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Abstract. We consider a discrete-time subcritical branching random walk (Zn) on the real line
R. Let Zn(A) be the number of individuals in the n-th generation located in A ∈ B(R), and
Nn := Zn(R) denote the size of the n-th generation. Under some conditions, we prove that when
0 < m := EN1 < 1, for x ∈ R, as n→∞,

L
(
Zn
(
(−∞,

√
nx]
)∣∣Nn > 0

)
=⇒ L

(
ξ1{N≤x}

)
,

where =⇒ means weak convergence, ξ is the Yaglom limit of the associated Galton-Watson process
(Nn) and N is a standard normal random variable independent of ξ.

1. Introduction

1.1. Definition of the model. Consider a discrete-time branching random walk on the real line R.
Let N+ := {1, 2, · · · } and N = N+ ∪ {0}. At time 0, there is one particle positioned at 0, which
forms the 0-th generation. The initial particle (after one unit of time) splits into a random number
of children according to the offspring distribution p = {pj}j∈N. These children are positioned (with
respect to their parent) independently according to the same probability measure G, which form
the first generation. We may call G the jump distribution. More generally, each particle in the n-th
generation gives birth independently to a random number of children with law p, who are in the
(n+ 1)-th generation and are positioned in relative distances according to G. The system goes on
as long as there are particles alive. The resulting system is called a branching random walk (BRW).

Throughout this paper, we assume that the reproduction and displacement mechanisms are in-
dependent. We denote by P the probability measure for this system started from a single particle
at 0, and the corresponding expectation is E.
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Let Zn be the point process of the positions of particles in the n-th generation. Let Gn∗ be the
n-fold convolution of the jump distribution G. Let B(R) denote the Borel σ-algebra on R. For
every Borel set A ∈ B(R), we define the number of particles in the n-th generation located in A by
Zn(A). We denote the size of the n-th generation by Nn = Zn(R). Of course, (Nn, n ∈ N) is just
a Galton-Watson process (GW-process) with offspring distribution p. Let f(·) be the generating
function of p. By the branching property, the generating function of Nn is given by the iterate

fn(s) = f(fn−1(s)), f0(s) = s, f1(s) = f(s), s ∈ [0, 1].

For a supercritical BRW (that is, m > 1), it was first conjectured by Harris (1963) that if G has
mean zero and variance one, then as n→∞,

m−nZn
(
(−∞,

√
nx]
)
→WΦ(x) in probability, (1.1)

where Φ(x) =
∫ x
−∞

1√
2π
e−

y2

2 dy is the standard normal distribution function, and W is the limit
of the additive martingale (m−nNn, n ∈ N) in the associated GW-process. Many authors have
studied and developed these results. Kaplan and Asmussen (1976) and Stam (1966) considered
the case where the displacement and the offspring reproduction of each particle are independent,
and obtained that the convergence holds almost surely. Furthermore, Biggins (1990) and Klebaner
(1982) removed the assumption that the branching and motion mechanisms are independent, and
extended these results to the BRW in a time-varying environment. Recently, Bansaye (2019) and
Bansaye and Huang (2015) considered the non-homogeneous branching Markov chain.

In this paper, we are interested in the subcritical BRW, i.e., m < 1. In this case, the associated
GW-process dies out with probability one, so it is natural to consider the central limit theorem con-
ditioned on non-extinction. We obtain that the limit variable reflects two parts of the randomness:
the Yaglom limit comes from the subcritical branching mechanism and the normal variable comes
from the space displacement (see Theorem 1.3 below).

Any R-valued random variable {Y ;P}, we may consider the associated probabilities

P(Y ∈ A) = (P ◦ Y )A, A ∈ B(R).

The set function L(Y ) = P◦Y of Y is a probability measure on B(R), called the distribution or law
of Y . For any B ∈ B(R), then a probability measure L(Y | Y ∈ B) on B(R) is defined as follows:

L(Y | Y ∈ B)A = P(Y ∈ A | Y ∈ B), A ∈ B(R),

which is called the conditional distribution of Y given {Y ∈ B}.

1.2. Previous results. Let us recall the known conditional limit theorems on subcritical GW-
processes. Throughout the remainder of this paper, the symbol “=⇒” denotes weak convergence.

Theorem 1.1. For a subcritical GW-process (Nn, n ∈ N) satisfying 0 < m = EN1 < 1, then
(1) As n→∞,

L(Nn | Nn > 0) =⇒ L(ξ), (1.2)

where ξ is a random variable called the Yaglom limit of the subcritical GW-process (Nn).
Furthermore, the sequence (1 − fn(s))/(mn(1 − s)) is monotone decreasing in n and then
converges to a non-decreasing function ϕ(s). In particular, we have

1− fn(0)

mn
↓ ϕ(0), n→∞. (1.3)

(2) For fixed l ∈ N and j ∈ N+,

lim
n→∞

P(Nn = j | Nn+l > 0) = bj(l) ≥ 0
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and
∑

j∈N+
bj(l) = 1, the generating function of {bj(l)}j∈N+ is H(s)−H(sfl(0))

ml
, where H(s) is

the generating function of the Yaglom limit ξ.
(3) The Q-process associated with (Nn) is a Markov chain whose n-step transition probability is

given by

πn(i, j) = lim
l→∞

P(Nn = j|Nn+l > 0, N0 = i), i, j ∈ N+,

then the Q-process is positive recurrent if and only if
∑

(j log j)pj < ∞. Furthermore, in
the positive recurrent case the stationary distribution for Q is

πj = ϕ(0)jbj , j ∈ N+, (1.4)

where bj = P(ξ = j) is the distribution of the Yaglom limit ξ.

Remark 1.2. Yaglom (1947) proved the existence of the Yaglom limit when m < 1 and N1 has a
finite second moment. This was generalized to the case without the second moment assumption in
Joffe (1967); Heathcote et al. (1967); Athreya and Ney (1972); Geiger (1999). In particular, Joffe
(1967) gave a sufficient condition for ϕ(0) > 0. Heathcote et al. (1967) showed that ϕ(0) > 0 if
and only if

∑
(j log j)pj <∞. The second point (2) is Athreya and Ney (1972, Theorem 1, Section

I.14). Some properties of the Q-process come from Joffe (1967, Another theorem) and Athreya and
Ney (1972, Theorem 2, Section I.14).

1.3. Main results. In this section we state our main results which generalize Theorem 1.1 in the
BRW. We assume that

0 < m = EN1 < 1, σ2 := VarN1 <∞. (1.5)∫ ∞
−∞

x dG(x) = 0,

∫ ∞
−∞

x2 dG(x) = 1. (1.6)

Now we present the conditional central limit theorem for the subcritical BRW.

Theorem 1.3. Assume (1.5) and (1.6) hold, then for all x ∈ R, as n→∞,

L
(
Zn
(
(−∞,

√
nx]
)∣∣Nn > 0

)
=⇒ L

(
ξ1{N≤x}

)
,

where ξ is the Yaglom limit of the associated GW-process in (1.2) and N is a standard normal
random variable independent of ξ.

Remark 1.4. For the critical BRW, the conditional central limit theorem was obtained recently by
Hong and Liang (2023). We also mention that σ2 < ∞ is needed. On the one hand, it implies
that

∑
(j log j)pj < ∞ and then ϕ(0) > 0. On the other hand, it guarantees that we can use the

many-to-two formula to approximate Zn((−∞,
√
nx]) given Nn > 0 in the L2-norm (see Proposition

4.1 below).

It is also interesting to investigate the behavior of L(Zn((−∞,
√
nx])|Nn+l > 0). Fix l ∈ N and

let n→∞, then we obtain the following result.

Corollary 1.5. Under the assumptions (1.5) and (1.6), for fixed l, j ∈ N and x ∈ R, we have

lim
n→∞

P
(
Zn
(
(−∞,

√
nx]
)

= j
∣∣Nn+l > 0

)
= bj(l;x) ≥ 0

and
∑

j∈N bj(l;x) = 1, the generating function of {bj(l;x)}j∈N is given by

H
(
s
)
−H

(
sfl(0)

)
ml

Φ(x) + 1− Φ(x),

where H(s) is the generating function of the Yaglom limit ξ.

Remark 1.6. This corollary extends (2) in Theorem 1.1, which is a conditional limit theorem for the
subcritical GW-process.
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If we let l → ∞ first and then n → ∞, the weak limit of L(Zn((−∞,
√
nx])|Nn+l > 0) will

evolve as the stationary distribution of the Q-process associated with the subcritical GW-process
(Nn, n ∈ N). In particular, if we exchange the order of l → ∞ and n → ∞, we get the same weak
limit.

