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Abstract. For an integer k ≥ 2, let S(1), S(2), . . . , S(k) be k independent simple symmetric random
walks on Z. A pair (n, z) is called a collision event if there are at least two distinct random walks,
namely, S(i), S(j) satisfying S(i)

n = S
(j)
n = z. We show that under the same scaling as in Donsker’s

theorem, the sequence of random measures representing these collision events converges to a non-
trivial random measure on [0, 1]×R. Moreover, the limit random measure can be characterized using
Wiener chaos. The proof is inspired by methods from statistical mechanics, especially, by a partition
function that has been developed for the study of directed polymers in random environments.

1. Introduction

For an integer k ≥ 2, let S(1), S(2), . . . , S(k) be k independent simple symmetric random walks
(SSRWs) on Z, defined on a probability space (Ω,A,P) (see Révész, 2005, p.3). A pair (n, z) ∈ N×Z
is called a collision event if there are at least two random walks that collide (occupy the same position
at the same time) at the time n and the location z (see Figure 1.1), and n is then called a collision
time.

First mentioned in Pólya’s note (Pólya, 1984), the collision of random walks has since then been
a classic topic in probability theory. Recently, this topic has gained more attention from researchers
working on the random walks on graphs Barlow et al. (2012); Hutchcroft and Peres (2015) and
random environments Avena et al. (2018); Chen (2016); Halberstam and Hutchcroft (2022).

When consider only two random walks, collision problems are strongly related to Brownian local
time Knight (1963); Révész (1981); Szabados and Székely (2005). The convergence of collision times
can be achieved by coupling a new SSRW, the difference between two given random walks, with a
Brownian motion using Skorokhod’s embedding Révész (2005, p.52), Durrett (2010, Theorem 8.6.1).
However, these methods cannot be easily adapted to give convergence results for the collisions of
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more than two SSRWs because the couplings rely heavily on the choices of stopping times which
are proper for each SSRW. To the best of our knowledge, scaling limit results for collisions of k > 2
random walks are still limited. Moreover, the limiting behaviour of collision positions are rarely
researched.

The main contribution of this paper is to consider the position of collision events, contrary to
previous studies that focus only on their numbers (e.g. Bertini and Cancrini (1995), or Lygkonis
and Zygouras (2023, 2022)).

We investigate a relatively uncommon aspect of random walk collisions, concerning their duality
with the partition function of a directed polymer model in statistical mechanics Carmona and Hu
(2002); Comets (2017). By following the ideas developped in Carmona and Hu (2002), and Alberts
et al. (2014), we obtain new results on when and where the collisions of these random walks occur
after long observation, or more precisely, on the scaling limit of the empirical measures of the
collision events.

It is worth mentioning that independently with our research, Lygkonis and Zygouras have used
similar ideas to extend the well-known Erdös-Taylor theorem on the number of collisions of 2-
dimensional random walks, Lygkonis and Zygouras (2023, 2022).

Of related interest, in the continuous setting, it has been proven that the distribution of coinci-
dences of Brownian motions has a close relation to the KPZ equation (Krajenbrink et al., 2019).

Figure 1.1. An example of collision events when k = 3, N = 100. The collision
events are represented by blue dots.

Our study objects are as follows:

Definition 1.1. For each N ∈ N, we define the collision measures of k random walks S(1), S(2), . . . ,
S(k) until time N to be:

ΠN :=
N∑
n=1

∑
z∈Z

∑
1≤i<j≤k:

S
(i)
n =S

(j)
n =z

δ( n
N
, z√

N

), and

Π′N :=
N∑
n=1

∑
z∈Z

δ( n
N
, z√

N

)1{(n,z) is a collision event},

where δ is the Dirac measure.

For each N ∈ N, the main difference between Π′N and ΠN is that ΠN takes into account the
multiplicity of collision events. For example, if the number of considered random walks is k = 3
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and it happens that S(1)
n = S

(2)
n = S

(3)
n = z for some (n, z), then the Dirac measure δ( n

N
, z√

N
) will

appear 3 times in the summation in ΠN while the number of its appearance in Π′N is still one.
Concerning the scaling choice, one can observe that this is the same scaling as in Donker’s

theorem, which also suggests that the distribution of ΠN is closely related to Brownian local time.
Indeed, when k = 2, the total measure of ΠN is equal to

#{n ∈ [[1, N ]] : S(1)
n − S(2)

n = 0} (d)
= #{n ∈ [[1, N ]] : S

(1)
2n = 0} = L0

S(1) (2N) , (1.1)

where [[1, N ]] = {1, 2, ..., N}, (d)
= is the equality in law, and L0

S(t) denotes the local time at position
0 during the period (0, t] of some walk S. So by the convergence of local time of simple random
walks, the equation (1.1) implies 1√

N
‖ΠN‖ = OP(1), where ‖ΠN‖ denotes the total measure of ΠN .

In this work, we not only bound the sequence ( 1√
N

ΠN ;N ∈ N), but also prove that this sequence
of random measures converges to a non-trivial random measure N on [0, 1]× R. Before giving our
main result, let us recall the convergence of random measures.

Definition 1.2. (Convergence of random measures) Suppose ξ, ξ1, ξ2, . . . are random finite mea-
sures on ([0, 1] × R,B([0, 1] × R)), we say that ξn

wd−−−→
n→∞

ξ if the sequence of real random variables
(ξn(f), n ∈ N) converges in distribution to ξ(f) when n goes to infinity for all bounded continuous
function f ∈ Cb([0, 1]× R). Here, µ(f) denotes the integral

∫
fdµ for any (random) measure µ and

bounded measurable function f .

Here are our main results:

Theorem 1.3. (Convergence of collision measures and characterization of the limit random mea-
sure)

• There is a random finite positive measure N on the measurable space ([0, 1]×R,B([0, 1]×R))
such that:

1√
N

ΠN
wd−−−−−→

N→+∞
N and

1√
N

Π′N
wd−−−−−→

N→+∞
N .

• Furthermore, for all nonnegative bounded continuous function f ∈ Cb,+([0, 1]×R), the expo-
nential moment of N with respect to f is equal to k-th moment of a positive random variable
Z√2f :

E
[
eN (f)

]
= E

[(
Z√2f

)k]
. (1.2)

For each a ∈ Cb,+([0, 1] × R), the random variable Za is identified as the sum of multiple
stochastic integrals given by:

Za := 1 +
∞∑
n=1

∫
∆n

∫
Rn

n∏
i=1

[
a(ti,xi)%(ti − ti−1,xi − xi−1)W (dtidxi)

]
, (1.3)

where W is the white noise based on the Lebesque measure on [0, 1] × R, x0 = 0, % is the
standard Gaussian heat kernel

%(t, x) =
e−x

2/2t

√
2πt

,

and ∆n is the n-dimensional simplex

∆n := {t ∈ [0, 1]n : 0 = t0 < t1 < t2 < · · · < tn ≤ 1}. (1.4)

We refer to Walsh (1986, Chapter 1) for an introduction on white noise (see also Section 3.2 of
this article). Regarding Za, it is a convergent series in L2(Ω), where Ω is the probability space on
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which the white noise is defined. In the relation with KPZ equation (Caravenna et al., 2020; Quastel
and Spohn, 2015), Za can be recognized as Z(1, 0) where Z(t, x) satisfies the stochastic PDE

∂tZ =
1

2
∂xxZ + aZW,

where the initial condition is Z(0, x) = 1.
As mentioned earlier, we will prove this theorem by investigating the connection between the

collision measures of random walks with a model in statistical mechanics. Hence, we will introduce
many auxiliary notions in our paper, such as random environment ω, partition function ZN and
U -statistics SNn (·). We refer to Section 2.2 for a brief discussion of the connection between our
collision measures and random polymer models, or more precisely, between ΠN and ZN .

The general idea is that by associating each point (n, z) on the grid N×Z with a random variable,
we can change the underlying framework from studying a deterministic grid to studying a collection
of random variables indexed by N × Z. For a such collection, the range of possible tools from
statistical mechanics is large. Indeed, the partition function we will use is developped to study a
directed polymer model Berger and Lacoin (2021); Caravenna et al. (2017, 2020), and Alberts et al.
(2014) , which served as the primary inspiration for our work. More precisely, to meet our needs,
we have upgraded many tools presented in Alberts et al. (2014) to incorporate inhomogeneous noise
variance.

