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Abstract. This paper is devoted to an invariance principle for Kemperman’s model of oscillating
random walk on Z. This result appears as an extension of the invariance principal theorem for
classical random walks on Z or reflected random walks on N0. Relying on some natural Markov
sub-process which takes into account the oscillation of the random walks between Z− and Z+, we
first construct an aperiodic sequence of renewal operators acting on a suitable Banach space and
then apply a powerful theorem proved by S. Gouëzel.

1. Model and setting

1.1. Introduction. Consider two independent sequences of i.i.d. discrete random variables
(
ξn
)
n≥1

and
(
ξ′n
)
n≥1

, defined on a probability space
(
Ω,F ,P

)
and with respective distributions µ and µ′.

For any fixed α ∈ [0, 1], the oscillating random walk X (α) =
(
X

(α)
n

)
n≥0

is defined recursively by:

X
(α)
0 = x, where x ∈ Z is fixed, and for n ≥ 0,

X
(α)
n+1 =


X

(α)
n + ξn+1 if X(α)

n ≤ −1,

ηn+1 if X(α)
n = 0,

X
(α)
n + ξ′n+1 if X(α)

n ≥ 1,

(1.1)

where ηn+1 := Bn+1ξn+1 + (1 − Bn+1)ξ′n+1 and
(
Bn
)
n≥1

is a sequence of i.i.d. Bernoulli random
variables (independent of

(
ξn
)
n≥1

and
(
ξ′n
)
n≥1

) with P[Bi = 1] = α = 1− P[Bi = 0].
When we want to emphasize the dependence in µ and µ′ of this oscillating process, we denote it

by X (α)(µ, µ′).
This spatially non-homogeneous random walk was first introduced by Kemperman (1974) to

model discrete-time diffusions in one dimensional space with three different media Z+ and Z− and
a barrier {0}. Whenever the process X (α)(µ, µ′) stays on the negative half line, its excursion is
directed by the jumps ξn until it reaches the positive half line; then, it continues being directed by
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the jumps ξ′n until returning in the negative half line and so on. After each visit of the origin, the
increment is governed by the distribution of ηn, which is a convex combination of µ and µ′. Our
considering system is referred to as a special case when the barrier is degenerated as a single point;
in general context, it may be any determined interval [a, b] ∩ Z which passes through the origin,
see Kim and Lotov (2004) for instance. Another interesting variant has been studied by Madras
and Tanny (1994) dealing with an oscillating random walk with a moving barrier at some constant
speed. Although this basically leads to differences in its long-term behaviour compared to (1.1), we
may be able to trace this model back to (1.1) by using some appropriate translations for its random
increments.

In the present paper, we prove an invariant principle for X (α)(µ, µ′) towards the skew Brownian
motion

(
Bγ
t

)
t>0

on R with parameter γ ∈ [0, 1]. The diffusion
(
Bγ
t

)
t>0

is obtained from the standard
Brownian process by independently altering the signs of the excursions away from 0, each excursion
being positive with probability γ and negative with probability 1 − γ. By Revuz and Yor (1999),
its heat kernel is given by: for any x, y ∈ R and t > 0,

pγt (x, y) := pt(x, y) + (2γ − 1) sign(y) pt(0, |x|+ |y|),

where pt(x, y) = 1√
2πt
e−(x−y)2/2t is the transition density of the Brownian motion.

Throughout this paper, we suppose that the following general assumptions always hold:
H1

(
ξn
)
n≥1

and
(
ξ′n
)
n≥1

are independent sequences of i.i.d. Z-valued random variables, with finite
variances σ2 and σ′2, respectively.
H2 Both distributions µ and µ′ are centered (i.e. E[ξn] = E[ξ′n] = 0).
H3 Both distributions µ and µ′ are strongly aperiodic on Z, i.e. their supports are not included in
b+ aZ for any a > 1 and b ∈ {0, . . . , a− 1}.
H4 There exists δ > 0 such that E[(ξ+

n )3+δ] + E[(ξ′−n )3+δ] < +∞, where ξ+
n := max

{
0, ξn

}
and

ξ′−n := max
{

0,−ξ′n
}
.

Let us emphasize that, under hypotheses H1, H2 and H3, the oscillating random walk X (α) is
irreducible and null recurrent on Z; this property is not stated in Vo (2023) and we will detail the
argument later (see Proposition 3.2).

We denote by S =
(
Sn
)
n≥1

(resp. S′ =
(
S′n
)
n≥1

) the random walk defined by S0 = 0 and
Sn = ξ1 + . . . + ξn for n ≥ 1 (resp. S′0 = 0 and S′n = ξ′1 + . . . + ξ′n for n ≥ 1). Let

(
`i
)
i≥0

be the
sequence of strictly ascending ladder epochs associated with S and defined recursively by `0 = 0
and, for i ≥ 0,

`i+1 := inf
{
k > `i | Sk > S`i

}
(with the convention inf ∅ = +∞). We also consider the sequence of descending ladder epochs(
`′i
)
i≥0

of S′, defined as follows:

`′0 = 0, and `′i+1 := inf{k > `′i | S′k < S′`′i
}, for any i ≥ 0.

Under hypothesis H2, it holds P[lim sup
n→+∞

Sn = +∞] = P[lim inf
n→+∞

S′n = −∞] = 1; hence, all the ran-

dom variables `i and `′i are P-a.s. finite. In addition, both sequences
(
`i+1−`i

)
i≥0

and
(
S`i+1

−S`i
)
i≥0

contain i.i.d. random elements with distributions of `1 and S`1 , respectively; the same property holds
for
(
`′i+1−`′i

)
i≥0

and
(
S′`′i+1

−S′`′i
)
i≥0

. Consequently, processes
(
`i
)
i≥0
,
(
S`i
)
i≥0
,
(
`′i
)
i≥0

and
(
S′`′i

)
i≥0

are all random walks with i.i.d. increments.
We denote µ+ the distribution of S`1 and U+ its potential defined by U+ :=

∑
n≥0(µ+)∗n. Simi-

larly µ′− denotes the distribution of S′`′1 and U ′− :=
∑

n≥0(µ′−)∗n.

In particular, the oscillating random walk X (α) visits Z− and Z+ infinitely often; in order to
control the excursions inside each of these these two half lines, it is natural to consider the following
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stopping times τS(−x), τS
′
(x) with x ≥ 1, associated with S and S′ respectively and defined by

τS(−x) := inf
{
n ≥ 1 | −x+ Sn ≥ 0

}
, and τS

′
(x) := inf

{
n ≥ 1 | x+ S′n ≤ 0

}
.

In the sequel, we focus on the “ascending renewal function” ha of S and the “descending renewal
function” h′d of S′ defined by

ha(x) :=

 U+[0, x] =
∑
i≥0

P[S`i ≤ x] if x ≥ 0,

0 otherwise,
and

h′d(x) :=

 U
′
−[−x, 0] =

∑
i≥0

P[S′`′i
≥ −x] if x ≥ 0,

0 otherwise.

We denote by ȟa the function x 7→ ha(−x), it appears in the definition of the parameter γ below.
Both functions ha and h′d are increasing and satisfy ha(x) = O(x) and h′d(x) = O(x). They

appear crucially in the quantitative estimates of the fluctuations of S and S′; see Subsection 2.1 for
precise statements.

Let us end this paragraph devoted to the presentation of quantities that play an important role
in the rest of the paper.
• By classical results on 1-dimensional random walks (Feller, 1971), under hypotheses H1 and

H2, both constants c =
E[S`1 ]

σ
√

2π
and c′ =

E[−S`′1 ]

σ′
√

2π
are finite.

• Under hypotheses H1, H2 and H3, the “crossing sub-process” X (α)
C which corresponds to the

sign changes of the process X (α) is well defined (see Section 3.1) and it is positive recurrent on its
unique irreducible class. We denote by ν its unique invariant probability measure on Z.

1.2. Main result. From now on, we fix α ∈ [0, 1] and consider the continuous and linearly
interpolated version (X

(α)
nt ) of X (α), defined by: for any n ≥ 1 and t ∈ (0, 1],

X
(α)
nt =

n∑
i=1

(
X

(α)
[nt] + (nt− [nt])× J[nt]+1

)
1[ i−1

n
, i
n

[(t),

where

J[nt]+1 :=


ξ[nt]+1 if X

(α)
[nt] ≤ −1

η[nt]+1 if X
(α)
[nt] = 0

ξ′[nt]+1 if X
(α)
[nt] ≥ 1.

We also set

X(α,n)(t) :=


X

(α)
nt

σ
√
n

if Xnt ≤ 0,

X
(α)
nt

σ′
√
n

if Xnt ≥ 0.

The main result of this paper is the following:

Theorem 1.1. Assume that hypotheses H1–H4 are satisfied. Then, as n → +∞, the nor-
malized stochastic process

{
X(α,n)(t), t ∈ [0, 1]

}
n≥1

converges weakly in the space of continuous
function C([0, 1]) to the skew Brownian motion Wγ :=

{
Wγ(t), t ∈ [0, 1]

}
with parameter γ =

c′ν(h′d)

cν(ȟa) + c′ν(h′d)
.
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Let us clarify the value of the parameter γ in two peculiar cases of (1.1).
• When µ = µ′, the chain X (α) is an ordinary random walk on Z directed by the unique type of

jumps
(
ξn
)
n≥1

and the limit diffusion Wγ is the Brownian motion. In this case, the parameter γ
equals 1

2 since the sequences of ladder heights
(
S`i
)
i≥1

and
(
− S′`′i

)
i≥1

coincide.