Corollary 1.7. Assume (1.5) and (1.6) hold, for all x ∈ R,
(1) As l→∞ first and then n→∞,

L
(
Zn
(
(−∞,

√
nx]
)∣∣Nn+l > 0

)
=⇒ L

(
ζ1{N≤x}

)
,

where ζ is a random variable with law {πj}j∈N+ defined in (1.4) and N is a standard normal
random variable independent of ζ.

(2) As n→∞ first and then l→∞,

L
(
Zn
(
(−∞,

√
nx]
)∣∣Nn+l > 0

)
=⇒ L

(
ζ1{N≤x}

)
,

which means that for each j ∈ N, we have

bj(l;x)→ P
(
ζ1{N≤x} = j

)
, l→∞,

where bj(l;x) is defined as in Corollary 1.5.

Remark 1.8. The first part of this corollary extends (3) in Theorem 1.1, which describes the sta-
tionary distribution of the Q-process associated with (Nn).

Remark 1.9. The assumption (1.6) can be generalized to the case that G is in the domain of
attraction of a stable law. More precisely, there exist {an} ⊂ R, {bn} ⊂ (0,∞) and a non-degenerate
random variable η, such that

Sn − an
bn

=⇒ η, n→∞,

where Sn is the sum of n independent identically distributed variables with law G. When (1.5) and
the above general assumption hold, in Theorem 1.3, Corollaries 1.5 and 1.7, with slight changes we
replace the set (−∞,

√
nx], the normal random variable N and the distribution function Φ(x) by

(−∞, bnx+ an], η and P(η ≤ x), respectively.

The rest of this paper is devoted to the proofs of Theorem 1.3, Corollaries 1.5 and 1.7. The key
step is to express the conditional random variable Zn((−∞,

√
nx]) given Nn > 0 in terms of the

reduced tree, and decompose it at the most recent common ancestor which is located close to the
moment n in the subcritical case (c.f. Fleischmann and Prehn (1974) and Fleischmann and Vatutin
(1999)). In Section 2 we introduce the conditional reduced GW-process. In Section 3 we give some
properties of conditional reduced GW-trees and the many-to-few formula, which are the key tools
in proving Theorem 1.3. Based on these preparations, we prove Theorem 1.3 in Section 4, while in
Section 5 we prove Corollaries 1.5 and 1.7 as byproducts of Theorem 1.3.

2. Conditional reduced GW-processes

One of the key steps in the proof is to observe that conditional on Nn > 0, only the particles
in generation 0 ≤ k ≤ n having descendants in the n-th generation make contributions to the
conditional distribution L(Zn((−∞,

√
nx]) | Nn > 0). From the definition in Fleischmann and

Siegmund-Schultze (1977), for a GW-process (Nn, n ∈ N) with offspring distribution p, the random
number Nk,n of particles in the k-th generation having non-empty offspring at time n is called the
reduced GW-process.

Let N̂k,n be a random variable with law L(Nk,n | Nn > 0). Then we say (N̂k,n, 0 ≤ k ≤ n) is the
conditional reduced GW-process accordingly. For simplicity, we write N̂n := N̂n,n.
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We now introduce some generating functions and moments of conditional reduced GW-processes.
It follows from Fleischmann and Siegmund-Schultze (1977, Proposition 1.1) that the conditional
reduced GW-process (N̂k,n, 0 ≤ k ≤ n) is a time-inhomogeneous GW-process, and its offspring
probability generating function at time k (0 ≤ k ≤ n− 1) is given by

f̂ek(n)(s) :=E[sN̂k+1,n | N̂k,n = 1]

=
f
(
fn−k−1(0) + s(1− fn−k−1(0))

)
− fn−k(0)

1− fn−k(0)
, s ∈ [0, 1], (2.1)

which determines the offspring distribution denoted by {pl(ek(n))}l∈N (where ek(n) can be viewed
as an “environment”), i.e.,

P(N̂k+1,n = l | N̂k,n = 1) = pl(ek(n)), l ∈ N. (2.2)

Now, for each 0 ≤ k ≤ n− 1 and j ≥ 0, let

mj(ek(n)) :=
∑
l∈N

ljpl(ek(n))

be the j-th moment of the offspring distribution {pl(ek(n))}l∈N. It is easy to calculate the first and
second moments:

m1

(
ek(n)

)
= m

1− fn−k−1(0)

1− fn−k(0)
, (2.3)

m2

(
ek(n)

)
=

(1− fn−k−1(0))2

1− fn−k(0)
f ′′(1) +m

1− fn−k−1(0)

1− fn−k(0)
. (2.4)

Once again by Fleischmann and Siegmund-Schultze (1977), the generating function of N̂k,n is given
by

E
[
sN̂k,n

]
=
fk
(
fn−k(0) + s(1− fn−k(0))

)
− fn(0)

1− fn(0)
, s ∈ [0, 1]. (2.5)

Then (2.5) implies that L(N̂n) = L(Nn | Nn > 0) and the first and second moments of N̂k,n are

E[N̂k,n] = mk 1− fn−k(0)

1− fn(0)
, (2.6)

E[N̂2
k,n] = f ′′k (1)

(1− fn−k(0))2

1− fn(0)
+mk 1− fn−k(0)

1− fn(0)
. (2.7)

Based on these, the first moment of N̂n is mn/(1 − fn(0)). Hence it is obvious from (1.3) that
under (1.5) we have

lim
n→∞

E[N̂n] =
1

ϕ(0)
<∞. (2.8)

In addition, the second moment of N̂n is E[N2
n]/(1 − fn(0)). Recall that the variance of the GW-

process (Nn, n ∈ N) given in Athreya and Ney (1972) is

VarNn =
σ2mn−1(mn − 1)

m− 1
, n ∈ N. (2.9)

Hence, by a simple calculation we have

E[N̂2
n] =

1

1− fn(0)

[
m2n +

σ2mn−1(mn − 1)

m− 1

]
. (2.10)
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Recall that the generating function of the Yaglom limit ξ is H(s). Thanks to Joffe (1967, Yaglom’s
theorem), we have

H(s) = 1− lim
n→∞

1− fn(s)

1− fn(0)
, s ∈ [0, 1]

and H ′(1) = 1/ϕ(0). Since f ′n(1) = mn and fn(0)→ 1 as n→∞, it is easy to deduce that

lim
n→∞

1− fn(0)

1− fn+τ (0)
= m−τ . (2.11)

Then by a combination of (2.5) and the preceding results we have

E
[
sN̂n−τ,n

]
= 1−

1− fn−τ
(
fτ (0) + s(1− fτ (0))

)
1− fn−τ (0)

· 1− fn−τ (0)

1− fn(0)

→ 1−
1−H

(
fτ (0) + s(1− fτ (0))

)
mτ

, n→∞

= 1−
1−H

(
fτ (0) + s(1− fτ (0))

)
(1− s)(1− fτ (0))

·
(1− s)

(
1− fτ (0)

)
mτ

.

It is clear that limτ→∞ fτ (0)→ 1 implies that

lim
τ→∞

1−H
(
fτ (0) + s(1− fτ (0))

)
(1− s)

(
1− fτ (0)

) = H ′(1) =
1

ϕ(0)
.

Combining this with (1.3), first as n→∞ and then as τ →∞ we have

E
[
sN̂n−τ,n

]
→ s (2.12)

holds when
∑

(j log j)pj <∞. This conclusion means that N̂n−τ,n converges to 1 in law when first
n → ∞ and then τ → ∞, hence it can be roughly thought that the most recent common ancestor
of particles in generation n is located near n (c.f. Fleischmann and Prehn, 1974). This observation
is very important in our proof for Theorem 1.3.

3. Conditional reduced GW-trees and the many-to-few formula

In order to introduce the decomposition of Zn and the many-to-few formula in detail, we now
depict the above processes in family trees.

3.1. GW-trees. We use the classical Ulam-Harris-Neveu notation for discrete trees. Let

U = {∅} ∪
⋃
n≥1

(N+)n.

As before, for u = u1 · · ·un ∈ U , we denote by |u| = n the generation of u. If u = u1 · · ·un ∈
U , v = v1 · · · vl ∈ U , we write uv = u1 · · ·unv1 · · · vl for the concatenation of u and v. In particular,
u∅ = ∅u = u.