The organization of this paper is as follows: Section 2 introduces some basic notions that we will
use in the sequel to explain our main ideas, especially, the relation between the concept of partition
functions and the collision measures ΠN . Section 3 gives a brief review on U -statistics and Wiener
chaos. At the end of this section, we prove some auxiliary results on the convergence of U -statistics,
on which our asymptotic result on partition functions (Theorem 2.3) is based. Section 4 presents
a short study on the random variable Za defined in (1.3), and our proof of Theorem 2.3. Finally,
Section 5 combines all proved results to show the weak tightness of ( 1√

N
ΠN , N ∈ N), and prove

Theorem 1.3.
Some auxiliary results are presented in the Appendix at the end of this article.

2. Partition functions and main ideas of proof

2.1. Partition functions. We introduce a collection ω := (ω(i, z) : i ∈ N, z ∈ Z) of independent
Rademacher variables indexed by N× Z, i.e., for all (n, z) ∈ N× Z,

P(ω(n, z) = −1) = P(ω(n, z) = 1) =
1

2
.

These random variables are created by extending our existing probability space (Ω,A,P) so that
ω, S(1), S(2), . . . , S(k) are independent.
In the sequel, for a real number β and a real function A on N× Z, βω and Aω are defined as:

Aω := (A(i, z)ω(i, z) : i ∈ N, z ∈ Z) .

βω := (βω(i, z) : i ∈ N, z ∈ Z) .

As briefly explained in Section 1, the role of ω is to add new degrees of freedom to the existing
model, by which we have more flexibility to create more objects. The partition function Z is one of
such objects:

Definition 2.1. For any positive integer N and any real function A on N × Z, the partition
function ZN (A) is defined as the conditional expectation:

ZN (A) := E

[
N∏
n=1

(1 +A(n, S(1)
n )ω(n, S(1)

n ))

∣∣∣∣ ω
]
.
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Note that ZN (A) is a random variable depending only on the value of ω.

2.2. Main ideas. The starting point of our paper and the proof of our main results is a heuristic
relation between the partition functions ZN and the random measure ΠN :
Given a nonnegative bounded function A on N× Z, since S(1), · · · , S(k) are i.i.d., we have:

E

[
ZN

(
1

N1/4
A

)k]
= E

[
E

[
k∏
i=1

N∏
n=1

(1 +
1

N1/4
A(n, S(i)

n )ω(n, S(i)
n ))

∣∣∣∣ω
]]

=E

[
E

[
N∏
n=1

k∏
i=1

(1 +
1

N1/4
A(n, S(i)

n )ω(n, S(i)
n ))

∣∣∣∣S(1), · · · , S(k)

]]

=E

[
N∏
n=1

E

[
k∏
i=1

(1 +
1

N1/4
A(n, S(i)

n )ω(n, S(i)
n ))

∣∣∣∣S(1), · · · , S(k)

]]
(2.1)

=E

[ N∏
n=1

[
1 +

1

N1/2

( ∑
1≤i<j≤k:

S
(i)
n =S

(j)
n =z

A2(n, z)

)
+

1

N3/4
(. . . ) + ...

]]

Then since 1 + x ≈ ex, heuristically, we deduce:

E

[
ZN

(
1

N1/4
A

)k]
≈ E

[ N∏
n=1

[
exp

( 1

N1/2

∑
1≤i<j≤k:

S
(i)
n =S

(j)
n =z

A2(n, z)
)]]

=E

[
exp

(
1

N1/2

N∑
n=1

∑
1≤i<j≤k:

S
(i)
n =S

(j)
n =z

A2(n, z)

)]
= E

[
exp

(
1

N1/2
ΠN (fN )

)]
,

where fN is a measurable function such that fN
(
n
N ,

z√
N

)
= A2(n, z) for all n ∈ N, z ∈ Z. In short,

by abuse of notation, the above observation suggests that:

E
[
eN
−1/2ΠN

]
≈ E

[
(ZN )k

]
. (2.2)

In other words, if we have a good understanding of Z, we will have good information on ΠN ,Π
′
N .

Besides, we can observe that in the limit, Equation 2.2 essentially gives the connection 1.2 between
the limiting random measure N and Z√2f that we have in Theorem 1.3.

Then to study the partition function ZN , we base our study on the paper Alberts et al. (2014),
in which Alberts et al. studied the scaling limit of Z when the function A is constant. In our study,
we generalize their results for a sequence of functions (AN , N ∈ N) satisfying certain conditions.
An expansion of Wiener chaoses emerges naturally in our limit objects because, as we will see, each
term in the algebraic expansion of ZN (cf. Proposition 4.5) converges to a Wiener chaos. To this
aim and following Alberts et al. (2014); Janson and Nowicki (1991), we will have to introduce some
U -statistics and study their asymptotic behavior in Section 3.

2.3. Results on partition functions. We terminate this section by presenting our results on the
asymptotic behavior of ZN . The proofs will be presented later in Section 4.

Notation 2.2. For (t, x) ∈ [0, 1]× R, [t, x]N denotes the unique pair of integer (i, z) such that :

• (t, x) ∈
(
i−1
N , iN

]
×
(
z−1√
N
, z+1√

N

]
,

• i and z have same parity.
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Theorem 2.3. Let (An, n ∈ N) be a sequence of real functions whose domain is N× Z such that:
i. supN ‖AN‖∞ < +∞,
ii. there is a measurable function a ∈ L∞([0, 1]× R) such that:

lim
N→+∞

AN ([t, x]N ) = a(t, x) a.e.

Then as N converges to infinity, we have:

ZN (N−1/4AN )
(d)−−→ Z√2a

This theorem is a mild generalization of Proposition 5.3 in Alberts et al. (2014) where the sequence
(AN ;N ∈ N) is replaced by a fixed constant β ≥ 0. For a comprehensive approach to demonstrating
the convergence of polynomial chaos to Wiener chaos, we refer interested readers to Caravenna et al.
(2017).

We will also prove that under some conditions, the partition functions are uniformly bounded in
Lk:

Theorem 2.4. For a sequence of real functions (An, n ∈ N) on N×Z such that supN ‖AN‖∞ < +∞,
we have:

lim sup
N

E

[(
ZN

(
N−1/4AN

))k]
< +∞.

Notice that even though k is fixed in our study, the definition of Z does not depend on k. So,
the above sequence

(
ZN
(
N−1/4AN

)
, N ∈ N

)
is also uniformly bounded in Lp for all p ∈ N, which

implies directly the following corollary:

Corollary 2.5. For a sequence of real functions (An, n ∈ N) on N × Z such that supN ‖AN‖∞ <

+∞, the sequence of random variables
(
ZN
(
N−1/4AN

)
, N ∈ N

)
is uniformly Lk-integrable for any

k ∈ N..

Remark 2.6. In Caravenna et al. (2020), authors utilized hypercontractivity to bound the moments
of partition functions in (2+1) directed polymer model. This approach should also be applicable to
our framework.

3. U-Statistics: related notions and limit theorems

Let ENn := {i ∈ [[1, N ]]n : ij 6= il for j 6= l}. In this paper, inspired by Alberts et al. (2014), we
are interested in sums of the form:∑

i∈EN
n

∑
z∈Zn

i↔z

gN (i, z)AN (i, z)ω(i, z), (3.1)

for some weight functions gN specified later.

Notation 3.1. i ↔ z means that for all j ∈ [[1, n]], the corresponding j-th coordinates of i and z,
namely ij and zj , have the same parity.

We will see that sums of this type appear naturally when we expand the partition functions ZN
(see (4.4)). In Alberts et al. (2014), these forms appear without the extra terms AN (i, z), so we
have to extend the results.

The organization of this section is as follows: Sections 3.1 and 3.2 introduce the framework of
Theorem 3.10 which is the interested result on the convergence of sums of the form (3.1). Section
3.3 presents the proof of Theorem 3.10.

The approach we used in this section is standard in the theory of U -statistics. Interested readers
can consult the book Koroljuk and Borovskich (1994) of Korolyuk and Borovskikh for a more
rigourous introduction of this theory.
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3.1. Introduction of U -statistics SNn . We first make precise the definition of the weight functions
(gN , N ∈ N) in the above sum.

