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Abstract. We prove path-by-path uniqueness of solutions to hyperbolic stochastic partial differ-
ential equations when the drift coefficient is the difference of two componentwise monotone Borel
measurable functions of spatial linear growth. The Yamada-Watanabe principle for SDEs driven by
Brownian sheet then allows to derive strong uniqueness for such equation and thus extending the
results in [Bogso, Dieye and Menoukeu Pamen, Elect. J. Probab., 27:1-26, 2022] and [Nualart and
Tindel, Potential Anal., 7(3):661–680, 1997]. Assuming that the drift is globally bounded, we show
that the unique strong solution is Malliavin differentiable. The case of a spatial linear growth drift
coefficient is also studied.

1. Introduction

The existence, uniqueness and Malliavin differentiability of strong solutions of SDEs on the plane
with smooth coefficients have been obtained in several settings of varying generality. However there
are not many results when the coefficients of the such equation are singular. The purpose of the
present paper is two-fold: first we obtain the existence and uniqueness of strong solution of the
following integral form equation

Xs,t = ξ +

∫ t

0

∫ s

0
b(s1, t1, Xs1,t1)ds1dt1 +Ws,t, for (s, t) ∈ R2

+, (1.1)

when W is a d-dimensional Brownian sheet and the drift b is the difference of two componentwise
monotone functions and of spatial linear growth. We address this problem by using the Yamada-
Watanabe argument for SDEs driven by Brownian sheet derived in Nualart and Yeh (1989) (see also
Yeh (1987), Tudor (1983, Remark 2)), that is, we combine weak existence and pathwise uniqueness
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to obtain the existence of a unique strong solution. More particularly, we replace the pathwise
uniqueness by a stronger notion of uniqueness, namely, the path-by-path uniqueness introduced
in Davie (2007) (see also Flandoli (2011)) in the case of SDEs driven by one-parameter Brownian
motion. This notion was introduced in Bogso et al. (2022) for the two parameter process, as follows:

Definition 1.1. Let V (resp. ∂V) be the space of Rd-valued continuous functions on [0, T ]2 (resp.
{0} × [0, T ]) ∪ ([0, T ]× {0}) for some T > 0. We say that the path-by-path uniqueness of solutions
to (1.1) holds when there exists a full P-measure set Ω0 ⊂ Ω such that for all ω ∈ Ω0 the following
statement is true: there exists at most one function y ∈ V which satisfies∫ T

0

∫ T

0
|b(s, t, ys,t)|dsdt <∞, ∂y = x, for some x ∈ ∂V

and

ys,t = x+

∫ s

0

∫ t

0
b(s1, t1, ys1,t1)ds1dt1 +Ws,t(ω), ∀ (s, t) ∈ [0, T ]2. (1.2)

The study of path-by-path uniqueness is motivated by the problem of regularisation by noise
of random ordinary (or partial) differential equations (ODEs or PDEs). In the case of of SDEs
driven by Brownian motion, path-by-path uniqueness of equation (1.1) was proved in Davie (2007)
assuming that the drift is bounded and measurable, and the diffusion is constant. This result
was extended to the non-constant diffusion in Davie (2011) using rough path analysis. There has
now been several generalisation of this result. The authors in Beck et al. (2019) proved a Sobolev
regularity of solutions to the linear stochastic transport and continuity equations with drift in critical
Lp spaces. Such a result does not hold for the corresponding deterministic equations. In Butkovsky
and Mytnik (2019), the authors analysed the regularisation by noise for a non-Lipschitz stochastic
heat equation and proved path-by-path uniqueness for any initial condition in a certain class of a
set of probability one. In Amine et al. (2023), the path-by-path uniqueness for transport equations
driven by the fractional Brownian motion of Hurst index H < 1/2 with bounded and integrable
vector-fields is investigated. In Catellier and Gubinelli (2016); Galeati and Gubinelli (2022) the
authors solved the regularisation by noise problem from the point of view of additive perturbations.
In particular, the work Catellier and Gubinelli (2016) considered generic perturbations without
any specific probabilistic setting whereas authors in Amine et al. (2017) construct a new Gaussian
noise of fractional nature and proved that it has a strong regularising effect on a large class of
ODEs. More recently, the regularisation by noise problem for ODEs with vector fields given by
Schwartz distributions in the setting of non-linear Young type of integrals was studied in Harang and
Perkowski (2021). It was also proved that if one perturbs such an equation by adding an infinitely
regularising path, then it has a unique solution. Let us also mention the recent work Kremp and
Perkowski (2022) in which the authors looked at multidimensional SDEs with distributional drift
driven by symmetric α-stable Lévy processes for α ∈ (1, 2]. In all of the above mentioned works,
the driving noise considered are one parameter processes.

Our method to prove path-by-path uniqueness follows as in Bogso et al. (2022). We show the
path-by-path uniqueness on Γ0 = [0, 1]2. More precisely, we consider the integral equation

Xs,t = ξ +

∫ t

0

∫ s

0
b(s1, t1, Xs1,t1)ds1dt1 +Ws,t for (s, t) ∈ Γ0, (1.3)

where the drift is of spatial linear growth. We denote by V1
0 the space of continuous Rd-valued

functions on Γ0 which vanish on {0}× [0, 1]∪ [0, 1]×{0}. It is shown in Bogso et al. (2022, Section
1) (see also Davie (2007, Section 1)) that path-by-path uniqueness of solutions to (1.3) holds if and
only if, with probability one, there is no nontrivial solution u ∈ V1

0 of

u(s, t) =

∫ s

0

∫ t

0
{b(s1, t1,Ws1,t1 + u(s1, t1))− b(s1, t1,Ws1,t1)}ds1dt1, for (s, t) ∈ Γ0. (1.4)
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This is the statement of Theorem 2.10 which is extended to unbounded drifts in Theorem 2.9. The
proof of Theorem 2.10 relies on some estimates for an averaging operator along the sheet (see Lemma
2.3). This result plays a key role in the proof of a Gronwall type lemma (see Lemma 2.15) which
enables us to prove path-by-path uniqueness of solutions to (1.3). The latter combined with the
weak existence yield the existence of a unique strong solution. A crucial idea to obtain the Gronwall
type inequality is to take advantage of the fact that the set of dyadic numbers is dense in [−1, 1]d.
Note that Lemma 2.6 involves real numbers x ∈ [−1, 1]d and not functions u : [0, 1]2 → [−1, 1]d.
In order to apply Lemma 2.6 in the proof of Lemma 2.15 for a drift that is the difference of two
componentwise monotone functions, one needs to first rewrite (1.4) in each dyadic square and
carefully replace the function u by the maximum of either its positive part or its negative part.
Note that when the drift coefficient is componentwise nondecreasing, similar result can be found in
Bogso et al. (2022); Nualart and Tindel (1997).

Secondly, in this paper, we prove Malliavin smoothness of the unique solution to the SDE (1.3).
When the coefficients are smooth, the authors in Nualart and Sanz (1985, 1989) showed existence,
uniqueness, Malliavin differentiability and smoothness of density of solutions to SDEs on the plane.
Here, assuming that the drift is the difference of two componentwise nondecreasing functions, we
show that the solution is Malliavin differentiable. In the one parameter case, the Malliavin differ-
entiablity of solutions to SDEs with bounded and measeurable coefficients was studied in Meyer-
Brandis and Proske (2010) under an additional commutativity assumption. The later assumption
was removed in Menoukeu-Pamen et al. (2013). It is worth mentioning that in the above work,
the Malliavin smoothness of the unique solutions to the SDEs with rough coefficients and driven
by Brownian motion is obtained as a byproduct of the method used to study existence and unique-
ness. This technique was introduced in Proske (2007) and has now been extensively utilised; see for
example the work Haadem and Proske (2014) for the case of singular SDEs driven by Lévy noise,
Menoukeu-Pamen and Tangpi (2019) for the case of random coefficients and Amine et al. (2023,
2017) for the case of singular SDEs driven by fractional noise. In order to prove the Malliavin
differentiability of the solution to the SDE (1.3), we take advantage of Gaussian white noise theory
and a local time-space integration formula provided in Bogso et al. (2023, Proposition 3.1) to show
that the sequence of approximating sequence of solutions converges strongly in L2(Ω,Rd) to the so-
lution of the SDE (compare with Menoukeu-Pamen et al. (2013)) and we use a compactness criteria
given in Nualart (2006, Lemma 1.2.3) to conclude. An essential step in showing this is to obtain
good enough estimates for the Malliavin derivative of the approximating sequence. This task is not
trivial and requires the use of the Wendroff inequality (Theorem B.1) which plays a crucial role in
the proof.

Equation (1.1) can also be written in a differential form as the following hyperbolic stochastic
partial differential equation


∂2Xs,t

∂s∂t
= b(s, t,Xs,t) + Ẇs,t, (s, t) ∈ Γ,

∂X = ξ,

(1.5)

where ∂X is the restriction of X to the boundary ∂Γ = {0} × R+ ∪ R+ × {0} of Γ := R2
+,

b : Γ × Rd → Rd is Borel measurable, Ẇ = (Ẇ (1), . . . , Ẇ (d)) is a d-dimensional white noise of
the Brownian sheet on Γ given on a probability space (Ω,F ,P) and (s, t) 7−→ ξs,t(ω) is continuous
on ∂Γ for all ω ∈ Ω. Recall that a d-dimensional white noise on Γ is a mean-zero Gaussian process
Ẇ = (Ẇ (1), . . . , Ẇ (d)) indexed by the Borel field B(Γ) on Γ with covariance functions

E
[
Ẇ (i)(A)Ẇ (j)(B)

]
= δi,j |A ∩B|, ∀A,B ∈ B(Γ)
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where | · | denotes the Lebesgue measure on Γ and δi,j = 1 if i = j and δi,j = 0 otherwise. The
process W =

(
Ws,t := Ẇ ([0, s]× [0, t]), (s, t) ∈ Γ

)
is mean-zero Gaussian process with covariance

functions
E
[
W

(i)
s,tW

(j)
s′,t′

]
= δi,j(s ∧ s′)(t ∧ t′), ∀ (s, t), (s′, t′) ∈ Γ.

