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Abstract. We study a multivariate, non-linear Hawkes process ZN on a q-Erdős-Rényi-graph with
N nodes. Each vertex is either excitatory (probability p) or inhibitory (probability 1 − p). If
p 6= 1

2 , we take the mean-field limit of ZN , leading to a multivariate point process Z̄. We rescale the
interaction intensity by N and find that the limit intensity process solves a deterministic convolution
equation and all components of Z̄ are independent. The fluctuations around the mean field limit
converge to the solution of a stochastic convolution equation. In the critical case, p = 1

2 , we rescale
by N1/2 and discuss difficulties, both heuristically and numerically.

1. Introduction

In Hawkes (1971); Hawkes and Oakes (1974), Hawkes processes were introduced as self-excitatory
point processes. Today, they are used in various fields of applications including seismology Ogata
(1988); Fox et al. (2016), interactions in social networks Zipkin et al. (2016); Lukasik et al. (2016),
finance Bacry et al. (2015); Hawkes (2018) and neuroscience Gerhard et al. (2017); Jovanović et al.
(2015). In the classical univariate, linear Hawkes process, the firing rate at time t is a linear function
of It :=

∑
i ϕ(t−Ti), where the Ti’s are previous jump times. In this case, since rates cannot become

negative, ϕ ≥ 0 is required, leading to a self-excitatory process.
Our main motivation to study Hawkes processes comes from the neurosciences. In a graph, ver-

tices model neurons, whereas the (directed) edges are synapses linking the neurons. A point process
indexed by the vertices models action potentials or spike trains of electrical impulses. Communica-
tion via synapses leads to correlated point processes such that each spike in one neuron influences
the rate by which a neighboring vertex fires. From this point of view, the firing rate should include
two important features. First, it is known that neurons cannot only excite others, but inhibition is
another important factor (see e.g. Kandel et al. (2012)). This is why ϕ ≤ 0 can occur as well, and
consequently the firing rate at time t has to be a non-linear function of It. Second, as not all neurons
are connected, the firing rate at some vertex should depend only on the spikes of connected vertices.
The Erdős-Rényi-model Erdős and Rényi (1960) is one of the first and simplest models for random
graphs, where the existence of edges between any two vertices is indicated by independent Bernoulli
random variables with common probability q. In Pfaffelhuber et al. (2022), mean-field limits for
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the multivariate, non-linear Hawkes process with excitation and inhibition on a complete graph are
derived. The main goal of this paper is to generalize these limit results to a q-Erdős-Rényi-Graph
graph.

Nonlinear multivariate Hawkes processes have been studied to some extent in the past decades,
a summary can be found in the introduction of Pfaffelhuber et al. (2022). In a standard mean-field
setting, all components of the Hawkes process share the same firing rate, see e.g. Delattre et al.
(2016). But even if models include features leading to different rates at different vertices/neurons,
the methods may be adapted to derive mean-field results, see e.g. Ditlevsen and Löcherbach (2017)
for a multi-class setting. Other works extend the standard firing rate of Hawkes processes by an
age-dependence, i.e. the rate at some vertex depends on the time since the last spike at this vertex.
It is still possible to derive mean-field limits Chevallier (2017b), central limit theorems Chevallier
(2017a), even in the critical case, where excitation and inhibition are balanced Erny et al. (2021).

In the present paper, we extend the model from Pfaffelhuber et al. (2022) by a parameter q,
which denotes the fraction of open connections/edges between neurons/vertices. We assume that
each vertex/neuron is either excitatory or inhibitory, i.e. excites or inhibits all of its connected
neighbors. We will denote by p the fraction of excitatory vertices/neurons and distinguish the
critical case p = 1/2 from the non-critical one. For the latter, we obtain in Theorem 3.1 a classical
mean-field result, i.e. by rescaling the interaction intensity by N , a deterministic limit of the
intensity (Theorem 3.1.1) and independent point processes driven by this intensity (Theorem 3.1.2)
arises. We also provide a central limit result for the intensity (Theorem 3.1.3). In the critical case,
the methods from Pfaffelhuber et al. (2022) cannot be applied. We describe the difficulties and
present simulation results to visualize features of possible mean-field limits.

In many fields of applications, the requirement of a common connection probability in the Erdős-
Rényi model is too stringent, as edges or vertices may have heterogeneous attributes. Some examples
of Hawkes processes on more complex graphs deal with estimation of the model parameters, Mei and
Eisner (2017), Sanna Passino and Heard (2023), Verma et al. (2021), or perform simulations, Zhou
et al. (2013), both for a fixed size of the graph. In Agathe-Nerine (2022) and Agathe-Nerine (2023),
the author derives results for Hawkes processes on imhomogenuous random graphs in the mean-field
setting, i.e. when the size of the graph tends to infinity, and studies the large time behaviour of
the limit system. After allowing for inhibition (as described in section 6 in Agathe-Nerine (2022)),
these works generalize Theorem 3.1.1 in the present paper.

In this work we focus on the Erdős-Rényi model, as it allows to derive rigorous mathematical
results in the mean-field setting including a central limit theorem. More precisely, we show that the
fluctuation around the mean field limit can be divided up into two parts: A common fluctuation,
which is present at any vertex, plus a vertex-specific part, which is independent over the vertices
and independent of the common fluctuation (see equation (3.3)). Of course, the generalisation of
these results to more realistic, and consequently more complex graph models is an interesting topic
for future research.

2. Model and assumptions

We use the following general model for a non-linear Hawkes process:

Definition 2.1 (Multi-variate, non-linear Hawkes process). Let G = (V,E) be some finite, directed
graph, and write ji ∈ E if j → i is an edge in G. Consider a family of measurable, real-valued
functions (ϕji)ji∈E and a family of real-valued, non-negative functions (hi)i∈V. Then, a point process
Z = (Zi)i∈V (with state space NV

0 ) is a multi-variate non-linear Hawkes process with interaction
kernels (ϕji)ji∈E and transfer functions (hi)i∈V, if Zi, Zj do not jump simultaneously for i 6= j,
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almost surely, and the compensator of Zi has the form (
∫ t
0 λ

i
sds)t≥0 with

λit := λit(Zs<t) := hi

( ∑
j:ji∈E

∫ t−

0
ϕji(t− s)dZjs

)
, i ∈ V.

We need some mimimal conditions such that the multivariate, non-linear Hawkes process is well-
defined (i.e. exists). As mentioned in Delattre et al. (2016), Remark 5, the law of the non-linear
Hawkes process is well-defined, provided that the following assumption holds.

Assumption 2.2. All interaction kernels ϕji, ji ∈ E are locally integrable, and all transfer functions
(hi)i∈V are Lipschitz continuous.

Remark 2.3 (Interpretation and initial condition).

(1) If dZjs = 1, we call ϕji(t− s)dZjs the influence of the point at time s in vertex j on vertex i.
(2) Consider the case of monotonically increasing transfer functions. If ϕji ≤ 0, we then say

that vertex j inhibits i, since any point in Zj decreases the jump rate of Zi. Otherwise, if
ϕji ≥ 0, we say that j excites i.

(3) In our formulation, we have Zi0 = 0, i ∈ V, with the consequence that the dZju-integral in
(4.2) could also be extended to −∞ without any change. We note that it would also be
possible to use some initial condition, i.e. some (fixed) (Zit)i∈V,t≤0, and extend the integral
to the negative reals.

Let us now come to the mean-field model, where we fix some basic assumptions. Note that we
will show convergence for large graphs, i.e. all processes come with a scaling parameter N , which
determines the size of the graph.