• When µ(x) = µ′(−x) for any x ∈ Z, the random walk X (α) is the so-called “anti-symmetric
random walk” (or “reflected random walk” as usual), which appears in several works, see for instance
Essifi and Peigné (2015) and Peigné and Woess (2006). By setting ξn = −ξ′n, the behaviour of the
chain X (α) on positive and negative half lines, respectively, are mirror images of each other. Hence,
we may “glue” them together to get an unifying Markov chain on Z+ ∪ {0} receiving {0} as its
reflecting boundary. Accordingly, γ = 1 in this case and it matches perfectly with the result in Ngo
and Peigné (2021), which states that the normalized reflected random walk (constructed as above)
converges weakly in C([0, 1]) towards the absolute value of the standard Brownian motion.
• Notice that the limit process Wγ does not depend on α ∈ [0, 1]. Henceforth, we fix α and set

X (α) = X in order to simplify the notations.

1.3. Notations. We set Z := Z+ ∪Z− ∪{0} and D the closed unit ball in C. Given two positive real
sequences a = (an)n∈N and b = (bn)n∈N, we write as usual

• an ∼ bn if lim
n→∞

an/bn = 1,
• an ≈ bn if lim

n→∞
(an − bn) = 0,

• an = O(bn) if lim sup
n→∞

an/bn < +∞ (we also write a � b),

• an = o(bn) if lim
n→∞

an/bn = 0,

• a � b if a � b � a, or equivalently
1

c
bn ≤ an ≤ c bn for some constant c ≥ 1.

The paper is organized as follows. In Section 2, we recall some important estimates in the theory
of fluctuations of random walks; we introduce in particular the renewal functions associated with
1-dimensional random walks and relative conditional limit theorems. These helpful tools appear in
Section 4 to compute the multi-dimensional distribution of the limit process. The center of gravity
of the paper is Section 3 where we adapt the approach used in Ngo and Peigné (2021) in the case of
the reflected random walk (with proper adjustments to derive Corollary 3.6 and to determine the
parameter γ later on).

2. Auxiliary results for random walks

In this section, we present some classical results on fluctuations of random walk on Z.

2.1. Asymptotic estimates for fluctuations of a random walk. The following statement summarizes
classical results on fluctuations of random walks which are used below at various places (for instance,

see Proposition 11 in Doney (2012), Theorem A in Kozlov (1977) et al). Recall that c =
E[S`1 ]

σ
√

2π
and

c′ =
E[−S`′1 ]

σ′
√

2π
.

Lemma 2.1. (Asymptotic property) Under assumptions H1– H3, for any x, y ≥ 1, it holds, as
n→∞,

a) P[τS(−x) > n] ∼ 2c ha(x)√
n
, and P[τS

′
(x) > n] ∼ 2c′

h′d(x)√
n

;

b) P[τS(−x) > n,−x+ Sn = −y] ∼ 1
σ
√

2π

ha(x)hd(y)

n3/2 ,

and P[τS
′
(x) > n, x+ S′n = y] ∼ 1

σ′
√

2π

h′d(x)h′a(y)

n3/2 ;
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where hd (resp. h′a) is the descending (resp. ascending) renewal function associated with the
random walk S (resp. S′).

c) P[τS(−x) = n] ∼ c ha(x)

n3/2 , and P[τS
′
(x) = n] ∼ c′

h′d(x)

n3/2 ;

Lemma 2.2. (Upper bound) For any n ≥ 1, it holds
a) P[τS(−x) > n] � 1+x√

n
, and P[τS

′
(x) > n] � 1+x√

n
;

b) P[τS(−x) > n,−x+ Sn = −y] � (1+x)(1+y)

n3/2 ,
and P[τS

′
(x) > n, x+ S′n = y] � (1+x)(1+y)

n3/2 ;

c) P[τS(−x) = n] � 1+x
n3/2 , and P[τS

′
(x) = n] � 1+x

n3/2 .

As a direct consequence of b) in Lemmas 2.1 and 2.2, for any x ≥ 1 and w ≥ 0,

P[τS(−x) = n,−x+ Sn = w] � 1 + x

n3/2

∑
z≥w+1

zµ(z). (2.1)

Indeed, for any n ≥ 1,

P[τS(−x) = n,− x+ Sn = w]

=
∑
y≥1

P[τS(−x) = n,−x+ Sn−1 = −y,−y + ξn = w]

=
∑
y≥1

P[τS(−x) > n− 1,−x+ Sn−1 = −y,−y + ξn = w]

=
∑
y≥1

P[τS(−x) > n− 1,−x+ Sn−1 = −y]µ(y + w)

� 1 + x

n3/2

∑
y≥1

(1 + y)µ(y + w)︸ ︷︷ ︸
�

∑
z≥w+1

zµ(z) < +∞

.

Notice also that, more precisely it holds

P[τS(−x) = n,−x+ Sn = w] ∼
ha(x)

σ
√

2πn3/2

∑
y≥1

hd(y)µ(y + w).

2.2. Conditional limit theorems. It is worth remarking some necessary limit theorems which are very
helpful for us to control the fluctuations of excursions between two consecutive crossing times and
contribute significantly to reduce the complexity when dealing with multidimensional distribution
of these excursions. Now, assume that E[ξ′1] = 0 and E[(ξ′1)2] < +∞ and let

(
S′(t)

)
t≥0

be the
continuous time process constructed from the sequence

(
S′n
)
n≥0

by using the linear interpolation
between the values at integer points.

By Lemma 2.3 in Afanasyev et al. (2005), for x ≥ 1, the rescaled process
(x+ S′[nt]

σ′
√
n

, t ∈ [0, 1]

)
conditioning on the event [τS

′
(x) > n] converges weakly on C([0, 1],R) towards the Brownian

meander. In other words, for any bounded Lipschitz continuous function ψ : R → R and any
t ∈ (0, 1] and x ≥ 1,

lim
n→+∞

E

[
ψ

(x+ S′[nt]

σ′
√
n

)
| τS′(x) > [nt]

]
=

1

t

∫ +∞

0
ψ(u)u exp

(
−u

2

2t

)
du. (2.2)
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Let us also state the Caravena-Chaumont’s result about random bridges conditioned to stay
positive in the discrete case. Roughly speaking, as n→ +∞, for any starting point x ≥ 1 and any
ending point y ≥ 1, the random bridge of the random walk S, starting at x, ending at y at time n
and conditioned to stay positive until time n, after a linear interpolation and a diffusive rescaling,
converges in distribution on C([0, 1],R) towards the normalized Brownian excursion E+:(( S′[nt]

σ′
√
n

)
t∈[0,1]

| τS′(x) > [nt], S′n = y

)
L−→ E+, as n→ +∞.

More precisely, for any x, y ≥ 1, 0 < s < t ≤ 1 and any bounded Lipschitz continuous function
ψ : R→ R,

lim
n→+∞

E

[
ψ

(x+ S′[ns]

σ′
√
n

)
| τS′(x) > [nt], x+ S′[nt] = y

]
=

∫ +∞

0
2ψ(u

√
t) exp

(
− u2

2 st
t−s
t

)
u2√

2π s
3

t3
(t−s)3
t3

du. (2.3)

3. Crossing times and renewal theory

In order to analyse the asymptotic behavior of the process X , we decompose Xn as a sum of
successive excursions in Z− or Z+. It is therefore interesting to introduce the sequence C =

(
Ck
)
k≥0

of “crossing times”, i.e. times at which the process X changes its sign: more precisely, C0 = 0 and,
for any k ≥ 0,

Ck+1 :=


inf{n > Ck | XCk + (ξCk+1 +· · ·+ ξn) ≥ 0} if XCk ≤ −1,

Ck + 1 if XCk = 0,

inf{n > Ck | XCk + (ξ′Ck+1 +· · ·+ ξ′n) ≤ −1} if XCk ≥ 1.

(3.1)

Under hypothesis H2, the random times Ck are P-a.s. finite and form a sequence of finite stopping
times with respect to the canonical filtration

(
σ(ξk, ξ

′
k) | k ≤ n

)
n≥1

.

3.1. On the crossing sub-process XC. We denote XC :=
(
XCk

)
k≥0

the crossing sub-process of
X , which plays an important role in this paper.

Lemma 3.1. The sub-process XC is a time-homogeneous Markov chain on Z with transition kernel
C =

(
C(x, y)

)
x,y∈Z given by

C(x, y) =



−x−1∑
t=0

µ+(y − x− t)U+(t) if x ≤ −1 and y ≥ 0,

αµ(y) + (1− α)µ′(y) if x = 0 and y ∈ Z,
0∑

t=−x+1

µ′−(y − x− t) U ′−(t) if x ≥ 1 and y ≤ 0.

(3.2)

Proof : The Markov property is obvious from the above definition.
Now, we compute C(x, y) for any x ≤ −1 and y ≥ 0 (other cases are similar) as follows. Noticing
that the first crossing time C1 belongs P-a.s. to the set

{
`k | k ≥ 1

}
and that the sequence

(
S`k
)
k≥1
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is increasing, we may write

C(x, y) =
∑
k≥1

P[x+ S`k−1
≤ −1, x+ S`k = y]

=
∑
k≥1

−x−1∑
t=0

P[S`k−1
= t] P[S`k − S`k−1

= y − x− t]

=
−x−1∑
t=0

P[S`1 = y − x− t]
∑
i≥0

P[S`i = t]

=

−x−1∑
t=0

µ+(y − x− t)U+(t).