A tree t is a subset of U satisfying the following properties: (1) ∅ ∈ t; (2) if uj ∈ t for some
j ∈ N+, then u ∈ t; (3) if u ∈ t, then uj ∈ t if and only if 1 ≤ j ≤ Nu(t) for some non-negative
integer Nu(t) <∞. In words, Nu := Nu(t) is the number of children of the vertex u in t.

Let us consider a family of N-valued random variables {Nu;u ∈ U} such that under P, they
are independent of each other and have the same law p. We say a random subset T of U is a
Galton-Watson tree (GW-tree) with offspring distribution p (rooted at ∅) if it is defined by

T := {u = u1 · · ·un ∈ U : 1 ≤ uj ≤ Nu1···uj−1 , for every 1 ≤ j ≤ n}.
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3.2. Marked trees and BRWs. The main purpose of this section is to produce an extension, by
associating each vertex of the tree with the position. We define V := {(u, x) : u ∈ U , x ∈ R} and
call t the marked tree if t := {(u, V (u)) : u ∈ t} is a subset of V, see Harris and Roberts (2017).

Let T be the set of all marked trees. We now take a probability Px on T such that the system
evolves as a branching random walk starting with one particle at x, in which each particle has
children with the total number and positions (with respect to their parent) decided by distributions
p and G, respectively. When x = 0, this is the system described in Section 1.1, and we drop the
subscript in this case. Let T denote the genealogical tree of this system rooted at ∅. Clearly, T is
a GW-tree with offspring distribution p. Therefore, our BRW is defined by the random measure

Zn =
∑

u∈T:|u|=n

δV (u).

Since Zn(A) is the number of particles in the n-th generation located in A, so we have

Zn(A) = #{u ∈ T : V (u) ∈ A, |u| = n},
where #B denotes the cardinality of the set B.

3.3. Conditional reduced GWM-trees and conditional reduced BRWs. Recall that under Px, T is
the GW-tree with offspring distribution p, which starts with one particle at V (∅) = x. From the
definition in Fleischmann and Siegmund-Schultze (1977), we can get the reduced GW-tree (rooted
at ∅) by removing all branches of the original tree T, which don’t extend to generation n. We write
T̂n for the random tree rooted at ∅, whose distribution is equal to the conditional distribution of
this reduced GW-tree given Nn > 0.

For any 0 ≤ k ≤ n, let

T̂k,n := {u ∈ T̂n : |u| = k}

be the set of all individuals in generation k in the tree T̂n, namely, T̂n = ∪nk=0T̂k,n. Then N̂k,n :=

#T̂k,n is the total size of individuals in generation k in T̂n, so we are back to the conditional reduced
GW-process described in Section 2. We next transform the random tree T̂n to the conditional reduced
Galton-Watson tree (conditional reduced GW-tree).

From the definition of a marked tree in Section 3.2, we can get a random marked tree {(u, V (u)) :

u ∈ T̂n, V (u) ∈ R} by endowing each u with the position V (u) in the following way: for each
u ∈ T̂n, children are born at distances from the parent u which are given by an independent copy
of the law G. This random marked tree is called a conditional reduced Galton-Watson marked tree
(conditional reduced GWM-tree). Accordingly, we say the random measure

Ẑn =
∑

u∈T̂n,n

δV (u)

defines a conditional reduced branching random walk (conditional reduced BRW). Note that Ẑn is
the point process with law L(Zn | Nn > 0).

3.3.1. Subtrees in the conditional reduced GW-tree T̂n. For any z ∈ T̂n, let T̂n(z) be the subtree of
T̂n rooted at z defined by

T̂n(z) := {v : zv ∈ T̂n}.

For |z| ≤ k ≤ n, we write

T̂k−|z|,n(z) := {u ∈ T̂n(z) : |zu| = k},

N̂k−|z|,n(z) := #T̂k−|z|,n(z),
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then T̂n(z) = ∪nk=|z|T̂k−|z|,n(z). In particular, T̂n(∅) = T̂n, T̂k,n(∅) = T̂k,n, N̂k,n(∅) = N̂k,n,
N̂n,n(∅) = N̂n.

It follows from Fleischmann and Siegmund-Schultze (1977, Proposition 1.1) that L(N̂1,n(z)) =

L(N̂1,n−|z|(∅)). We get an analogous result, i.e., Lemma 3.1, which is another important step in
our proof for the main result.

Lemma 3.1. For any z ∈ T̂n and |z| ≤ k ≤ n, we have

L
(
N̂k−|z|,n(z)

)
= L

(
N̂k−|z|,n−|z|(∅)

)
. (3.1)

Proof : For fixed z ∈ T̂n, since T̂n(z) and T̂n−|z| both are time-inhomogeneous GW-trees starting
with one particle, we just need to prove that their offspring distributions at time k (|z| ≤ k ≤ n−1)
are the same. On the one hand, based on the observation that the (k − |z|)-th generation of the
subtree T̂n(z) actually corresponds to the k-th generation of the tree T̂n, so the offspring probability
generating function at time (k − |z|) in T̂n(z) is f̂ek(n)(s) defined by (2.1). On the other hand,
f̂ek−|z|(n−|z|)(s) defined by (2.1) is the offspring probability generating function at time k − |z| in
T̂n−|z|. By using (2.1) again, a simple calculation shows that f̂ek(n)(s) = f̂ek−|z|(n−|z|)(s). This
implies the desired result. �

3.3.2. The many-to-few formula. For fixed r ∈ N+, we now attach r additional distinguished lines
of descent ω1, · · · , ωr to the conditional reduced GWM-tree {(u, V (u)) : u ∈ T̂n, V (u) ∈ R}, which
are called spines.

Note that Px is the probability measure on T such that under Px the system evolves as a
subcritical BRW starting from an ancestor located at x defined in Section 3.2. We next introduce
the following new system, which is a conditional reduced BRW with r spines ω1, · · · , ωr:

(1) Initially, there is one particle at position x which carries r marks 1, · · · , r.
(2) For each 1 ≤ i ≤ r, we regard the line of descent carrying mark i as the spine ωi. Note that

ωi = (ωi1, ω
i
2, · · · ) , where ωik denotes the particle carrying mark i in generation k. We write

Xik for its position, i.e., Xik = V (ωik).
(3) A particle in generation k carrying j marks gives birth to children with the j-th sized-biased

distribution
{ ljpl(ek(n))
mj(ek(n))

}
l∈N, these children are born at distances from their parent which

are given by an independent copy of the law G. Given that a particles u1, · · · , ua are born
at such a branching event, each of the j spines chooses a particle to follow independently
and uniformly at random among the a variables.

(4) Particles which carry no marks in generation k have children according to the offspring
distribution {pl(ek(n))}l∈N given by (2.2) and the jump distribution G, just as under Px.

(5) The offspring of particles in generation k and their positions (including the marked particles)
form the (k + 1)-th generation.

Let us denote by Q
[r]
x the law of the new system defined above. In particular, we drop the

subscript when x = 0. In other words, under Q[r]
x , spine particles give birth to children according to

the size-biased distribution, but the jump distribution will be unchanged. The number of children
depends on how many marks the spine particle carrying, but the motion does not.

For any u ∈ T̂n\{∅}, we denote by ←−u its parent. Let D(u) be the total number of marks carried
by a particle u. For fixed n ∈ N and 0 ≤ k ≤ n, let

(
F̂k,n, 0 ≤ k ≤ n

)
be the natural filtration of the

conditional reduced BRW. Let
(
G[r]
k,n, 0 ≤ k ≤ n

)
be the filtration containing all information about

the conditional reduced BRW and the r spines. It follows from Harris and Roberts (2017) that if
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Y is measurable with respect to G[r]
k,n, then it can be expressed as

Y =
∑

u1,··· ,ur∈T̂k,n

Y (u1, · · · , ur)1{ω1
k=u1,··· ,ωrk=ur},

where for each u1, · · · , ur ∈ T̂k,n the random variable Y (u1, · · · , ur) is F̂k,n-measurable. Let Ex be
the expectation corresponding to Px.

The many-to-few formula is convenient to compute higher-order moments. It is standard in many
other related contexts, for example, Bansaye (2019); Bansaye and Huang (2015); Shi (2015) for the
many-to-one formula. We state a version of the many-to-few formula for time-inhomogeneous BRWs.
The proof is similar to that in Harris and Roberts (2017) and Hong and Liang (2023). In this paper,
we just need to use the many-to-one formula and the many-to-two formula.

