)∣∣∣∣∣∣ > 1

2
ε

 = o(1).

Since all X(`)’s have the same distribution for 1 ≤ ` ≤ [n2/k], we have∣∣∣P(X(1) ∈ A)− P(Y (1) ∈ A)
∣∣∣ ≤ 1

2
ε+ o(1).

Since Y (1) is a random vector of k independent Bernoulli random variables, we have

dTV

(
Y (1), Vk(C)

)
≤ k · dTV (Ber(zn+1,n+1),Ber(C))

= 2k|zn+1,n+1 − C|.

By (3.2), we have |zn+1,n+1−C| = O(nδ−1). Hence, when k = o
(
n1−δ

)
, we have dTV (Y (1), Vk(C)) =

o(1). Notice that {
1� n

logn � n1−δ if δ = 0,
1� n1−δ � n

logn if 0 < δ < 1.

Hence, by triangle inequality, when

k = k(n) =

{
o
(

n
logn

)
if δ = 0,

o(n1−δ) if 0 < δ < 1,

we have
dTV

(
(X[nδ]+1,[nδ]+1, X[nδ]+1,[nδ]+2, . . . , X[nδ]+1,[nδ]+k), Vk(C)

)
→ 0.

This proves (1).
Next, we prove (2). For k = k(n), let A ⊆ Rk be a fixed measurable subset. This time, let

X (`) = {(i(`)1 , j
(`)
1 ), . . . , (i

(`)
k , j

(`)
k ) : 1 ≤ i(`)r , j(`)r ≤ [nδ]}

be a k-subset of indices of top left block with X (`) ∩X (`′) = ∅ if ` 6= `′ and 1 ≤ ` ≤ [n2δ/k]. In
other words, we divide the top left block into [n2δ/k] disjoint subsets, each with size k.

Let X(`) = (X
(i

(`)
1 ,j

(`)
1 )
, . . . , X

(i
(`)
k ,j

(`)
k )

) be the random vector of k entries, indexed by X (`), in

the bottom right block of X and let Y (`) = (Y
(i

(`)
1 ,j

(`)
1 )
, . . . , Y

(i
(`)
k ,j

(`)
k )

). By the Azuma-Hoeffding
inequality, we have

P

∣∣∣∣∣∣ 1

[n2δ/k]

[n2δ/k]∑
`=1

1{X(`)∈A} − P
(
Y (1) ∈ A

)∣∣∣∣∣∣ > 1

2
ε

 ≤ c′ · exp(n log n)

exp
(
− ε2

8 · [n2δ/k]
)

for sufficiently large n. Hence, when k = o
(
n2δ−1

logn

)
, we have

P

∣∣∣∣∣∣ 1

[n2δ/k]

[n2δ/k]∑
`=1

1{X(`)∈A} − P
(
Y (1) ∈ A

)∣∣∣∣∣∣ > 1

2
ε

 = o(1).

Since all X(`)’s have the same distribution for all 1 ≤ ` ≤ [n2δ/k], we have∣∣∣P(X(1) ∈ A)− P(Y (1) ∈ A)
∣∣∣ ≤ 1

2
ε+ o(1).
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Again, by (3.2), we have

dTV

(
Y (1), Vk

(
B2(1− C)

B2 − 2B + 1/C

))
≤ k · dTV

(
Ber(z11),Ber

(
B2(1− C)

B2 − 2B + 1/C

))
= 2k ·

∣∣∣∣z11 − B2(1− C)
B2 − 2B + 1/C

∣∣∣∣
= k ·O(nδ−1).

Hence, when k = o
(
n1−δ

)
, we have dTV

(
Y (1), Vk

(
B2(1−C)

B2−2B+1/C

))
= o(1). Notice that{

1� n2δ−1

logn � n1−δ if 1
2 < δ ≤ 2

3 ,
1� n1−δ � n2δ−1

logn if 2
3 < δ < 1.

Hence, by triangle inequality, when

k = k(n) =

{
o
(
n2δ−1

logn

)
if 1

2 < δ ≤ 2
3 ,

o(n1−δ) if 2
3 < δ < 1,

we have

dTV

(
(X11, . . . , X1k), Vk

(
B2(1− C)

B2 − 2B + 1/C

))
→ 0.