�

When H2 holds, the crossing sub-process XC is well defined and it is irreducible, aperiodic and
positive recurrent on its unique essential class IC(X0). Notice that this essential class can be a
proper subset of Z; it occurs for instance when the support of µ is bounded from above or the
one of µ′ is bounded from below. Nevertheless, it admits a unique invariant probability measure ν
supported by IC(X0). Also in Vo (2023), the explicit expression of ν is only known when α ∈ {0, 1}
and the support of µ (resp. µ′) is included in Z+ (resp. in Z−). However, the existence of ν is
enough for our purpose regardless of its exact formula.

Furthermore, by Theorem 2.2 in Vo (2023), under hypothesis H3, the oscillating random walk X
is irreducible on Z. It is also important to notice the following property.

Proposition 3.2. Under hypotheses H1– H3, the oscillating random walk is null recurrent. In
other words, setting t0 :=

{
k ≥ 1 | Xk = 0

}
then it holds

P0[t0 < +∞] = 1 and E0[t0] = +∞.

Proof : We may choose x0, y0 ≥ 1 s.t. µ(−x0) > 0, µ′(y0) > 0 and write for any n ≥ 1,

P0[t0 > n] ≥ P0[t0 > n, ξ1 = −x0] + P0[t0 > n, ξ′1 = y0]

≥ αµ(−x0)P[`1 > n− 1] + (1− α)µ′(y0)P[`′1 > n− 1].

Hence E0[t0] ≥ αµ(−x0)(1 + E[`1]) + (1− α)µ′(y0)(1 + E[`′1]) = +∞. �

Another point to insist on here is that any excursion between two consecutive crossing times is
uniquely governed by S or S′; thus, all the results obtained in the previous section can be applied.
The decomposition technique that exploits this fact is classical and extremely efficient in controlling
the varying excursions over time of Markov processes; for example, we use it in the last section to
estimate the convergence of finite dimensional distribution. As a direct application, we can prove
that the strong law of large numbers still holds for the chain X .

Lemma 3.3. Assume that E[|ξn|] + E[|ξ′n|] < +∞ and E[ξn] = E[ξ′n] = 0. Then, it holds

lim
n→+∞

Xn

n
= 0 P-a.s.

Proof : We decompose Xn as Xn = Xn1{Xn≥1} +Xn1{Xn≤−1}.
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Let us estimate the first term. For any n ≥ 1, there exists a random integer k(n) ≥ 0 such that
Ck(n) ≤ n < Ck(n)+1; notice that the condition Xn ≥ 1 yields XCk(n) ≥ 1. Hence, we get

0 ≤
Xn1{Xn≥1}

n
=
XCk(n) + S′n − S′Ck(n)

n

≤
max{X0, ξCk(n)}

n
+
S′n
n
−
S′Ck(n)
Ck(n)

Ck(n)

n

≤
max{X0, ξCk(n)}

n
+
S′n
n

+

∣∣∣∣S′Ck(n)Ck(n)

∣∣∣∣.
By the strong law of large numbers, the different terms on the right-hand side above converges
P-a.s. to 0; so does Xn1{Xn≥1}

n . The second term is treated in the same way. �

3.2. On aperiodic renewal sequences of operators. Let
(
Z⊗N, (P(Z))⊗N,X , (Px)x∈Z, θ

)
be the canon-

ical space, i.e. the space of trajectories associated with the Markov chain X . For any x ∈ Z, we
probability measure Px is the conditional probability with respect to the event [X0 = x], we denote
by Ex the corresponding conditional expectation. The operator θ is the classical shift transformation
defined by θ

(
(xk)k≥0

)
=
(
xk+1

)
k≥0

for any
(
xk
)
k≥0
∈ Z⊗N.

In this section, we study the behavior as n→ +∞ of the sequence

Hn(x, y) =
+∞∑
k=1

Px[Ck = n,Xn = y],

for any x, y ∈ Z. Since the position at time Ck may vary, so that the excursions of X between two
successive crossing times are not independent, it thus motivates us to take into account the long-
term behaviours of these quantities and express them in terms of operators related to the crossing
sub-process XC. For this purpose, we apply a general renewal theorem due to Gouëzel (2011). This
theorem relies on the decomposition of the operator C using a sequence of operators

(
Cn
)
n≥1

acting
on some Banach space and that are not so difficult to deal with.

It is natural in our context to deal with the operators Cn =
(
Cn(x, y)

)
x,y∈Z, n ≥ 1, defined by:

for any x, y ∈ Z and any n ≥ 1,

Cn(x, y) := Px[C1 = n,Xn = y].

The relation C(x, y) =
∑

n≥1 Cn(x, y) is obvious since C(x, y) = Px[C1 < +∞, XC1 = y]. We
also pay attention to the case x = 0, that is C1(0, y) = P0[X1 = y] = αµ(y) + (1 − α)µ′(y) and
Cn(0, y) = 0 if n ≥ 2.

For a function ϕ : Z→ C, we formally set

Cnϕ(x) :=
∑

y∈Z:xy≤0

Cn(x, y)ϕ(y) = Ex[ϕ(Xn), C1 = n] if x ∈ Z \ {0},

and C1ϕ(0) =
∑

y∈Z C1(0, y)ϕ(y) = E0[ϕ(X1)] and Cnϕ(0) = 0 if n ≥ 2. The quantity Cnϕ(x) is
well defined for instance when ϕ ∈ L∞(Z). Other Banach spaces can be considered; under moment
assumptions, we describe below the action of the Cn on a bigger Banach space Bδ, more suitable to
the situation as explained a little further on.



A functional limit theorem for lattice oscillating random walks 1441

Notice that Cn(x, y) = Cn1{y}(x) for any x, y ∈ Z, which yields, by induction,

Hn(x, y) =

+∞∑
k=1

Px[Ck = n,Xn = y]

=

+∞∑
k=1

∑
j1+...+jk=n

Px[C1 = j1, C2 − C1 = j2, . . . , Ck − Ck−1 = jk, Xn = y]

=
+∞∑
k=1

∑
j1+...+jk=n

Cj1 . . . Cjk1{y}(x). (3.3)

As announced above, we apply a result of S. Gouëzel, stated in a general framework Gouëzel
(2011), on aperiodic renewal sequence of operators, i.e. the sequence

(
Cn
)
n≥1

of operators acting on
a Banach space

(
B, | · |B

)
and satisfying the following conditions:

• the operators Cn, n ≥ 1, act on B and
∑
n≥1

‖Cn‖B < +∞ (where ‖ · ‖B denotes the norm on the

space L(B) of continuous operators on
(
B, | · |B

)
);

• the operator C(z) :=
∑
n≥1

znCn, defined for any z ∈ D, satisfies

R1- C(1) has a simple eigenvalue at 1 (with corresponding eigenprojector Π) and the rest of its
spectrum is contained in a disk of radius < 1;

R2- for any complex number z ∈ D \ {1}, the spectral radius of C(z) is < 1;
R3- for any n ≥ 1, the real number rn defined by ΠCnΠ = rnΠ is ≥ 0.

Condition R2 implies that, for any z ∈ D \ {1}, the operator I − C(z) is invertible on B and

(I − C(z))−1 =
∑
k≥0

C(z)k =
∑
k≥0

(∑
j≥1

Cjzj
)k

=
∑
n≥0

Hnzn

with H0 = I and Hn =

+∞∑
k=1

∑
j1+...+jk=n

Cj1 . . . Cjk . The above identity, called the renewal equation,

is of fundamental importance to understand the asymptotic of Hn in the non-commutative setting;
in particular, the equality (3.3) yields Hn(x, y) = Hn1{y}(x) so that the asymptotic behaviour of(
Hn(x, y)

)
n≥1

is related to that of
(
Hn
)
n≥1

.
By Gouëzel (2011), if the sequence

(
Cn
)
n≥1

satisfies the following additional assumptions

R4(`, β). ‖Cn‖B ≤ C
`(n)

n1+β
,

R5(`, β).
∑
j>n

rj ∼
`(n)

nβ
,

where C > 0, β ∈ (0, 1) and ` is a slowly varying function, then the sequence
(
n1−β`(n)Hn

)
n≥1

converges in
(
L(B), ‖ · ‖B

)
to the operator dβΠ, with dβ = 1

π sinβπ.
In the next subsection, we introduce some Banach space B = Bδ in order to be able to apply this

general result.

3.3. Spectral property of the transition matrix C =
(
C(x, y)

)
x,y∈Z. The operator C acts on the space

L∞(Z) of bounded functions on Z. By the following lemma, it satisfies some strong spectral property
on this space.
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Lemma 3.4. Assume H1– H3 hold. Then, the infinite matrix C satisfies the Doeblin condition
and therefore, it is a quasi-compact operator on L∞(Z), the space of bounded functions on Z. Fur-
thermore, the eigenvalue 1 is simple, with associated eigenvector 1, and the rest of the spectrum is
included in a disk of radius < 1.

Proof : Under the above assumptions, the positive random variable S`1 has finite first moment;
hence, by the renewal theorem,

lim
t→+∞

U+(t) =
1

E[S`1 ]
> 0.

The above convergence readily implies δ+ := inf
z∈Z+

U+(z) > 0.