By the Kolmogorov continuity theorem, there exists a continuous version of W , still denoted by
W , which is a d-dimensional Brownian sheet. We consider a nondecreasing and right-continuous
family F = (Fs,t) of sub-σ-algebras of F each of which contains all negligible sets in (Ω,F ,P) such
that W and ξ are F-adapted, that is Ws,t (respectively, ξs,t) is Fs,t-measurable for every (s, t) ∈ Γ
(respectively, (s, t) ∈ ∂Γ). We refer the reader to Khoshnevisan (2002) for a complete analysis on
multi-parameter processes and their applications.

Equation (1.5) is a particular case of the quasilinear stochastic hyperbolic differential equation
∂2Xs,t

∂s∂t
= b(s, t,Xs,t) + a(s, t,Xs,t)Ẇs,t, (s, t) ∈ Γ

∂X = ξ,

(1.6)

where a : R2
+×Rd → Rd×Rd is a Borel measurable matrix function. A formal π4 rotation transforms

(1.6) into the following nonlinear stochastic wave equation

∂2Yρ,θ
∂ρ2

−
∂2Yρ,θ
∂θ2

= b̃(ρ, θ, Yρ,θ) + ã(ρ, θ, Yρ,θ)
˙̃Wρ,θ, (ρ, θ) ∈ Γ̃, (1.7)

with the Goursat-Darboux type boundary condition ∂Y = ξ̃, where Γ̃ = {(ρ, θ) : θ ≥ 0 and |ρ| ≤ θ},
˙̃W is a d-dimensional white noise of the Brownian sheet on Γ̃, b̃(ρ, θ, y) = b( θ+ρ√

2
, θ−ρ√

2
, y) (the same

applies to ã), Yρ,θ = X θ+ρ√
2
, θ−ρ√

2

, ξ̃θ,θ = ξ√2θ,0 and ξ̃−θ,θ = ξ0,
√

2θ. The π
4 rotation has been used by

Carmona and Nualart (1988) (see also Farré and Nualart (1993, Section 0) and Quer-Sardanyons
and Tindel (2007, Section 1)) to prove existence and uniqueness of solution to (1.7) under a different
boundary condition when ã and b̃ are time-homogeneous.

Equation (1.5) can also be seen as a noisy analog of the so-called Darboux problem given by

∂2y

∂s∂t
= b
(
s, t, y,

∂y

∂s
,
∂y

∂t

)
for (s, t) ∈ [0, T ]× [0, T ], (1.8)

with the initial conditions

y(0, t) = σ(t) on [0, T ] and y(s, 0) = τ(s) on [0, T ], (1.9)

where σ and τ are absolutely continuous on [0, T ]. Using Caratheodory’s theory of differential
equations, Deimling (1970) proved an existence theorem for the system (1.8)-(1.9) when b is Borel
measurable in the first two variables and bounded and continuous in the last three variables. Hence
the results obtained here can also be seen as a generalisation to the stochastic setting of the above
mentioned one.

The remainder of the paper is organised as follows: In Section 2, we provide a path-by-path
uniqueness result for (1.3) when the drift b is of linear growth. In Section 3, we study the Malliavin
differentiability of the strong solution to (1.3). We show that this solution is Malliavin differen-
tiable for uniformly bounded drifts and when the drift b is of linear growth, we obtain Malliavin
differentiability of the solution only for sufficiently small time parameters.

2. Existence and uniqueness results

In this section, we show that the SDE (1.3) has a unique strong solution. Our approach is
based on the Yamada-Watanabe principle introduced in Nualart and Yeh (1989). As pointed out
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earlier, instead of showing the weak existence and pathwise uniqueness, we show weak existence and
path by path uniqueness (which implies pathwise uniqueness as shown in Catellier and Gubinelli
(2016)). The following preliminary results that have been obtained by applying a local time-space
integration formula for Brownian sheets (see Bogso et al. (2023) for more information) are needed
to show path-by-path uniqueness.

2.1. Preliminary results. Let f : [0, 1]2 × Rd → R be a continuous function such that for any
(s, t) ∈ [0, 1]2, f(s, t, ·) is differentiable and for any i ∈ {1, · · · , d}, the partial derivative ∂xif
is continuous. We also know from Bogso et al. (2023, Proposition 3.1) that for a d-dimensional
Brownian sheet

(
Ws,t := (W

(1)
s,t , · · · ,W

(d)
s,t ); s ≥ 0, t ≥ 0

)
defined on a filtered probability space and

for any (s, t) ∈ [0, 1]2 and any i ∈ {1, · · · , d}, we have∫ s

0

∫ t

0
∂xif(s1, t1,Ws1,t1)dt1ds1

=−
∫ s

0

∫ t

0
f(s1, t1,Ws1,t1)

dt1W
(i)
s1,t1

s1
ds1 −

∫ s

0

∫ 1

1−t
f(s1, 1− t1, Ŵs1,t1)

dt1B
(i)
s1,t1

s1
ds1 (2.1)

+

∫ s

0

∫ 1

1−t
f(s1, 1− t1, Ŵs1,t1)

Ŵ
(i)
s1,t1

s1(1− t1)
dt1ds1,

where Ŵ (i) = (Ŵ
(i)
s1,t1

:= W
(i)
s1,1−t1 ; 0 ≤ s1, t1 ≤ 1) and B(i) := (B

(i)
s1,t1

; 0 ≤ s1, t1 ≤ 1) is a stan-

dard Brownian sheet with respect to the filtration of Ŵ (i), independent of (W
(i)
s,1 , s ≥ 0). Here

“dt1W
(i)
s1,t1

", resp. “dt1B
(i)
s1,t1

" denotes the stochastic line integral with respect to the Brownian
motion (W

(i)
s1,t1

; 0 ≤ t1 ≤ 1), resp. (B
(i)
s1,t1

; 0 ≤ t1 ≤ 1) for s1 fixed.
The following result will be extensively used and can be found in Bogso et al. (2022).

Proposition 2.1. LetW :=
(
W

(1)
s,t , . . . ,W

(d)
s,t ; (s, t) ∈ [0, 1]2

)
be a Rd-valued Brownian sheet defined

on a filtered probability space (Ω,F ,F,P), where F = (Fs,t; s, t ∈ [0, 1]). Let b ∈ C
(
[0, 1]2, C1(Rd)

)
,

‖b‖∞ ≤ 1. Let (a, a′, ε, ε′) ∈ [0, 1]4. Then there exist positive constants α and C (independent of
∇yb, a, a′, ε and ε′) such that

E
[

exp
(
αε′ε

∣∣∣ ∫ 1

0

∫ 1

0
∇yb

(
s, t, W̃ ε,ε′

s,t

)
dtds

∣∣∣2)] ≤ C. (2.2)

Here ∇yb denotes the gradient of b with respect to the third variable, | · | is the usual norm on Rd

and the Rd-valued two-parameter Gaussian process W̃ ε,ε′ :=
(
W̃

(ε,ε′,1)
s,t , . . . , W̃

(ε,ε′,d)
s,t ; (s, t) ∈ [0, 1]2

)
is given by

W̃
(ε,ε′,i)
s,t = W

(i)
a′+ε′s,a+εt −W

(i)
a′,a+εt −W

(i)
a′+ε′s,a +W

(i)
a′,a for all i ∈ {1, . . . , d}.

For every 0 ≤ a < γ ≤ 1, 0 ≤ a′ < γ′ ≤ 1 and for (x, y) ∈ Rd let us define the function % by:

%(x, y) =

∫ γ′

a′

∫ γ

a

{
b(s, t,Ws,t + x)− b(s, t,Ws,t + y)

}
dtds.

Here is a direct consequence of the previous estimation.

Corollary 2.2. Let b : [0, 1]2 × Rd → R be a bounded and Borel measurable function such that
‖b‖∞ ≤ 1. Let α, C and W̃ ε,ε′ be defined as in Proposition 2.1. Then the following two bounds are
valid:
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(1) For every (x, y) ∈ R2d, x 6= y and every (ε, ε′) ∈ [0, 1]2, we have

E
[

exp
( αε′ε

|x− y|2
∣∣∣ ∫ 1

0

∫ 1

0

{
b(s, t, W̃ ε′,ε

s,t + x)− b(s, t, W̃ ε′,ε
s,t + y)

}
dtds

∣∣∣2)] ≤ C. (2.3)

(2) For any (x, y) ∈ R2 and any η > 0, we have

P
(
|%(x, y)| ≥ η

√
(γ − a)(γ′ − a′)|x− y|

)
≤ Ce−αη2 . (2.4)

For any positive integer n, we divide [0, 1] into 2n intervals Ink =]k2−n, (k + 1)2−n]. We define
the random real valued function %nkk′ on [−1, 1]2d by

%nkk′(x, y) :=

∫
Ink′

∫
Ink

{b(s, t,Ws,t + x)− b(s, t,Ws,t + y)} dtds.

The next two lemmas provide an estimate for %nkk′(x, y) and %nkk′(0, x) for every dyadic numbers
x, y ∈ [−1, 1]d. Their proofs can be found in Bogso et al. (2022, Section 5).