Assumption 2.4 (Mean-field setting). Let

(1) GN = (VN ,EN ) be the q-Erdős-Rényi graph on N vertices, i.e. VN = {1, ..., N}, and for
independent Bernoulli random variables (Vji)j,i∈VN

with parameter q ∈ [0, 1], ji ∈ EN if and
only if Vji = 1;

(2) hi = h for all i ∈ VN where h ≥ 0 is bounded, h and
√
h are Lipschitz with constant hLip;

(3) ϕji = θNUjϕ for all j, i ∈ VN , where θN ∈ R and
• U1, U2, ... are iid with P(U1 = 1) = 1− P(U1 = −1) = p,
• ϕ ∈ C1b ([0,∞)), the set of bounded continuously differentiable functions with bounded
derivative.

The form of ϕji implies that node j is exciting all other nodes with probability p, and inhibiting all
other nodes with probability 1− p. Additionally Vji indicates if there actually is a connection from
node j to node i. Assumption 2.4 leads to the intensity

λit = h
(
θN

N∑
j=1

∫ t−

0
UjVjiϕ(t− s)dZjs

)
at node i ∈ VN .

3. Results on the mean-field model

Our main goal is to give a limit result on the family ZN,i, the multivariate, non-linear Hawkes
process on the graph GN with interaction kernels and transfer functions as given in Assumption 2.4.
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3.1. The non-critical case. In the case p 6= 1
2 the limit compensator is given by (

∫ t
0 h(Is)ds)t≥0, where

I is the weak limit of IN,i (see (3.1) and (3.2)). We have that (It)t≥0 follows a linear, deterministic
convolution equation, and all components of the limit of ZN,i are independent (Theorem 3.1.2). The
fluctuation around the limit converges to a stochastic convolution equation, and the correlation of the
limiting fluctuations at different vertices depends on the connectivity q of the graph (Theorem 3.1.3).
Below, we denote by ⇒ the weak convergence in DRn([0,∞)), the space of cadlag paths, which is
equipped with the Skorohod topology; see e.g. Chapter 3 in Ethier and Kurtz (1986). The proof of
the following result can be found in Section 4.4.

Theorem 3.1 (Mean-field limit of multi-variate non-linear Hawkes processes, p 6= 1
2). Let Assump-

tion 2.4 hold with p 6= 1
2 and θN = 1

N . Let ZN = (ZN,1, ..., ZN,N ) be the multivariate, non-linear
Hawkes process from Definition 2.1, and

IN,it :=
1

N

N∑
j=1

∫ t−

0
UjVjiϕ(t− s)dZN,js . (3.1)

(1) Then, IN,i N→∞−−−−→ I almost surely, uniformly on compact time intervals and uniformly in
i ≤ N , where I = (It)t≥0 is the unique solution of the integral equation

It = (2p− 1)q

∫ t

0
ϕ(t− s)h(Is)ds. (3.2)

(2) For all n = 1, 2, ..., (ZN,1, ..., ZN,n)
N→∞
====⇒ (Z̄1, ..., Z̄n), where Z̄1, ..., Z̄n are independent and

Z̄i is a simple point process with intensity at time t given by h(It), i = 1, ..., n. It is possible
to build Z̄1, ..., Z̄n, such that the convergence is almost surely (in Skorohod-distance).

(3) Assume that h ∈ C1(R) and that h′ is bounded and Lipschitz. Define KN,k =
√
N(IN,k −

I), the fluctuation around the limit at vertex k as well as the mean fluctuation, K N :=
1
N

∑N
i=1K

N,i. Then, for all n = 1, 2, ...,(
K
N
,KN,1, ...,KN,n

)
N→∞
====⇒

(
K,K1, ...,Kn

)
where Kt =

∫ t
0 ϕ(t− s)dGs, Kk

t =
∫ t
0 ϕ(t− s)dGks and

Gt = q
(∫ t

0
Wh(Is) + (2p− 1)h′(Is)Ksds+

∫ t

0

√
h(Is)dBs

)
,

Gkt = Gt +
√
q(1− q)

(∫ t

0
W̃ kh(Is)ds+

∫ t

0

√
h(Is)dB̃

k
s

)
.

(3.3)

Here, B, B̃1, ..., B̃n are independent Brownian motions, and W, W̃ 1, ..., W̃n are independent
normally distributed random variables, W ∼ N(0, 4p(1 − p)), W̃ i ∼ N(0, 1) for each i =
1, ..., n.

Remark 3.2. This generalizes Pfaffelhuber et al. (2022, Theorem 1). There it holds that q = 1 and
the intensities at different vertices IN,i are the same. Obviously 1. and 2. coincide with 1. and 2.
from Pfaffelhuber et al. (2022, Theorem 1). In 3., observe that the fluctuations around I are the
same at different vertices k, KN,k = K

N , for each k ∈ V. In (3.3) we have q(1 − q) = 0, whence,
for any k ∈ V,

Gkt = Gt =

∫ t

0
Wh(Is) + (2p− 1)h′(Is)K

k
s ds+

∫ t

0

√
h(Is)dBs.

This is equation (3.3) in Pfaffelhuber et al. (2022).
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Remark 3.3. The Brownian motions B,B1, ..., Bn arise as limit of a rescaled sum over compensated
point processes, while the normal distributions W, W̃ 1, ..., W̃n arise as limit of rescaled sums over
the synaptic weights (Uj)j , (Vji)ji. See sections 4.2 and 4.3 for details.

Remark 3.4. The form of (3.2) tells us that I follows a linear Volterra convolution equation, Berger
and Mizel (1980). Turning into a differential equation, we write, using Fubini,

dI

dt
=

d

dt
(2p− 1)q

(∫ t

0

∫ t

s
ϕ′(r − s)h(Is)drds+

∫ t

0
ϕ(0)h(Is)ds

)
= (2p− 1)q

(∫ t

0
ϕ′(t− s)h(Is)ds+ ϕ(0)h(It)

)
.

In particular, the special choice of ϕ(s) = e−λs gives

dI

dt
= −λ(2p− 1)q

(∫ t

0
ϕ(t− s)h(Is)ds+ h(It)

)
= −λIt + (2p− 1)qh(It)),

i.e. I follows some ordinary differential equation in this case.

While Theorem 3.1 is concerned with convergence of the limit intensity of the multivariate, non-
linear Hawkes process, we are also in the situation to study convergence of the average intensity of
ZN,i. The proof of the next corollary is found in Section 4.4.

Corollary 3.5. Let ZN = (ZN,1, ..., ZN,N ) be as in Theorem 3.1, and Z̄ = (Z̄1, Z̄2, ...) be as in
Theorem 3.1.2. Then,

1

N

N∑
j=1

(
ZN,j −

∫ .

0
h(IN,js )ds

)
N→∞−−−−→ 0 (3.4)

and

1

N

N∑
j=1

(
ZN,j − Z̄j

)
N→∞−−−−→ 0 (3.5)

in probability, uniformly on compact intervals. Moreover,

1√
N

N∑
j=1

(
ZN,j −

∫ .

0
h(IN,js )ds

)
N→∞
====⇒

∫ .

0

√
h(Is)dB

0
s (3.6)

for some Brownian motion B0, and (writing h(I) := (h(It))t≥0)
√
N
(
h(IN,i)− h(I)

) N→∞
====⇒ h′(I)Ki. (3.7)

Let BU , B0 be correlated Brownian motions with E[BU
t B

0
t ] = (2p − 1)t, t ≥ 0. Use BU in the

definition of K in Theorem 3.1.3. Then,

1√
N

N∑
j=1

(
ZN,j −

∫ .

0
h(Is)ds

)
N→∞
====⇒

∫ .

0
h′(Is)Ksds+

∫ .