Let g be a function in L2([0, 1]n × Rn). For each N , the weight functions gN associated to g is
defined by the following procedure:
First, we partition the space (0, 1]n × Rn in rectangles of the form:

RNn :=

{(
i− 1

N
,
i

N

]
×
(
z− 1√
N

,
z + 1√
N

]
: i ∈ DN

n , z ∈ Zn, i↔ z

}
,

with 1 being the vector of ones and DN
n being the integer simplex :

DN
n := {i ∈ [[1, N ]]n : 0 =: i0 < i1 < i2 · · · < in ≤ N}. (3.2)

Visually, RNn is a collection of nonoverlapping translations of the base rectangle:(
0

N
,

1

N

]n
×
(
−1√
N
,

1√
N

]n
.

Then, the function gN is defined as the average of g on each rectangles above. More precisely, for
any (t,x) ∈ (0, 1]n × Rn, gN (t,x) is defined as the mean:

gN (t,x) :=
1

|R|

∫
R
g(s,y)ds dy,

where R is the unique rectangle in RNn that contains (t,x), and |R| denotes the Lebesque measure
of R. In probabilistic terms, gN is simply the conditional expectation of g onto the rectangles of
RNn . We note that |R| = 2nN−3n/2. This term will appear recurrently in most of our computations.
Suppose (AN , N ∈ N) is a sequence of real-valued functions on N× Z.

Notation 3.2. For any n-tuple i ∈ ENn and n-tuple z ∈ Zn, AN (i, z) and ω(i, z) denote

AN (i, z) := AN (i1, z1)AN (i2, z2)...AN (in, zn),

ω(i, z) := ω(i1, z1)ω(i2, z2)...ω(in, zn),

with ij being the j-th coordinate of i as defined previously.

Now, we define the weighted U -statistics SNn .

Definition 3.3. Suppose (An, n ∈ N) is a sequence of bounded real-valued functions on N×Z. For
any function g ∈ L2([0, 1]n × Rn), the U - statistics SNn is defined as:

SNn (g) := 2n/2
∑
i∈EN

n

∑
z∈Zn:
i↔z

gN

(
i

N
,

z√
N

)
AN (i, z)ω(i, z). (3.3)

We here give some basic properties of the U -statistics SNn , extending Lemma 4.1 in Alberts et al.
(2014), proved in Appendix C.

Proposition 3.4. Suppose (AN , N ∈ N) is a sequence of bounded real-valued functions on N × Z.
For all positive integers n and N , we have:

i. (Well-posedness) SNn (g) is well-defined and has zero mean for all g ∈ L2([0, 1]n × Rn).
ii. (Linearity) For all f, g ∈ L2([0, 1]n × Rn), α, β ∈ R

SNn (αf + βg) = αSNn (f) + βSNn (g).

iii. (L2-boundedness) If c > 0 is a number such that such that ‖AN‖∞ ≤ c, then for all g ∈
L2([0, 1]n × Rn) :

E[SNn (g)2] ≤ c2nN3n/2‖g‖22.
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iv. (Uncorrelatedness of U -statistics of different orders) If n1, n2 are two different positive in-
tegers, then ∀gi ∈ L2([0, 1]ni × Rni) i = 1, 2,

E[SNn1
(g1)SNn2

(g2)] = 0.

Now, to characterize rigorously the limit of the U -statistics (SNn , N ≥ 1), we need to introduce
the Wiener chaos.

3.2. Wiener chaos.

3.2.1. White noise and stochastic integration on [0, 1]×R. This section recalls the elementary theory
of white noise and stochastic integration on the measure space ([0, 1]×R,B,dt⊗ dx). Here B is the
Borel σ-algebra, and dt ⊗ dx denotes Lebesque measure on [0, 1] × R. For more details on Wiener
chaos, we invite readers to read Nualart (2006, Chapter 1) or Kallenberg (1997, Chapter 11).

Let Bf be the collection of all Borel sets of [0, 1]×R with finite Lebesgue measure. Observe that
B = σ(Bf ).

Definition 3.5. A white noise on [0, 1]×R is a collection of mean zero Gaussian random variables
indexed by Bf

W = {W (A) : A ∈ Bf}
such that for any h ∈ N and every finite collection (A1, A2, . . . , Ah) of elements of Bf , the tuple
(W (A1), . . . ,W (Ah)) is a h-dimensional Gaussian vector, with mean zero and covariance structure:

E[W (A)W (B)] = |A ∩B|.

So in particular, if A and B are disjoint then W (A) and W (B) are independent. For any
g ∈ L2([0, 1]× R,B, dt dx), the stochastic integral

I1(g) :=

∫ 1

0

∫
R
g(t, x)W (dt dx)

is constructed by first defining I1 on simple functions then extending I1 via density arguments
Kallenberg (1997, p.210). In the end, for each g ∈ L2([0, 1]× R), we have that I1(g) ∼ N(0, ‖g‖22),
so in particular, I1 preserves the Hilbert space structure of L2([0, 1]× R),

E(I1(g)I1(h)) =

∫ 1

0

∫
R
g(t, x)h(t, x)dt dx.

This construction idea can be extended to higher dimensions (see Nualart (2006, p. 9,10)) to
give a sense of the following notation of multiple stochastic integrals for any n > 1 and function
g ∈ L2([0, 1]n × Rn):

In(g) :=

∫
[0,1]n

∫
Rn

g(t,x)W⊗n(dtdx),

where W⊗n(dtdx) := W (dt1dx1)W (dt2dx2) · · ·W (dtndxn).

Definition 3.6. A function g ∈ L2([0, 1]n × Rn) is said to be symmetric if g(t,x) = g(πt, πx)
for all (t,x) ∈ [0, 1]n × Rn , permutation π on {1, . . . , n}, where πt := tπ(1), . . . , tπ(n), πx :=

xπ(1), . . . ,xπ(n). The set L2
sym([0, 1]n×Rn) is then defined as the subspace of all symmetric functions

of L2([0, 1]n × Rn).

The following theorem is a standard result in the theory of stochastic integration (cf. Nualart
(2006, p.8,9)), which summarizes the above discussion:
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Theorem 3.7 (Nualart (2006)). There exists a continuous linear mapping In : L2([0, 1]n × Rn)→
L2(P) such that for any n-tuple of disjoint finite measurable sets A1, A2, · · ·An in B([0, 1]× R):

In(1A1×A2···×An) = W (A1)W (A2) · · ·W (An).

Furthermore, for all g ∈ L2([0, 1]n × Rn),

E
[
In(g)2

]
≤ ‖g‖22, (3.4)

and the equality occurs if and only if g is symmetric.

3.2.2. Wiener chaos on [0, 1]×R. This section provides a short introduction to the Wiener chaos’s
theory. Wiener chaos may be regarded as a way of representing random variables as infinite sums
of multiple stochastic integrals.

For a white noise W , we denote by FW the complete σ-algebra generated by random variables
(W (A), A ∈ Bf ). The Wiener chaos decomposition theorem states (see Nualart (2006, Theorem
1.1.2)):

Proposition 3.8. (Wiener chaos decomposition) For every random variable X ∈ L2(Ω,FW ,P),
there is a unique sequence of symmetric functions gn ∈ L2

Sym([0, 1]n × Rn), n ≥ 1, such that:

X =

∞∑
n=0

In(gn).

Here g0 is simply a constant and I0 is the identity mapping on the constants.

In fact, for n ≥ 1, the terms of the chaos series are all mean zero, so g0 must be the mean of X.
Moreover, by the orthogonality of In1(g1) and In2(g2) for n1 6= n2(see Nualart (2006, p.9)), we have
the relation E[X2] =

∑∞
n=0 ‖gn‖22. Now, we define two important spaces of collections of functions:

Definition 3.9. The Fock space over L2([0, 1]× R) is defined to be the Hilbert space:

F :=

{
g = (g0, g1, . . . ) ∈

∞⊕
n=0

L2([0, 1]n × Rn) :

∞∑
n=0

‖gn‖22 <∞

}
(3.5)

equipped with the inner product 〈g, f〉F =
∑∞

n=0〈gn, fn〉L2([0,1]n×Rn). Then, the symmetric Fock
space Fsym is defined as the Hilbert subspace of F that contains only collections of symmetric
functions, i.e.,

Fsym := F
⋂( ∞⊕

n=0

L2
sym([0, 1]n × Rn)

)
.