Lemma 2.3. Suppose b : [0, 1]2 × Rd → R is a Borel measurable function such that |b(s, t, x)| ≤ 1
everywhere on [0, 1]2 × Rd. Then there exists a subset Ω1 of Ω with P(Ω1) = 1 such that for all
ω ∈ Ω1,

|%nkk′(x, y)(ω)| ≤ C1(ω)2−n
[√

n+
(

log+ 1

|x− y|

)1/2]
|x− y| on Ω1

for all dyadic numbers x, y ∈ [−1, 1]d and all choices of integers n, k, k′ with n ≥ 1, 0 ≤ k, k′ ≤
2n − 1, where log+z = max{0, log z} for z ∈ (0,∞) and C1(ω) is a positive random constant that
does not depend on x, y, n, k and k′.

Lemma 2.4. Suppose b is as in Lemma 2.3. Then there exists a subset Ω2 of Ω with P(Ω2) = 1
such that for all ω ∈ Ω2, for any choice of n, k, k′, and any choice of a dyadic number x ∈ [−1, 1]d

|%nkk′(0, x)(ω)| ≤ C2(ω)
√
n2−n

(
|x|+ 2−4n

)
, (2.5)

where C2(ω) is a positive random constant that does not depend on x, n, k and k′.

Observe that the above two results require only the drift to be bounded and Borel measurable.
Assuming in addition b is nondecreasing, the next two results state that Lemmas 2.3 and 2.4 can
be extended to any x, y ∈ [−1, 1]d (not only dyadic). The proof of Lemma 2.6 is omitted since it is
similar to that of Lemma 2.5.

Lemma 2.5. Suppose b, Ω1 and C1 are as in Lemma 2.3. Suppose in addition that b is componen-
twise nondecreasing. Then for all ω ∈ Ω1,

|%nkk′(x, y)(ω)| ≤ C1(ω)2−n
[√

n+
(

log+ 1

|x− y|

)1/2]
|x− y| on Ω1

for all x, y ∈ [−1, 1]d and all choices of integers n, k, k′ with n ≥ 1, 0 ≤ k, k′ ≤ 2n − 1.

Proof : Fix ω ∈ Ω1, x, y ∈ [−1, 1]d, n ≥ 1 and 0 ≤ k, k′ ≤ 2n − 1. Suppose without loss of
generality that %nkk′(x, y)(ω) > 0. For every i ∈ {1, . . . , d} and ` ∈ N, define y−i,` = 2−`[2`yi],
x+
i,` = 1−2−`[2`(1−xi)], y−` = (y−1,`, . . . , y

−
d,`) and x

+
` = (x+

1,`, . . . , x
+
d,`). Observe that x+

` (respectively
y−` ) is a componentwise non-increasing (respectively non-decreasing) sequence of dyadic vectors
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that converges to x (respectively y). Hence, as b(s, t,Ws,t(ω) + x) ≤ b(s, t,Ws,t(ω) + x+
` ) and

b(s, t,Ws,t(ω) + y−` ) ≤ b(s, t,Ws,t(ω) + y), it follows from Lemma 2.3 that

|%nkk′(x, y)(ω)| = %nkk′(x, y)(ω) =

∫
Ink′

∫
Ink

{b(s, t,Ws,t(ω) + x)− b(s, t,Ws,t(ω) + y)} dtds

≤
∫
Ink′

∫
Ink

{b(s, t,Ws,t(ω) + x+
` )− b(s, t,Ws,t(ω) + y−` )}dtds

≤C1(ω)2−n
[√

n+
(

log+ 1

|x+
` − y

−
` |

)1/2]
|x+
` − y

−
` |.

Then, letting ` tends to ∞, we obtain the result. �

Lemma 2.6. Suppose b, Ω2 and C2 are as in Lemma 2.4. Suppose in addition that b is componen-
twise nondecreasing. Then for all ω ∈ Ω2

|%nkk′(0, x)(ω)| ≤ C2(ω)
√
n2−n

(
|x|+ 2−4n

)
on Ω2

for all x ∈ [−1, 1]d and all choices of integers n, k, k′ with n ≥ 1, 0 ≤ k, k′ ≤ 2n − 1.

2.2. Main results and proofs. In this section, we prove the path-by-path uniqueness of the solution
to (1.3). We use this result to derive the existence and uniqueness of a strong solution to (1.3). We
assume the following conditions on the drift. We endow Rd with the partial order “�" defined by

x � y when xi ≤ yi for all i ∈ {1, . . . , d}.

Hypothesis 2.7.
(1) b : [0, 1]2 × Rd → Rd is Borel measurable and admits the decomposition b = b̂ − b̌, where

b̂(s, t, ·) and b̌(s, t, ·) are componentwise nondecreasing functions, that is each component b̂i
and b̌i, 1 ≤ i ≤ d is componentwise nondecreasing. Precisely, for every x, y ∈ Rd,

x � y ⇒ b̂i(s, t, x) ≤ b̂i(s, t, y) and b̌i(s, t, x) ≤ b̌i(s, t, y).

(2) b is of linear growth uniformly on (s, t); precisely, there exists a positive constant M such
that

|b(s, t, x)| ≤M(1 + |x|), ∀ (s, t, x) ∈ [0, 1]2 × Rd.

The main results of this section are the following :

Theorem 2.8. Suppose b satisfies Hypothesis 2.7. Then the SDE (1.3) admits a unique strong
solution.

The above result constitutes an extension to those in Bogso et al. (2022); Nualart and Tindel
(1997) by allowing the drift b to be the difference of two monotone functions. It is proved by using
the Yamada-Watanabe principle. However, instead of showing the pathwise uniquess we show the
following path-by-path uniqueness property.

Theorem 2.9. Suppose b satisfies Hypothesis 2.7. Then for almost every Brownian sheet path W ,
there exists a unique continuous function X : [0, 1]2 → Rd satisfying (1.3).

The proof of Theorem 2.9 is omitted since it follows the same lines as that of Bogso et al. (2022,
Theorem 3.2). It follows from both Gronwall inequality on the plane and the next result.

Theorem 2.10. Suppose b is as in Theorem 2.9. Suppose in addition that b is uniformly bounded.
Then for almost every Brownian sheet path W , there exists a unique continuous function X :
[0, 1]2 → Rd satisfying (1.3).
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Proof of Theorem 2.8: It follows from the conditions of the theorem that, (1.3) has a weak solution.
In addition, since path-by-path uniqueness implies pathwise uniqueness (see e.g. Beck et al. (2019,
Page 9, Section 1.8.4) where the result is provided in the one-parameter case. This may be extend
easily to the two-parameter case.), the result follows from the Yamada-Watanabe type principle for
SDEs driven by Brownian sheets (see e.g. Nualart and Yeh (1989)). �

Corollary 2.11. Suppose that b is as in Theorem 2.9. Then for almost every Brownian sheet path
W , there exists a unique continuous function X : [0, 1]2 → Rd satisfying (1.5).

Corollary 2.12. Suppose that b is as in Theorem 2.9. Then for almost every Brownian sheet path
W , there exists a unique continuous function X : [0, 1]2 → Rd satisfying the stochastic wave equation
(1.7) when a is the identity matrix.

Below we provide a non trivial example of functions satisfying hypothesis of Theorem 2.9. This
comes from the Jordan decomposition of real-valued functions of bounded variation on R (see e.g.
Folland (1999)[Theorem 3.27, b.]).

Example 2.13. Let g1, . . . , gd be real-valued functions of bounded variation on R and let h1, . . . , hd
be the functions defined on R by hi(z) = |z|gi(z) for all z ∈ R and i. It follows from Jordan
decomposition that gi = ĝi − ǧi, where ĝi, ǧi are two bounded nondecreasing functions on R. It
also holds that hi = ĥi − ȟi, where ĥi, ȟi are two nondecreasing functions of linear growth on
R. This follows from the fact that z 7−→ |z| is the difference of two non-decreasing functions and
z 7−→ |z|(ĝi(z)− ĝi(0)) (resp. z 7−→ |z|(ǧi(z)− ǧi(0))) is non-decreasing on R. Then

1. the function b := (b1, . . . , bd) : [0, 1]2 × Rd → Rd defined by

bi(s, t, x1, . . . , xd) = gi

(
κi(s, t) +

d∑
`=1

x`

)
, for all (s, t, x1, . . . , xd) and i

satisfies Hypothesis 2.7 for any Borel mesurable functions κ1, . . . , κd : [0, 1]2 → R,
2. the function b̃ := (b̃1, . . . , b̃d) : [0, 1]2 × Rd → Rd defined by

b̃i(s, t, x1, . . . , xd) = hi

(
ζi(s, t) +

d∑
`=1

x`

)
, for all (s, t, x1, . . . , xd) and i

satisfies Hypothesis 2.7 for any bounded Borel mesurable functions ζ1, . . . , ζd : [0, 1]2 → R.

2.3. Proof of Theorem 2.10. In this subsection, we prove Theorem 2.10. As already pointed out in
the introduction, this is equivalent to showing that for almost all Brownian sheet path, the unique
continuous solution u to (1.4) is zero. More precisely, Theorem 2.10 is equivalent to:

Theorem 2.14. Let W :=
(
Ws,t, (s, t) ∈ [0, 1]2

)
be a d-dimensional Brownian sheet defined on a

filtered probability space (Ω,F ,F,P), where F = {Fs,t}s,t∈[0,1]. Let b : [0, 1]2 × Rd → Rd be a Borel
measurable function such that for every i ∈ {1, . . . , d}, bi(s, t, ·) = b̂i(s, t, ·)− b̌i(s, t, ·), where b̂i, b̌i
are bounded and componentwise nondecreasing in x for all (s, t). Then there exists Ω1 ⊂ Ω with
P(Ω1) = 1 such that for any ω ∈ Ω1, u = 0 is the unique continuous solution of the integral equation

u(s, t) =

∫ t

0

∫ s

0
{b(s1, t1,Ws1,t1(ω) + u(s1, t1))− b(s1, t1,Ws1,t1(ω))} ds1 dt1, ∀ (s, t) ∈ [0, 1]2.