0

√
h(Is)dB

0
s . (3.8)

Remark 3.6 (Correlation between B0 and B). Let us briefly discuss the correlated Brownian motions
appearing in (3.8). Clearly, the left hand side of (3.8) can be built from the left hand sides of (3.6)
and (3.7) by taking the mean value over the vertices i in (3.7). The limits

∫ .
0

√
h(Is)dB̃

0
s and K

appearing on the right hand sides of (3.6) and (3.7) are weak limits of sums of compensated point
processes. While in (3.6), we sum over all point processes in the system, IN,i in (3.7) distinguishes
between nodes with different signs Uj . Hence, the correlation is positive for the proportion p of
point processes with positive sign, and negative for the proportion 1 − p of point processes with
negative sign, summing to p− (1− p) = 2p− 1. For more details, see Lemma 4.4.
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3.2. The critical case. For p = 1
2 , excitation and inhibition are balanced. If we rescale the interaction

kernels with θN = 1
N as in Theorem 3.1, we can read off

1

N

N∑
j=1

∫ t−

0
UjVjiϕ(t− s)dZj,Ns → 0

from Theorem 3.1.1, and the limiting point processes Z̄i have constant intensity h(0) (Theo-
rem 3.1.2). In this critical case is natural to upscale by

√
N in order to obtain non-trivial limits.

This has been done under assumption 2.4, but with q = 1, in Pfaffelhuber et al. (2022, Theorem 2),
and for a similar model in Erny et al. (2021), Erny et al. (2022). After upscaling, the intensity at
vertex i and time t is given by h(IN,it ), where

IN,it =
1√
N

N∑
j=1

∫ t−

0
UjVjiϕ(t− s)dZN,js .

In order to obtain limit results we compensate dZN,jt by h(IN,j)tdt and apply a martingale central
limit theorem. More precisely

IN,it =
1√
N

N∑
j=1

UjVji

(∫ t−

0
ϕ(t− s)dZN,js −

∫ t

0
ϕ(t− s)h(IN,js )ds

)

+
1√
N

N∑
j=1

UjVji

∫ t

0
ϕ(t− s)h(IN,js )ds.

(3.9)

The predictable quadratic covariation of the first line is given by 1
N

∑N
j=1 Vji

∫ t
0 ϕ(t − s)h(IN,js )ds,

and we a-priori need a limit result on this covariation as well as the second line in (3.9) to derive
a limit of IN,i. This is feasible in Pfaffelhuber et al. (2022, Theorem 2), where q = 1 and therefore
Vji = 1, i.e. the intensities IN,i at different vertices i coincide. In contrast, Erny et al. (2021) derive
a mean-field limit for Hawkes processes with different intensities at different vertices. A significant
difference to our model is that the influence of vertex j on all other vertices, Uj , is not fixed over
time, i.e. whenever dZN,jt = 1, Uj(t) are centered random variables, independent over the jump
times t. Consequently, the process

1√
N

N∑
j=1

∫ t−

0
Uj(s)dZ

N,j
s is a martingale with covariation

σ2

N

N∑
j=1

∫ t

0
h(IN,js )ds,

where σ2 is the second moment of Uj . It suffices to a-priori derive a result on the limit of the
empirical distributions of intensities at different vertices, where the exchangeability of the system
can be used, to derive a limit of IN,i. Compared to this approach, we face two major difficulties in
our model: First, in the covariation of the compensated process we have to deal with the empirical
distribution over the subset of vertices connected to vertex i. Here, one could first try to focus on
the average over different vertices i to replace Vji by its mean q. Second, and more challenging, we
would need an a-priori result on the compensator 1√

N

∑N
j=1 UjVjidh(IN,jt ), i.e. an a-priori CLT-type

result for the intensities at different vertices.

Simulation
We may simulate a multivariate Hawkes-process on a finite, but large graph using Lewis’ thinning
algorithm Lewis and Shedler (1979), Ogata (1981). Assume the graph consists of N = 500 neurons
and choose the parameters p = q = 0.5. For simplicity, choose an exponential interaction kernel,
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ϕ(t) = e−λt for some λ > 0, and transfer function h(x) = 1+ 2
π arctan(x). Note that ϕ and h satisfy

assumption 2.4. As the interaction kernel is exponential, the intensity at vertex is given by

IN,it =
1√
N

N∑
j=1

UjVjiZ
N,j
t− − λ

∫ t

0
IN,is ds

=
1√
N

N∑
j=1

UjVji

(
ZN,jt− −

∫ t

0
h(IN,js )ds

)
+

1√
N

N∑
j=1

UjVji

∫ t

0
h(IN,js )ds− λ

∫ t

0
IN,is ds.

We split up the martingale part,

M i :=
1√
N

N∑
j=1

UjVji

(
ZN,jt− −

∫ t

0
h(IN,js )ds

)

=
1√
N

N∑
j=1

Uj(Vji − q)
(
ZN,jt− −

∫ t

0
h(IN,js )ds

)
+ q

1√
N

N∑
j=1

Uj

(
ZN,jt− −

∫ t

0
h(IN,js )ds

)
=: M̃ i + qM.

As the jump size of the martingale part tends to zero, the convergence is determined by the pre-
dictable covariation process. Our simulations suggest that

〈M̃k, M̃ l〉 =
1

N

N∑
j=1

(Vjk − q)(Vjl − q)h(IN,j) ≈ 1

N

N∑
j=1

(Vjk − q)(Vjl − q)h(I) ≈ 1k=lq(1− q)h(I),

(3.10)

〈M̃k,M〉 =
1

N

N∑
j=1

(Vjk − q)h(IN,j) ≈ 1

N

N∑
j=1

(Vjk − q)h(I) ≈ 0,

〈M,M〉 ≈ h(I),

where h(I) = 1
N

∑N
j=1 h(IN,j). After an application of a standard martingale central limit theorem,

this would imply that

M̃ i
t ≈

√
q(1− q)

∫ t

0

√
h(Is)dB

i
s, as well as M ≈

∫ t

0

√
h(Is)dBs (3.11)

where B,B1, ..., BN are independent Brownian motions and h(I) = 1
N

∑N
j=1 h(IN,j). This should

be compared to Theorem 3.1.3 and lemma 4.4, where we obtain a similar convergence result. There,
note that h(I) ≈ h(I).
As described above, the drift 1√

N

∑N
j=1 UjVji

∫ t
0 h(IN,js )ds is more difficult to analyse, even numer-

ically. We expect that the value of the drift depends on the configuration of the graph in some
way. To see how it depends on the rescaled input of the graph to node i, WN,i = 1√

N

∑N
j=1 UjVji,

manually set
N∑
j=1

Vj1 =
N∑
j=1

Vj2 =
N

2
,
N∑
j=1

Vj1Vj2 = 0,

i.e. the vertices 1, 2 receive input from complementary parts of the graph. Then choose U1, ..., UN =
±1, such that

∑
j Uj ≈ 0 and WN,1 = WN,2, i.e. excitation and inhibition are balanced and the

mean input to node 0 and 1 are the same. As precicted above, the difference of the martingale parts
M1 and M2, respectively, from the mean martingale part are negatively correlated , see figure 3.1b,
as 1

N

∑N
j=1(Vj1 − q)(Vj2 − q) = −q(1− q).
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(a) Drift (b) Martingale part

Figure 3.1. Drift and martingale part of the intensity at vertex 1, 2, respectively.

But the drifts at vertices 1 and 2 significantly differ from each other, figure 3.1a. We expect
the drift to depend on higher powers of the adjacency matrix V = (Vij)j,i=1,...,N , together with
multiplication with U = (Ui)i=1,...,N and applications of the necessarily non-linear transfer function
h. A precise analysis of this dependence in the mean-field setting N →∞ is very complex.