Lemma 3.2. (Many-to-few formula) For each 0 ≤ k ≤ n, r ∈ N+ and each G[r]
k,n-measurable Y , we

have

Ex

[ ∑
u1,··· ,ur∈T̂k,n

Y (u1, · · · , ur)
]

= Q[r]
x

[
Y (ω1

k, · · · , ωrk)
∏

ω∈skel(k)

mD(←−ω )

(
e|←−ω |(n)

)]
, (3.2)

where skel(k) denotes the set of particles that have carried at least one mark up to time k in the
tree T̂n, and D(u) is the total number of marks carried by a particle u.

4. Proof of Theorem 1.3

4.1. The decomposition of Ẑn+τ and proof of Theorem 1.3. Recall that Ẑn is the point process with
law L(Zn | Nn > 0). For random variables X and Y , we write X d

= Y if X is equal in distribution
to Y . For any fixed n, τ ∈ N, we can decompose Ẑn+τ at generation n as

Ẑn+τ ((−∞,
√
n+ τx])

d
=

∑
y∈T̂n+τ,n+τ

1{V (y)≤
√
n+τx}

=
∑

z∈T̂n,n+τ

[ ∑
y∈T̂τ,n+τ (z)

1{∆V (z,y)≤
√
n+τx−V (z)}

]
:= An+τ +Bn+τ , (4.1)

where An+τ and Bn+τ are given respectively in (4.2) and (4.3), and ∆V (z, y) := V (zy)− V (z). By
Lemma 3.1 and the definition of T̂n+τ , under Px these subtrees in (4.1) are characterized by the
following properties:

(1) Given the information about (V (z), z ∈ T̂n,n+τ ), the subtrees
(
∆V (z, y), y ∈ T̂n+τ (z)

)
, z ∈

T̂n,n+τ are independent, identically distributed copies of the random tree
(
V (y), y ∈ T̂τ

)
;

(2) For each z ∈ T̂n,n+τ , the subtree
(
∆V (z, y), y ∈ T̂n+τ (z)

)
is independent of

(
V (z), z ∈

T̂k,n+τ , 0 ≤ k ≤ n
)
.

The first term in (4.1) can be written as

An+τ :=
∑

z∈T̂n,n+τ

[( ∑
y∈T̂τ,n+τ (z)

1{∆V (z,y)≤
√
n+τx−V (z)}

)
− N̂τ,n+τ (z)1{Ñz≤

√
n+τx−V (z)}

]
, (4.2)

where N̂τ,n+τ (z) is the number of individuals in the τ -th generation of the subtree T̂n+τ (z) rooted
at the vertex z. We introduce a new sequence of random variables {Ñz; z ∈ T̂n,n+τ} in (4.2). Then
by Lemma 3.1 and the properties of subtrees, under Px these random variables in An+τ satisfy:
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(1) Given the information about T̂n,n+τ , the random variables N̂τ,n+τ (z), z ∈ T̂n,n+τ are inde-
pendent, identically distributed copies of N̂τ ;

(2) Given the information about T̂n,n+τ , {Ñz; z ∈ T̂n,n+τ} is a sequence of independent and
identically distributed random variables with the same law Gτ∗;

(3) Given the information about T̂n,n+τ , the two families of random variables {Ñz; z ∈ T̂n,n+τ}
and {N̂τ,n+τ (z); z ∈ T̂n,n+τ} are independent.

(4) For each z ∈ T̂n,n+τ , the two random variables Ñz and N̂τ,n+τ (z) are independent of
(V (z), z ∈ T̂k,n+τ , 0 ≤ k ≤ n).

We remark that our assumption on the branching and motion mechanisms guarantees that the two
families of random variables {Ñz; z ∈ T̂n,n+τ} and {N̂τ,n+τ (z); z ∈ T̂n,n+τ} are independent. For
the second term in (4.1),

Bn+τ :=
∑

z∈T̂n,n+τ

N̂τ,n+τ (z)1{Ñz≤
√
n+τx−V (z)}. (4.3)

The intuitive idea of this decomposition of (4.1) is described as follows. Firstly, (2.12) indicates
that the most recent common ancestor of particles in the (n + τ)-th generation is located near n
when first n→∞ and then τ →∞, so we decompose the sum at generation n in the second equality
of (4.1). Secondly, for fixed z, although random variables {∆V (z, y); y ∈ T̂τ,n+τ (z)} are correlated
given V (z), they all tend to 0 by the space scaling

√
n+ τ as n → ∞, i.e., we can roughly think

that each ∆V (z, y) behaves as the same variable Ñz. Consequently, when first n → ∞ and then
τ →∞, the equivalent relation∑

z∈T̂n,n+τ

[ ∑
y∈T̂τ,n+τ (z)

1{∆V (z,y)≤
√
n+τx−V (z)}

]
d∼ Bn+τ :=

∑
z∈T̂n,n+τ

N̂τ,n+τ (z)1{Ñz≤
√
n+τx−V (z)}

holds in distribution. Finally, Lemma 3.1 tells us that N̂τ,n+τ (z)
d
= N̂τ . It follows from (2.12) that

N̂n,n+τ ≈ 1 when first n→∞ and then τ →∞. Thus we obtain the following equivalent relation

Bn+τ
d∼

∑
z∈T̂n,n+τ

N̂τ1{Ñz≤
√
n+τx−V (z)}

d∼ N̂τ1{ V (z)√
n+τ
≤x− Ñz√

n+τ

} d∼ ξ1{N≤x}

holds in distribution, where N is a standard normal random variable independent of the Yaglom
limit ξ.

Based on (4.1), we can prove Theorem 1.3 with the following two Propositions 4.1 and 4.2, whose
proofs are postponed to Sections 4.2 and 4.3, respectively.

Proposition 4.1. Under the assumptions (1.5) and (1.6), we have

lim sup
n→∞

E[A2
n+τ ] ≤ h1(τ),

where h1(τ)→ 0 as τ →∞.

Let the generating function of ξ1{N≤x} be L(s). Recall that ξ is independent of N , then a simple
calculation shows that

L(s) = Φ(x)H(s) + 1− Φ(x). (4.4)

Proposition 4.2. Assume (1.5) and (1.6) hold, then for all s ∈ [0, 1], we have

lim sup
n→∞

∣∣∣E[sBn+τ ]− L(s)
∣∣∣ ≤ h2(τ, s),

where h2(τ, s)→ 0 as τ →∞.
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Now we can prove Theorem 1.3 at once with Propositions 4.1 and 4.2 in hand.
Proof of Theorem 1.3. The generating function of Ẑn((−∞,

√
nx]) is defined by

Ln(s) := E
[
sẐn((−∞,

√
nx])
]
, s ∈ [0, 1].

For s ∈ (0, 1), we again use the decomposition (4.1) at generation n to write∣∣Ln+τ (s)− L(s)
∣∣

≤
∣∣∣E[sAn+τ+Bn+τ

]
−E

[
sBn+τ

]∣∣∣+
∣∣∣E[sBn+τ ]−E

[
sξ1{N≤x}

]∣∣∣
≤| ln s| ·E

[
|An+τ |

]
+
∣∣∣E[sBn+τ ]−E

[
sξ1{N≤x}

]∣∣∣,
where the last inequality comes from the fact that for integers k1 and k2 satisfying k1+k2 ≥ 0, k2 ≥ 0,
we have

∣∣sk1+k2 − sk2
∣∣ ≤ ∣∣ ln s∣∣ · ∣∣k1

∣∣ by Lagrange’s mean value theorem. By Hölder’s inequality and
Proposition 4.1, we have

E
[
|An+τ |

]
≤
(
E[A2

n+τ ]
)1/2 ≤ (h1(τ)

)1/2
.

Proposition 4.2 implies

lim sup
n→∞

∣∣∣E[sBn+τ ]− L(s)
∣∣∣ ≤ h2(τ, s).

Combining the last three inequalities yields

lim sup
n→∞

∣∣Ln+τ (s)− L(s)
∣∣ ≤ ∣∣ ln s∣∣ · (h1(τ)

)1/2
+ h2(τ, s).

By replacing n+ τ by n in the above inequality, we have

lim sup
n→∞

∣∣Ln(s)− L(s)
∣∣ ≤ ∣∣ ln s∣∣ · (h1(τ)

)1/2
+ h2(τ, s), s ∈ (0, 1).

Let τ → ∞, we obtain Ln(s) → L(s) by the properties of h1(τ) and h2(τ, s). Note that the
continuity of H(s) at s = 1 implies the continuity of L(s) at s = 1, the proof is completed by the
continuity theorem of generating functions (c.f. Feller, 1968, Continuity theorem, Section XI.6). �

In what follows, we focus on proving Propositions 4.1 and 4.2.