(2.6)

The proof of Theorem 2.14 relies on the following Gronwall type result.
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Lemma 2.15. Suppose conditions of Theorem 2.14 are valid. Then there exists Ω1 ⊂ Ω with
P(Ω1) = 1 and a positive random constant C2 such that for any ω ∈ Ω1, any sufficiently large
positive integer n, any (k, k′) ∈ {0, 1, 2, · · · , 2n}2, any β(n) ∈

[
2−43n/4 , 2−42n/3

]
, and any solution u

of the integral equation

u(s, t)− u(s, 0)− u(0, t) + u(0, 0)

=

∫ t

0

∫ s

0

{
b(s1, t1,Ws1,t1(ω) + u(s1, t1))− b(s1, t1,Ws1,t1(ω))

}
ds1 dt1, ∀ (s, t) ∈ [0, 1]2 (2.7)

satisfying
max
1≤i≤d

max{|ui|(s, 0), |ui|(0, t)} ≤ β(n), ∀ (s, t) ∈ [0, 1]2, (2.8)

we have

max
1≤i≤d

max{un,i(k, k′), un,i(k, k′)} ≤ 3k+k′−1
(

1 + 3C2(ω)
√
dn2−n

)k+k′

β(n) , (2.9)

where un = (un,1, . . . , un,d), un = (un,1, . . . , un,d) and for every i ∈ {1, . . . , d},

un,i(k, k
′) = sup

(s,t)∈In,k−1×In,k′−1

max{0, ui(s, t)} and un,i(k, k′) = sup
(s,t)∈In,k−1×In,k′−1

max{0,−ui(s, t)}.

Proof : Suppose without loss of generality that ‖b̂i‖∞ ≤ 1 and ‖b̌i‖∞ ≤ 1 for every i ∈ {1, . . . , d}.
By Lemma 2.6, there exists a subset Ω2 ⊂ Ω with P(Ω2) = 1 such that for all ω ∈ Ω2,

max
1≤i≤d

∣∣∣%̂(i)
nkk′(0, x)(ω)

∣∣∣ ≤ C2(ω)
√
n2−n (|x|+ β(n)) on Ω2 (2.10)

and

max
1≤i≤d

∣∣∣%̌(i)
nkk′(0, x)(ω)

∣∣∣ ≤ C2(ω)
√
n2−n (|x|+ β(n)) on Ω2 (2.11)

for all integers n, k, k′ with n ≥ 1, 0 ≤ k, k′ ≤ 2n − 1 and all x ∈ [−1, 1]d, where

%̂
(i)
nkk′(0, x)(ω) =

∫ (k+1)2−n

k2−n

∫ (k′+1)2−n

k′2−n

{
b̂i(s1, t1,Ws1,t1(ω) + x)− b̂i(s1, t1,Ws1,t1(ω))

}
ds1 dt1

and

%̌
(i)
nkk′(0, x)(ω) =

∫ (k+1)2−n

k2−n

∫ (k′+1)2−n

k′2−n

{
b̌i(s1, t1,Ws1,t1(ω) + x)− b̌i(s1, t1,Ws1,t1(ω))

}
ds1 dt1.

For any ω ∈ Ω2, we choose n ∈ N∗ such that C2(ω)
√
dn2−n ≤ 1/6 and split the set [0, 1] × [0, 1]

onto 4n squares Ink × Ink′ . We set u = (u1, . . . , ud), with u+ = (u+
1 , . . . , u

+
d ), u− = (u−1 , . . . , u

−
d ),

u+
i = max{0, ui} and u−i = max{0,−ui} for every i ∈ {1, . . . , d}. Since b̂i(s1, t1, ·) and b̌i(s1, t1, ·)

are nondecreasing, we deduce from (2.7) that for all i ∈ {1, . . . , d} and all (s, t) ∈ Ink × Ink′ ,
ui(s, t)− ui(s, k′2−n)− ui(k2−n, t) + ui(2

−n(k, k′))

=

∫ s

k2−n

∫ t

k′2−n

{
b̂i(s1, t1,Ws1,t1(ω) + u(s1, t1))− b̂i(s1, t1,Ws1,t1(ω))

}
ds1 dt1

−
∫ s

k2−n

∫ t

k′2−n

{
b̌i(s1, t1,Ws1,t1(ω) + u(s1, t1))− b̌i(s1, t1,Ws1,t1(ω))

}
ds1 dt1

≤
∫ s

k2−n

∫ t

k′2−n

{
b̂i(s1, t1,Ws1,t1(ω) + u+(s1, t1))− b̂i(s1, t1,Ws1,t1(ω))

}
ds1 dt1

−
∫ s

k2−n

∫ t

k′2−n

{
b̌i(s1, t1,Ws1,t1(ω)− u−(s1, t1))− b̌i(s1, t1,Ws1,t1(ω))

}
ds1 dt1.
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Then, using the fact that max{0, x+ y} ≤ max{0, x}+ max{0, y}, we have

u+
i (s, t) ≤max{0, ui(s, k′2−n) + ui(k2−n, t)− ui(2−n(k, k′))}

+

∫ s

k2−n

∫ t

k′2−n

{
b̂i(s1, t1,Ws1,t1(ω) + u+(s1, t1))− b̂i(s1, t1,Ws1,t1(ω))

}
ds1 dt1

−
∫ s

k2−n

∫ t

k′2−n

{
b̌i(s1, t1,Ws1,t1(ω)− u−(s1, t1))− b̌i(s1, t1,Ws1,t1(ω))

}
ds1 dt1.

As a consequence,

u+
i (s, t) ≤ u+

i (s, k′2−n) + u+
i (k2−n, t) + u−i (2−n(k, k′)) + %̂

(i)
nkk′

(
0, un(k + 1, k′ + 1)

)
(ω) (2.12)

− %̌(i)
nkk′

(
0,−un(k + 1, k′ + 1)

)
(ω)

for all (s, t) ∈ Ink × Ink′ . Similarly, we can show that

u−i (s, t) ≤ u−i (s, k′2−n) + u−i (k2−n, t) + u+
i (2−n(k, k′))− %̂(i)

nkk′
(
0,−un(k + 1, k′ + 1)

)
(ω) (2.13)

+ %̌
(i)
nkk′

(
0, un(k + 1, k′ + 1)

)
(ω)

for all (s, t) ∈ Ink × Ink′ . For any k, k′ ∈ {1, 2, · · · , 2n} and i ∈ {1, . . . , d}, we define ûn,i(k, k′) =
max{un,i(k, k′), un,i(k, k′)}. We deduce from Inequalities (2.10)-(2.13) that

un,i(k + 1, k′ + 1) ≤ max
1≤j≤d

ûn,j(k, k
′ + 1) + max

1≤j≤d
ûn,j(k + 1, k′) + max

1≤j≤d
ûn,j(k, k

′)

+ 2C2(ω)
√
n2−n

(√
d max

1≤j≤d
ûn,j(k + 1, k′ + 1) + β(n)

)
and

un,i(k + 1, k′ + 1) ≤ max
1≤j≤d

ûn,j(k, k
′ + 1) + max

1≤j≤d
ûn,j(k + 1, k′) + max

1≤j≤d
ûn,j(k, k

′)

+ 2C2(ω)
√
n2−n

(√
d max

1≤j≤d
ûn,j(k + 1, k′ + 1) + β(n)

)
.

Then

max
1≤i≤d

ûn,i(k + 1, k′ + 1) ≤ max
1≤i≤d

ûn,i(k, k
′ + 1) + max

1≤i≤d
ûn,i(k + 1, k′) + max

1≤i≤d
ûn,i(k, k

′)

+ 2C2(ω)
√
n2−n

(√
d max

1≤i≤d
ûn,i(k + 1, k′ + 1) + β(n)

)
.

Since C2(ω)
√
dn2−n ≤ 1/6, we have (1− 2C2(ω)

√
dn2−n)−1 ≤ (1 + 3C2(ω)

√
dn2−n) and the above

inequality implies

max
1≤i≤d

ûn,i(k + 1, k′ + 1) ≤(1 + 3C2(ω)
√
dn2−n) ·

(
max
1≤i≤d

ûn,i(k, k
′ + 1) + max

1≤i≤d
ûn,i(k + 1, k′)+

+ max
1≤i≤d

ûn,i(k, k
′) + 2C2(ω)

√
n2−nβ(n)

)
.

The desired result then follows by induction on k and k′ as in the proof of Lemma 3.9 in Bogso
et al. (2022).

�

We now turn to the proof of Theorem 2.14.
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Proof of Theorem 2.14: Choose Ω1, ω, n and β(n) as in Lemma 2.15. Let u be a solution of (2.6).
We have max{|u|(s, 0), |u|(0, t)} = 0 ≤ β(n) for all (s, t) ∈ [0, 1]2. Moreover, we deduce from (2.9)
that

sup
k,k′∈{0,1,2,··· ,2n}

max
1≤i≤d

max{un,i(k, k′), un,i(k, k′)} ≤ 22n+2
β(n) (2.14)

for all n satisfying C2(ω)
√
dn2−n ≤ 1/9. Since the right hand side of (2.14) converges to 0 as n

goes to ∞, then, for all (s, t), we have u(s, t) = 0 on Ω1. �

3. Malliavin regularity

In this section we study the Malliavin regularity of the strong solution to (1.3).