Consequently, by (3.2), for any x ≤ −1 and y ≥ 0,

C(x, y) ≥ µ+(y + 1)U+(−x− 1) ≥ δ+µ+(y + 1).

In the same vein, one gets C(x, y) ≥ δ′µ′−(y−1) for any x ≥ 1 and y ≤ 0 with δ′ := infz∈Z− U ′−(z) >
0. Hence, it is easy to show that there exists a probability measure m and δ0 > 0 s.t. for any x ∈ Z,

C(x, .) ≥ δ0m(.),

which immediately implies the quasi-compactness of C. The control of the peripheral spectrum
readily follows. �

Thanks to this lemma, we could believe that hypothesis R1 is satisfied by the sequence
(
Cn
)
n≥1

acting on L∞(Z) since C(1) = C. Unfortunately, it holds
∑
n≥1

‖Cn‖∞ = +∞. Indeed, it holds

‖Cn‖∞ = sup
x∈Z

Px[C1 = n]; now, if we assume for instance x ≤ 1, it holds Px[C1 = n] = P[τS(x) = n]

with
(i) P[τS(x) = n] = O(1/n),

and
(ii) lim inf

n→+∞
nP[τS(xn) = n] > 0 when xn �

√
n .

(see Lemma 5 and Theorem (B) in Èppel’ (1979)). Consequently ‖Cn‖∞ � 1/n.
Thus, we have to choose another Banach space Bδ. By (3.1), it is clear that Ck+1 = τS(XCk)

when XCk ≤ −1 and Ck+1 = τS′(XCk) when XCk ≥ 1. Consequently, the behaviour as n → +∞
of the kth-term Px[Ck = n,Xn = y] of the sum Σn(x, y) is closely related to the distributions of τS
and τS′ ; in particular, by Lemma 2.1, its dependence on y is expressed in terms of ha(y) and h′d(y).
This explains why we have to choose a Banach space on which the action of C has “nice” spectral
properties - as compacity or quasi-compacity - and also does contain these functions ha and h′d. The
fact that they are both sublinear leads us to examine the action of C on the space Bδ of complex
valued functions on Z defined by

Bδ :=

{
f : Z→ C : |f |Bδ := sup

x∈Z

|f(x)|
1 + |x|1+δ

< +∞
}

with δ ≥ 0.
By Lemma 2.2 and the fact that ha(x) = O(x), h′d(x) = O(x), the functions ha, h′d,hn : x 7→√
nP[τS(−x) > n] and h′n : x 7→

√
nP[τS

′
(x) > n] do belong to Bδ for any δ ≥ 0; furthermore,

applying Lemma 2.1, the sequence
(
hn
)
n≥0

(resp.
(
h′n
)
n≥0

) converges to 2cha (resp. 2c′h′d) in Bδ if
δ > 0. This last property is of interest in applying Gouëzel’s renewal theorem and for this reason,
we assume from now on δ > 0.

Furthermore, the map C acts on Bδ as a compact operator whose spectrum can be controlled as
follows.
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Proposition 3.5. Assume that hypotheses H1– H4 hold. Then,
(i) The map C acts on Bδ and C(Bδ) ⊂ L∞(Z).
(ii) C is a compact operator on Bδ with spectral radius ρBδ = 1 and with the unique and simple

dominant eigenvalue 1.
(iii) The rest of the spectrum of C on Bδ is contained in a disk of radius < 1.
Consequently, the operator C on Bδ may be decomposed as

C = Π +Q

where
• Π is the eigenprojector from Bδ to C1 corresponding to the eigenvalue 1 and Π(φ) = ν(φ)1,

where ν is the unique C-invariant probability measure on Z;
• the spectral radius of Q on Bδ is < 1;
• ΠQ = QΠ = 0.

Proof : i) Note that U ′−(t) =
∑
n≥0

P[S′`′n = t] = P[∃n ≥ 0 : S′`′n = t] ≤ 1. For any ϕ ∈ Bδ and

x ≥ 1, we have

|Cϕ(x)| ≤
∑
y≤0

0∑
t=−x+1

µ′−(y − x− t) |ϕ(y)|

≤ |ϕ|Bδ
∑
y≤0

(1 + |y|1+δ)µ′−(−∞, y − 1)

≤ |ϕ|Bδ
(

E[|S′`′1 ] + E[|S′`′1 |
2+δ]

)
,

which is finite if E[(ξ′−n )3+δ] < +∞ (see Chow and Lai (1979)). Other cases can be estimated
in the same way and yield

|Cϕ|Bδ ≤ |Cϕ|∞ ≤ |ϕ|Bδ
(

E[|S′`′1 ] + E[|S′`′1 |
2+δ]

)
< +∞. (3.4)

ii) By (3.4), the operator C acts continuously from Bδ into L∞(Z); since the inclusion map i :
L∞(Z) ↪→ Bδ is compact, the operator C is also compact on Bδ.

Let us now compute the spectral radius ρBδ of C. The fact that C is a stochastic matrix
yields ρBδ ≥ 1. To prove ρBδ ≤ 1, it suffices to show that C has bounded powers on Bδ. For
any n ≥ 1 and x ∈ Z,

|Cnϕ(x)| ≤
∑
y∈Z

Cn−1(x, y)|Cϕ(y)| ≤ |Cϕ|∞
∑
y∈Z

Cn−1(x, y) = |Cϕ|∞.

Together with (3.4), it implies

|Cnϕ|Bδ ≤ |C
nϕ|∞ ≤ |Cϕ|∞ ≤ |ϕ|Bδ

(
E[|S′`′1 ] +

1

2
E[|S′`′1 |

2+δ]

)
.

Hence ‖Cn‖Bδ ≤ E[|S′`′1 ] + E[|S′`′1 |
2+δ] for any n ≥ 1 and ρBδ = lim

n→+∞
‖Cn‖1/nBδ ≤ 1.

Let us now control the peripheral spectrum of C. Let θ ∈ R and ψ ∈ Bδ such that Cψ = eiθψ.
Obviously, the function ψ is bounded and |ψ| ≤ C|ψ|. Consequently, |ψ|∞− |ψ| is non-negative
and super-harmonic (i.e. C(|ψ|∞ − |ψ|) ≤ |ψ|∞ − |ψ|) on the unique irreducible class IC(X0)
of X . According to the classical theory of denumerable Markov chains, it is thus constant on
IC(X0) which follows that |ψ| is constant on IC(X0).
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Without loss of generality, we may assume |ψ(x)| = 1 for any x ∈ IC(X0), i.e. ψ(x) = eiφ(x)

for some φ(x) ∈ R. We may rewrite the equality Cψ = eiθψ as

∀x ∈ IC(X0)
∑

y∈IC(X0)

C(x, y)ei(φ(y)−φ(x)) = eiθ.

Note that C(x, y) > 0 for all x, y ∈ IC(X0); by convexity, one readily gets eiθ = ei(φ(y)−φ(x)) for
such points x, y. Taking x = y ∈ IC(X0), we thus obtain eiθ = 1.

In particular, the function ψ is harmonic on IC(X0), hence constant on this set, by Liouville’s
theorem. Furthermore, for any x ∈ Z, it holds C(x, y) > 0 ⇐⇒ y ∈ IC(X0) ; consequently, for
any fixed y0 ∈ IC(X0) and any x ∈ Z,

ψ(x) = Cψ(x) =
∑

y∈IC(X0)

C(x, y)ψ(y) = ψ(y0).

Therefore, the function ψ is constant on Z.
iii) This is a direct consequence of (ii).

�

3.4. A renewal limit theorem for the sequence of crossing times. The main goal of this part is to
prove the following statement.

Proposition 3.6. The sequence
(√
nHn

)
n≥1

converges in
(
L(Bδ), ‖·‖Bδ

)
to the operator c−1Π with

c = 2π
(
cν(ȟa) + c′ν(h′d)

)
. In particular, for any x, y ∈ Z,

lim
n→+∞

√
nHn(x, y) =

ν(y)

2π
(
cν(ȟa) + c′ν(h′d)

) .
This is a consequence of the fact that

(
Cn
)
n≥1

is an aperiodic renewal sequence of operators on
Bδ satisfying R4 and R5 ( with β = 1/2 and ` constant).

The fact that all the Cn, n ≥ 1, act on Bδ and
∑

n≥1 ‖Cn‖Bδ < +∞ is a consequence of the
following lemma.

Lemma 3.7. Under hypotheses H1– H4, for any n ≥ 1, the operator Cn acts on Bδ and

‖Cn‖Bδ = O

(
1

n3/2

)
.

Proof : By (2.1), for any x ≥ 1 and φ ∈ Bδ,

|Cnφ(−x)| ≤
∑
w≥0

P−x[C1 = n;Xn = w] |φ(w)|

=
∑
w≥0

P[τS(−x) = n,−x+ Sn = w] |φ(w)|

� 1 + x

n3/2

∑
w≥0

( ∑
z≥w+1

zµ(z)

)
|φ(w)|

≤ 1 + x

n3/2
|φ|Bδ

∑
w≥0

(1 + w1+δ)

( ∑
z≥w+1

zµ(z)

)
︸ ︷︷ ︸
�
∑
z≥1

z3+δµ(z) = E[(ξ+
1 )3+δ]

.
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Similarly,

|Cnφ(x)| � 1 + x

n3/2
|φ|BδE[(ξ′−1 )3+δ].