4.2. Proof of Proposition 4.1. To prove Proposition 4.1, we should calculate the first and second
moments for the conditional reduced BRW (V (z), z ∈ T̂n+τ ) by the many-to-few formula (c.f.
Lemma 3.2). We use the convention that for any integer k ≤ 0,

∑k
j=1 = 0.

Lemma 4.3. For every n, τ ∈ N,
(1) For each integer 0 ≤ k ≤ n+ τ , x ∈ R and each Borel measurable function g on R, we have

Ex

[ ∑
u∈T̂k,n+τ

g
(
V (u)

)]
= mk 1− fn+τ−k(0)

1− fn+τ (0)
Ex
[
g(X1

k)
]
, (4.5)

where (X1
i , i ∈ N) is the spine random walk carrying one mark with transition probability

Px(X1
i+1 ∈ · | X1

i = x) = G(· − x), i ∈ N. (4.6)
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(2) For any a ∈ R,

E
[
Ẑτ ((−∞,

√
n+ τx− a])2

]
=

mτ

1− fτ (0)
P
(
X1
τ ≤
√
n+ τx− a

)
+

m2τ−1

1− fτ (0)
f ′′(1)

τ∑
j=1

m−jP
(
X1
j−1,τ ≤

√
n+ τx− a,X2

j−1,τ ≤
√
n+ τx− a

)
, (4.7)

where (X1
i , i ∈ N) is defined as in (1), the integer j is the first split time of the two spines.

For each j, (X1
j,i, i ∈ N) and (X2

j,i, i ∈ N) are spine random walks, which have the same
transition probability as (4.6) and satisfy
• X1

j,i = X2
j,i for all i ≤ j;

• (X1
j,j+i − X1

j,j , i ∈ N) and (X2
j,j+i − X2

j,j , i ∈ N) are independent.

Proof : It can be verified by the many-to-few formula in Lemma 3.2. More specifically, let r = 1
and replace n by n + τ in (3.2). Then we take Y (X1

k) = g(X1
k), which implies Y (u) = g(V (u)) for

u ∈ T̂k,n+τ . Note that

∏
w∈skel(k)

mD(←−ω )

(
e|←−ω |(n+ τ)

)
=

k−1∏
i=0

m1

(
ei(n+ τ)

)
= mk 1− fn+τ−k(0)

1− fn+τ (0)
,

where the last equality comes from (2.3). Note that the motion of the spine under Q[1]
x is the same

as under Px, it is easy to conclude (1) from (3.2).
We next give the proof of (2). In (3.2), let r = 2, x = 0, n = k = τ and

Y (X1
τ ,X

2
τ ) = 1{X1

τ≤
√
n+τx−a,X2

τ≤
√
n+τx−a}.

Clearly,

Y (u1, u2) = 1{V (u1)≤
√
n+τx−a,V (u2)≤

√
n+τx−a}, u1, u2 ∈ T̂τ,τ .

Suppose that T denotes the first split time of the two spines, i.e., the first time at which marks 1
and 2 are carried by different particles. Consequently,

E
[
Ẑτ ((−∞,

√
n+ τx− a])2

]
=E

[ ∑
u1,u2∈T̂τ,τ

1{V (u1)≤
√
n+τx−a,V (u2)≤

√
n+τx−a}

]

=Q[2]

[
1{X1

τ≤
√
n+τx−a,X2

τ≤
√
n+τx−a}

∏
ω∈skel(τ)

mD(←−ω )

(
e|←−ω |(τ)

)]

=Q[2]

[
1{X1

τ≤
√
n+τx−a}1{T>τ}

τ−1∏
i=0

m2

(
ei(τ)

)]

+
τ∑
j=1

Q[2]

[
1{X1

j−1,τ≤
√
n+τx−a,X2

j−1,τ≤
√
n+τx−a}1{T=j}

j−1∏
i=0

m2

(
ei(τ)

) τ−1∏
i=j

m1

(
ei(τ)

)2]
, (4.8)

where (X1
i , i ∈ N), (X1

j,i, i ∈ N) and (X2
j,i, i ∈ N) are spine random walks defined in Lemma 4.3.

Under Q[2] the particle in generation 0 which carries marks 1 and 2 splits into l particles with
probability l2pl(e0(τ))/m2(e0(τ)). At such a branching event, the two marks follow the same particle
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with probability 1/l. Thus

Q[2]
(
T > 1

)
=
m1

(
e0(τ)

)
m2

(
e0(τ)

) .
We can get the distribution of T in a similar way. Indeed, the event {T > j} means that the two
marks don’t split until time j. In addition, under Q[2] the particle carrying two marks branches into
l children at time i < j with law l2pl(ei(τ))/m2(ei(τ)) then the two marks follow the same particle
with probability 1/l. Hence the law of T is given by

Q[2]
(
T > j

)
=

j−1∏
i=0

m1

(
ei(τ)

)
m2

(
ei(τ)

) , j = 1, 2, · · · . (4.9)

Hence, for any integer j ≥ 2,

Q[2]
(
T = j

)
= Q[2]

(
T > j − 1

)
−Q[2]

(
T > j

)
=

j−2∏
i=0

m1

(
ei(τ)

)
m2

(
ei(τ)

)(1−
m1

(
ej−1(τ)

)
m2

(
ej−1(τ)

)). (4.10)

Notice that Q[2](T = 1) = 1−Q[2](T > 1), by using the convention that
∏k
i=0 = 1 for any integer

k < 0, then (4.10) holds for j = 1. By (2.4) and (4.9), a simple calculation shows that
τ−1∏
i=0

m2(ei(τ))Q[2](T > τ) =
mτ

1− fτ (0)
.

Again using the fact that the motions of spines under Q[2] are the same as under P. Note that X1
τ

is independent of T under Q[2], so we obtain

Q[2]

(
1{X1

τ≤
√
n+τx−a}1{T>τ}

τ−1∏
i=0

m2

(
ei(τ)

))
=

mτ

1− fτ (0)
P(X1

τ ≤
√
n+ τx− a),

which derives the first part on the right-hand side of (4.7). We next consider the remainder of the
sum in (4.7). By (2.3) and (2.4) we get

m2

(
ej−1(τ)

)
−m1

(
ej−1(τ)

)
=

(
1− fτ−j(0)

)2
1− fτ−j+1(0)

f ′′(1).

Moreover, it follows from (2.3), (2.4) and (4.10) that
j−1∏
i=0

m2

(
ei(τ)

) τ−1∏
i=j

m1

(
ei(τ)

)2
Q[2]

(
T = j

)
=

m2τ−1

1− fτ (0)
f ′′(1)m−j .

Therefore, the second part on the right-hand side of (4.8) is

m2τ−1

1− fτ (0)
f ′′(1)

τ∑
j=1

m−jP(X1
j−1,τ ≤

√
n+ τx− a,X2

j−1,τ ≤
√
n+ τx− a).

Thus we prove Lemma 4.3. �

Proof of Proposition 4.1. Recall that F̂n,n+τ = σ(V (z) : z ∈ T̂k,n+τ , 0 ≤ k ≤ n) is defined in
Section 3.3.2. We write Ên,n+τ [·] := E[· | F̂n,n+τ ] for simplicity. From (4.2) we have

E[A2
n+τ ]=E

[
Ên,n+τ

[( ∑
z∈T̂n,n+τ

( ∑
y∈T̂τ,n+τ (z)

1{∆V (z,y)≤
√
n+τx−V (z)}−N̂τ,n+τ (z)1{Ñz≤

√
n+τx−V (z)}

))2]]
:=D

(1)
n+τ +D

(2)
n+τ ,
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where

D
(1)
n+τ = E

[ ∑
z∈T̂n,n+τ

Ên,n+τ

[( ∑
y∈T̂τ,n+τ (z)

1{∆V (z,y)≤
√
n+τx−V (z)} − N̂τ,n+τ (z)1{Ñz≤

√
n+τx−V (z)}

)2
]]
,

D
(2)
n+τ = E

[ ∑
z1,z2∈T̂n,n+τ

z1 6=z2

Ên,n+τ

[ ∏
i=1,2

( ∑
y∈T̂τ,n+τ (zi)

1{∆V (zi,y)≤
√
n+τx−V (zi)}−N̂τ,n+τ (zi)1{Ñzi≤

√
n+τx−V (zi)}

)]]
.