3.1. Basic facts on Malliavin calculus and compactness criterion on the plane. We first recall some
basic facts on Malliavin calculus for Wiener functionals on the plane which can be found in Nu-
alart and Sanz (1985, Section 2) (see also Nualart and Sanz (1989, Section 1)). Let (Ω,F ,P) be
the canonical space associated to the d-dimensional Brownian sheet, that is Ω is the space of all
continuous functions ω : Γ → Rd which vanish on the axes, P is the Wiener measure and F is the
completion of the Borel σ-algebra of Ω with respect to P. Let (Fs,t, (s, t) ∈ Γ) denote the nonde-
creasing family of σ-algebras where Fs,t is generated by the functions (s1, t1) 7→ ω(s1 ∧ s, t1 ∧ t),
(s1, t1) ∈ Γ, ω ∈ Ω and the null sets of F . Consider the following subset H of Ω:

H =
{
ω ∈ Ω :

there exists ω̇ ∈ L2(Γ,Rd) such that
ω(s, t) =

∫ s
0

∫ t
0 ω̇(s1, t1) dt1ds1, for any (s, t) ∈ Γ

}
.

Endowed with the inner product

〈ω1, ω2〉H =

d∑
i=1

∫
Γ
ω̇

(i)
1 (s1, t1)ω̇

(i)
2 (s1, t1)ds1dt1,

the set H is a Hilbert space. We call Wiener functional any measurable function defined on the
Wiener space (Ω,F ,P). A Wiener functional F : Ω → R is said to be smooth if there exists some
integer n ≥ 1 and an infinitely differentiable function f on Rn such that

(i) f and all its derivatives have at most polynomial growth order,
(ii) F (ω) = f(ω(s1, t1), . . . , ω(sn, tn)) for some (s1, t1), . . . , (sn, tn) ∈ Γ.

Every smooth functional F is Fréchet-differentiable and the Fréchet-derivative of F along any vector
h ∈ H is given by

DF (h) =

d∑
j=1

n∑
i=1

∂f

∂x
(j)
i

(ω(s1, t1), . . . , ω(sn, tn))h(j)(si, ti) =

d∑
j=1

∫
Γ
ξj(q, r)ḣ

(j)(q, r)dqdr,

where

ξj(q, r) =

n∑
i=1

∂f

∂x
(j)
i

(ω(s1, t1), . . . , ω(sn, tn))1[0,si]×[0,ti](q, r).

Let D2,1 denote the closed hull of the family of smooth functionals with respect to the norm

‖F‖22,1 = ‖F‖2L2(Ω) + ‖DF‖2L2(Ω;H).

Now we present a useful characterization of relatively compact subsets in the space L2(Ω,Rd).
Let us recall the following compactness criterion provided in Da Prato et al. (1992, Theorem 1).
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Theorem 3.1. Let A be a self-adjoint compact operator on H. Then, for any c > 0, the set

G =
{
G ∈ D2,1 : ‖G‖L2(Ω) + ‖A−1DG‖L2(Ω;H) ≤ c

}
is relatively compact in L2(Ω,Rd).

In order to apply the above result, we consider the fractional Sobolev space:

G2,p
β (U ;R) :=

{
g ∈ L2(U,R) :

∫
U

∫
U

|g(u)− g(u′)|2

|u− u′|p+2β
dudu′ <∞

}
,

where U is a domain of Rp, p ≥ 1 and the norm is given by

‖g‖G2,p
β (U ;R)

:= ‖g‖L2(U ;R) +
(∫

U

∫
U

|g(u)− g(u′)|2

|u− u′|p+2β
dudu′

)1/2
.

We need the next compact embedding result from Palatucci et al. (2013, Lemma 10) (see also
Di Nezza et al. (2012, Theorem 7.1)).

Lemma 3.2. Let p ≥ 1, U ⊂ Rp be a Lipschitz bounded open set and J be a bounded subset of
L2(U ;R). Suppose that

sup
g∈J

∫
U

∫
U

|g(u)− g(u′)|2

|u− u′|p+2β
dudu′ <∞

for some β ∈ (0, 1). Then J is relatively compact in L2(U ;R).

As a consequence of Theorem 3.1 and Lemma 3.2, we have the following compactness criterion
for subsets in the space L2(Ω,Rd).

Corollary 3.3. Denote by FW∞ the σ-algebra generated by the d-dimensional Brownian sheet W =
(W (1), . . . ,W (d)). Let (X(n), n ∈ N) be a sequence of (FW∞ ,B(Rd))-measurable random variables
and let Ds,t be the Malliavin derivative associated with the random vector Ws,t = (W

(1)
s,t , . . . ,W

(d)
s,t ).

Suppose

sup
n∈N
‖X(n)‖L2(Ω,Rd) <∞ and sup

n∈N
‖D·,·X(n)‖L2(Ω×[0,1]2,Rd×d) <∞ (3.1)

as well as

sup
n∈N

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

E
[
‖Ds,tX

(n) −Ds′,t′X
(n)‖2

]
(|s− s′|+ |t− t′|)2+2β

dsds′dtdt′ <∞ (3.2)

for some β ∈ (0, 1). Then (X(n), n ∈ N) is relatively compact in L2(Ω,Rd).

Proof : The proof is inspired from Haadem and Proske (2014, Section 5). We consider the symmetric
form L on L2((0, 1)2,Rd) defined as

L(f, g) =

∫ 1

0

∫ 1

0
f(s, t) · g(s, t)dsdt+

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(f(s, t)− f(s′, t′)) · (g(s, t)− g(s′, t′))

(|s− s′|+ |t− t′|)2+2β
dsds′dtdt′

for functions f , g in the dense domain D(L) ⊂ L2((0, 1)2,Rd) and a fixed β ∈ (0, 1), where

D(L) =
{
g : ‖g‖2L2((0,1)2,Rd) +

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

|g(s, t)− g(s′, t′)|2

(|s− s′|+ |t− t′|)2+2β
dsds′dtdt′ <∞

}
.

Then L is a positive symmetric closed form and, by Kato’s first representation theorem (see e.g.
Kato (1995)), one can find a positive self-adjoint operator TL such that

L(f, g) = 〈f, TLg〉L2((0,1)2,Rd)

for all g ∈ D(TL) and f ∈ D(L). Further, one may observe that the form L is bounded from below
by a positive number. Indeed,

L(g, g) ≥ ‖g‖L2((0,1)2,Rd) (3.3)
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for all g ∈ D(L). Hence, we have that D(L) = D(T
1/2
L ).

Now, define the operator A as A = T
1/2
L . It follows from Lemma 1 in Lewis (1982, Section 1)

(see also Haadem and Proske (2014, Lemma 9)) and Lemma 3.2 applied to p = 2, U = (0, 1)2 that
A has a discrete spectrum and a compact inverse A−1. Then, using (3.1)-(3.3), the operator A and
the sequence (X(n), n ∈ N) satisfy the assumptions of Theorem 3.1. �

3.2. Malliavin differentiability for bounded drifts. In this subsection, we assume in addition the drift
b is bounded. The main result of this subsection which significantly generalised those in Nualart
and Sanz (1989) when the diffusion is constant is the following

Theorem 3.4. The strong solution {Xξ
s,t, s, t ∈ [0, 1]} of the SDE (1.3) is Malliavin differentiable.

The proof of this theorem is done is two steps:
Step 1: We use standard approximation procedure to approximate the drift coefficient b = b̂− b̌

by a sequence of functions
bn := b̂n − b̌n, n ≥ 1

such that b̂n = (b̂1,n, . . . , b̂d,n), b̌n = (b̌1,n, . . . , b̌d,n), (b̂j,n)n≥1 and (b̌j,n)n≥1 are smooth and compo-
nentwise non-decreasing functions with supn ‖b̂j,n‖∞ ≤ ‖b̂j‖∞ <∞ and supn ‖b̌j,n‖∞ ≤ ‖b̌j‖∞ <∞.
In addition, (b̂n)n≥1 (respctively, (b̌n)n≥1) converges to b̂ (respctively, b̌) in (s, t, x) ∈ [0, 1]2 × Rd
ds × dt × dx-a.e. We know that for such smooth drift coefficients, the corresponding SDEs have
a unique strong solution denoted by Xξ,n. We then show that for each s, t ∈ [0, 1], the sequence
(Xξ,n

s,t )n≥1 is relatively compact in L2(Ω,P;Rd).
Step 2: We show that the the sequence of solutions (Xξ,n)n≥1 converges strongly in L2(Ω,P;Rd).
From Step 1 and Step 2, the result will follow by application of a compactness criteria Nualart

(2006, Lemma 1.2.3).
The next result corresponds to a L2(Ω) compactness criteria. It is analogous to the result derived

in Menoukeu-Pamen et al. (2013) for the case of Brownian motion.

Theorem 3.5. For every (s, t) ∈ Γ0, the sequence (Xξ,n
s,t )n≥1, is relatively compact in L2(Ω,P;Rd).

The proof of the above theorem uses Corollary 3.3, which in our case is reduced to proving:

Lemma 3.6. There exists C1 > 0 such that for every (s, t) ∈ Γ0, the sequence (Xξ,n
s,t )n≥1 satisfies

sup
n≥1
‖Xξ,n

s,t ‖2L2(Ω,P;Rd) ≤ C1 (3.4)

and

sup
n≥1

sup
0≤r≤s
0≤u≤t

E
[
‖Dr,uX

ξ,n
s,t ‖2

]
≤ C1. (3.5)

Moreover for all 0 ≤ r′, r ≤ s, 0 ≤ u′, u ≤ t,

E
[
‖Dr,uX

ξ,n
s,t −Dr′,u′X

ξ,n
s,t ‖2

]
≤ C1(|r − r′| + |u− u′|), (3.6)

where ‖ · ‖ denotes the max norm.