The result in Proposition 3.8 works also in reverse, that is, the mapping

I : Fsym −−−−−→ L2(Ω,FW ,P)

(g0, g1, . . . ) 7−−−−→
∑
n≥0

In(gn)

is an isometry. This fact will be useful for the justification for the well-posedness of Za in Section 4.

3.3. A limit theorem for U -statistics. In this section, we prove Theorem 3.10 for our U -statistics
SNn defined by (3.3). This theorem extends Lemma 4.4 in Alberts et al. (2014) with non-constant
An.

Theorem 3.10. Suppose the functions (An, n ∈ N) in the definition 3.3 of the U -statistics satisfy
the following conditions:

i. supN ‖AN‖∞ < c for some c > 0.
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ii. There is a measurable function a ∈ L∞([0, 1]× R) such that:

lim
N→+∞

AN ([t, x]N ) = a(t, x) a.e.

Then if (gn, n ∈ N0) is a sequence of functions such that (cngn, n ∈ N0) belongs to the Fock space
F , we have:

∞∑
n=0

N−3n/4SNn (gn)
(d)−−−−→

N→∞

∞∑
n=0

∫
[0,1]n×Rn

gn(t,x)a⊗n(t,x)W⊗n(dtdx).

Notation 3.11. For the sake of simplicity, for each n ≥ 1 and (t,x) ∈ [0, 1]n × Rn, we define:

Ĩn(g) :=

∫
[0,1]n

∫
Rn

g(t,x)a⊗n(t,x)W⊗n(dtdx), (3.6)

and
a⊗n(t,x) := a(t1,x1) · · · a(tn,xn). (3.7)

Definition 3.12. For each n,N ∈ N, and each function g ∈ Ln([0, 1]n × Rn), we define ŜNn as

ŜNn (g) := 2n/2
∑
i∈EN

n

∑
z∈Zn:
i↔z

gN

(
i

N
,

z√
N

)
ω(i, z). (3.8)

In other words, ŜNn are just SNn with AN being replaced by 1. The convergence of these statistics
ŜNn has been studied extensively in Alberts et al. (2014).

Proof of Theorem 3.10: Without loss of generality, we assume c = 1.
This proof relies on the Lemma 4.1 and 4.4 in Alberts et al. (2014), and the following relation

between ŜNn and SNn :
SNn (g) = ŜNn (ga⊗nN ), (3.9)

where aN (t, x) := AN ([t, x]N ) for all t, x ∈ [0, 1]n × Rn.
By Lemma 4.1 in Alberts et al. (2014), and using the orthogonality of U -statistics of different

orders n, we have for each N :∥∥∥∥∥
∞∑
n=0

N−3n/4ŜNn (gna
⊗n)−

∞∑
n=0

N−3n/4ŜNn (gna
⊗n
N )

∥∥∥∥∥
2

2

≤
∞∑
n=1

∥∥gna⊗n − gna⊗nN ∥∥2

2

Hence, by noticing that limN→∞ ‖gna⊗n − gna
⊗n
N ‖2 = 0 and that

∥∥gna⊗n − gna⊗nN ∥∥
2
≤ 2‖gn‖2,

using the dominated convergence theorem, we imply that:
∞∑
n=0

N−3n/4ŜNn (gna
⊗n
N )−

∞∑
n=0

N−3n/4ŜNn (gna
⊗n)

L2

−−−−→
N→∞

0,

Besides, by Lemma 4.4 in Alberts et al. (2014), we have:
∞∑
n=0

N−3n/4ŜNn (gna
⊗n)

(d)−−−−→
N→∞

∞∑
n=0

Ĩn(gn).

Therefore, by Equation (3.9) and by Slutsky’s lemma van der Vaart (1998, Lemma 2.8), we conclude
that:

∞∑
n=0

N−3n/4SNn (gn)
(d)−−−−→

N→∞

∞∑
n=0

Ĩn(gn).

�
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4. Limit theorems for partition functions

In this section, we study the convergence of partition functions ZN (Definition 2.1). First, we
verify the well-posedness of the limit value Za given in Theorem 1.3, for all a ∈ L∞([0, 1]× R) by

Za := 1 +

∞∑
n=1

∫
∆n

∫
Rn

n∏
i=1

[
a(ti,xi)%(ti − ti−1,xi − xi−1)W (dti, dxi)

]
.

where % is the Gaussian kernel, andW is the white noise based on the Lebesgue measure on [0, 1]×R.

4.1. Study of Za.

4.1.1. Brownian motion and simple random walk. Let (Sn, n ∈ N0) denote a simple random walk
on Z and (Bt, t ∈ R≥0) denote a Brownian motion on R (Bingham et al., 1989). For i ∈ N, t ≥ 0
and x ∈ R, we define:

p(i, x) := P(Si = x) %(t, x) :=
e−x

2/2t

√
2πt

(4.1)

We will make heavy use of the finite dimensional distributions of both simple random walk and
Brownian motion. For notations, we introduce for n ∈ N, i ∈ DN

n (DN
n being the integer simplex

(3.2)), z ∈ Zn, t ∈ ∆n (∆n being the real simplex (1.4)), x ∈ Rn:

pn(i, z) :=
n∏
j=1

p(ij − ij−1, zj − zj−1) = P(Si1 = z1, . . . , Sin = zn), (4.2)

and

%n(t,x) :=
n∏
j=1

%(tj − tj−1,xj − xj−1). (4.3)

For convenience, we respectively extend the domains of pn and % to [[1, N ]]n×Zn and to [0, 1]n×Rn

by letting pn and %n to be zero outside DN
n × Zn and ∆n × Rn.

4.1.2. Wiener chaos for Brownian transition probabilities. The Brownian transition probabilites can
generate many elements in the Fock space F (see Definition 3.9). Let us recall here Notation (3.7)
of a⊗.

Proposition 4.1. For every measurable bounded function a ∈ L∞([0, 1]× R), let

%(a) := (1, a%1, a
⊗2%2, a

⊗3%3, . . . )

be a weighted ordered collection (indexed by N0) of Brownian transition probabilites %n that depends
on a. Then, %(a) is an element in the Fock space F ,i.e.,

∑
n≥0 ‖a⊗n%n‖22 <∞.

This proposition is proved in Appendix C. In particular, if a is a constant function, i.e., a is equal
to some constant β then %(β) = (1, β%1, β

2%2, β
3%3, . . . ).

So naturally, we have the following corollary on the well-posedness of Za.

Proposition 4.2. For all measurable bounded function a on [0, 1] × R, the Wiener chaos Za is
well-defined and has the representation Za = I(%(a)).
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4.2. Relation between Z and U -statistics. We begin with establishing the relation between partition
functions Z and U -statistics, then we will prove Theorem 2.3.

For convenience, we extend Notation 2.2 [t, x]N for a pair (t, x) ∈ [0, 1]×R to higher dimensions:

Notation 4.3. For any pair (t,x) ∈ (0, 1]n × Rn, we let [t,x]N denote the unique pair (i, z) ∈
[[1, N ]]n × Zn such that:

i. (t,x) ∈
(
i−1
N , i

N

]
×
(
z−1√
N
, z+1√

N

]
,

ii. i and z have the same parity.

Definition 4.4. For n,N ≥ 1, define pNn : [0, 1]n × Rn → R by

pNn (t,x) = 2−npn([t,x]N )1dNte∈DN
n
,

where dNte is the usual ceiling function, that is, for all x ∈ Rn and z ∈ Zn, dxe = z if and only if
for all i, zi is the smallest integer bigger than or equal to xi .

We observe that the condition dNte ∈ DN
n implies that pNn is identically zero if n > N . Besides,

we also see that pNn is constant on each rectangle in RNn , so the average pNn = pNn and in particular,
for i ∈ ENn , z ∈ Zn such that i↔ z, we have:

pNn

(
i

N
,

z√
N

)
1i∈DN

n
= 2−npn(i, z)1i∈DN

n
.

Thus, by definition of SNn (see Definition 3.3) ,

SNn (pNn ) = 2−n/2
∑
i∈DN

n

∑
z∈Zn

pn(i, z)ω(i, z)AN (i, z).

Note that the condition i↔ z is already handled by pn. This leads to the following relation:

Proposition 4.5. For all real number β ∈ R and positive integer N ∈ N, the partition functions
ZN can rewritten as:

ZN (βAN ) =

N∑
n=0

2n/2βnSNn (pNn ).