This finishes the proof of (2).
Finally, we prove (3). Likewise, let

X (`) = {(i(`)1 , j
(`)
1 ), . . . , (i

(`)
k , j

(`)
k ) : 1 ≤ i(`)r , j(`)r ≤ [n1+δ]}

be a k-subset of indices of bottom left block with X (`) ∩X (`′) = ∅ if ` 6= `′ and 1 ≤ ` ≤ [n1+δ/k]

and let X(`) = (X
(i

(`)
1 ,j

(`)
1 )
, . . . , X

(i
(`)
k ,j

(`)
k )

) be the random vector of k entries, indexed by X (`), within
the bottom left block of X.

Let Y (`) = (Y
(i

(`)
1 ,j

(`)
1 )
, . . . , Y

(i
(`)
k ,j

(`)
k )

), where Y = (Yij) is the matrix of independent Bernoulli
random variables with Yij ∼ Ber(zij). By the Azuma-Hoeffding inequality,

P

∣∣∣∣∣∣ 1

[n1+δ/k]

[n1+δ/k]∑
`=1

1{X(`)∈A} − P
(
Y (1) ∈ A

)∣∣∣∣∣∣ > 1

2
ε

 ≤ c′ exp(n log n)

exp
(
− ε2

8 · [n1+δ/k]
)

for sufficiently large n. Hence, when k = o
(

nδ

logn

)
,

P

∣∣∣∣∣∣ 1

[n1+δ/k]

[n1+δ/k]∑
`=1

1{X(`)∈A} − P
(
Y (1) ∈ A

)∣∣∣∣∣∣ > 1

2
ε

 = o(1).

Since all X(`)’s have the same distribution for 1 ≤ ` ≤ [n1+δ/k],∣∣∣P(X(1) ∈ A)− P(Y (1) ∈ A)
∣∣∣ ≤ 1

2
ε+ o(1).

By (3.2),

dTV

(
Y (1), Vk (BC)

)
≤ k · dTV (Ber(z1,n+1),Ber (BC))

= 2k · |z1,n+1 −BC|

= k ·O(nδ−1).
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Hence, when k = o
(
n1−δ

)
, we have dTV

(
Y (1), Vk (BC)

)
= o(1). Furthermore, notice that{

1� nδ

logn � n1−δ if 0 < δ ≤ 1
2 ,

1� n1−δ � nδ

logn if 1
2 < δ < 1.

Hence, by triangle inequality, when

k = k(n) =

{
o
(

nδ

logn

)
if 0 < δ ≤ 1

2 ,

o(n1−δ) if 1
2 < δ < 1,

we have
dTV

(
(X1,[nδ]+1, . . . , X1,[nδ]+k), Vk(BC)

)
→ 0.

This finishes the proof of (3). �

A direct consequence of Theorem 1.4 is the below Corollary 3.4. To state the results, let J =
J(n, δ,B,C) = (Jij) be the matrix of independent Bernoulli random variables such that

Jij ∼


Ber(C) if 1 + [nδ] ≤ i, j ≤ n+ [nδ],

Ber(BC) if 1 ≤ i ≤ [nδ], [nδ] + 1 ≤ j ≤ [nδ] + n,

Ber(BC) if 1 ≤ j ≤ [nδ], [nδ] + 1 ≤ i ≤ [nδ] + n,

Ber
(

B2(1−C)
B2−2B+1/C

)
if 1 ≤ i, j ≤ [nδ].

Corollary 3.4. Let (i1, j1), . . . , (iL, jL) be a fixed sequence of pairs of positive integers and let
α1, . . . , αL be a fixed sequence of positive integers. Under the exact same conditions as Theorem 1.4,
we have

E

[
L∏
k=1

Xαk
ik,jk

]
→ E

[
L∏
k=1

Jαkik,jk

]
(3.4)

if 1 ≤ ik, jk ≤ [nδ] or [nδ] + 1 ≤ i, j ≤ [nδ] + n or 1 ≤ i ≤ [nδ], [nδ] + 1 ≤ j ≤ [nδ] + n or
1 ≤ j ≤ [nδ], [nδ] + 1 ≤ i ≤ [nδ] + n. In other words, the (ik, jk)

′s are in the same block for all
1 ≤ k ≤ L.