Remark 3.7. If (3.6) is satisfied, then for any β ∈ (0, 1/2), (3.2) holds. Indeed, since, for any s, s′,
t, t′, one has

|s− s′|1/2|t− t′|1/2 ≤ 1

2
(|s− s′|+ |t− t′|),
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then for any n ∈ N,∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

E
[
‖Ds,tX

(n) −Ds′,t′X
(n)‖2

]
(|s− s′|+ |t− t′|)2+2β

dsds′dtdt′

≤C1

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

dsds′dtdt′

(|s− s′|+ |t− t′|)1+2β
≤ C1

2

(∫ 1

0

∫ 1

0

dsds′

|s− s′|1/2+β

)(∫ 1

0

∫ 1

0

dtdt′

|t− t′|1/2+β

)
<∞.

To prove the result above, we need some preliminary estimates.

Lemma 3.8. There exists a non-decreasing function C̃1 : R+ × R+ → R+ such that for any
0 < r < s ≤ 1, any 0 < u < t ≤ 1, any k ∈ R+ and any i, j ∈ {1, · · · , d},

E
[

exp
( k

δ(r, s)δ(u, t)

∫ s

r

∫ t

u
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

)]
≤ C̃1(k, ‖b̂j,n‖∞) (3.7)

and

E
[

exp
( k

δ(r, s)δ(u, t)

∫ s

r

∫ t

u
∂ib̌j,n(s1, t1,Ws1,t1)dt1ds1

)]
≤ C̃1(k, ‖b̌j,n‖∞), (3.8)

where δ(r, s) =
√
s− r and δ(u, t) =

√
t− u.

Proof : We only prove (3.7) and the proof of (3.8) follows anagously. Using integration with respect
to local time formula (see e.g. Bogso et al. (2023, Corollary 2.3)), we have∫ s

r

∫ t

u
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

=−
∫ s

r

∫ t

u
bj,n(s1, t1,Ws1,t1)

dt1W
(i)
s1,t1

s1
ds1 +

∫ s

r

∫ 1−u

1−t
bj,n(s1, 1− t1,Ws1,1−t1)

dt1B
(i)
s1,t1

s1
ds1 (3.9)

−
∫ s

r

∫ 1−u

1−t
bj,n(s1, 1− t1,Ws1,1−t1)

W
(i)
s1,1−t1

s1(1− t1)
dt1ds1,

where (B
(i)
s,t , (s, t) ∈ [0, 1]2) is the Brownian sheet given by the following representation provided by

Dalang and Walsh (2002)

W
(i)
s,1−t = W

(i)
s,1 +B

(i)
s,t −

∫ t

0

W
(i)
s,1−u

1− u
du.

Since the function x 7−→ e3x is convex,

E
[

exp
( k

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ t

u
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

∣∣∣)]
≤1

3

{
E
[

exp
( 3k

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ t

u
b̂j,n(s1, t1,Ws1,t1)

dt1W
(i)
s1,t1

s1
ds1

∣∣∣)] (3.10)

+ E
[

exp
( 3k

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ 1−u

1−t
b̂j,n(s1, t1,Ws1,1−t1)

dt1B
(i)
s1,t1

s1
ds1

∣∣∣)]
+ E

[
exp

( 3k

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ 1−u

1−t
b̂j,n(s1, t1,Ws1,1−t1)

W
(i)
s1,1−t1

s1(1− t1)
dt1ds1

∣∣∣)]} =
1

3
(I1 + I2 + I3).
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By Jensen inequality

I1 =E
[

exp
( 3k

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ t

u
b̂j,n(s1, t1,Ws1,t1)

dt1W
(i)
s1,t1

s1
ds1

∣∣∣)]
≤
∫ s

r
E
[

exp
(6k(

√
s−
√
r)

δ(r, s)δ(u, t)

∣∣∣ ∫ t

u
b̂j,n(s1, t1,Ws1,t1)

dt1W
(i)
s1,t1√
s1

∣∣∣)] ds1

2
√
s1(
√
s−
√
r)

≤
∫ s

r
E
[

exp
( 6k

δ(u, t)

∣∣∣ ∫ t

u
b̂j,n(s1, t1,Ws1,t1)

dt1W
(i)
s1,t1√
s1

∣∣∣)] ds1

2
√
s1(
√
s−
√
r)
.

Since for every s1 ∈ [r, s],

(
Ys1,t1 :=

∫ t1

u
b̂j,n(s1, t2,Ws1,t2)

dt2W
(i)
s1,t2√
s1

, u ≤ t1 ≤ t
)

is a square integrable martingale, it follows from the Barlow-Yor inequality (see e.g. Barlow and
Yor (1982, Proposition 4.2) and Carlen and Krée (1991, Theorem A in Appendix)) that there exists
a positive constant c1 such that for any positive integer m and any s1 ∈ [r, s],

E[|Ys1,t|m] ≤E
[

sup
u≤t1≤t

|Ys1,t1 |m
]
≤ cm1

√
m
mE[〈Ys1,·〉

m/2
t ]

=cm1
√
m
mE
[( ∫ t

u
b̂2j,n(s1, t1,Ws1,t1) dt1

)m/2]
≤cm1
√
m
m
δ(u, t)m‖b̂j,n‖m∞.

Hence, using the following exponential expansion formula,

exp
( 6k

δ(u, t)
|Ys1,t|

)
=
∞∑
m=0

6mkm|Ys1,t|m

δ(u, t)mm!
,

we obtain

I1 ≤
∫ s

r
E
[

exp
( 6k

δ(u, t)

∣∣∣ ∫ t

u
b̂j,n(s1, t1,Ws1,t1)

dt1Ws1,t1√
s1

∣∣∣)] ds1

2
√
s1(
√
s−
√
r)

=

∫ s

r
E
[

exp
( 6k

δ(u, t)
|Ys1,t|

)] ds1

2
√
s1(
√
s−
√
r)

=

∫ s

r

∞∑
m=0

6mkmE[|Ys1,t|m]

δ(u, t)mm!

ds1

2
√
s1(
√
s−
√
r)

≤
∞∑
m=0

6mkmcm1
√
m
m‖b̂j,n‖m∞

m!
:= C̃1,1(k, ‖b̂j,n‖∞),

which is finite by ratio test. Similarly, we also have

I2 ≤ C̃1,1(k, ‖b̂j,n‖∞).
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To estimate I3 we apply one more Jensen inequality and obtain

I3 =E
[

exp
( 3k

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ 1−u

1−t
b̂j,n(s1, t1,Ws1,1−t1)

W
(i)
s1,1−t1

s1(1− t1)
dt1ds1

∣∣∣)]
≤
∫ s

r

∫ 1−u

1−t
E
[

exp
(12k(

√
s−
√
r)(
√

1− u−
√

1− t)
δ(r, s)δ(u, t)

|b̂j,n(s1, t1,Ws1,1−t1)|
∣∣∣ W

(i)
s1,1−t1√

s1
√

1− t1

∣∣∣)]
× dt1

2
√

1− t1(
√

1− u−
√

1− t)
ds1

2
√
s1(
√
s−
√
r)

≤
∫ s

r

∫ 1−u

1−t
E
[

exp
(

12k‖b̂j,n‖∞
∣∣∣ W

(i)
s1,1−t1√

s1
√

1− t1

∣∣∣)] dt1

2
√

1− t1(
√

1− u−
√

1− t)
ds1

2
√
s1(
√
s−
√
r)

≤2 exp
(

72k2‖b̂j,n‖2∞
)

:= C̃1,2(k, ‖b̂j,n‖∞),

since
∣∣∣ W (i)

s1,1−t1√
s1
√

1−t1

∣∣∣ is a mean-zero Gaussian random variable of variance 1.

The proof is completed by choosing C̃1 = 2C̃1,1 + C̃1,2. �

Proof of Lemma 3.6: Without loss of generality, we suppose ξ = 0. Further we set Xn
s,t := X0,n

s,t .
We start with the proof of (3.5). Suppose for every j ∈ {1, . . . , d}, b̂j,n (respectively, b̌j,n) is
componentwise nondecreasing and continuously differentiable with bounded derivatives. Then for
any (r, u) ∈ [0, 1]2 with (0, 0) ≺ (r, u) ≺ (s, t),

Dr,uX
n
s,t = Id +

∫ s

r

∫ t

u
∇bn(s1, t1, X

n
s1,t1)Dr,uX

n
s1,t1dt1ds1, (3.11)

where Id is the identity matrix, ∇bn = (∂ibj,n)1≤i,j≤d, ∂ibj,n being the partial derivative of bj(s, t, ·)
with respect to xi, and Dr,uX

n
s,t = (Di

r,uX
n,j
s,t )1≤i,j≤d. Since ∂ib̂j,n and ∂ib̌j,n are nonnegative, we

have

‖Dr,uX
n
s,t‖ ≤ 1 +

∫ s

r

∫ t

u

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}
‖Dr,uX

n
s1,t1‖dt1ds1.