Moreover, |C1φ(0)| � |φ|Bδ and Cnφ(0) = 0 for all n ≥ 2. This completes the proof. �

Condition R1 coincides with the statement of Proposition 3.5. Similarly, R2 and R3 correspond
to assertions i) and ii) of the next proposition. Consequently,

(
Cn
)
n≥1

is an aperiodic renewal
sequence of operators.

Proposition 3.8. Suppose that H1– H4 are satisfied. Then the sequence
(
Cn
)
n≥1

holds the follow-
ing properties

i) The spectral radius ρBδ(z) of C(z) is strictly less than 1 for z ∈ D \ {1}.

ii) For any n ≥ 1, it holds ΠCnΠ = rnΠ with

rn := ν(Cn1) =
∑
x∈Z

ν(x)Px[C1 = n] ≥ 0.

iii)
∑
j>n

rj ∼
2
(
cν(ȟa) + c′ν(h′d)

)
√
n

as n→ +∞.

Proof : i) The argument is close to the one used to prove Proposition 3.5. For any z ∈ D \ {1},
the operator C(z) is compact on Bδ with spectral radius ρBδ(z) ≤ 1. We now prove ρBδ(z) 6= 1
by contraposition. Suppose ρBδ(z) = 1; in other words, there exist θ ∈ R and ϕ ∈ Bδ such that
C(z)ϕ = eiθϕ. Since C is bounded from Bδ into L∞(Z) and 0 ≤ |ϕ| ≤ C|ϕ|, the function |ϕ| is
C- superharmonic, bounded and thus constant on its essential class IC(X0).

Without loss of generality, we can suppose that |ϕ(x)| = 1 for any x ∈ IC(X0); equivalently,
ϕ(x) = eiφ(x) for some function φ : IC(X0)→ R. For any x ∈ IC(X0), we get

C(z)ϕ(x) = eiθϕ(x)⇐⇒
∑
n≥1

∑
y∈IC(X0)

znei(φ(y)−φ(x))Px[C1 = n;Xn = y] = eiθ,

with
∑
n≥1

∑
y∈IC(X0)

Px[C1 = n;Xn = y] = 1. By convexity, it readily holds znei(φ(y)−φ(x)) = eiθ

for all x, y ∈ IC(X0) and n ≥ 1. By taking x = y, we obtain zn = eiθ for all n ≥ 1; consequently
z = 1, contradiction.

ii) For any φ ∈ Bδ and n ≥ 1,

ΠCnΠφ = ν(φ)Π(Cn1) = ν(φ)1
∑
z∈Z

ν(z)Pz[C1 = n] = rnΠ(φ)

with rn =
∑
z∈Z

ν(z)Pz[C1 = n] ≥ 0.

iii) On the one hand, by Proposition 3.5, the eigenprojector Π acts on Bδ; thus, since ȟa ∈ Bδ, it
holds ν(ȟa) < +∞. On the other hand, the support IC(X0) of ν intersects Z− and the support
of ȟa equals Z−; hence ν(ȟa) > 0. Similarly 0 < ν(h′d) < +∞.
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Now, let us write∑
j>n

rj =
∑
j>n

∑
x∈Z

ν(x)Px[C1 = j]

=
∑
x∈Z

ν(x)Px[C1 > n]

=
∑
x≤−1

ν(x)P[τS(x) > n] +
∑
x≥1

ν(x)P[τS
′
(x) > n] (since P0[C1 = 1] = 1)

∼
2c√
n

∑
x≤−1

ν(x)ha(−x) +
2c′√
n

∑
x≥1

ν(x)h′d(x) = 2
c ν(ȟa) + c′ ν(h′d)√

n
.

�

Finally, combining Lemma 3.7 and Proposition 3.8 iii), we see that conditions R4 and R5 are
satisfied with ` = const = 2

(
c ν(ȟa) + c′ ν(h′d)

)
and β = 1/2.

Consequently, by Gouëzel (2011), the sequence
(√
nHn

)
n≥1

converges in
(
L(Bδ), ‖ · ‖Bδ

)
to the

operator c−1Π with c = 2π
(
cν(ȟa) + c′ν(h′d)

)
. Formally, one may write∥∥∥∥√[ns]H[ns] − c−1Π

∥∥∥∥
Bδ
−→ 0, as n→ +∞.

4. Proof of Theorem 1.1

For m ≥ 1, let
{
ϕi : R → R | i = 1, . . . ,m

}
be a sequence of bounded and Lipschitz contin-

uous functions with corresponding Lipschitz coefficients Lip(ϕi). Assume that the time sequence{
ti
}

1≤i≤m is strictly increasing with values in (0, 1] and t0 = 0. In this part, we prove that

lim
n→+∞

Ex

[ m∏
i=1

ϕi

(
X(n)(ti)

)]
=

∫
Rm

m∏
i=1

ϕi(ui)p
γ
ti−ti−1

(ui−1, ui) du1 . . . dum (4.1)

with u0 = 0.
Without loss of generality, we assume σ = σ′ and x ≥ 1 to reduce unnecessary complexity

associated with subcases.

4.1. Convergence of the one dimensional distributions m = 1.

We first notice that Ex[ϕ1(X(n)(t1))] ≈ Ex

[
ϕ1

(
X[nt1]

σ
√
n

)]
since∣∣∣∣Ex[ϕ1(X(n)(t1))]− Ex

[
ϕ1

(
X[nt1]

σ
√
n

)]∣∣∣∣ ≤ Lip(ϕ1) Ex

[∣∣∣∣X(n)(t1)−
X[nt1]

σ
√
n

∣∣∣∣]
≤ Lip(ϕ1)

E[|ξ[nt1]+1|] + E[|η[nt1]+1|] + E[|ξ′[nt1]+1|]
σ
√
n

,

which tends to 0 as n→ +∞. Now, we can decompose Ex

[
ϕ1

(
X[nt1]

σ
√
n

)]
as

Ex

[
ϕ1

(
X[nt1]

σ
√
n

)
, X[nt1] = 0

]
︸ ︷︷ ︸

A0(n)

+ Ex

[
ϕ1

(
X[nt1]

σ
√
n

)
, X[nt1] > 0

]
︸ ︷︷ ︸

A+(n)

+ Ex

[
ϕ1

(
X[nt1]

σ
√
n

)
, X[nt1] < 0

]
︸ ︷︷ ︸

A−(n)

.

The term A0(n) tends to 0 as n→ +∞ since
(
Xn

)
n≥0

is null recurrent. It remains to control the
two other terms.



A functional limit theorem for lattice oscillating random walks 1447

• Estimate of A+(n)

A+(n) ≈
[nt1]−1∑
k1=1

∑
`≥1

∑
y≥1

Ex

[
ϕ1

(
X[nt1]

σ
√
n

)
, C` = k1, Xk1 = y, y + ξ′k1+1 > 0,

. . . , y + ξ′k1+1 + . . .+ ξ′[nt1] > 0

]

=

[nt1]−1∑
k1=1

∑
y≥1

E

[
ϕ1

(y + ξ′k1+1 + . . .+ ξ′[nt1]

σ
√
n

)
, τS

′
(y) > [nt1]− k1

]
(∑
`≥1

Px[C` = k1, Xk1 = y]

)

=

[nt1]−1∑
k1=1

∑
y≥1

Hk1(x, y)E

[
ϕ1

(y + S′[nt1]−k1
σ
√
n

)
, τS

′
(y) > [nt1]− k1

]
.

For any 0 ≤ s1 ≤ t1 and n ≥ 1, let fn be the function defined by

fn(s1) := n
∑
y≥1

H[ns1](x, y)E

[
ϕ1

(y + S′[nt1]−[ns1]

σ
√
n

)
, τS

′
(y) > [nt1]− [ns1]

]
if 0 ≤ s1 <

[nt1]
n and fn(s1) = 0 if [nt1]

n ≤ s1 ≤ t1. Hence,

A+(n) =

∫ t1

0
fn(s1) ds1 +O

(
1√
n

)
.

The convergence of the term A+(n) as n→ +∞ is a consequence of the two following properties:
• for any n ≥ 1,

|fn(s1)| � 1 + |x|√
s1(t1 − s1)

∈ L1([0, t1]). (4.2)

• for any s1 ∈ [0, t1],

lim
n→+∞

fn(s1) =
γ

π
√
s1(t1 − s1)

∫ +∞

0
ϕ1(z
√
t1 − s1)z exp

(
−z2

2

)
dz

=
γ

π

∫ +∞

0
ϕ1(u)u

exp

(
−u2

2(t1 − s1)

)
√
s1(t1 − s1)3

du (set u = z
√
t1 − s1). (4.3)

Indeed, applying the Lebesgue dominated convergence theorem, we obtain

lim
n→+∞

A+(n) =
γ

π

∫ +∞

0
ϕ1(u)u

(∫ t1

0

1√
s1(t1 − s1)3

exp

(
−u2

2(t1 − s1)

)
ds1

)
du

=
γ

π

∫ +∞

0
ϕ1(u)u

[
1

t1
exp

(
−u2

2t1

)∫ +∞

0

1√
s

exp

(
−u2

2t1
s

)
ds︸ ︷︷ ︸

=

√
2πt1
u

]
du

(
set s := s1(t1 − s1)−1

)

= γ

∫ +∞

0
ϕ1(u)

2 exp

(
− u2/2t1

)
√

2πt1
du. (4.4)
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Similarly,

lim
n→+∞

A−(n) = (1− γ)

∫ 0

−∞
ϕ1(u)

2 exp

(
− u2/2t1

)
√

2πt1
du. (4.5)

Combining (4.4) and (4.5), we thus obtain

lim
n→+∞

Ex[ϕ1(X
(n)
t1

)] =

∫
R
ϕ1(u)pγt1(0, u)du =

∫
R
ϕ̃1(u)

2 exp(−u2/2t1)√
2πt1

du,

where ϕ̃1(u) = γϕ1(u)1(0,+∞)(u) + (1− γ)ϕ1(u)1(−∞,0)(u).
It thus remains to establish (4.2) and (4.3). The first natural idea is to set

ψn(y) :=
√
nE

[
ϕ1

(y + S′[nt1]−[ns1]

σ
√
n

)
, τS

′
(y) > [nt1]− [ns1]

]
and to remark that fn(s1) =

√
nH[ns1](ψn)(x) with ψn ∈ Bδ. One can easily check that

(
ψn
)
n≥0

converges point-wise to some function ψ ∈ Bδ but it is much more complicated to prove that this
convergence holds in Bδ. This can be done when δ ≥ 1 with a strong moment assumption (namely
moments of order ≥ 4 for µ′) by using a recent result in Grama et al. (2018); unfortunately, such
a result does not exist for the Brownian meander, which is useful in the sequel for convergence of
multidimensional distributions. This forces us to propose another strategy that we now present.