4. Proofs

We start off in Subsection 4.1 with a result on convolution equations. We proceed in 4.2 with a
reformulation of the multivariate linear Hawkes process using a time-change equation, and in 4.3
with results on different types of mean values of the synaptic weights. Then, we prove Theorem 3.1
in Subsection 4.4.

4.1. Convolution lemma. In order to bound the value of a convolution equation by its integrator
we need the following

Lemma 4.1. Let J be the sum of an Itô process with bounded coefficients and a càdlàg pure-jump
process, and let ϕ ∈ C1b ([0,∞)). Then

sup
0≤s≤t

(∫ s

0
ϕ(s− r)dJr

)2
≤ C(ϕ, t) · sup

0≤s≤t
J2
s . (4.1)

Proof : Wlog, we have J0 = 0. By Berger and Mizel (1980, Theorem 4.A) and Fubini’s theorem for
Lebesgue-integrals we can apply the Stochastic Fubini Theorem to J , hence

sup
0≤s≤t

(∫ s

0
ϕ(s− r)dJr

)2
= sup

0≤s≤t

(∫ s

0

(
ϕ(0) +

∫ s

r
ϕ′(s− u)du

)
dJr

)2
≤ 2

(
||ϕ|| · sup

0≤s≤t
J2
s + sup

0≤s≤t

(∫ s

0

∫ u

0
ϕ′(s− u)dJrdu

)2)
= 2

(
||ϕ|| · sup

0≤s≤t
J2
r + sup

0≤s≤t

(∫ s

0
ϕ′(s− u)Judu

)2)
≤ 2

(
||ϕ||+ t2||ϕ′||2

)
· sup
0≤s≤t

J2
s ,

where ||.|| denotes the supremum norm. �
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4.2. Reformulation of Hawkes processes. Alternative descriptions of non-linear Hawkes processes
have been given in the literature. Above all, the construction using a Poisson random measures
is widely used; see e.g. Proposition 3 in Delattre et al. (2016). Here, we rely on the following
construction using time-change equations (see e.g. Chapter 6 of Ethier and Kurtz (1986)), which
we give here without proof.

Lemma 4.2. Let G = (V,E), (ϕji)ji∈E and (hi)i∈V be as in Definition 2.1, and let Assumption
2.2 hold. A point process Z = (Zi)i∈V is a multivariate, non-linear Hawkes process with with
interaction kernels (ϕji)ji∈E and transfer functions (hi)i∈V, if and only if it is the weak solution of
the time-change equations

Zit = Yi

(∫ t

0
λisds

)
= Yi

(∫ t

0
hi

( ∑
j:ji∈E

∫ s−

0
ϕji(s− u)dZju

)
ds
)
, (4.2)

where (Yi)i∈V is a family of independent unit rate Poisson processes.

Under Assumption 2.4, the time-change equations from this lemma read, with independent unit
rate Poisson processes Y1, ..., YN ,

ZN,it = Yi

(∫ t

0
h
( N∑
j=1

∫ s

0
θNUjVjiϕ(s− u)dZN,ju

)
ds
)
. (4.3)

We rewrite this as

ZN,it = Yi

(∫ t

0
h(IN,is )ds

)
(4.4)

with

IN,is =

∫ s

0
ϕ(s− u)dJN,iu and JN,iu = θN

N∑
j=1

UjVjiZ
N,j
u = θN

N∑
j=1

UjVjiYj

(∫ u

0
h(IN,js )ds

)
.

(4.5)

To obtain convergence results, we introduce the compensated point processes

XN,i
t :=

N∑
j=1

UjVji

(
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)
.

In Theorem 3.1.1 we show convergence uniformly in the vertices of the graph, hence we need a result
on convergence of 1

NX
N,i, uniform in i ≤ N .

Lemma 4.3. It holds that

sup
i≤N

sup
0≤s≤t

1

N

∣∣XN,i
s

∣∣→ 0 (4.6)

almost surely (and in L2).

Proof : The sixth centered moment of a Poisson random variable with parameter λ is of order λ3.
For each i, we may split XN,i up into its exciting and inhibiting part,

XN,i
t =

∑
j:Uj=1

Vji

(
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)
−

∑
j:Uj=−1

Vji

(
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)
.
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This is the difference of two compensated point processes with intensity bounded by N ||h||, hence
the sixth moment of XN,i

t is at most of order (tN ||h||)3. We obtain, using Doob’s martingale
inequality for the martingale XN,i,

E
[

sup
i≤N

sup
0≤s≤t

( 1

N
XN,i
s

)6] ≤ N∑
i=1

E
[

sup
0≤s≤t

( 1

N
XN,i
s

)6]
≤
(6

5

)6 N∑
i=1

E
[( 1

N
XN,i
t

)6]
= O(N−2),

which is summable. Using Borel-Cantelli, almost-sure convergence follows. �

In Theorem 1.3, we scale up by
√
N and investigate on the correlation structure at different ver-

tices, hence we need a result on joint convergence of
(

1√
N
XN,i

)
i=1,...,n

. Therefore we introduce the
processes

XN,0
t =

N∑
j=1

(
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)
,

XN,U
t =

N∑
j=1

Uj

(
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)
,

X̃N,i
t =

N∑
j=1

Uj(Vji − q)
(
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)
,

and split

XN,i
t = X̃N,i

t + qXN,U
t , for i = 1, 2, ...

Note that only the first summand in the latter equation depends on the vertex i.

Lemma 4.4. Assume supi≤N sups≤t |I
N,i
s − Is| → 0 almost surely. Then

1√
N
XN =

1√
N

(
XN,U , XN,0, X̃N,1, ..., X̃N,n

) N→∞
====⇒

(
MU ,M0, M̃1, ..., M̃n

)
=: M,

where MU ,M0, M̃1, ..., M̃n are local martingales with covariance structure given by

d〈M̃k, M̃ l〉t = 1k=lq(1− q)h(It)dt, d〈MU ,MU 〉t = d〈M0,M0〉t = h(It)dt,

d〈M̃k,MU 〉t = d〈M̃k,M0〉t = 0, d〈MU ,M0〉t = (2p− 1)h(It)dt.
(4.7)

for any k, l 6= 0. We can extend the probability space such that the convergence is almost surely and
in L2, uniformly on compact time intervals.

We further extend the probability space by Brownian motions BU , B0, B̃i, such that

MU
t =

∫ t

0

√
h(Is)dB

U
s , M0

t =

∫ t

0

√
h(Is)dB

0
s , M̃k

t =

∫ t

0

√
q(1− q)h(Is)dB̃

k
s .

Necessarily, 〈B̃k, B̃l〉t = 1k=lt, 〈BU , B0〉t = (2p − 1)t and 〈B̃k, BU 〉t = 〈B̃k, B0〉t = 0 for k, l =
1, ..., n. Finally observe that, on this probability space,

1√
N
XN,k → M̃k + qMU = q

∫ ·
0

√
h(Is)B

U
s +

√
q(1− q)

∫ ·
0

√
h(Is)B̃

k
s , (4.8)

almost surely and in L2 by the continuous mapping theorem.
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Proof of Lemma 4.4: The result is a martingale central limit theorem, hence we need to identify the
covariance structure. By Jacod and Shiryaev (2003, Theorem I.4.52),

[ 1√
N
X̃N,k,

1√
N
X̃N,l

]
t

=
∑
s≤t

N∑
j=1

∆ZN,js

1√
N
Uj(Vjk − q)

1√
N
Uj(Vjl − q)

=

N∑
j=1

ZN,jt

1√
N
Uj(Vjk − q)

1√
N
Uj(Vjl − q).