Under conditions (1.5) and (1.6), we prove the following two statements in Sections 4.2.1 and
4.2.2, respectively.

lim
n→∞

D
(1)
n+τ = 0, for every τ ∈ N, (4.11)

lim sup
n→∞

∣∣D(2)
n+τ

∣∣ ≤ h(2)
1 (τ), lim

τ→∞
h

(2)
1 (τ) = 0. (4.12)

Then we complete the proof of Proposition 4.1 by taking h1(τ) = h
(2)
1 (τ). �

4.2.1. Proof of (4.12). Actually, (4.12) holds because of the property of conditional reduced GW-
processes, which is that N̂n,n+τ converges to 1 in law when first n → ∞ and then τ → ∞. More
precisely,

Ên,n+τ

[ ∏
i=1,2

∣∣∣∣ ∑
y∈T̂τ,n+τ (zi)

1{∆V (zi,y)≤
√
n+τx−V (zi)}−N̂τ,n+τ (zi)1{Ñzi≤

√
n+τx−V (zi)}

∣∣∣∣
]

≤4 ·
∏
i=1,2

E
[
N̂τ,n+τ (zi)

]
=4
(
EN̂τ

)2
:= C1(τ), (4.13)

where the last equality comes from the properties of {N̂τ,n+τ (z); z ∈ T̂n,n+τ} in Section 4.1. Con-
sequently, by (2.6), (2.7) and (2.9) we have∣∣D(2)

n+τ

∣∣ ≤ C1(τ) ·
(
E[N̂2

n,n+τ ]−E[N̂n,n+τ ]
)

= C1(τ) · f ′′n(1)

(
1− fτ (0)

)2
1− fn+τ (0)

= C1(τ) ·
(
1− fτ (0)

)2
1− fn+τ (0)

(σ2mn−1(mn − 1)

m− 1
+ (mn)2 −mn

)
.

It follows from (1.3) that

lim
n→∞

1

1− fn+τ (0)

(σ2mn−1(mn − 1)

m− 1
+ (mn)2 −mn

)
=

1

mτϕ(0)

( σ2

m(1−m)
− 1
)
,

which yields

lim sup
n→∞

∣∣D(2)
n+τ

∣∣ ≤ C1(τ) ·
(
1− fτ (0)

)2
mτϕ(0)

( σ2

m(1−m)
− 1
)

=: h
(2)
1 (τ).

Note that (2.8) implies limτ→∞C1(τ) <∞ under (1.5). Moreover, recalling from (1.3) we have

lim
τ→∞

(
1− fτ (0)

)2
mτϕ(0)

= lim
τ→∞

1− fτ (0) = 0,
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then

lim
τ→∞

h
(2)
1 (τ) = 0.

This implies (4.12). �

4.2.2. Proof of (4.11). Let

F (n, n+ τ, a) = E

[( ∑
y∈T̂τ,τ

1{V (y)≤
√
n+τx−a} − N̂τ1{Ñ≤

√
n+τx−a}

)2]
,

where under P the random variable Ñ has the same distribution as Ñz. Since N̂τ,n+τ (z) is inde-
pendent of Ñz, we assume that N̂τ and Ñ are independent. Then again using the properties of
subtrees and the two families of random variables {N̂τ,n+τ (z); z ∈ T̂n,n+τ} and {Ñz; z ∈ T̂n,n+τ}
in Section 4.1, we apply the many-to-one formula with x = 0, k = n and g(·) = F (n, n + τ, ·) (see
(4.5) in Lemma 4.3) to D(1)

n+τ and get

D
(1)
n+τ = mn 1− fτ (0)

1− fn+τ (0)
·E[F (n, n+ τ,Xn)], (4.14)

where (Xn, n ∈ N) is a random walk whose transition probability is defined by (4.6). Note that the
process (V (z), z ∈ T̂k,n+τ , 0 ≤ k ≤ n) is independent of N̂τ,n+τ (z) and Ñz, so we also assume that
the random walk (Xi, 0 ≤ i ≤ n) is independent of N̂τ and Ñ .

We first get from (1.3) that

lim
n→∞

mn 1− fτ (0)

1− fn+τ (0)
=

1− fτ (0)

ϕ(0)mτ
=: C2(τ), (4.15)

which is finite under (1.5). We next consider the integral of (4.14). Expanding the square in F
yields

F (n, n+ τ, a) =E
[
Ẑτ ((−∞,

√
n+ τx− a])2

]
− 2E

[
N̂τ

∑
y∈T̂τ,τ

1{V (y)≤
√
n+τx−a}1{Ñ≤

√
n+τx−a}

]
+ E

[(
N̂τ1{Ñ≤

√
n+τx−a}

)2]
:=F1(n, n+ τ, a)− 2F2(n, n+ τ, a) + F3(n, n+ τ, a).

Therefore, we have

E
[
F (n, n+ τ,Xn)

]
= E

[
F1(n, n+ τ,Xn)

]
− 2E

[
F2(n, n+ τ,Xn)

]
+ E

[
F3(n, n+ τ,Xn)

]
. (4.16)

Under (1.5) and (1.6), we get the following three statements:

lim
n→∞

E
[
F1(n, n+ τ,Xn)

]
= E

[
N̂2
τ

]
Φ(x), ∀ τ ∈ N. (4.17)

lim
n→∞

E
[
F2(n, n+ τ,Xn)

]
= E

[
N̂2
τ

]
Φ(x), ∀ τ ∈ N. (4.18)

lim
n→∞

E
[
F3(n, n+ τ,Xn)

]
= E

[
N̂2
τ

]
Φ(x), ∀ τ ∈ N. (4.19)

Then by using (4.14)-(4.19), we obtain (4.11). �
In the remainder of this section, we focus on proving (4.17)-(4.19).
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(1) Proof of (4.17). To consider the first term on the right-hand side of (4.16), i.e., (4.17), we
need to compute the second moment of the conditional reduced BRW. By (4.7) in Lemma 4.3, we
have that E[F1(n, n+ τ,Xn)] is equal to the sum of

mτ

1− fτ (0)
P(X1

τ ≤
√
n+ τx− Xn) (4.20)

and
m2τ−1

1− fτ (0)
f ′′(1)

τ∑
j=1

m−jP(X1
j−1,τ ≤

√
n+ τx− Xn,X

2
j−1,τ ≤

√
n+ τx− Xn), (4.21)

where the random variable X1
τ and the two random walks (X1

j−1,τ : 1 ≤ j ≤ τ) and (X2
j−1,τ : 1 ≤

j ≤ τ) are independent of Xn. Therefore, it suffices to compute the limits of (4.20) and (4.21). On
the one hand, under (1.6), by the central limit theorem we have

Xn√
n+ τ

=⇒ N , n→∞, (4.22)

where N is a standard normal random variable. Hence, letting n→∞ yields

P
(
X1
τ ≤
√
n+ τx− Xn

)
= P

( Xn√
n+ τ

≤ x− X1
τ√

n+ τ

)
→ P(N ≤ x) = Φ(x).

Substituting the last limit relation into (4.20) yields that under (1.6),

lim
n→∞

mτ

1− fτ (0)
P
(
X1
τ ≤
√
n+ τx− Xn

)
=

mτ

1− fτ (0)
Φ(x). (4.23)

This deals with the first term of (4.17), i.e., (4.20).
On the other hand, observe that for fixed τ ∈ N and 1 ≤ j ≤ τ ,

X1
j−1,τ√
n+ τ

a.s.−→ 0,
X2
j−1,τ√
n+ τ

a.s.−→ 0, n→∞.

Recall that the random variable Xn is independent of the two random walks (X1
j−1,τ : 1 ≤ j ≤ τ)

and (X2
j−1,τ : 1 ≤ j ≤ τ). Then by (4.22) we see that for any 1 ≤ j ≤ τ ,

P
(
X1
j−1,τ ≤

√
n+ τx− Xn,X

2
j−1,τ ≤

√
n+ τx− Xn

)
=P
( Xn√

n+ τ
≤ x−

X1
j−1,τ√
n+ τ

,
Xn√
n+ τ

≤ x−
X2
j−1,τ√
n+ τ

)
→P(N ≤ x) = Φ(x), n→∞. (4.24)

It immediately proves that under (1.6), as n→∞, (4.21) converges to

mτ −m2τ

m(1−m)
(
1− fτ (0)

)f ′′(1)Φ(x), (4.25)

if we note that
∑τ

j=1m
−j = (1−m−τ )/(m− 1).