For this purpose, for any n ≥ 1 and any fixed 0 < s1 < t1, we decompose fn(s1) as fn(s1) =∑
y≥1 an(y)bn(y), where

an(y) := nH[ns1](x, y) P[τS
′
(y) > [nt1]− [ns1]],

bn(y) := E

[
ϕ1

(y + S′[nt1]−[ns1]

σ
√
n

)
| τS′(y) > [nt1]− [ns1]

]
and apply the following classical lemma with V = Z+:

Lemma 4.1. Let V be denumerable and
(
an(v)

)
v∈V ,

(
bn(v)

)
v∈V be real sequences satisfying

(i) an(v) ≥ 0 for any n ≥ 1, v ∈ V and lim
n→+∞

∑
v∈V

an(v) = A,

(ii) for any ε > 0, there exists a finite set Vε ⊂ V s.t. sup
n≥1

∑
v/∈Vε

an(v) < ε.

(iii) lim
n→+∞

bn(v) = b for any v ∈ V and sup
n≥1,v∈V

|bn(v)| < +∞.

Then lim
n→+∞

∑
v∈V

an(v)bn(v) = Ab.

Proof : Let us fix η > 0. We want to find an integer nη ≥ 1 such that for any n > nη,∣∣∣∣∑
v∈V

an(v)bn(v)−Ab
∣∣∣∣ < η. (4.6)

As a consequence of assumptions (i) and (iii), for any ε > 0, there exists nε ≥ 1 such that for any
n > nε and v ∈ V , ∣∣∣∣∑

v∈V
an(v)−A

∣∣∣∣ < ε and |bn(v)− b| < ε.
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Hence, together with the assumption (ii), we obtain∣∣∣∣∑
v∈V

an(v)bn(v)−Ab
∣∣∣∣ ≤∑

v/∈Vε

an(v)|bn(v)− b|+
∑
v∈Vε

an(v)|bn(v)− b|+ |b|
∣∣∣∣∑
v∈V

an(v)−A
∣∣∣∣

≤
(

sup
n≥1,v∈V

|bn(v)|+ |b|
)

sup
n≥1

∑
v/∈Vε

an︸ ︷︷ ︸
<C1ε

+

(∑
v∈V

an(v)

)
︸ ︷︷ ︸
< C2 (for all n≥1)

ε+ |b|ε,

for some positive constants C1, C2. This immediately yields (4.6) by taking ε =
η

C1 + C2 + |b|
and

nη = nε.
�

Let us check that these conditions are satisfied by the families
(
an(y)

)
y≥1

,
(
bn(y)

)
y≥1

defined
above.

Condition (i). The sum
∑
y≥1

an(y) may be written as

∑
y≥1

an(y) =
1 + o(n)√
s1(t1 − s1)

√
[ns1]H[ns1](h

′
[nt1]−[ns1])(x). (4.7)

On the one hand, the sequence
(√

[ns1]H[ns1]

)
n≥1

converges in
(
L(Bδ), ‖ · ‖Bδ

)
to the operator

1

2π
(
cν(ȟa)+c′ν(h′d)

)Π; furthermore, the sequence
(
h′[nt1]−[ns1]

)
n≥1

converges in Bδ to 2c′h′d. Hence

condition (i) holds with

A =
1√

s1(t1 − s1)

c′ν(h′d)

π
(
cν(ȟa) + c′ν(h′d)

) =
γ

π
√
s1(t1 − s1)

.

Condition (ii). Fix ε > 0. We want to find yε ≥ 1 s.t.
∑
y≥yε

an(y) ≤ ε for any n ≥ 1. By Lemma

2.2, there exists a constant C0 > 0 s.t. 0 ≤ h′k(y) ≤ C0(1 + y) for any y, k ≥ 1; hence, for y ≥ yε,

0 ≤ h′k(y) ≤ C0

(
1 +

y1+δ

yδε

)
≤ 2C0

1 + y1+δ

yδε
.

Consequently the function h′k1[yε,+∞[ belongs to Bδ and |h′k1[yε,+∞[|Bδ ≤
2C0

yδε
for any k ≥ 1. By

(4.7), it follows

0 ≤
∑
y≥yε

an(y) � sup
n≥1

√
[ns1]‖H[ns1]‖Bδ︸ ︷︷ ︸
<+∞

sup
n≥1
|h′[nt1]−[ns1]1[yε,+∞[|Bδ︸ ︷︷ ︸

� 1

yδε

.

We conclude choosing yε large enough.

Condition (iii). By (4.3), it holds with b =

∫ +∞

0
ϕ1(u)u

exp

(
−u2

2(t1 − s1)

)
t1 − s1

du.

4.2. Convergence of the multidimensional distributions. We first consider the case m = 2.
We fix 0 < t1 < t2 and for n ≥ 1 given, let κ = κt1 be the first crossing time after time [nt1]

defined by

κ := min
{
k > [nt1] : X[nt1]Xk ≤ 0

}
.
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As in the case m = 1, it holds

Ex[ϕ1(X(n)(t1))ϕ2(X(n)(t2))] ≈ Ex

[
ϕ1

(
X[nt1]

σ
√
n

)
ϕ2

(
X[nt2]

σ
√
n

)]
,

and the right hand side term may be decomposed as A0(n) +A±1 (n) +A±2 (n), where

A0(n) := Ex

[
ϕ1

(
X[nt1]

σ
√
n

)
ϕ2

(
X[nt2]

σ
√
n

)
, X[nt1] = 0

]
,

A±1 (n) :=

[nt2]∑
k2=[nt1]+1

Ex

[
ϕ1

(
X[nt1]

σ
√
n

)
ϕ2

(
X[nt2]

σ
√
n

)
1[κ=k2]1[±X[nt1]

>0]

]
,

and

A±2 (n) := Ex

[
ϕ1

(
X[nt1]

σ
√
n

)
ϕ2

(
X[nt2]

σ
√
n

)
1[κ>[nt2]]1[±X[nt1]

>0]

]
.

As previously, the term A0(n) tends to 0 since (Xn)n≥0 is null recurrent.
• Estimate of A±1 (n)

A+
1 (n) ≈

[nt1]−1∑
k1=1

[nt2]∑
k2=[nt1]+1

∑
`≥1

∑
y≥1

∑
z≥1

∑
w≤0

Ex

[
ϕ1

(
X[nt1]

σ
√
n

)
ϕ2

(
X[nt2]

σ
√
n

)
, C` = k1,

Xk1 = y, y + ξ′k1+1 > 0, . . . , y + ξ′k1+1 + . . .+ ξ′k2−2 > 0,

y + ξ′k1+1 + . . .+ ξ′k2−1 = z, y + ξ′k1+1 + . . .+ ξ′k2 = w

]

=

[nt1]−1∑
k1=1

[nt2]∑
k2=[nt1]+1

∑
`≥1

∑
y≥1

∑
z≥1

∑
w≤0

Ex

[
ϕ1

(y + ξ′k1+1 + . . .+ ξ′[nt1]

σ
√
n

)
ϕ2

(
X[nt2]

σ
√
n

)
,

C` = k1, Xk1 = y, y + ξ′k1+1 > 0, . . . , y + ξ′k1+1 + . . .+ ξ′k2−2 > 0,

y + ξ′k1+1 + . . .+ ξ′k2−1 = z

]
P[ξ′k2 = w − z]

=

[nt1]−1∑
k1=1

∑
y≥1

Hk1(x, y)

[nt2]∑
k2=[nt1]+1

∑
z≥1

E

[
ϕ1

(y + S′[nt1]−k1
σ
√
n

)
, τS

′
(y) > k2 − k1 − 1,

y + S′k2−k1−1 = z

]∑
w≤0

Ew

[
ϕ2

(
X[nt2]−k2
σ
√
n

)]
µ′(w − z).