The compensator of ZN,j is given by
∫ ·
0 h(IN,js )ds, whence, by Jacod and Shiryaev (2003, Proposition

I.4.50 b)),

〈 1√
N
X̃N,k,

1√
N
X̃N,l

〉
t

=

N∑
j=1

1√
N
Uj(Vjk − q)

1√
N
Uj(Vjl − q)

∫ t

0
h(IN,js )ds

N→∞−−−−→ 1k=lq(1− q)
∫ t

0
h(Is)ds.

Analogously we obtain

〈 1√
N
X̃N,U ,

1√
N
X̃N,U 〉t =

N∑
j=1

1√
N
Uj

1√
N
Uj

∫ t

0
h(IN,js )ds→

∫ t

0
h(Is)ds

〈 1√
N
X̃N,0,

1√
N
X̃N,U 〉t =

N∑
j=1

1√
N

1√
N
Uj

∫ t

0
h(IN,js )ds→ (2p− 1)

∫ t

0
h(Is)ds

〈 1√
N
X̃N,0,

1√
N
X̃N,0〉t =

N∑
j=1

1√
N

1√
N

∫ t

0
h(IN,js )ds→

∫ t

0
h(Is)ds

〈 1√
N
X̃N,k,

1√
N
X̃N,0〉t =

N∑
j=1

1√
N
Uj(Vjk − q)

1√
N

∫ t

0
h(IN,js )ds→ 0

〈 1√
N
X̃N,k,

1√
N
X̃N,U 〉t =

N∑
j=1

1√
N
Uj(Vjk − q)

1√
N
Uj

∫ t

0
h(IN,js )ds→ 0.

The desired convergence in distribution follows from Jacod and Shiryaev (2003, Theorem VIII.3.8,
b)(ii)→(i)): [sup−β5] holds as the first characteristic is 0, and [δ̂5 − R] is obvious as the jumps of
X̃N,k, XN,U , XN,0 have size 1/

√
N . Finally, condition [γ5 − R] is precisely the convergence of the

predictable quadratic covariation above.
By Skorohod’s Theorem, we can extend our probability space such that this convergence is almost
surely with respect to Skorohod distance, and by continuity of the limit it is equivalent to local
uniform convergence. For L2 convergence, observe that XN,U , XN,0, X̃N,k are compensated point
processes with intensity bounded by N ||h||. Let Y be a unit rate Poisson process and B be a
standard Brownian motion, such that MU

t = B∫ t
0 h(Is)ds

(Kallenberg (2002, Theorem 16.4)). Then
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uniform integrability follows from the computation

E
[

sup
0≤s≤t

( 1√
N
XN,U
s −MU

s

)4]1/4
≤ CE

[( 1√
N
XN,U
t −MU

t

)4]1/4
≤ C

(
E
[( 1√

N
XN,U
t

)4]1/4
+ E

[(
MU
t

)4]1/4)
≤ C

(
E
[

sup
0≤s≤t||h||

( 1√
N

(Y (Ns)−Ns)
)4]1/4

+ E
[

sup
0≤s≤t||h||

(Bs)
4
]1/4)

≤ C
(
E
[( 1√

N
(Y (Nt||h||)−Nt||h||)

)4]1/4
+ E

[
(Bt||h||)

4
]1/4)

= C
((

3(t||h||)2 + t||h||/N
)1/4

+ (3(t||h||)2)1/4
)
,

where we used Doob’s and Minkovski’s inequalities. In the third inequality, we used the time-change
representation of point processes (see e.g. Chapter 6 of Ethier and Kurtz (1986)), which we already
used in Lemma 4.2. �

4.3. Results on the synaptic weights. In this section we collect results on different types of mean
values of Uj , Vji. We start with laws of large numbers, which we need to derive mean-field limits.

Lemma 4.5. It holds that

sup
j≤N
| 1
N

N∑
i=1

Vji − q|
N→∞−−−−→ 0, (4.9)

sup
j≤N
| 1
N

N∑
i=1

UiVji − (2p− 1)q| N→∞−−−−→ 0, (4.10)

sup
j≤N
| 1
N

N∑
i=1

UiVjiVik − (2p− 1)q2| N→∞−−−−→ 0, (4.11)

almost surely.

Proof : For (4.9), observe that the sixth central moment of a binomial distribution with parameters
N and p is of order N3, whence

P
(

sup
j≤N
| 1
N

N∑
i=1

Vji − q| > ε
)
≤ 1

ε6

∑
j≤N

E
( 1

N

N∑
i=1

Vji − q
)6

=
1

ε6N5
E
( N∑
i=1

V1i − q
)6

= O(N−2),

(4.12)

is summable. Uniform convergence follows from the Borel-Cantelli Lemma. Similarly in (4.10) and
(4.11). �

In order to derive results on the fluctuation around the mean-field limit, we need the following central
limit theorems. First defineWN = 1√

N

∑N
j=1(Uj− (2p−1)) and W̃N,i = 1√

N

∑N
j=1 Uj(Vji−q), such

that

WN,i :=
1√
N

N∑
j=1

(UjVji − (2p− 1)q) = qWN + W̃N,i.
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Lemma 4.6. For any n ∈ N it holds that(
WN , W̃N,1, ..., W̃N,n

) N→∞
====⇒

(
W,
√
q(1− q)W̃ 1, ...,

√
q(1− q)W̃n

)
, (4.13)

where W ∼ N(0, 4p(1 − p)), W̃ i ∼ N(0, 1) and W, W̃ 1, W̃ 2, ... are independent. Furthermore, for
any i ∈ {1, ..., n},

WN,i N→∞
====⇒ qW +

√
q(1− q)W̃ i, (4.14)

as well as

W
N

:=
1

N

N∑
i=1

WN,i = qWN +
1

N

N∑
i=1

W̃N,i N→∞
====⇒ qW, (4.15)

W
N,U

:=
1

N

N∑
i=1

UiW
N,i = qWN 1

N

N∑
i=1

Ui +
1

N

N∑
i=1

UiW̃
N,i N→∞

====⇒ (2p− 1)qW, (4.16)

W
N,UV k

:=
1

N

N∑
i=1

UiVikW
N,i = qWN 1

N

N∑
i=1

UiVik +
1

N

N∑
i=1

UiVikW̃
N,i N→∞

====⇒ (2p− 1)q2W, (4.17)

for any k ∈ N.

Proof : First, (4.13) follows from the central limit theorem, as

E[(Uj − (2p− 1))2] = 4p(1− p),
E[U2

j (Vji − q)2] = E[(Vji − q)2] = q(1− q),

and the summands of WN , W̃N,1, ..., W̃N,n, respectively, are uncorrelated. Then (4.14) follows by
definition of WN and the continuous mapping theorem. Next observe that, for any i, j, k, l,m ∈
{1, ..., N}, k 6= l,

E[Ui(Vik − q)Uj(Vjl − q)] = 0,

and hence

E[W̃N,kW̃N,l] = 0,

E[UkW̃
N,kUlW̃

N,l] = 0,

E[UkVkmW̃
N,kUlVlmW̃

N,l] = 0.