Therefore (see e.g. Theorem B.1),

‖Dr,uX
n
s,t‖ ≤ exp

(∫ s

r

∫ t

u

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}
dt1ds1

)
. (3.12)

Squaring both sides of the inequality, taking the expectation and using the Girsanov theorem (see
e.g. Dalang and Mueller (2015, Theorem 3.5) and Nualart and Pardoux (1994, Proposition 1.6))
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and the Cauchy-Schwarz inequality, we obtain

E[‖Dr,uX
n
s,t‖2]

≤E
[

exp
(

2

∫ s

r

∫ t

u

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}
dt1ds1

)]
=E
[
E
(∫ 1

0

∫ 1

0
bn(s1, t1,Ws1,t1) · dWs1,t1

)
·

exp
(

2

∫ s

r

∫ t

u

d∑
i,j=1

{
∂ib̂j,n(s1, t1,Ws1,t1) + ∂ib̌j,n(s1, t1,Ws1,t1)

}
dt1ds1

)]

≤C0E
[

exp
(

4

∫ s

r

∫ t

u

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}
dt1ds1

)] 1
2

=C0E
[ d∏
i,j=1

exp
(

4

∫ s

r

∫ t

u
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

)
exp

(
4

∫ s

r

∫ t

u
∂ib̌j,n(s1, t1,Ws1,t1)dt1ds1

)] 1
2
,

where

C0 := sup
n≥1

E
[
E
(∫ 1

0

∫ 1

0
bn(s1, t1,Ws1,t1) · dWs1,t1

)2] 1
2 (3.13)

is finite (see Lemma A.1 and Remark A.2 in the Appendix), with

E
(∫ 1

0

∫ 1

0
bn(s1, t1,Ws1,t1) · dWs1,t1

)
= exp

(∫ 1

0

∫ 1

0
bn(s1, t1,Ws1,t1) · dWs1,t1 −

1

2

∫ 1

0

∫ 1

0
|bn(s1, t1,Ws1,t1)|2 · ds1dt1

)
.

Hence, by Hölder inequality, we have

E[‖Dr,uX
n
s,t‖2] ≤C0

d∏
i,j=1

E
[

exp
(

8d2

∫ s

r

∫ t

u
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

)] 1
4d2

· E
[

exp
(

8d2

∫ s

r

∫ t

u
∂ib̌j,n(s1, t1,Ws1,t1)dt1ds1

)] 1
4d2 .

Then, by Lemma 3.8, we obtain

E[‖Dr,uX
n
s,t‖2] ≤ C0 × C̃1

(
8d2, max

1≤j≤d
{‖b̂j,n‖∞ + ‖b̌j,n‖∞}

)
≤ C0 × C̃1

(
8d2, ‖b̂‖∞ + ‖b̌‖∞

)
,

which means that the Malliavin derivative of Xn is bounded in L2(Ω,P;Rd).
Next we prove (3.6). We deduce from (3.11) that for all 0 ≤ r′ ≤ r ≤ s ≤ 1, 0 ≤ u′ ≤ u ≤ t ≤ 1,

Dr,uX
n
s,t −Dr′,u′X

n
s,t

=

∫ s

r

∫ t

u
∇bn(s1, t1, X

n
s1,t1)Dr,uX

n
s1,t1 dt1ds1 −

∫ s

r′

∫ t

u′
∇bn(s1, t1, X

n
s1,t1)Dr′,u′X

n
s1,t1 dt1ds1

=

∫ s

r

∫ t

u
∇bn(s1, t1, X

n
s1,t1)

(
Dr,uX

n
s1,t1 −Dr′,u′X

n
s1,t1

)
dt1ds1

−
∫ s

r′

∫ u

u′
∇bns1, t1, X

n
s1,t1)Dr′,u′X

n
s1,t1 dt1ds1 −

∫ r

r′

∫ t

u
∇bn(s1, t1, X

n
s1,t1)Dr′,u′X

n
s1,t1 dt1ds1.
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Taking the norm on both sides and using the fact that bn = b̂n− b̌n, with b̂n, b̌n nondecreasing, gives

∥∥∥Dr,uX
n
s,t −Dr′,u′X

n
s,t

∥∥∥
≤
∫ s

r

∫ t

u

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}∥∥∥Dr,uX
n
s1,t1 −Dr′,u′X

n
s1,t1

∥∥∥dt1ds1

+

∫ s

r′

∫ u

u′

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}∥∥∥Dr′,u′X
n
s1,t1

∥∥∥dt1ds1

+

∫ r

r′

∫ t

u

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}∥∥∥Dr′,u′X
n
s1,t1

∥∥∥dt1ds1.

Applying Theorem B.1, we obtain

∥∥∥Dr,uX
n
s,t −Dr′,u′X

n
s,t

∥∥∥ (3.14)

≤
(∫ s

r′

∫ u

u′

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}∥∥∥Dr′,u′X
n
s1,t1

∥∥∥dt1ds1

+

∫ r

r′

∫ t

u

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}∥∥∥Dr′,u′X
n
s1,t1

∥∥∥dt1ds1

)

× exp
(∫ s

r

∫ t

u

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌

′
j,n(s1, t1, X

n
s1,t1)

}
dt1ds1

)

Since ∂ib̂j,n and ∂ib̌j,n are nonnegative, it follows from (3.12) that

‖Dr′,u′X
n
s1,t1‖ ≤ exp

(∫ s

r′

∫ t

u′

d∑
i,j=1

{
∂ib̂j,n(s2, t2, X

n
s2,t2) + ∂ib̌j,n(s2, t2, X

n
s2,t2)

}
dt2ds2

)
.

Hence, we deduce from (3.14) that it holds:

∥∥∥Dr,uX
n
s,t −Dr′,u′X

n
s,t

∥∥∥ ≤(∫ s

r′

∫ u

u′

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}
dt1ds1

+

∫ r

r′

∫ t

u

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}
dt1ds1

)

× exp
(

2

∫ s

r′

∫ t

u′

d∑
i,j=1

{
∂ib̂j,n(s1, t1, X

n
s1,t1) + ∂ib̌j,n(s1, t1, X

n
s1,t1)

}
dt1ds1

)
.
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Squaring both sides of the inequality, taking the expectation and using Cauchy-Schwarz inequality
and Girsanov theorem give

E
[∥∥∥Dr,uX

n
s,t −Dr′,u′X

n
s,t

∥∥∥2]
≤47C0

( d∑
i,j=1

{
E
[( ∫ s

r′

∫ u

u′
∂ib̂j,n(s1, t1,Ws1,t1) dt1ds1

)8]
+ E

[( ∫ s

r′

∫ u

u′
∂ib̌j,n(s1, t1,Ws1,t1) dt1ds1

)8]
+ E

[( ∫ r

r′

∫ t

u
∂ib̂j,n(s1, t1,Ws1,t1) dt1ds1

)8]
+ E

[( ∫ r

r′

∫ t

u
∂ib̌j,n(s1, t1,Ws1,t1) dt1ds1

)8]}) 1
4

× E
[

exp
(

16

∫ s

r′

∫ t

u′

d∑
i,j=1

{
∂ib̂j,n(s1, t1,Ws1,t1) + ∂ib̌j,n(s1, t1,Ws1,t1)

}
dt1ds1

)] 1
4

=47C0(J1 + J2 + J3 + J4)1/4 × J5,

where C0 is given by (3.13). It follows from Hölder inequality and the estimates (3.7)-(3.8) that

J5 =E
[

exp
(

16

∫ s

r′

∫ t

u′

d∑
i,j=1

{
∂ib̂j,n(s1, t1,Ws1,t1) + ∂ib̌j,n(s1, t1,Ws1,t1)

}
dt1ds1

)] 1
4

≤
d∏

i,j=1

E
[

exp
(

32d2

∫ s

r

∫ t

u
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

)] 1
8d2

· E
[

exp
(

32d2

∫ s

r

∫ t

u
∂ib̌j,n(s1, t1,Ws1,t1)dt1ds1

)] 1
8d2

≤C̃1(32d2, ‖b̂‖∞ + ‖b̌‖∞)
1
4 .

Moreover, using the inequality x8 ≤ 8!ex (x ∈ R), we have

E
[( ∫ s

r′

∫ u

u′
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

)8]
+ E

[( ∫ s

r′

∫ u

u′
∂ib̌j,n(s1, t1,Ws1,t1)dt1ds1

)8]
≤8!δ(r′, s)8δ(u′, u)8E

[
exp

( 1

δ(r′, s)δ(u′, u)

∣∣∣ ∫ s

r′

∫ u

u′
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

∣∣∣)]
+ 8!δ(r′, s)8δ(u′, u)8E

[
exp

( 1

δ(r′, s)δ(u′, u)

∣∣∣ ∫ s

r′

∫ u

u′
∂ib̌j,n(s1, t1,Ws1,t1)dt1ds1

∣∣∣)]
≤2(8!)C̃1(1, ‖b̂‖∞ + ‖b̌‖∞)δ(u′, u)4

and

E
[( ∫ r

r′

∫ t

u
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

)8]
+ E

[( ∫ r

r′

∫ t

u
∂ib̌j,n(s1, t1,Ws1,t1)dt1ds1

)8]
≤8!δ(r′, r)8δ(u, t)8E

[
exp

( 1

δ(r′, r)δ(u, t)

∣∣∣ ∫ r

r′

∫ t

u
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

∣∣∣)]
+ 8!δ(r′, r)8δ(u, t)8E

[
exp

( 1

δ(r′, r)δ(u, t)

∣∣∣ ∫ r

r′

∫ t

u
∂ib̌j,n(s1, t1,Ws1,t1)dt1ds1

∣∣∣)]
≤2(8!)C̃1(1, ‖b̂‖∞ + ‖b̌‖∞)δ(r, r′)8.

As a consequence,

J1 + J2 + J3 + J4 ≤ 4(8!)C̃1(1, ‖b̂‖∞ + ‖b̌‖∞)(|r − r′|4 + |u− u′|4).
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Therefore

E
[∥∥∥Dr,uX

n
s,t −Dr′,u′X

n
s,t

∥∥∥2]
≤ 48(8!)C0 × C̃1(32d2, ‖b̂‖∞ + ‖b̌‖∞)1/2(|r − r′|+ |u− u′|).