For any (s1, s2) ∈ [0, t1]× [t1, t2] and n ≥ 1, let gn be the function defined by

gn(s1, s2) = n2
∑
y≥1

H[ns1](x, y)
∑
z≥1

E

[
ϕ1

(y + S′[nt1]−[ns1]

σ
√
n

)
, τS

′
(y) > [ns2]− [ns1]− 1,

y + S′[ns2]−[ns1]−1 = z

]∑
w≤0

Ew

[
ϕ2

(
X[nt2]−[ns2]

σ
√
n

)]
µ′(w − z)

if 0 ≤ s1 <
[nt1]
n and [nt1]+1

n ≤ s2 ≤ [nt2]
n , and 0 otherwise. Hence,

A+
1 (n) =

∫ t1

0

∫ t2

t1

gn(s1, s2)ds1ds2 +O

(
1√
n

)
.
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The convergence of the term A+
1 (n) as n→ +∞ is a consequence of the two following properties

whose proofs are postponed at the end of the present subsection:
• for any n ≥ 1,

|gn(s1, s2)| � 1 + |x|√
s1(s2 − s1)3

∈ L1([0, t1]× [t1, t2]); (4.8)

• for any (s1, s2) ∈ [0, t1]× [t1, t2],

lim
n→+∞

gn(s1, s2) =
γ

π2

∫ +∞

0

∫ +∞

−∞
ϕ1(u)ϕ̃2(v)u2 e

−v2
2(t2−s2) e

−u2

2
(t1−s1)(s2−t1)

s2−s1√
s1(t1 − s1)3(s2 − t1)3(t2 − s2)

dudv. (4.9)

Indeed, applying the Lebesgue dominated convergence theorem, we obtain

lim
n→+∞

A+
1 (n)

=
γ

π2

∫ +∞

0

∫ +∞

−∞
ϕ1(u)ϕ̃2(v)

(∫ t1

0

∫ t2

t1

e
−v2

2(t2−s2)u2 exp

(
−u2

2
(t1−s1)(s2−t1)

s2−s1

)
√
s1(t1 − s1)3(s2 − t1)3(t2 − s2)

ds1ds2

)
dudv

=
γ

π2

√
2πt1
t1

∫ +∞

0

∫ +∞

−∞
ϕ1(u)ϕ̃2(v)|u|

(∫ t2

t1

e
−u2s2

2t1(s2−t1) e
−v2

2(t2−s2)√
(t2 − s2)(s2 − t1)3

ds2

)
dudv

=
2γ

π
√
t1(t2 − t1)

∫ +∞

0

∫ +∞

−∞
ϕ1(u)ϕ̃2(v)e

−u
2t2+v

2t1+2|uv|t1
t1(t2−t1) dudv

which can be rewritten as

lim
n→+∞

A+
1 (n) =

2γ2

π
√
t1(t2 − t1)

∫ +∞

0

∫ +∞

0
ϕ1(u)ϕ2(v)e

− u2

2t1 e
− (u+v)2

2(t2−t1)dudv

+
2γ(1− γ)

π
√
t1(t2 − t1)

∫ +∞

0

∫ 0

−∞
ϕ1(u)ϕ2(v)e

− u2

2t1 e
− (u−v)2

2(t2−t1)dudv, (4.10)

by using the classical integral
∫ +∞

0

1√
x

exp

(
− λ1x−

λ2

x

)
dx =

√
π

λ1
e−2
√
λ1λ2 for any λ1 > 0 and

λ2 ≥ 0.
The same argument holds for the term A−1 (n) and yields

lim
n→+∞

A−1 (n) =
2(1− γ)2

π
√
t1(t2 − t1)

∫ 0

−∞

∫ 0

−∞
ϕ1(u)ϕ2(v)e

− u2

2t1 e
− (u+v)2

2(t2−t1)dudv

+
2γ(1− γ)

π
√
t1(t2 − t1)

∫ 0

−∞

∫ +∞

0
ϕ1(u)ϕ2(v)e

− u2

2t1 e
− (u−v)2

2(t2−t1)dudv. (4.11)

• Estimate of A+
2 (n)

A+
2 (n) =

[nt1]−1∑
k=1

∑
`≥1

∑
y≥1

Ex

[
ϕ1

(
X[nt1]

σ
√
n

)
ϕ2

(
X[nt2]

σ
√
n

)
, C` = k,Xk = y,

y + ξ′k+1 > 0, . . . , y + ξ′k+1 + . . .+ ξ′[nt1] > 0, . . . , y + ξ′k+1 + . . .+ ξ′[nt2] > 0

]

=

[nt1]−1∑
k=1

∑
y≥1

Hk(x, y)E

[
ϕ1

(y + S′[nt1]−k

σ
√
n

)
ϕ2

(y + S′[nt2]−k

σ
√
n

)
, τS

′
(y) > [nt2]− k

]
.
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For any n ≥ 1, let gn : r 7→ gn(r) be the real function defined on [0, t1] by

gn(r) := n
∑
y≥1

H[nr](x, y)E

[
ϕ1

(y + S′[nt1]−[nr]

σ
√
n

)
ϕ2

(y + S′[nt2]−[nr]

σ
√
n

)
, τS

′
(y) > [nt2]− [nr]

]

if 0 ≤ r < [nt1]
n and gn(r) = 0 if [nt1]

n ≤ r ≤ t1.
In the same way as above, we set

an(y) := nH[nr](x, y)P[τS
′
(y) > [nt2]− [nr]]

and

bn(y) := E

[
ϕ1

(y + S′[nt1]−[nr]

σ
√
n

)
ϕ2

(y + S′[nt2]−[nr]

σ
√
n

)
| τS′(y) > [nt2]− [nr]

]
.

Sequences
(
an(y)

)
y≥1

and
(
bn(y)

)
y≥1

satisfy assumptions of Lemma 4.1. Indeed, the limit of∑
y≥1 an(y) is given by (4.7) and condition (ii) of this lemma has been checked previously. Fur-

thermore, by Theorem 3.2 in Bolthausen (1976) and Theorems 2.23 and 3.4 in Iglehart (1974), it
holds

lim
n→+∞

bn(y) = lim
n→+∞

E

[
ϕ1

( y + S′[nt1]−[nr]

σ
√

[nt2]− [nr]

√
[nt2]− [nr]√

n

)
ϕ2

(y + S′[nt2]−[nr]

σ
√
n

√
[nt2]− [nr]√

n

)
| τS′(y) > [nt2]− [nr]

]
=

1√
2π(t2 − t1)

∫ +∞

0

∫ +∞

0
ϕ1(u)ϕ2(v)

√
t2 − r√

(t1 − r)3
ue

−u2
2(t1−r)

×
(
e
− (u−v)2

2(t2−t1) − e
−(u+v)2

2(t2−t1)

)
dudv.

It immediately yields

lim
n→+∞

A+
2 (n) =

γ

π
√

2π(t2 − t1)

∫ t1

0

(
1√

2π(t2 − t1)

∫ +∞

0

∫ +∞

0
ϕ1(u)ϕ2(v)

×
√
t2 − r√

r(t2 − r)(t1 − r)3
ue

−u2
2(t1−r)

(
e
− (u−v)2

2(t2−t1) − e
−(u+v)2

2(t2−t1)

)
dudv

)
dr

=
γ

π
√
t1(t2 − t1)

∫ +∞

0

∫ +∞

0
ϕ1(u)ϕ2(v)e

−u2
2t1

(
e
− (u−v)2

2(t2−t1) − e
−(u+v)2

2(t2−t1)

)
dudv. (4.12)

Analogously, one gets

lim
n→+∞

A−2 (n) =
1− γ

π
√
t1(t2 − t1)

∫ 0

−∞

∫ 0

−∞
ϕ1(u)ϕ2(v)e

−u2
2t1

(
e
− (u−v)2

2(t2−t1) − e−
(u+v)2

2(t2−t1)

)
dudv (4.13)

Combining (4.10), (4.11), (4.12) and (4.13), we conclude

lim
n→+∞

Ex

[
ϕ1(X(n)(t1))ϕ2(X(n)(t2))

]
=

∫ +∞

−∞

∫ +∞

−∞
ϕ1(u)ϕ2(v)pγt1(0, u)pγt2−t1(u, v)dudv.

Proof of properties (4.8) and (4.9)
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Following the same strategy as in the one dimensional case, we decompose gn(s1, s2) as gn(s1, s2) =∑
y≥1

∑
z≥1

∑
w≤0

an(y, z, w)bn(y, z, w), where

an(y, z, w) := n2H[ns1](x, y)P[τS
′
(y) > [ns2]− [ns1]− 1, y + S′[ns2]−[ns1]−1 = z] µ′(w − z)

and

bn(y, z, w) :=E

[
ϕ1

(y + S′[nt1]−[ns1]

σ
√
n

)
| τS′(y) > [ns2]− [ns1]− 1, y + S′[ns2]−[ns1]−1 = z

]
× Ew

[
ϕ2

(
X[nt2]−[ns2]

σ
√
n

)]
.

Properties (4.8) and (4.9) are direct consequences of Lemma 4.1, applied to the families(
an(y, z, w)

)
y,z≥1,w≤0

and
(
bn(y, z, w)

)
y,z≥1,w≤0

; it thus suffices to check that conditions (i), (ii) and
(iii) of this lemma are satisfied in this new situation.

Condition (i). The sum
∑
y≥1

∑
z≥1

∑
w≤0

an(y, z, w) may be written as

∑
y≥1

∑
z≥1

∑
w≤0

an(y, z, w) =
1 + o(n)√
s1(s2 − s1)3

√
[ns1]H[ns1](b

′
[ns2]−[ns1])(x), (4.14)

where we set b′k(y) = k3/2P[τS
′
(y) = k].