Remark 4.6. So in particular,

ZN (N−1/4AN ) =

N∑
n=0

2n/2N−3n/4SNn (Nn/2pNn ).

This equality is useful for our proof of Theorem 2.3.
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Proof of Proposition 4.5: By definition,

ZN (βAN ) = E

[
N∏
n=1

(
1 + βAN (n, Sn)ω(n, Sn)

)∣∣∣∣ω
]

= E

1 +
N∑
n=1

∑
i∈DN

n

βn
( n∏
j=1

AN (ij , Sij )

)( n∏
j=1

ω(ij , Sij )

)∣∣∣∣ω


= E

1 +
N∑
n=1

∑
i∈DN

n

∑
z∈Zn

βn
( n∏
j=1

1Si=zj

)( n∏
j=1

AN (ij , zj)

)( n∏
j=1

ω(ij , zj)

)∣∣∣∣ω


= 1 +
N∑
n=1

∑
i∈DN

n

∑
z∈Zn

βnE

[ n∏
j=1

1Si=zj

]
AN (i, z)ω(i, z)

= 1 +

N∑
n=1

∑
i∈DN

n

∑
z∈Zn

βnpn(i, z)AN (i, z)ω(i, z) = 1 +

N∑
n=1

βn2n/2SNn (pNn ). (4.4)

Thus, ZN (βAN ) = 1 +
∑N

n=1 2n/2βnSNn (pNn ). �

Lemma 4.7. For all n, we have the L2-convergence:

lim
N→+∞

‖%n −Nn/2pNn ‖2 = 0,

and moreover, there exists a constant C such that for all n ∈ N,

sup
N
‖Nn/2pNn ‖2 ≤ Cn‖%n‖2.

The proof for this lemma is presented at the end of this section. Now, we are ready to give a
proof of Theorem 2.3.

Proof of Theorem 2.3: First observe that Theorem 3.10 and Proposition 4.1 imply that :
∞∑
n=0

N−3n/4SNn (2n/2%n)
(d)−−→

∞∑
n=0

Ĩn(%n2n/2) = I(%(
√

2a)) = Z√2a.

as N converges to infinity. Now we show that the difference between this term and ZN (N−1/4AN ))
goes to zero as N converges to infinity. Observe that:

∞∑
n=0

N−3n/4SNn (2n/2%n)− ZN (N−1/4ANω)

=
N∑
n=0

2n/2N−3n/4SNn (%n −Nn/2pNn ) +
∞∑

n=N+1

N−3n/4SNn (2n/2%n).

By Proposition 3.4, the second term is bounded in L2 by the square root of
∞∑

n=N+1

2nc2n‖%n‖22.

which goes to zero as N →∞ by Proposition 4.1.
For the first term, using again Proposition 3.4, we note that its L2-norm is bounded above by

the square root of
N∑
n=0

2nc2n‖%n −Nn/2pNn ‖22.
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From Lemma 4.7 above, there is a constant C > 0 such that for all n ∈ N, supN ‖%n−Nn/2pNn ‖2 ≤
(1 + Cn)‖%n‖2. Besides, again by Proposition 4.1, the sequence

∑
n 2n+1c2n(1 + Cn)‖%n‖22 < ∞.

Hence, using the dominated convergence theorem, we can interchange limit and sum the following
argument, then use the first part of Lemma 4.7 to conclude:

lim
N→+∞

N∑
n=0

2nc2n‖%n −Nn/2pNn ‖22 =
∞∑
n=0

lim
N→+∞

2nc2n‖%n −Nn/2pNn ‖22 = 0.

Theorem 2.3 is therefore proved. �

Proof of Lemma 4.7: From Gnedenko’s local limit theorem Bingham et al. (1989, Theorem 8.4.1),
we deduce that for any fixed n ∈ N, Nn/2pNn converges almost surely to %n as N goes to infinity. So
by the general Lebesgue dominated convergence theorem Royden and Fitzpatrick (2010, Theorem
19), to prove our L2 convergence, it suffices to find a function g ∈ L2([0, 1]n × Rn) and a sequence
(gN , N ∈ N) of functions in L2([0, 1]n × Rn) such that:

i.
(
Nn/2pNn

)2 ≤ gN for all N .
ii. gN converges pointwise to g when N converges to infinity.
iii. limN→∞

∫
[0,1]n×Rn gN =

∫
[0,1]n×Rn g <∞.

By Definition (4.1) of p and Stirling’s formula (see Abramowitz and Stegun (1964, Stirling’s formula,
6.1.37)), we observe that there exists a constant C such that

√
ip(i, x) ≤ C for all i and x , therefore:

sup
z∈Zn

pn(i, z) ≤ Cn
n∏
j=1

1√
ij − ij−1

.

From this and by Definition 4.4 of pNn , we have:

(
Nn/2pNn (t,x)

)2
≤ (C/2)nh

(
dNte
N

)
Nn/2pNn (t,x).

where h(t) =
∏n
j=1

1√
tj−tj−1

1{t∈∆n}.

Let us choose for all N the function

gN (t,x) := (C/2)nh

(
dNte
N

)
Nn/2pNn (t,x),

and let

g(t,x) := (C/2)nh(t)%n(t,x).

Clearly, the conditions i. and ii. for the generalized dominated convergence Theorem are satisfied.
For the last condition, we first notice that:∫

[0,1]n×Rn

g(t,x)dtdx = (C/2)n
∫

[0,1]n
h(t)dt.
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Then by definition of pNn , we have the following equalities:∫
[0,1]n×Rn

gN (t,x)dtdx

=
∑

i∈[[1,N ]]n,z∈Zn:
i and z have the same parity

∫
( i−1

N
, i
N ]×

(
z−1√

N
, z+1√

N

] gN (t,x) dtdx

=
∑

i∈[[1,N ]]n,z∈Zn:
i and z have the same parity

(
N−3n/22n

)[
(C/2)nh

(
i

N

)
2−nNn/2pn(i, z)1i∈DN

n

]

= (C/2)nN−n
∑
i∈DN

n

∑
z∈Zn

h

(
i

N

)
pn(i, z)1{i and z have the same parity}

= (C/2)nN−n
∑
i∈DN

n

h

(
i

N

)
= (C/2)n

∫
[0,1]n

h

(
dNte
N

)
dt.

So, what is left to do is prove that

lim
N→∞

∫
[0,1]n

h

(
dNte
N

)
dt =

∫
[0,1]n

h (t) dt and
∫

[0,1]n
h (t) dt <∞.

which is true because h
(
dNte
N

)
converges pointwise to h(t) for all t and they form a uniformly

integrable sequence of functions in L2([0, 1]n). Indeed, the uniform integrability is due to the fact
that: ∫

∆n

[
h

(
dNte
N

)]3/2

dt =
∑
i∈DN

n

∫
{t∈Rn:dNte=i}

n∏
j=1

(
ij − ij−1

N

)−3/4

dt

≤
∑
i∈DN

n

∫
{t∈Rn:dNte=i}

n∏
j=1

(
tj − tj−1

2

)−3/4

dt (4.5)

= 23n/4

∫
{t∈Rn:dNte∈DN

n }

n∏
j=1

(tj − tj−1)−3/4dt

≤ 23n/4

∫
∆n

n∏
j=1

(tj − tj−1)−3/4dt <∞.

Note that in (4.5), we used the inequality: dae − dbe ≥ a−b
2 if dae − dbe ≥ 1. For the inequality in

the latter part of our lemma, by what we have proved so far, we observe that:

‖Nn/2pNn ‖22 ≤ (C/2)n
∫

∆n

h

(
dNte
N

)
dt

≤ (C/2)n2n/2
∫

∆n

n∏
j=1

(tj − tj−1)−1/2dt

= Cn2−n/2
∫

∆n

∫
Rn

(4π)n/2[%n(t,x)]2dtdx = Cn(2π)n/2‖%n‖22,

where the second inequality is obtained similarly as (4.5). Hence, we have our desired conclusion.
�
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5. Asymptotics of collision measures

5.1. Convergence of exponential moments. We first prove Theorem 2.4 on the uniform boundedness
of moments of the partition functions. Then we will study the convergence of the exponential
moments of ( 1√

N
ΠN ;N ∈ N).

Proof of Theorem 2.4: Let c be a positive number such that c ≥ supN ‖AN‖∞. Without loss of
generality, assumeN is sufficiently large (i.e. N > c4) such that the partition function ZN

(
1

N1/4AN

)
is a positive random variable.