Consequently the second summand in (4.15), (4.16), (4.17), respectively, converges to 0 in prob-
ability by the weak law of large numbers. The convergence of the first summands follows from
convergence of WN and lemma 4.5 �

Assume from now on that we work on a probability space where WN → W almost surely. Then
the convergence in (4.15), (4.16), (4.17) is in probability, and we obtain the following

Lemma 4.7. Assume WN →W almost surely. Then

1

N

N∑
i=1

(
WN,i

)2 →p q
2W 2 + q(1− q), (4.18)

where →p denotes convergence in probability.
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Proof : We decompose

1

N

N∑
i=1

(
WN,i

)2
= q2

(
WN

)2︸ ︷︷ ︸
→asW 2

+q WN︸︷︷︸
→asW

1

N

N∑
i=1

W̃N,i

︸ ︷︷ ︸
→p0

+
1

N

N∑
i=1

(
W̃N,i

)2
︸ ︷︷ ︸
→pq(1−q)

→p q
2W 2 + q(1− q). (4.19)

The convergence 1
N

∑N
i=1 W̃

N,i → 0 is in probability, as (W̃N,i)i are uncorrelated. For the con-
vergence in the last summand, observe that

(
W̃N,i

)2 are independent given (Uj)j . Denote by EU

conditional expectation with respect to (Uj)j . As EU
[(
W̃N,i

)2]
= q(1− q), it holds that

EU

[ 1

N

N∑
i=1

(
W̃N,i

)2 − q(1− q)]→ 0,

almost surely. It follows that

EU

[( 1

N

N∑
i=1

(
W̃N,i

)2 − q(1− q)) ∧ 1
]
→ 0,

and, by dominated convergence, the desired convergence in probability,

E
[( 1

N

N∑
i=1

(
W̃N,i

)2 − q(1− q)) ∧ 1
]
→ 0.

�

4.4. Proof of Theorem 3.1 and Corollary 3.5. In the following, we work on a probability space where
the convergence in Lemma 4.4 and in (4.13) is in probability. The constant C depends on h, ϕ, t, p, q
and may change from line to line. The proof of Theorem 1 is based on appropriate decompositions
of the relevant processes, where one part vanishes as N → ∞, and we pbtain convergence using
Gronwall’s inequality. We first collect some results on convergence and boundedness of these sub-
processes in Lemma 4.8. Let I be the unique solution to (3.2) and IN,i as in (3.1) in Theorem 1.
Define

AN,it =
1

N

N∑
j=1

UjVji

(
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)
,

DN,i
t =

1

N

N∑
j=1

(
UjVji − (2p− 1)q

) ∫ t

0
h(Is)ds.
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Recall BU from Lemma 4.4, W from Lemma 4.6 and define

ANt =
1

N

N∑
i=1

Ui
1√
N

N∑
j=1

UjVji

(
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)
− (2p− 1)q

∫ t

0

√
h(Is)dB

U
s ,

CNt =
1

N

N∑
i=1

Ui
1

N

N∑
j=1

UjVji

∫ t

0

√
N
(
h(IN,js )− h(Is)− (IN,js − Is)h′(Is)

)
ds,

DNt =
( 1

N

N∑
i=1

Ui
1√
N

N∑
j=1

(UjVji − (2p− 1)q)− (2p− 1)qW
)∫ t

0
h(Is)ds,

ENt =
1

N

N∑
j=1

Uj

( 1

N

N∑
i=1

UiVji − (2p− 1)q
)∫ t

0

√
N(IN,js − Is)h′(Is)ds.

Further, recall B̃i from Lemma 4.4, W̃ i from Lemma 4.6 and define

ÃN,it =
1√
N

N∑
j=1

UjVji

(
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)
− q

∫ t

0

√
h(Is)B

U
s +

√
q(1− q)

∫ t

0

√
h(Is)B̃

k
s

C̃N,it =
1

N

N∑
j=1

UjVji

∫ t

0

√
N
(
h(IN,js )− h(Is)− (IN,js − Is)h′(Is)

)
ds,

D̃N,it =
( 1√

N

N∑
j=1

(
UjVji − (2p− 1)q

)
−
(
qW +

√
q(1− q)W̃ i

)) ∫ t

0
h(Is)ds.

Denote by EUV conditional expectation with respect to the configuration of the graph (Uj)j , (Vji)ji.
Lemma 4.8. For any t > 0, it holds that

1.+2. supi≤N sups≤tA
N,i
s

N→∞−−−−→ 0 and supi≤N sups≤tD
N,i
s

N→∞−−−−→ 0 almost surely,

Assume supi≤N sups≤t |I
N,i
s − Is|

N→∞−−−−→ 0, then

3.+4. lim supN supi≤N sup0≤s≤t
√
NAN,is and lim supN supi≤N sup0≤s≤t

√
NDN,i are finite almost

surely,
5. lim supN

1
N

∑N
j=1EUV

[
sup0≤s≤t

(√
N(IN,js − Is)

)2] is finite almost surely.
We further have
6.-9. EUV

[
sup0≤s≤t

(
ANs
)2], EUV [ sup0≤s≤t

(
CNs
)2], EUV [ sup0≤s≤t

(
DNs
)2] and

EUV
[

sup0≤s≤t
(
ENs
)2] converge to 0 in probability, as N →∞,

and
(10) EUV

[
sup0≤s≤t

(
ÃN,is

)2] N→∞−−−−→ 0 in probability, for any i = 1, 2, ....

(11) supi≤N EUV
[

sup0≤s≤t
(
C̃N,is

)2] N→∞−−−−→ 0 in probability,

(12) EUV
[

sup0≤s≤t
(
D̃N,is

)2] N→∞−−−−→ 0 in probability, for any i = 1, 2, ....

We use 1 and 2 in the proof of Theorem 1.1, and 3, 4 and 11 to prove 5. Then, we use 5 to prove
9, 6-9 in Step 1 of the proof of Theorem 1.3, and 10-12 in Step 3 of the proof of Theorem 1.3. We
give the proof of Theorem 3.1 first, the proof of Lemma 4.8 can be found at the end of this section.



1474 Jakob Stiefel

Proof of Theorem 3.1: Proof of 1.:
Define

Jt = (2p− 1)q

∫ t

0
h(Is)ds, such that It =

∫ t

0
ϕ(t− s)dJs. (4.20)

Recall JN from (4.5). For θN = 1
N , with AN,i, DN,i as in Lemma 4.8 and

CN,it = 1
N

∑N
j=1 UjVji

∫ t
0 h(IN,js )− h(Is)ds, we get that,

JN,it − Jt = AN,i + CN,i +DN,i,

We first show that sups≤t
1
N

∑N
j=1(J

N,i
s − Js)2 → 0 almost surely. Observe that

sup
s≤t

1

N

N∑
i=1

(
JN,is − Js

)2 ≤ 3

N

N∑
i=1

(
sup
s≤t

(AN,is )2 + sup
s≤t

(CN,is )2 + sup
s≤t

(DN,i
s )2

)
(4.21)

By Lemma 4.8.1 and Lemma 4.8.2, respectively, we have supi≤N sups≤t(A
N,i
s )2 → 0 and

supi≤N sups≤t(D
N,i
s )2 → 0 almost surely. For CN,i we obtain, using Jensen’s inequality twice and

U2
j = 1, V 2

ji ≤ 1,

sup
s≤t

1

N

N∑
i=1

(
CN,is

)2
≤ sup

s≤t

1

N

N∑
i=1

1

N

N∑
j=1

(∫ t

0
h(IN,js )− h(Is)ds

)2
≤ t 1

N

N∑
j=1

∫ t

0

(
h(IN,js )− h(Is)

)2
ds

≤ th2Lip
1

N

N∑
j=1

∫ t

0

(
IN,is − Is

)2
ds

≤ Cth2Lip
∫ t

0
sup
u≤s

1

N

N∑
j=1

(JN,iu − Ju)2ds,

(4.22)

where we have used Lemma 4.1 in the last step. Combining the results on AN,i, CN,i and DN,i in
(4.21) we obtain

sup
s≤t

1

N

N∑
j=1

(
JN,is − Js

)2 ≤ 3Cth2lip

∫ t

0
sup
u≤s

1

N

N∑
j=1

(
JN,iu − Ju

)2
ds+ o(1),

hence sups≤t
1
N

∑N
i=1(J

N,i
s −Js)2 → 0 by Gronwall’s inequality. Now fix i and repeat the estimation

in (4.22) to obtain

sup
s≤t

(
CN,is

)2
≤ sup

s≤t

1

N

N∑
j=1

(∫ s

0
h(IN,ju )− h(Iu)ds

)2
≤ Cth2Lip

∫ t

0
sup
u≤s

1

N

N∑
j=1

(JN,ju − Ju)2ds→ 0

almost surely. As the right hand side does not depend on i, this convergence is uniform in i ≤ N . As
we have already shown supi≤N sups≤t(A