As previously, the sequence
(√

[ns1]H[ns1]

)
n≥1

converges in
(
L(Bδ), ‖ · ‖Bδ

)
to the operator

1

2π
(
cν(ȟa)+c′ν(h′d)

)Π; furthermore, the sequence
(
b′[ns2]−[ns1]

)
n≥1

converges in Bδ to the function c′h′d.

Hence condition (i) holds with

A =
1√

s1(s2 − s1)3

c′ν(h′d)

2π
(
cν(ȟa) + c′ν(h′d)

) =
γ

2π
√
s1(s2 − s1)3

.

Condition (ii). Fix ε > 0 and yε ≥ 1. As above h′k1[yε,+∞[, the function b′k1[yε,+∞) belongs to Bδ
and |b′k1[yε,+∞)|Bδ ≤

C1

yδε
for some constant C1 > 0. By (4.14), it follows

0 ≤
∑

y≥yε,z≥1,w≤0

an(y, z, w) �
√

[ns1]H[ns1](b
′
[ns2]−[ns1]1[yε,+∞))(x)

� sup
n≥1
‖
√

[ns1]H[ns1]‖Bδ︸ ︷︷ ︸
<+∞

sup
n≥1
|b′[ns2]−[ns1]1[yε,+∞)|Bδ︸ ︷︷ ︸

� 1

yδε

.

This last right hand side term is < ε for sufficiently large yε.
Furthermore, 0 ≤ an(y, z, w) � (1+y)(1+z)µ′(w−z) for any fixed y, z, w and any n ≥ 1; hence, for

any 0 ≤ y < yε, it holds
∑

z+|w|>t

an(y, z, w) < ε if t is large enough since
∑

z≥1 zµ
′(]−∞,−z]) < +∞.

This completes the argument.
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Condition (iii). On the one hand, by (2.3), for any y, z ≥ 1,

lim
n→+∞

E

[
ϕ1

(y + S′[nt1]−[ns1]

σ
√
n

)
| τS′(y) > [ns2]− [ns1]− 1, y + S′[ns2]−[ns1]−1 = z

]
=

∫ +∞

0
2ϕ1(u′

√
s2 − s1) exp

(
−u′2

2 t1−s1s2−s1
s2−t1
s2−s1

)
u′2√

2π (t1−s1)3

(s2−s1)3
(s2−t1)3

(s2−s1)3

du′

=
2√
2π

∫ +∞

0
ϕ1(u) exp

(
−u2

2 (t1−s1)(s2−t1)
s2−s1

)
u2√

(t1−s1)3(s2−t1)3

(s2−s1)3

du.

On the other hand, the one dimensional case m = 1 studied above yields, for any w ≤ 0,

lim
n→+∞

Ew

[
ϕ2

(
X[nt2]−[ns2]

σ
√
n

)]
=

∫
R
ϕ̃2(v)

2 exp

(
−v2

2(t2 − s2)

)
√

2π(t2 − s2)
dv

with ϕ̃2(v) = γϕ2(v)1(0,+∞)(v) + (1− γ)ϕ2(v)1(−∞,0)(v).
Case m ≥ 3

The proof is done by induction on m. The strategy essentially stems from the case m = 2, reusing
the random time κ = κt1 defined above as the key point to control the fluctuations of the trajectory
of the chain.

Suppose now that (4.1) is true up to the dimension m ≥ 2, we then need to prove that it remains
true for the dimension m+ 1. Indeed, we first have the following approximation and decomposition

Ex

[m+1∏
i=1

ϕi(X
(n)(ti))

]
≈ Ex

[m+1∏
i=1

ϕi

(
X[nti]

σ
√
n

)]
= B0(n) +B±1 (n) +B±2 (n).

with

B0(n) := Ex

[m+1∏
i=1

ϕi

(
X[nti]

σ
√
n

)
, X[nt1] = 0

]
,

B±1 (n) :=
m∑
j=1

[ntj+1]∑
k2=[ntj ]+1

Ex

[m+1∏
i=1

ϕi

(
X[nti]

σ
√
n

)
1[κ=k2]1[±X[nt1]

>0]

]

and

B±2 (n) := Ex

[m+1∏
i=1

ϕi

(
X[nti]

σ
√
n

)
1[κ>[ntm+1]]1[±X[nt1]

>0]

]
.

Again, the term B0(n) vanishes at infinity due to the null-recurrence of the chain. Let us now focus
in particular on the two terms B+

1 (n) and B+
2 (n); the other terms follow exactly the same lines.
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• Estimate of B+
1 (n)

B+
1 (n) ≈

m∑
j=1

[ntj+1]∑
k2=[ntj ]+1

[nt1]−1∑
k1=1

∑
`≥1

∑
y≥1

∑
z≥1

∑
w≤0

Ex

[m+1∏
i=1

ϕi

(
X[nti]

σ
√
n

)
, C` = k1,

Xk1 = y, y + ξ′k1+1 > 0, . . . , y + ξ′k1+1 + . . .+ ξ′k2−2 > 0,

y + ξ′k1+1 + . . .+ ξ′k2−1 = z, y + ξ′k1+1 + . . .+ ξ′k2 = w

]

=

m∑
j=1

[nt1]−1∑
k1=1

[ntj+1]∑
k2=[ntj ]+1

∑
`≥1

∑
y≥1

∑
z≥1

∑
w≤0

Ex

[ j∏
i1=1

ϕi1

(y + S′[nti1 ]−k1

σ
√
n

) m+1∏
i2=j+1

ϕi2

(
X[nti2 ]

σ
√
n

)
,

C` = k1, Xk1 = y, y + ξ′k1+1 > 0, . . . , y + ξ′k1+1 + . . .+ ξ′k2−2 > 0,

y + ξ′k1+1 + . . .+ ξ′k2−1 = z

]
P[ξ′k2 = w − z]

=

m∑
j=1

[nt1]−1∑
k1=1

∑
y≥1

Hk1(x, y)

[ntj+1]∑
k2=[ntj ]+1

∑
z≥1

E

[ j∏
i1

ϕi1

(y + S′[nti1 ]−k1

σ
√
n

)
| τS′(y) > k2 − k1 − 1,

y + S′k2−k1−1 = z

]
×
∑
w≤0

Ew

[ m+1∏
i2=j+1

ϕi2

(
X[nti2 ]−k2

σ
√
n

)]
× P[τS

′
(y) > k2 − k1 − 1, y + S′k2−k1−1 = z] µ′(w − z).

The first expectation is treated by Corollary 2.5 in Caravenna and Chaumont (2013) while the
second expectation is obviously derived from the induction hypothesis.
• Estimate of B+

2 (n)

B+
2 (n) =

[nt1]−1∑
k=1

∑
`≥1

∑
y≥1

Ex

[m+1∏
i=1

ϕi

(
X[nti]

σ
√
n

)
, C` = k,Xk = y, y + ξ′k+1 > 0, . . . ,

y + ξ′k+1 + . . .+ ξ′[nt1] > 0, . . . , y + ξ′k+1 + . . .+ ξ′[ntm+1] > 0

]

=

[nt1]−1∑
k=1

∑
y≥1

Hk(x, y)E

[m+1∏
i=1

ϕi

(y + S′[nti]−k

σ
√
n

)
| τS′(y) > [ntm+1]− k

]
× P[τS

′
(y) > [ntm+1]− k],

which is again a direct application of Corollary 2.5 in Caravenna and Chaumont (2013).

4.3. Tightness of the sequence
{
X(n)

}
n≥1

. Let us recall the modulus of continuity of a function
f : [0, T ]→ R is defined by

ωf (δ) := sup
{
|f(t)− f(s)| : t, s ∈ [0, T ] s.t. |t− s| ≤ δ

}
.

By Theorems 7.1 and 7.3 in Billingsley (1999), we have to show that the following conditions hold:
(i) For every η > 0, there exist a > 0 and nη ≥ 1 such that

P[|X(n)(0)| ≥ a] ≤ η, ∀n ≥ nη.
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(ii) For every ε > 0 and η > 0, there exist δ ∈ (0, 1) and nε,η ≥ 1 such that

P[ωX(n)(δ) ≥ ε] ≤ η, ∀n ≥ nε,η.

Proof : Condition (i) is obviously satisfied since X0 = x.
Let us now check the condition (ii). Set In,δ :=

{
(i, j) ∈ N | 1 ≤ i < j ≤ n and |i− j| ≤ nδ

}
and

note that we have

ωX(n)(δ) ≤
7

(σ ∧ σ′)
√
n

(
sup

(i,j)∈In,δ
|Si − Sj |+ sup

(i,j)∈In,δ
|S′i − S′j |

)
. (4.15)

We suggest the following figure as a useful illustration of this bound.

Figure 4.1. Fluctuation of the normalized oscillating random walk on the time
interval [s, t] with its first and last crossing times r1 and r2, respectively.

Moreover, by Billingsley (1999) (see Chapter 7) one also gets

lim
δ→0

lim
n→+∞

P
[ 1

σ
√
n

sup
(i,j)∈In,δ

|Si − Sj | ≥ ε
]

= lim
δ→0

lim
n→+∞

P
[ 1

σ′
√
n

sup
(i,j)∈In,δ

|S′i − S′j | ≥ ε
]

= 0. (4.16)

The condition (ii) immediately follows by (4.15) and (4.16). Hence, we conclude that the sequence{
X(n)

}
n≥1

is tight. �
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