Recall that in Equation (2.1), we have shown that:

E

[
ZN

(
1

N1/4
AN

)k]
=

E

[
N∏
n=1

E

[
k∏
i=1

(
1 +

1

N1/4
AN (n, S(i)

n )ω(n, S(i)
n )

) ∣∣∣∣S(1), S(2), . . . , S(k)

]]
.

Now, define for n ≥ 1:

XN,n := E

[ k∏
i=1

(
1 +

1

N1/4
AN (n, S(i)

n )ω(n, S(i)
n )

)∣∣∣∣S(1), S(2), . . . , S(k)

]
− 1, (5.1)

and

TN :=

N∑
n=1

XN,n. (5.2)

Because ω is a collection of independent Rademacher random variables, we easily notice thatXN,n ≥
0 P− a.s, since XN,n can be written as:

k∑
l=2

∑
1≤i1<i2<...<il≤k

N−l/4
l∏

h=1

AN (n, S(ih)
n )E

[ l∏
h=1

ω(n, S(ih)
n )

∣∣S(1), . . . , S(k)

]
︸ ︷︷ ︸

is either 0 or 1

. (5.3)

Consequently,

E

[
ZN

(
1

N1/4
AN

)k]
= E

[
N∏
n=1

(1 +XN,n)

]
≤ E

[
eTN

]
. (5.4)

where we have used the classical inequality that ∀x ∈ R : 1 + x ≤ ex and XN,n ≥ 0.
Then, for each n, let us introduce the number U (n) of pairs (i, j) such that S(i)

n = S
(j)
n , i.e.,

U (n) :=
∑

1≤i<j≤k
1
S
(i)
n =S

(j)
n
.

We observe that on the event {U (n) = 0}, XN,n is equal to zero, and on the event {U (n) ≥ 1},∑
1≤i1<i2<...<il≤k

E

[
ω(n, S(i1)

n )...ω(n, S(il)
n )

∣∣S(1), . . . , S(k)

]
≤
(
k

l

)
≤
(
k

l

)
U (n). (5.5)

Thus,

XN,n ≤
k∑
l=2

N−l/4cl
(
k

l

)
U (n) ≤ (c+ 1)kN−1/2U (n). (5.6)
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So by combining the inequalities (5.4) and (5.6), one sees that:

E

[
ZN

(
1

N1/4
ANω

)k]
≤ E

[
eTN

]
≤E
[

exp

(
(c+ 1)kN−1/2

∑
1≤i<j≤k

N∑
n=1

1
S
(i)
n =S

(j)
n

)]

=E

[ ∏
(i,j):1≤i<j≤k

exp

(
(c+ 1)kN−1/2

N∑
n=1

1
S
(i)
n =S

(j)
n

)]

≤E
[

exp

(
k(k − 1)

2
(c+ 1)kN−1/2

N∑
n=1

1
S
(1)
n =S

(2)
n

)]
,

by Hölder’s inequality. Besides, using Theorem B.2 in Appendices, we can prove that for all β ≥ 0:

sup
N

E

[
exp

(
βN−1/2

N∑
n=1

1
S
(1)
n =S

(2)
n

)]
< +∞.

Thus, this implies the desired conclusion. �

Remark 5.1. Using the same argument as in the above proof, one can see that:

sup
N

E
(
eβTN

)
<∞ ∀β ≥ 0.

Hence, in particular,
(
eβTN , N ∈ N)

)
is uniformly integrable. If we do not care about U (n), we can

just have XN,n ≤ (c+ 1)kN−1/2. This remark will be useful in our proof for Theorem 5.2.

We now give result on the converence of the exponential moments of ( 1√
N

ΠN , N ∈ N).

Theorem 5.2. For any bounded positive continous function f ∈ Cb,+([0, 1]× R), we have:

E

[
exp

(
1√
N

ΠN (f)

)]
−−−−−→
N→+∞

E

[
(Z√2f )k

]
.

Proof of Theorem 5.2: For any bounded nonnegative continous function f ∈ Cb,+([0, 1]× R), let
• (An, n ∈ N) be a sequence of real functions defined on N× Z such that:

AN (n, z) :=
√
f

(
n

N
,
z√
N

)
∀n ∈ N, z ∈ Z.

• a :=
√
f and c := ‖a‖∞.

Notice that due to the continuity of f , limN→∞A([t, x]N ) = a(t, x) for all (t, x) ∈ [0, 1]× R. Thus,
(AN , N ∈ N) satisfies the conditions of Theorem 2.3 and therefore:

ZN (N−1/4AN )
(d)−−−−→

N→∞
Z√2f .

Hence, from the uniform integrability in Corollary 2.5, we deduce that:

E

[(
ZN (N−1/4AN )

)k ]
−−−−−→
N→+∞

E

[
(Z√2f )k

]
. (5.7)

Using again the quantity XN,n defined by (5.1), we have shown in (5.4) that:

E

[(
ZN (N−1/4AN )

)k ]
= E

[
N∏
n=1

(1 +XN,n)

]
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So the convergence (5.7) can be rewritten as:

E

[
N∏
n=1

(1 +XN,n)

]
−−−−−→
N→+∞

E

[
(Z√2f )k

]
. (5.8)

From Remark 5.1, we know that the sequence (TN , N ∈ N) with TN =
∑N

n=1XN,n satisfies that(
eβTN , N ∈ N)

)
is uniformly integrable and that:

0 ≤ XN,n ≤ (c+ 1)kN−1/2.

Hence, using Theorem A.2 in Appendix A and the convergence (5.8), we deduce that:

E

[
eTN

]
−−−−−→
N→+∞

E

[
(Z√2f )k

]
. (5.9)

We now investigate the relation between TN and 1√
N

ΠN (f). Observe that:

0 ≤ 1√
N

ΠN (f) ≤ TN .

Indeed, from the expansion (5.3), we have:

TN −
1√
N

ΠN (f) =

=
N∑
n=1

k∑
l=3

∑
1≤i1<i2<...<il≤k

N−l/4
l∏

h=1

AN (n, S(ih)
n )E

[ l∏
h=1

ω(n, S(il)
n )

]
≥ 0.

Then following the same arguments used to bound TN in (5.5) and (5.6), one can show that:

0 ≤ TN −
1√
N

ΠN (f) ≤ (c+ 1)kN−3/4
∑

1≤i<j≤k

N∑
n=1

1
S
(i)
n =S

(j)
n
.

Besides, E
(
N−3/4

∑
1≤i<j≤k

∑N
n=1 1

S
(i)
n =S

(j)
n

)
= k(k−1)

2N3/4

∑N
n=1

1
22n

(
2n
n

)
→ 0 as N −→ ∞, which

implies TN − 1√
N

ΠN (f)
(d)−−−−→

N→∞
0.

Thus, by applying Lemma C.1 in Appendices to two sequences
(
e

1√
N

ΠN (f)
, N ∈ N

)
and (eTN , N ∈

N), we conclude that:

E

[
exp

(
1√
N

ΠN (f)

)]
−−−−−→
N→+∞

E

[
(Z√2f )k

]
<∞.

�

5.2. Convergence of collision measures. We begin by proving the weak tightness of
(

1√
N

ΠN , N ∈ N
)
,

then giving the proof of Theorem 1.3. We refer to Kallenberg (2017, p.118,119) for the weak tight-
ness. The weak tightness is crucial as it allows us to take convergent subsequences of ( 1√

N
ΠN ;N ∈

N).

Theorem 5.3. The sequence of random measures
(

1√
N

ΠN , N ∈ N
)
is weakly tight.

Proof: LetM denote the set of all finite positive measures on the Polish space [0, 1]× R, and

Lm := {µ ∈M : ‖µ‖ ≤ m},
Mm := {µ ∈M : suppµ ⊂ [0, 1]× [−m,m]},
Km := Lm ∩Mm.
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So Km is a collection of some measures that are uniformly bounded and contained within the
same compact set. Thus, by Lemma 4.4 in Kallenberg (2017), Km is a weakly relatively compact
subset ofM. So, by the definition of tightness, it suffices to prove that

lim
m→+∞

sup
N

P(N−1/2ΠN 6∈ Km) = 0,

which is true because

lim
m→+∞

sup
N

P(N−1/2ΠN 6∈Mm) = 0 and lim
m→+∞

sup
N

P(N−1/2ΠN 6∈ Lm) = 0.