Therefore, recall that the second moment of N̂τ is decided by (2.10), by (4.23), (4.24) and (4.25),
a simple calculation shows that

lim
n→∞

E
[
F1(n, n+ τ,Xn)

]
=

Φ(x)

1− fτ (0)

[
mτ +

mτ −m2τ

m(1−m)
f ′′(1)

]
=

Φ(x)

1− fτ (0)

[
m2τ +

σ2mτ−1
(
mτ − 1

)
m− 1

]
=E
[
N̂2
τ

]
Φ(x),
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where the second equality comes from f ′′(1) = σ2 +m2−m. This ends up the proof of (4.17) under
(1.6). �

(2) Proof of (4.18). We compute the second term on the right-hand side of (4.16), i.e., (4.18). Re-
call that V (y) is independent of N̂τ , and the three random variables Xn, Ñ and N̂τ are independent
of each other. So we have

E
[
F2(n, n+ τ,Xn)

]
= E

[
N̂τ

∑
y∈T̂τ,τ

1{V (y)≤
√
n+τx−Xn}1{Ñ≤

√
n+τx−Xn}

]

= E

[
N̂τ

∑
y∈T̂τ,τ

E
[
1{V (y)≤

√
n+τx−Xn,Ñ≤

√
n+τx−Xn}

]]

= E

[
N̂τ

∑
y∈T̂τ,τ

E
[
1{ Xn√

n+τ
+

V (y)√
n+τ
≤x, Xn√

n+τ
+ Ñ√

n+τ
≤x
}]]. (4.26)

We first fix τ and then let n→∞ to get V (y)√
n+τ

a.s.−→ 0 and Ñ√
n+τ

a.s.−→ 0. Consequently, by (4.22) we
obtain that under (1.6),

lim
n→∞

P
( Xn√

n+ τ
+

V (y)√
n+ τ

≤ x, Xn√
n+ τ

+
Ñ√
n+ τ

≤ x
)

= P(N ≤ x) = Φ(x).

Recall that E[N̂2
τ ] <∞ under (1.5). By dominated convergence, letting n→∞ in (4.26) yields

lim
n→∞

E
[
F2(n, n+ τ,Xn)

]
= E

[
N̂2
τ

]
Φ(x).

This is (4.18). �

(3) Proof of (4.19). Finally we discuss the third term on the right-hand side of (4.16), i.e., (4.19).
Indeed, recall again that Xn, N̂τ and Ñ are independent of each other, so we have

E
[
F3(n, n+ τ,Xn)

]
= E

[
N̂2
τ 1{Ñ≤

√
n+τx−Xn}

]
= E

[
N̂2
τ

]
P(Ñ ≤

√
n+ τx− Xn). (4.27)

Under (1.6), letting n→∞ in the above equality yields

P(Ñ ≤
√
n+ τx− Xn) = P

( Xn√
n+ τ

≤ x− Ñ√
n+ τ

)
→ P(N ≤ x) = Φ(x),

which means that (4.19) holds under (1.6). �

4.3. Proof of Proposition 4.2. Recall that for fixed z ∈ T̂n,n+τ , the two random variables N̂τ,n+τ (z)

and Ñz are independent of the process (V (u), u ∈ T̂k,n+τ , 0 ≤ k ≤ n) in Section 4.1, then the
generating function of Bn+τ is

E

[
s

∑
z∈T̂n,n+τ

N̂τ,n+τ (z)1{Ñz≤
√
n+τx−V (z)}

]
= E

[ ∏
z∈T̂n,n+τ

Ên,n+τ

[
s
N̂τ,n+τ (z)1{Ñz≤

√
n+τx−V (z)}

]]
,
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where Ên,n+τ is defined as in the proof of Proposition 4.1. Since N̂τ,n+τ (z)
d
= N̂τ and the variables

N̂τ,n+τ (z) and Ñz are independent, we have

Ên,n+τ

[
s
N̂τ,n+τ (z)1{Ñz≤

√
n+τx−V (z)}

]
=Ên,n+τ

[
Ên,n+τ

[
s
N̂τ,n+τ (z)1{Ñz≤

√
n+τx−V (z)}

∣∣∣N̂τ,n+τ (z)
]]

=P̂n,n+τ

(
Ñz ≤

√
n+ τx− V (z)

)
E
[
sN̂τ
]

+ 1− P̂n,n+τ

(
Ñz ≤

√
n+ τx− V (z)

)
:=R

(
n, n+ τ, V (z)

)
,

where P̂n,n+τ (·) = P(· | F̂n,n+τ ). Hence these above equalities imply

E[sBn+τ ] = E

[ ∏
z∈T̂n,n+τ

R
(
n, n+ τ, V (z)

)]
. (4.28)

Loosely speaking, according to the property of conditional reduced GW-trees, there are only one
particle in generation n making contributions to the (n+ τ)-th generation conditioned on the event
{Nn+τ > 0} when first n→∞ and then τ →∞. Thus the product on the right-hand side of (4.28)
can be replaced by one factor when first n→∞ and then τ →∞. For any fixed z0 ∈ T̂n,n+τ , since
0 ≤ R(n, n+ τ, V (z0)) ≤ 1, we get that for s ∈ [0, 1],∣∣∣∣E[ ∏

z∈T̂n,n+τ

R(n, n+ τ, V (z))

]
− L(s)

∣∣∣∣
≤
∣∣∣∣E[ ∏

z∈T̂n,n+τ

R(n, n+ τ, V (z))
]
−E

[
R
(
n, n+ τ, V (z0)

)]∣∣∣∣+

∣∣∣∣E[R(n, n+ τ, V (z0)
)]
− L(s)

∣∣∣∣
≤E

[∣∣∣∣ ∏
z∈T̂n,n+τ

R
(
n, n+ τ, V (z)

)
−R

(
n, n+ τ, V (z0)

)
·
∏

z∈T̂n,n+τ
z 6=z0

1

∣∣∣∣
]

+

∣∣∣∣E[R(n, n+ τ, V (z0)
)]
− L(s)

∣∣∣∣
≤E

[ ∑
z∈T̂n,n+τ
z 6=z0

(
1−R

(
n, n+ τ, V (z)

))]
+

∣∣∣∣E[R(n, n+ τ, V (z0)
)]
− L(s)

∣∣∣∣, (4.29)

where the last inequality follows from Durrett (2010, Lemma 3.4.3). We next estimate the first term
on the right-hand side of (4.29). Note that 0 ≤ 1 − R(n, n + τ, V (z)) ≤ 1 for each z ∈ T̂n,n+τ , so
that

E

[ ∑
z∈T̂n,n+τ
z 6=z0

(
1−R

(
n, n+ τ, V (z)

))]
≤ E

[
N̂n,n+τ − 1

]
.

By (1.3) and (2.6), a simple calculation shows that

lim
n→∞

E
[
N̂n,n+τ − 1

]
=

1− fτ (0)

ϕ(0)mτ
− 1.

We use (1.3) again to see that under (1.5),

lim
τ→∞

1− fτ (0)

ϕ(0)mτ
− 1 = 0.
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We finally estimate the second part of (4.29). Recall that the random variable V (z0) has the law
Gn∗ and is independent of Ñz0 for z0 ∈ T̂n,n+τ , then we obtain that under (1.6),

lim
n→∞

E[R(n, n+ τ, V (z0))] = Φ(x)E
[
sN̂τ
]

+ 1− Φ(x).

The convergence of N̂τ and the definition of L(s) in (4.4) imply that Φ(x)E[sN̂τ ] + 1−Φ(x)→ L(s)
as τ →∞. Hence, we complete the proof of Proposition 4.2 by taking

h2(τ, s) =
1− fτ (0)

ϕ(0)mτ
− 1 +

∣∣∣Φ(x)E
[
sN̂τ
]

+ 1− Φ(x)− L(s)
∣∣∣,

which satisfies limτ→∞ h2(τ, s) = 0. �

5. Proofs of Corollaries 1.5 and 1.7

Corollaries 1.5 and 1.7 give the asymptotic behavior of L(Zn((−∞,
√
nx])|Nn+l > 0). To this

end, we should consider the joint distribution of (N̂n, Ẑn((−∞,
√
nx])). The next lemma can be

proved along the same line as the proof of Theorem 1.3.

Lemma 5.1. If assumptions (1.5) and (1.6) are fulfilled, then for each λ1 ≥ 0, λ2 ≥ 0 and x ∈ R,
we have

lim
n→∞

E
[
sλ1N̂n+λ2Ẑn((−∞,

√
nx])
]

= Φ(x)H
(
sλ1+λ2

)
+
(
1− Φ(x)

)
H
(
sλ1
)
, s ∈ (0, 1). (5.1)

In other words,

L
(
Nn, Zn

(
(−∞,

√
nx]
)∣∣Nn > 0

)
= L

(
N̂n, Ẑn((−∞,

√
nx])

)
=⇒ L(ξ, ξ1{N≤x}), n→∞,

where ξ and N are the same as in Theorem 1.3.