4. Proof of Theorem 1.5 and 1.6

In this section, we prove the Theorem 1.5 and 1.6. Notice that similar results have been obtained
in the non-negative integer case Dittmer et al. (2020). We first obtain the explicit convergence rate
for (3.4). Notice that∣∣∣∣∣E

[
L∏
k=1

Xαk
ik,jk

]
− E

[
L∏
k=1

Jαkik,jk

]∣∣∣∣∣
=

∣∣∣∣∣P
(

L∏
k=1

Xαk
ik,jk

= 1

)
− P

(
L∏
k=1

Jαkik,jk = 1

)∣∣∣∣∣
=

∣∣∣∣∣P
(

L∏
k=1

Xik,jk = 1

)
− P

(
L∏
k=1

Jik,jk = 1

)∣∣∣∣∣
≤ dTV

(
L∏
k=1

Xik,jk ,
L∏
k=1

Jik,jk

)

≤ dTV

(
L∏
k=1

Xik,jk ,
L∏
k=1

Yik,jk

)
+ dTV

(
L∏
k=1

Yik,jk ,
L∏
k=1

Jik,jk

)
.
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Recall that Y = (Yij) is the matrix of independent Bernoulli random variables with each Yij has
mean zij . The matrix Z = (zij) is the typical table. By symmetry and (3.2), we have

dTV

(
L∏
k=1

Yik,jk ,
L∏
k=1

Jik,jk

)
≤ L · dTV (Yi1,j1 , Ji1,j1) = O(nδ−1).

For the dTV
(∏L

k=1Xik,jk ,
∏L
k=1 Yik,jk

)
, it can be shown that

dTV

(
L∏
k=1

Xik,jk ,
L∏
k=1

Yik,jk

)
= O

(
n−η(δ)+ε

)
, (4.1)

where

η(δ) =


1
2 if all the (ik, jk)

′s are in the bottom right block,
δ − 1

2 if all the (ik, jk)
′s are in the top left block,

δ
2 otherwise.

(4.2)

The proof of (4.1) is similar to that of Lemma 3.3 and Dittmer et al. (2020, Theorem 6.1) so the
details are omitted. Hence, we have∣∣∣∣∣E

[
L∏
k=1

Xαk
ik,jk

]
− E

[
L∏
k=1

Jαkik,jk

]∣∣∣∣∣ = O
(
nδ−1 + n−η(δ)+ε

)
, (4.3)

where η(δ) is defined in (4.2).
Next, we prove Theorem 1.5. Note that the proof of Theorem 1.6 follows the exact same reasoning

so we will not provide any details here.

Proof of Theorem 1.5: Let X1,[nδ]+k = X1,[nδ]+k −BC for all 1 ≤ k ≤ n and let

Sn,δ(B,C) := X1,[nδ]+1 + . . .+X1,[nδ]+n −BCn
= X1,[nδ]+1 + . . .+X1,[nδ]+n.

By Markov’s inequality, we have

P
(
Sn,δ(B,C) > t

)
≤ 1

t2
E

( n∑
k=1

X1,k+[nδ]

)2


=
1

t2
E

 n∑
k=1

X
2
1,k+[nδ] + 2

∑
[nδ]+1≤k1 6=k2≤[nδ]+n

X1k1X1k2


=

1

t2

{
nE
[
X

2
1,n+1

]
+ n(n− 1)E

[
X1,n+1X1,n+2

]}
.

By (4.3), we have
E
[
X

2
1,n+1

]
= BC −B2C2 +O

(
nδ−1 + n−

δ
2
+ε
)

and
E
[
X1,n+1X1,n+2

]
= O

(
nδ−1 + n−

δ
2
+ε
)
.

Therefore, when 0 < δ ≤ 1
2 , we have

nE
[
X

2
1,n+1

]
+ n(n− 1)E

[
X1,n+1X1,n+2

]
= O

(
n2−

δ
2
+ε
)
.

Hence, for all ξ, ε > 0, there exists some constant c′ > 0 such that

P
(
Sn,δ(B,C) > n1−ξ

)
≤ c′n2ξ−

δ
2
+ε
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for sufficiently large n. If we choose 0 < ξ < δ
4 , then for some constants c′′, ξ′ > 0,

P
(
Sn,δ(B,C)

n
> n−ξ

)
≤ c′′n−ξ′

for sufficiently large n. For any sequence (nk)k≥1 with nk →∞ as k →∞, there exists a subsequence
(nkr)r≥1 with nkr →∞ as r →∞ such that

∞∑
r=1

P

(
Snkr ,δ(B,C)

nkr
> n−ξkr

)
<∞.

By the Borel-Cantelli Lemma, we have

Snkr ,δ(B,C)

nkr
→ 0 as r →∞

almost surely. Consequently,

lim inf
n→∞

Sn,δ(B,C)

n
= lim sup

n→∞

Sn,δ(B,C)

n
= 0

almost surely. This completes the proof. �
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