N,i
s )2 → 0 as well as supi≤N sups≤t(D

N,i
s )2 → 0, we obtain

sup
i≤N

sup
s≤t

(
JN,is − Js

)2 ≤ 3
(

sup
i≤N

sup
s≤t

(AN,is )2 + sup
i≤N

sup
s≤t

(CN,is )2 + sup
i≤N

sup
s≤t

(DN,i
s )2

)
→ 0

almost surely. By Lemma 4.1, we can conclude that supi≤N sups≤t
(
IN,is − Is

)2 → 0 almost surely.
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Proof of 2.:
Define Z̄it = Yi

( ∫ t
0 h(Is)ds

)
, where Y1, ..., YN are independent Poisson process as in (4.4). Fix ω ∈ Ω,

such that

sup
i≤N

sup
0≤s≤t

|IN,is (ω)− Is| → 0.

As h is Lipschitz,
∫ t
0 h(IN,is (ω))ds →

∫ t
0 h(Is)ds, hence for any point of continuity of t 7→ Z̄it(ω)

we can conclude Zit(ω) → Z̄it(ω). As the points of continuity are dense in [0,∞), convergence in
Skorohod-distance follows from Jacod and Shiryaev (2003, Theorem 2.15 c)(ii)).

Proof of 3.:
First, strong existence and uniqueness of K follows from Berger and Mizel (1980). For the conver-
gence result, we proceed in three steps:

Step 3.1: 1
N

∑N
i=1 Ui

√
N(IN,i − I)→ (2p− 1)K

Use BU from Lemma 4.4 in the definition of K and define KU
:= (2p − 1)K. Then K

U
=∫ t

0 ϕ(t− s)dGUs with

G
U

=

∫ t

0
(2p− 1)qWh(Is) + (2p− 1)qh′(Is)K

U
s ds+ (2p− 1)q

∫ t

0

√
h(Is)dB

U
s .

We show 1
N

∑N
i=1 Ui

√
N(IN,i− I)→ K

U in probability, uniformly on compact time intervals. With
AN , CN , DN , EN as in Lemma 4.8 and

FNt := (2p− 1)q

∫ t

0

( 1

N

N∑
j=1

Uj
√
N(IN,js − Is)−K

U
s

)
h′(Is)ds

we can decompose

1

N

N∑
i=1

Ui
√
N(JN,it − Jt)−G

U
t = ANt + CNt +DNt + ENt + FNt .

By Lemma 4.8.6.-9., we have

EUV
[

sup
0≤s≤t

(
ANs
)2]

,EUV
[

sup
0≤s≤t

(
CNs
)2]

,EUV
[

sup
0≤s≤t

(
DN
s

)2]
,EUV

[
sup
0≤s≤t

(
ENs
)2]→ 0

in probability. We now show

EUV
[

sup
0≤s≤t

(
FNs
)2] ≤ C ∫ t

0
EUV

[
sup

0≤u≤s

( 1

N

N∑
i=1

Ui
√
N(JN,iu − Ju)−GUu

)2]
ds

and deduce the desired convergence of 1
N

∑N
i=1 Ui

√
N(IN,i − I)→ K

U using Gronwall’s inequality
and Lemma 4.1. By Jensen’s inequality and Lemma 4.1,

EUV

[
sup
0≤s≤t

(
FNs
)2] ≤ C ∫ t

0
EUV

[
sup

0≤u≤s

( 1

N

N∑
j=1

Uj
√
N(IN,ju − Iu)−KU

u

)2]
ds

≤ C
∫ t

0
EUV

[
sup

0≤u≤s

( 1

N

N∑
j=1

Uj
√
N(JN,ju − Ju)−GUu

)2]
ds.
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Hence we obtain

EUV

[
sup
0≤s≤t

( 1

N

N∑
i=1

Ui
√
N(JN,is − Js)−G

U
s

)2]
≤ op(1) + C

∫ t

0
EUV

[
sup

0≤u≤s

( 1

N

N∑
i=1

Ui
√
N(JN,iu − Ju)−GUu

)2]
ds,

and by Gronwalls inequality

EUV

[
1 ∧ sup

0≤s≤t

( 1

N

N∑
i=1

Ui
√
N(JN,is − Js)−G

U
s

)2]
→ 0

in probability. By bounded convergence, we have sup0≤s≤t

(
1
N

∑N
i=1 Ui

√
N(JN,is − Js)−G

U
s

)2
→ 0

in probability.

Step 3.2: 1
N

∑N
i=1

√
N(IN,i − I)→ K and 1

N

∑N
i=1 UiVik

√
N(IN,i − I)→ (2p− 1)qK

From the uniform convergence 1
N

∑N
i=1 Ui

√
N(IN,i − I) → (2p − 1)K in probability we can easily

deduce convergence of

1

N

N∑
i=1

√
N(IN,i − I)→ K as well as

1

N

N∑
i=1

UiVik
√
N(IN,i − I)→ (2p− 1)qK

as follows: We can split 1
N

∑N
i=1

√
N(IN,i − I)→ K in summands similar to AN , ...,FN from Step

3.1. Convergence of AN , CN ,DN , EN follows analogously to Lemma 4.8, we simply use (4.9) instead
of (4.10) for AN , EN and (4.15) instead of (4.16) for DN . Convergence of FN follows from the
uniform convergence of

1

N

N∑
i=1

Ui
√
N(IN,i − I)→ (2p− 1)K

from Step 3.1. For 1
N

∑N
i=1 UiVik

√
N(IN,i − I), use (4.11) instead of (4.10) and (4.17) instead of

(4.16).

Step 3.3:
√
N(IN,i − I)→ Ki

Use B̃i from Lemma 4.4 in the definition of Gi and recall W̃ i from 4.3. With ÃN,i, C̃N,i and D̃N,i
from Lemma 4.8,

√
N(JN,i − J)−Gi = ÃN,it + C̃N,it + D̃N,it + ẼN,it

where

ẼN,it =

∫ t

0

(( 1

N

N∑
j=1

UjVji
√
N(IN,js − Is)

)
− (2p− 1)qK

)
h′(Is)ds.

With Lemma 4.8.10-12 and step 3.2, we obtain sup0≤s≤t
(√
N(JN,is −Js)→ Gis

)2 → 0 in probability.
By Lemma 4.1, sup0≤s≤t

(√
N(IN,is − Is)→ Ki

s

)2 → 0 in probability. �

Proof of Corollary 3.5: First, (3.4) follows from the convergence of 1√
N
XN,0 in Lemma 4.4. For

(3.5), by the law of large numbers,

1

N

N∑
j=1

Z̄jT
N→∞−−−−→

∫ T

0
h(It)dt, as well as

1

N

N∑
i=1

h(IN,i)− h(I)
N→∞−−−−→ 0



Mean-field limit for Hawkes processes 1477

almost surely, uniformly on compact time intervals by Theorem 3.1.1. Therefore

1

N

N∑
j=1

(
ZN,j − Z̄j

)
=

1

N

N∑
j=1

(
ZN,j −

∫ .

0
h(IN,is )ds

)

− 1

N

N∑
j=1

(
Z̄j −

∫ .

0
h(Is)ds

)
+

∫ .