Indeed, for Mm, we observe that:

P(N−1/2ΠN 6∈Mm)

≤ P

(
sup

1≤n≤N
1≤i≤k

|S(i)
n | > m

√
N

)
≤ kP

(
sup1≤n≤N |Sn|√

N
> m

)
.

Since by Donsker’s theorem the sequence
(

1√
N

sup1≤n≤N |Sn|, N ∈ N
)
converges in distribution to

a real random variable, then it is tight by Prokhorov’s theorem Billingsley (1999, Theorem 5.2, p.
60). Thus,

lim
m→+∞

sup
N

P(N−1/2ΠN 6∈Mm) ≤ k lim
m→+∞

sup
N

P

(
sup1≤n≤N |Sn|√

N
> m

)
= 0.

For Lm, we have:

P(N−1/2ΠN 6∈ Lm) ≤ P

 N∑
n=1

∑
1≤i<j≤k

1
S
(i)
n =S

(j)
n
> m
√
N


≤ k(k − 1)

2
P

(
1√
N

N∑
n=1

1
S
(1)
n =S

(2)
n
>

2m

k(k − 1)

)

=
k(k − 1)

2
P

(
1√
N

2N∑
n=1

1Sn=0 >
2m

k(k − 1)

)
.

Similarly, because
(

1√
N

∑2N
n=1 1Sn=0, N ∈ N

)
also converges in distribution Révész (2005, Theorem

10.1), we have
lim

m→+∞
sup
N

P(N−1/2ΠN 6∈ Lm) = 0.

Hence the conclusion. �

Now, by combining all results we have shown so far, we can give the proof of Theorem 1.3.

Proof of Theorem 1.3: By Theorem 5.3 and Prokhorov’s theorem Billingsley (1999, Theorem 5.1),
there exists a random finite positive measure N ′ on [0, 1] × R such that there is a subsequence of
( 1√

N
ΠN , N ∈ N) that converges in distribution to N ′. For convenience, assume that N ′ is defined

on the existing probability space (Ω,A,P).
Besides, for any f ∈ Cb,+([0, 1]×R), by the proof of Theorem 5.2, it is known that: (e

1√
N

ΠN (f)
, N ∈

N) is uniformly integrable. Thus, E
[
eN
′(f)
]
is finite and equal to E

[(
Z√2f

)k]
.

We see that to show 1√
N

ΠN
wd−−−−→

N→∞
N ′, it suffices to prove that N ′ is uniquely defined in dis-

tribution. Indeed, let N ′′ be another random bounded measure on [0, 1] × R such that there is a



1404 Dinh-Toan Nguyen

subsequence of ( 1√
N

ΠN , N ∈ N) that converges in distribution to it. Assume N ′′ is also defined on
(Ω,A,P).

In the following, we will prove thatN ′(h)
(d)
= N ′′(h) for all h ∈ Cb([0, 1]×R), then the uniqueness of

N ′ follows immediately from Lemma 4.7 in Kallenberg (2017). Let f, g be two continous nonnegative
bounded functions on [0, 1]×R. For any two nonnegative numbers a and b, af+bg is also a continous
bounded nonnegative function. Hence,

E
[
eN
′(af+bg)

]
= E

[(
Z√

2(af+bg)

)k]
= E

[
eN
′′(af+bg)

]
.

Equivalently, for all a, b ≥ 0, E
[
eaN

′(f) +bN ′(g)
]

= E
[
eaN

′′(f)+bN ′′(g)
]
. Thus,

aN ′(f) + bN ′(g)
(d)
= aN ′′ + bN ′′(g) ∀a, b ≥ 0.

So by Cramer-Wold theorem Kallenberg (1997, Corollary 4.5), we have:

(N ′(f),N ′(g))
(d)
= (N ′′(f),N ′′(g)).

Then using Cramer-Wold Theorem again, we deduce that N ′(f − g)
(d)
= N ′′(f − g) . So, N ′(h)

(d)
=

N ′′(h) for all h ∈ Cb([0, 1] × R) because any bounded continous function h can be written as the
difference of two continuous bounded nonnegative functions.

Thus, we proved that 1√
N

ΠN
wd−−−−→

N→∞
N , where N is a positive random measure [0, 1]×N that is

uniquely defined in distribution by the following equation for all f ∈ Cb,+([0, 1]× R):

E(eN (f)) = E

[(
Z√2f

)k]
.

Finally, the convergence of ( 1√
N

Π′N , N ∈ N) follows directly from the convergence of ( 1√
N

ΠN , N ∈ N)

and Lemma C.1 by noticing that ΠN (f) ≥ Π′N (f) ≥ 0 for all f ∈ Cb,+([0, 1]× R), and

E

(
1√
N
‖ΠN −Π′N‖

)

≤ 1√
N

E

 N∑
n=1

∑
z∈Z

(
k

2

) ∑
1≤i1≤i2≤i3≤k

1{S(i1)
n =S

(i2)
n =S

(i3)
n =z}


≤ k5

√
N

N∑
n=1

P(S(1)
n = S(2)

n = S(3)
n ) ≤ k5

√
N

N∑
n=1

max
z∈Z

(P(S(3)
n = z))P(S(1)

n = S(2)
n )

=
k5

√
N

N∑
n=1

1

2n

(
n

dn/2e

)
1

22n

(
2n

n

)
≤ k5

√
N
C2

N∑
n=1

1

n
−−−−→
N→∞

0,

for some constant C such that 1
2n

(
n
dn/2e

)
≤ C 1√

n
for all n ∈ N. Note that such C exists thanks to

Stirling’s formula. Hence, our theorem is proved. �

Appendix A. On the asymptotic relation between products and sums of independent
random variables

We consider a probability space (Ω,A,P). For any N , let XN = (XN,n, n ∈ N) be a sequence of
nonnegative random variables such that the sum SN =

∑
n≥1XN,n is almost surely finite.

Assumption A1. Suppose that there exists a sequence of numbers (cN , N ∈ N) converging to 0 such
that for all N , cN ≥ supn |XN,n|.
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Let PN :=
∏
n≥1(1 + XN,n). In this Apprendix, we establish two relations between the sum SN

and the product PN whenN converges to infinity. Note that we do not assume (XN,n;n ∈ N, N ∈ N)
to be independent nor identically distributed.

Theorem A.1. (First relation) Assume A1, then for any real random variable Y , the following
two assertions are equivalent:

1) SN
(d)−−−−−→

N→+∞
Y 2) PN

(d)−−−−−→
N→+∞

eY .

Theorem A.2. (Second relation) Assume A1 and that the sequence (exp(SN ), N ∈ N) is uniformly
integrable. Then for any real constant C, the following two assertions are equivalent:

1) E
[
eSN

]
−−−−−→
N→+∞

C 2) E [PN ] −−−−−→
N→+∞

C.

Proof of Theorem A.1: Let us first prove that 1)⇒ 2). The inequality x− x2

2 ≤ ln(1 + x) ≤ x and
the assumption imply that:

0 ≤ SN − ln(PN ) ≤ 1

2

∑
n≥1

X2
N,n ≤ cNSN

(d)−−−−−→
N→+∞

0.

Hence, by Slutsky’s lemma van der Vaart (1998, Lemma 2.8), ln(PN )
(d)−−−−−→

N→+∞
Y.

Let us now prove that 2)⇒ 1), we see that for all x > 0, 0 ≤ x− ln(1 +x) ≤ x ln(1 +x). We deduce

0 ≤ SN − ln(PN ) ≤
∑
n≥1

XN,n ln(1 +XN,n) ≤ cN ln(PN )
(d)−−−−−→

N→+∞
0.

Thus, SN
(d)−−−−−→

N→+∞
Y. The equivalence is proved. �

Proof of Theorem A.2: For the 1)⇒ 2) direction:
The sequence (exp(Sn), n ∈ N) being uniformly integrable, thus there is a subsequence (nk, k ∈ N)
of N and a random variable Z ∈ L1 such that:

expSnk

(d)−−−→
n→∞

Z and E [exp(Snk
)] −−−→

k→∞
E[Z].