Proof : For each λ1 ≥ 0, λ2 ≥ 0 and x ∈ R, we only need to decompose the random variable
λ1N̂n+τ + λ2Ẑn+τ

(
(−∞,

√
n+ τx]

)
at generation n like (4.1):

λ1N̂n+τ + λ2Ẑn+τ

(
(−∞,

√
n+ τx]

) d
=

∑
z∈T̂n,n+τ

[ ∑
y∈T̂τ,n+τ (z)

(
λ1 + λ21{∆V (z,y)≤

√
n+τx−V (z)}

)]
= An+τ (λ1, λ2) +Bn+τ (λ1, λ2),

where

An+τ (λ1, λ2) =
∑

z∈T̂n,n+τ

[ ∑
y∈T̂τ,n+τ (z)

(
λ1 + λ21{∆V (z,y)≤

√
n+τx−V (z)}

)
−N̂τ,n+τ (z)

(
λ1 + λ21{Ñz≤

√
n+τx−V (z)}

)]
Bn+τ (λ1, λ2) =

∑
z∈T̂n,n+τ

N̂τ,n+τ (z)
(
λ1 + λ21{Ñz≤

√
n+τx−V (z)}

)
Based on this decomposition, the rest proof of (5.1) is the same as that of Theorem 1.3 except for
some slight changes.

Note that

E
[
sξ(λ1+λ21{N≤x})

]
= Φ(x)H

(
sλ1+λ2

)
+
(
1− Φ(x)

)
H
(
sλ1
)

and H(s) is continuous at s = 1, so the last part of the lemma follows from the continuity theorem
of generating functions (c.f. Feller, 1968, Continuity theorem, Section XI.6). �
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Proof of Corollary 1.5. We first recall that for l ∈ N and s ∈ (0, 1),

lim
n→∞

E
[
sZn
(

(−∞,
√
nx]
)∣∣∣Nn+l > 0

]
= lim
n→∞

P(Nn > 0)

P(Nn+l > 0)
·E
[
sZn
(

(−∞,
√
nx]
)(

1− fl(0)Nn
)∣∣∣Nn > 0

]
= lim
n→∞

P(Nn > 0)

P(Nn+l > 0)
·
(
E
[
sẐn
(

(−∞,
√
nx]
)]
−E

[
fl(0)N̂nsẐn

(
(−∞,

√
nx]
)])

.

We next take λ2 = 1 and λ1 satisfying sλ1 = fl(0) in (5.1) to get that under (1.5) and (1.6),

lim
n→∞

E
[
fl(0)N̂nsẐn

(
(−∞,

√
nx]
)]

= Φ(x)H
(
sfl(0)

)
+
(
1− Φ(x)

)
H
(
fl(0)

)
.

Hence, by (2.11) and Theorem 1.3 we obtain that under (1.5) and (1.6), for s ∈ (0, 1),

lim
n→∞

E
[
sZn
(

(−∞,
√
nx]
)∣∣∣Nn+l > 0

]
=

Φ(x)
[
H
(
s
)
−H

(
sfl(0)

)]
+
(
1− Φ(x)

)[
1−H

(
fl(0)

)]
ml

=
H
(
s
)
−H

(
sfl(0)

)
ml

Φ(x) + 1− Φ(x), (5.2)

where the last equality comes from 1−H
(
fl(0)

)
= ml (c.f. Joffe, 1967, Yaglom’s theorem). Finally,

Note that H(s) is continuous at s = 1 and 1−H
(
fl(0)

)
= ml, then the right-hand side of (5.2) is

continuous at s = 1. By the continuity theorem of generating functions (c.f. Feller, 1968, Continuity
theorem, Section XI.6), we obtain

lim
n→∞

P
(
Zn
(
(−∞,

√
nx]
)

= j
∣∣Nn+l > 0

)
= bj(l;x) ≥ 0, j ∈ N,

where {bj(l;x)}j∈N is a probability law and its generating function is the right-hand side of (5.2).
�

Proof of Corollary 1.7. (1) For fixed x ∈ R, s ∈ (0, 1) and n ∈ N, we have

lim
l→∞

E
[
sZn
(

(−∞,
√
nx]
)∣∣∣Nn+l > 0

]
= lim
l→∞

E
[
sZn
(

(−∞,
√
nx]
)(

1− fl(0)Nn
)∣∣∣Nn > 0

] P(Nn > 0)

P(Nn+l > 0)

=P(Nn > 0) · lim
l→∞

E
[
sẐn
(

(−∞,
√
nx]
)(

1− fl(0)N̂n
)]

1− fn(fl(0))

=E
[
N̂ns

Ẑn
(

(−∞,
√
nx]
)]
· P(Nn > 0)

mn
.

Recall that E[N̂n] = mn/P(Nn > 0). Then by dominated convergence we can get that as s→ 1,

E
[
N̂ns

Ẑn
(

(−∞,
√
nx]
)]
· P(Nn > 0)

mn
→ 1.

Summarizing above, it thus follows from the continuity theorem of generating functions (c.f. Feller,
1968, Continuity theorem, Section XI.6) that

lim
l→∞

P
(
Zn
(
(−∞,

√
nx]
)

= j
∣∣Nn+l > 0

)
= aj(n;x) ≥ 0

exists for every j ∈ N and
∑

j∈N aj(n;x) = 1. In this case automatically

E
[
N̂ns

Ẑn
(

(−∞,
√
nx]
)]
· P(Nn > 0)

mn
=
∑
j∈N

aj(n;x)sj , s ∈ [0, 1].
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Under (1.5) and (1.6), by first differentiating the both sides of (5.1) with respect to λ1 and then
taking λ1 = 0 and λ2 = 1, it is obvious that

lim
n→∞

E
[
N̂ns

Ẑn
(

(−∞,
√
nx]
)]

= Φ(x)sH ′(s) +
(
1− Φ(x)

)
H ′(1).

We use (1.3) and the fact that H ′(1) = 1/ϕ(0) (c.f. Joffe, 1967, Theorem 1) to obtain that under
(1.5),

lim
n→∞

∑
j∈N

aj(n;x)sj = lim
n→∞

E
[
N̂ns

Ẑn
(

(−∞,
√
nx]
)]
· P(Nn > 0)

mn

=ϕ(0)sH ′(s)Φ(x) + 1− Φ(x). (5.3)

Using again H ′(1) = 1/ϕ(0) yields that the limit of (5.3) is continuous at s = 1. Thus we can use
again the continuity theorem of generating functions (c.f. Feller, 1968, Continuity theorem, Section
XI.6) to get

lim
n→∞

aj(n;x) = aj(x) ≥ 0 (5.4)

exists for each j ∈ N and
∑

j∈N aj(x) = 1. Next, since the random variable ζ has the law {πj}j∈N+

decided by (1.4), it is easy to check that the generating function of ζ1{N≤x} is the right-hand side
of (5.3). Combining this result with (5.4) and the definition of aj(n;x), we have proved that

lim
n→∞

lim
l→∞

P
(
Zn
(
(−∞,

√
nx]
)

= j
∣∣Nn+l > 0

)
= P

(
ζ1{N≤x} = j

)
, j ∈ N.

Then we complete the proof of the first part.
(2) This is similar to the first part of the proof. By (1.3) it is easily seen that

lim
l→∞

H(s)−H
(
sfl(0)

)
ml

= lim
l→∞

H(s)−H
(
sfl(0)

)
1− fl(0)

· 1− fl(0)

ml
= ϕ(0)sH ′(s).

By Corollary 1.5 the generating function of {bj(l;x)}j∈N is given by∑
j∈N

bj(l;x)sj =
H(s)−H

(
sfl(0)

)
ml

Φ(x) + 1− Φ(x).

Then we let l→∞ in both sides to get

lim
l→∞

∑
j∈N

bj(l;x)sj = ϕ(0)sH ′(s)Φ(x) + 1− Φ(x),

which is the generating function of ζ1{N≤x}. From the continuity theorem of generating functions
(c.f. Feller, 1968, Continuity theorem, Section XI.6) it is natural to have

lim
l→∞

bj(l;x) = P
(
ζ1{N≤x} = j

)
, j ∈ N.

By the definition of bj(l;x) we obtain the desired result. �
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