0

1

N

N∑
i=1

h(IN,i)− h(I)ds
N→∞−−−−→ 0,

almost surely. Next, (3.6) follows from the reformulation (4.4), Lemma 4.4 and Theorem 3.1.1. For
(3.7), with Ki as in Theorem 3.1.3,

√
N(h(IN,it )− h(It)) =

√
Nh′(It)(I

N,i
t − It) + o(1) = h′(It)K

i
t + o(1).

Last, for (3.8), recall B,B0 from section 4.2. Use B in the definition of K, then E[BtB
0
t ] =

(2p− 1)qt, t ≥ 0 and

1√
N

N∑
j=1

(
h(IN,j)− h(I)

)
= h′(Is)

1

N

N∑
j=1

√
N
(
IN,j − I

)
+ o(1)

N→∞
====⇒ h′(Is)Ks,

by Theorem 3.1.3, whence

1√
N

N∑
j=1

(
ZN,j −

∫ t

0
h(Is)ds

)
=

1√
N

N∑
j=1

(
ZN,j −

∫ t

0
h(IN,js )ds

)
+

∫ t

0

1√
N

N∑
j=1

(
h(IN,j)− h(I)

)
ds

N→∞
====⇒

∫ t

0

√
h(Is)dB

0
s +

∫ t

0
h′(Is)Ksds

by (3.6). �

Proof of Lemma 4.8: Proof of 1.: This is exactly the statement of Lemma 4.3.

Proof of 2.: Follows from boundedness of h and (4.10).

Proof of 3.: By Lemma 4.51 and Proposition 4.50 b) in Jacod and Shiryaev (2003), the predictable
quadratic variation of

√
NAN,i is given by 1

N

∑N
i=1 Vji

∫ t
0 h(IN,js )ds. By Doob’s inequality, the

assumed uniform convergence of IN,i and boundedness of h,

EUV

[
sup
0≤s≤t

(√
NAN,is

)2] ≤ CEUV [〈√NAN,i〉t] =
1

N

N∑
i=1

Vji

∫ t

0
EUV

[
h(IN,js )

]
ds→ q

∫ t

0
h(Is)ds.

Proof of 4.: Recall WN,j from section 4.3. By boundedness of h, we have

EUV

[ 1

N

N∑
j=1

sup
0≤s≤t

(√
NDN,i

s

)2] ≤ C 1

N

N∑
j=1

(
WN,j

)2
which converges in probability by (4.18).

Proof of 5.: First write

√
N(JN,is − Js) =

√
NAN,it + C̃N,it +

√
NDN,i

t +
1

N

N∑
j=1

UjVji

∫ t

0

(√
N(IN,js − Is)

)
h′(Is)ds.
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By 3., 4. and 11., supi≤N
(√
NAN,it + C̃N,it +

√
NDN,i

t

)
is bounded, and for the last term we can

compute

EUV

[
sup
0≤s≤t

( 1

N

N∑
j=1

UjVji

∫ s

0

(√
N(IN,ju − Iu)

)
h′(Iu)du

)2]

≤ C
∫ t

0
EUV

[ 1

N

N∑
j=1

sup
0≤u≤s

(√
N(IN,ju − Iu)

)2]
ds.

Using Lemma 4.1, we obtain

1

N

N∑
j=1

EUV
[

sup
0≤s≤t

(√
N(IN,js − Is)

)2] ≤ O(1) + C

∫ t

0

1

N

N∑
j=1

EUV

[
sup

0≤u≤s

(√
N(IN,ju − Iu)

)2]
ds.

The desired boundedness follows from Gronwall’s inequality.

Proof of 6.: First,

ANs =
1√
N

N∑
j=1

Uj

[ 1

N

N∑
i=1

UiVji − (2p− 1)q
](
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)

+ (2p− 1)q
1√
N

N∑
j=1

Uj

(
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)
−
∫ t

0

√
h(Is)dB

U
s .

The predictable quadratic variation of the first line is given by

1

N

N∑
j=1

[ 1

N

N∑
i=1

UiVji − (2p− 1)q
]2 ∫ t

0
h(IN,js )ds

which can be seen by Lemma 4.51 and Proposition 4.50 b) in Jacod and Shiryaev (2003), and
converges to 0 almost surely by the assumed uniform convergence of IN,i and (4.10). The second
line converges to 0 by Lemma 4.4. Using Doob’s inequality, we obtain

EUV

[
sup
0≤s≤t

(
ANs
)2]

≤ C EUV

[( 1√
N

N∑
j=1

Uj

[ 1

N

N∑
i=1

UiVji − (2p− 1)q
](
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

))2]

+ C EUV

[( 1√
N

N∑
j=1

Uj

(
Yj

(∫ t

0
h(IN,js )ds

)
−
∫ t

0
h(IN,js )ds

)
−
∫ t

0

√
h(Is)dB

U
s

)2]
→ 0

almost surely.

Proof of 7.: Note that CN,i = 1
N

∑N
i=1 UiC̃N,i, whence

(
CN,i

)2 ≤ 1
N

∑N
i=1

(
C̃N,i

)2, and the result
follows from 11.

Proof of 8.: Follows from boundedness of h and (4.16).

Proof of 9.: By 5. and the uniform convergence in (4.10),

EUV

[
sup
0≤s≤t

(
ENs
)2] ≤ C sup

j≤N

[ 1

N

N∑
i=1

(
UiVji − (2p− 1)q

)]2 ∫ t

0

1

N

N∑
j=1

EUV

[(√
N(IN,js − Is)

)2]
ds

(4.23)

converges to 0 in probability.
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Proof of 10.: This is exactly the statement in (4.8), which is a consequence of Lemma 4.4.

Proof of 11.: Write R1h for the first order remainder in Taylor’s expansion of the function h. We
use U2

j = 1, V 2
ji ≤ 1, Jensen inequality, and some ξN,js between IN,js and Is

EUV

[
sup
0≤s≤t

(
C̃N,is

)2] ≤ 1

N

N∑
j=1

∫ t

0
EUV

[(√
NR1h(IN,js , Is)

)2
ds
]

≤ t 1

N

N∑
j=1

∫ t

0
NEUV

[
(h′(ξN,js )− h′(Is))2(IN,js − Is)2

]
ds

≤ t(h′Lip)2
∫ t

0

N∑
j=1

EUV

[
(IN,js − Is)4

]
ds.

We obtain convergence to zero almost surely of the last term similarly to the Proof of Theorem 1.1:
Recall the decomposition of JN,i − J = AN,i + CN,i + DN,i from (4.20). As the fourth centered
moment of a Poisson distribution with parameter λ is of order λ2 and h is bounded, we obtain∑N

j=1EUV
[
(AN,i)4

]
= O(N−1) similarly to the proof of Lemma 4.3. For DN,i rewrite

N∑
i=1

( 1

N

N∑
j=1

(
UjVji − (2p− 1)q

))4
≤ sup

i≤N

( 1

N

N∑
j=1

(
UjVji − (2p− 1)q

))2 1

N

N∑
j=1

(
WN,i

)2 → 0

in probability, by uniform convergence in (4.10) and (4.18). We obtain, using U4
j , V

4
ji ≤ 1, Jensen’s

inequality and Lemma (4.1),

N∑
i=1

EUV

[
sup
s≤t

(JN,is − Js)4
]
≤

N∑
i=1

EUV

[
sup
s≤t

( 1

N

N∑
j=1

UjVji

∫ s

0
h(IN,ju )− h(Iu)du

)4]
+ op(1)

≤ C
∫ t

0

N∑
j=1

EUV

[
sup
u≤s

(JN,ju − Ju)4
]
ds+ op(1).

Then
∑N

j=1EUV

[
sups≤t(I

N,j
s − Is)

4
]
→ 0 in probability follows from Gronwall’s inequality and

again Lemma (4.1).

Proof of 12.: Follows from boundedness of h and (4.14). �
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