We deduce that E[Z] = C and by Theorem A.1, we have Pnk

(d)−−−→
n→∞

Z. Besides, the uniform
integrability of (exp(Sn), n ∈ N) implies the uniform integrability of (PN , N ∈ N), since 0 ≤ PN ≤
eSN . So,

E[Pnk
] −−−→
k→∞

E[Z] = C.

Notice that the uniform integrability and the convergence E(SN )
N→∞−−−−→ C are still valid if we

take any subsequence (Smi , i ∈ N) of (SN , N ∈ N). Thus, the result so far implies that for every
subsequence (mi, i ∈ N) of N, there is a subsequence (mik , k ∈ N) of (mi) such that:

E[Pmik
] −−−→
k→∞

C.

The first implication is proved. The reciprocal is similar. �

Remark A.3. Note that uniform integrability implies tightness.
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Appendix B. Some auxiliary results on random walks

Let (Sn, n ∈ N0) be a simple symmetric random walks on Z and :
i. (Xk, k ∈ N0) be a sequence of random variables such that X0 = 0 and Xk := inf{N >
Xk−1 : SN = 0} for all positive integer k,

ii. F := (Fk, k ∈ N0) be the canonical filtration of the process (Xk, k ∈ N0),
iii. Tk := Xk −Xk−1 for all positive integer k,
iv. τN := inf{k ≥ 0 : Xk ≥ N}.

Clearly, by definition, for each N , τN is a stopping time with respect to the filtration F and by
Markov’s property of S, (Tk, k ∈ N) is a sequence of indepedent identically distributed random
variables.

Notice that T1 is the first time after 0 at which the random walk S returns to the position 0.
Clearly, this stopping time is well-known. One of its properties is that

Lemma B.1. There is a positive constant C such that for all k ∈ N,

P(T1 = 2k) = 2−2k+1 1

k

(
2k − 2

k − 1

)
≥ C

k3/2
.

Indeed, this lemma is just a combination of Theorem 9.2 in Révész (2005) and Stirling’s formula.
Concerning τN , by its definition, we have the following equality which will be useful for our later
analysis:

τN − 1 = sup{k ≥ 0 : Xk ≤ N − 1} =

N−1∑
n=1

1Sn=0.

In the following, we present the main theorem of this Section.

Theorem B.2. (Boundedness of exponential moments of local times)
Let S be a simple random walk on Z starting from 0, then for any constant β ≥ 0, we have:

sup
N

E

[
exp

(
βN−1/2

N∑
n=1

1Sn=0

)]
< +∞.

This is a corollary of Sohier (2009, Lemma 4.2). Here, we give an alternative proof using Lemma
B.1.

Proof : The main idea to prove this theorem is to construct many appropriate martingales to esti-
mate the underlying exponential moment. The construction is as follows, for each N ∈ N, define:

i. XN
n :=

∑n
i=1 min(Ti, N).

ii. γN := inf{n ≥ 1 : XN
n ≥ N}.

iii. λN (β) := − logE(e−βmin(T1,N)) > 0 ∀N ∈ N, β > 0.
iii. MN

n := exp(−βXN
n + nλN (β)).

Then by noticing that the random variables T1, T2, . . . are i.i.d, we see that for each N , (MN
n , n ∈ N)

is a martingale with respect to the filtration F . In addition, because ∀n,N : XN
n ≥ n, ∀N : τN ≤ N .

Hence by the optional sampling theorem, ∀N ∈ N, β > 0,

E
[
exp(−βXN

γN
+ γNλN (β))

]
= 1.

Besides, by definition of γN and XN , we have:

XN
γN

= XN
γN−1 + min(TγN , N) ≤ N +N = 2N.

Thus, e2β ≥ E(eγNλN (β/N)), and from Lemma B.3 it follows that for all β > 0,

sup
N

E

[
exp(

1

2
c(β)γN/

√
N)

]
<∞,
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where c(β) := C
∫ 1/2

0
1
t3/2

(1 − e−2tβ)dt and C is the constant defined in Lemma B.1. By noticing
that limβ→∞ c(β) =∞ and ∀N : τN = γN , we conclude that for all β > 0:

sup
N

E
[
exp(βτN/

√
N)
]
<∞,

which is essentially our desired conclusion because τN − 1 =
∑N−1

n=1 1Sn=0. �

Lemma B.3. The sequence of functions (λN , N ∈ N) given in the proof of Theorem B.2 sasitifies
the following inequality:

lim inf
N→∞

√
NλN (β/N) ≥ c(β),

with c(β) := C
∫ 1/2

0
1
t3/2

(1− e−2tβ)dt, where C is the constant defined in the Lemma B.1.

Proof : For any β > 0 and N ≥ 2, we have:

1−E
[
e−βmin(T1,N)/N

]
=

bN/2c∑
k=1

P(T1 = 2k)(1− e−2kβ/N ) + P(T1 ≥ 2bN/2c+ 2)(1− e−β)

≥
bN/2c∑
k=1

C

k3/2
(1− e−2kβ/N ).

Thus,

lim inf
N→∞

√
N
(

1−E
[
e−βmin(T1,N)/N

])
≥ C

∫ 1/2

0

1

t3/2
(1− e−2tβ)dt = c(β) > 0.

From which, we conclude lim infN→∞
√
NλN (β/N) ≥ c(β). �

Appendix C. Auxiliary proofs

Lemma C.1. Let (Un), (Vn) be two sequences of positive random variables such that 0 ≤ Un ≤ Vn

for all n, and V1, V2, ... are uniformly integrable. Then if Vn
Un

(d)−−−−−→
n→+∞

1 and limn→∞E(Vn) = C,

then limn→∞E(Un) = C.

Proof : The uniform integrability of (Vn) implies the uniform integrability of (Un). The uniform
integrability of (Un) implies that for every subsequence (nk) of N, there exists a subsequence (nkl)
of (nk) such that (Unkl

, l ∈ N) converges in distribution to a random variable Z. The convergence
of ( VnUn

, n ∈ N) implies that (Vnkl
, l ∈ N) also converges in distribution to Z. Then, the uniform

integrability implies that limlE(Unkl
) = C = limlE(Vnkl

). Hence the conclusion. �

Proof of Proposition 3.4: Assume that f and g have compact supports, then the sums in SNn (f)
and SNn (g) have a finite number of terms; thus, point i is trivial. Point ii is also trivial by recalling
that ω is a collection of centered random variables. Now, for point iii, observe that for any i, i′ ∈
ENn ,x,x

′ ∈ Zn:

E

[ n∏
l=1

ω(il,xl)
n∏
l=1

ω(i′l,x
′
l)

]
= 1{i=i′,x=x′}.
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Hence

E

[
SNn (g)2

]
= 2n

∑
i∈EN

n

∑
z∈Zn

i↔z

AN (i, z)2gN

(
i

N
,

z√
N

)2

≤ 2n
∑

i∈[[1,N ]]n

∑
z∈Zn

i↔z

c2n 1

|R|

∫
R
g(t,y)2dtdy

= N3n/2c2n

∫
[0,1]n

∫
Rn

g(t,y)2dty.

The last inequality is simply an application of the Cauchy-Schwarz lemma. So the properties i, ii,
and iii are valid for compactly supported functions. In other words, g 7→ SNn (g) is a linear Lipschitz
continuous mapping that maps the space L2

compact([0, 1]n×Rn) into L2(P). Hence, all the properties
i, ii, iii can be extended naturally to all L2([0, 1]n × Rn) by the density of L2

compact([0, 1]n × Rn) in
L2([0, 1]n × Rn).

For the covariance relation in point iv, one can observe that if i ∈ ENn1
,x ∈ Zn1 , i′ ∈ ENn2

,x′ ∈ Zn2 ,
then

E

[ n1∏
l=1

ω(il,xl)

n2∏
l=1

ω(i′l,x
′
l)

]
= 0.

because there is necessarily one ω term that is distinct from the others, and its independence from
the rest implies zero expectation. Hence, iv is clearly true if g1, g2 have compact supports. The
extension to non-compactly-supported functions can also be obtained by a density argument as
above. �

Proof of Proposition 4.1: Recall that a is a bounded function, then there is a positive number β
such that ‖a‖∞ ≤ β. Hence,

∑
n≥0 ‖a⊗n%n‖22 ≤

∑
n≥0 β

2n‖%n‖22. Thus, it suffices to prove that %(β)

belongs to the Fock space, which is proven in Alberts et al. (2014, Subsection 3.4). �
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