Finally, by the Girsanov theorem and the Cauchy-Schwarz inequality, we have

sup
n≥1
‖Xn

s,t‖2L2(Ω,P;Rd) = sup
n≥1

E
[
|Xn

s,t|2
]

= sup
n≥1

E
[
E
(∫ 1

0

∫ 1

0
bn(s1, t1,Ws1,t1) · dWs1,t1

)
|Ws,t|2

]
≤ sup

n≥1
E
[
E
(∫ 1

0

∫ 1

0
bn(s1, t1,Ws1,t1) · dWs1,t1

)2] 1
2E
[
|Ws,t|4

] 1
2 ≤ C0

√
3d,

where C0 is given by (3.13).
The proof is completed by taking C1 = C0 max{

√
3d, 48(8!)C̃1(32d2, ‖b̂‖∞ + ‖b̌‖∞)}. �

For q ≥ 1, let us consider the following space Lq(Rd; p(x)dx) defined by

Lq(Rd; p(x)dx) =
{
h : Rd → Rd measurable and such that

∫
Rd
|h(x)|qp(x)dx <∞

}
, (3.15)

where the weight function p(x) is defined by

p(x) = e
−|x|2
2st , x ∈ Rd.

Theorem 3.9. Let bn be defined as before and let (Xξ,n)n≥1 be the sequence of corresponding
strong solutions to the SDE (1.3). Then for any fixed s, t ∈ [0, 1], (Xξ,n

s,t )n≥1 converges strongly in
L2(Ω,P;Rd) to Xξ

s,t.

In order to prove the above theorem we need the subsequent result.

Lemma 3.10. Let (Xξ,n)n≥1 be the sequence of corresponding strong solutions as given before.
Then for every s, t ∈ [0, 1] and function h ∈ L4(Rd; p(x)dx), it holds that the sequence (h(Xξ,n

s,t ))n≥1

converges weakly in L2(Ω,P;Rd) to h(Xξ
s,t).

Proof of Theorem 3.9: Using Theorem 3.5, we know that for each s, t, there exists a subsequence
(Xξ,nk

s,t )k≥1 that converges strongly in L2(Ω,P;Rd). Set h(x) = x, x ∈ Rd and use Lemma 3.10 to
obtain that (Xξ,nk

s,t )n≥1 converges weakly to Xξ
s,t in L2(Ω,P;Rd). Thanks to the uniqueness of the

limit, there exists a subsequence nk such that (Xξ,nk
s,t )n≥1 converges strongly to Xξ

s,t in L2(Ω,P;Rd).
The convergence then holds for the entire sequence by uniqueness of the limit. To see this, suppose
by contradiction that for some s, t, there exist ε > 0 and a subsequence nl, l ≥ 0 such that

‖Xξ,nl
s,t −X

ξ
s,t‖L2(Ω,P;Rd) ≥ ε.

We also know from the compactness criteria that there exists a further subsequence nm,m ≥ 0 of
nl, l ≥ 0 such that

X
ξ,nnm
s,t → X̃s,t in L2(Ω,P;Rd) as m→∞.

However, (Xξ,nk
s,t )n≥1 → Xξ

s,t as k →∞ weakly in L2(Ω,P;Rd), and hence by the uniqueness of the
limit, we obtain

X̃s,t = Xξ
s,t.

Since
‖Xξ,nnm

s,t −Xξ
s,t‖L2(Ω,P;Rd) ≥ ε,

we obtain a contradiction. �
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Proof of Theorem 3.4: We know from Theorem 3.9 that (Xξ,n
s,t )n≥1 converges strongly in L2(Ω,P;Rd)

to Xξ
s,t and from (3.5) in Lemma 3.6 that (Dr,uX

ξ,n
s,t )n≥1 is bounded in the L2([0, 1]2×Ω, ds× dt×

P;Rd×d)-norm uniformly in n. Thefore, using Nualart (2006, Lemma 1.2.3), we also have that the
limit Xξ

s,t is Malliavin differentiable. �

Proof of Lemma 3.10: Let us first noticing that the space

{
E
(∫ 1

0

∫ 1

0

∂2ϕs1,t1
∂s1∂t1

· dWs1,t1

)
: ϕ ∈ C2,b([0, 1]2,Rd)

}

is a dense subspace of L2(Ω,P;Rd). Here C2,b([0, 1],Rd) is the space of bounded vector functions

ϕ such that each component ϕi has a second partial derivative
∂2ϕis1,t1
∂s1∂t1

of bounded variation with
values in R. Hence, it suffices to show that for every i,

E
[
hi(X

ξ,n
s,t )E

(∫ 1

0

∫ 1

0

∂2ϕs1,t1
∂s1∂t1

· dWs1,t1

)]
−→ E

[
hi(X

ξ
s,t)E

(∫ 1

0

∫ 1

0

∂2ϕs1,t1
∂s1∂t1

· dWs1,t1

)]
as n→∞.

Since Ω is a Wiener space, then, as in Kitagawa (1951, proof Lemma 2) or Yeh (1963, proof of
Theorem 2), one can show a multidimensional analog of the Cameron-Martin translation theorem.
Precisely for every g : Rd → R measurable, one has

E
[
g(Xξ

s,t)E
(∫ 1

0

∫ 1

0

∂2ϕs1,t1
∂s1∂t1

· dWs1,t1

)]
=

∫
Ω
g(Xξ

s,t(ω + ϕ))dP(ω). (3.16)

Let ϕ ∈ C2,b([0, 1]2,Rd). For every n, the process X̃ξ,n given by X̃ξ,n
s,t (ω) := Xξ,n

s,t (ω+ϕ) solves the
SDE

dX̃ξ,n
s,t =

(
bn(t, X̃ξ,n

s,t ) +
∂2ϕs,t
∂s∂t

)
dsdt+ dWs,t. (3.17)

Since Xξ is also the solution to the SDE it holds that X̃ξ(ω) := Xξ(ω + ϕ) satisfies

dX̃ξ
s,t =

(
b(t, X̃ξ

s,t) +
∂2ϕs,t
∂s∂t

)
dsdt+ dWs,t, P-a.s. (3.18)

Applying (3.16) and the Girsanov theorem, we have

E
[
hi(X

ξ,n
s,t )E

(∫ 1

0

∫ 1

0

∂2ϕs1,t1
∂s1∂t1

· dWs1,t1

)
− hi(Xξ

s,t)E
(∫ 1

0

∫ 1

0

∂2ϕs1,t1
∂s1∂t1

· dWs1,t1

)]
=E
[(
hi(X

ξ,n
s,t )− hi(Xξ

s,t)
)
E
(∫ 1

0

∫ 1

0

∂2ϕs1,t1
∂s1∂t1

· dWs1,t1

)]
=E
[
hi(ξ +Ws,t)

{
E
(∫ 1

0

∫ 1

0

{
bn(s1, t1, ξ +Ws1,t1) +

∂2ϕs1,t1
∂s1∂t1

}
· dWs1,t1

)
− E

(∫ 1

0

∫ 1

0

{
b(s1, t1, ξ +Ws1,t1) +

∂2ϕs1,t1
∂s1∂t1

}
· dWs1,t1

)}]
. (3.19)
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Using the fact that |ea − eb| ≤ |ea + eb||a− b|, the Hölder inequality and Burkholder-Davis-Gundy
inequality, we get

E
[
hi(X

ξ,n
s,t )E

(∫ 1

0

∫ 1

0

∂2ϕs1,t1
∂s1∂t1

· dWs1,t1

)
− hi(Xξ

s,t)E
(∫ 1

0

∫ 1

0

∂2ϕs1,t1
∂s1∂t1

· dWs1,t1

)]
≤CE

[
hi(x+Ws,t)

2
] 1

2E
[(
E
(∫ 1

0

∫ 1

0

{
bn(s1, t1, ξ +Ws1,t1) +

∂2ϕs1,t1
∂s1∂t1

}
· dWs1,t1

)
+ E

(∫ 1

0

∫ 1

0

{
b(s1, t1, ξ +Ws1,t1) +

∂2ϕs1,t1
∂s1∂t1

}
· dWs1,t1

))4] 1
4

×
{
E
[( ∫ 1

0

∫ 1

0

(
bn(s1, t1, ξ +Ws1,t1)− b(s1, t1, ξ +Ws1,t1)

)
· dWs1,t1

)4]
+ E

[(1

2

∫ 1

0

∫ 1

0

(
bn(s1, t1, ξ +Ws1,t1) +

∂2ϕs1,t1
∂s1∂t1

)2
−
(
b(s1, t1, ξ +Ws1,t1) +

∂2ϕs1,t1
∂s1∂t1

)2
ds1dt1

)4]} 1
4

≤CE
[
hi(x+Ws,t)

2
] 1

2E
[(
E
(∫ 1

0

∫ 1

0

{
bn(s1, t1, ξ +Ws1,t1) +

∂2ϕs1,t1
∂s1∂t1

}
· dWs1,t1

)
+E
(∫ 1

0

∫ 1

0

{
b(s1, t1, ξ +Ws1,t1) +

∂2ϕs1,t1
∂s1∂t1

}
· dWs1,t1

))4] 1
4

×
{∫ 1

0

∫ 1

0
E
[∣∣∣bn(r, ξ +Ws1,t1)− b(s1, t1, ξ +Ws1,t1)

∣∣∣4]ds1dt1

+
1

16

∫ 1

0

∫ 1

0
E
[∣∣∣(bn(s1, t1, ξ +Ws1,t1) +

∂2ϕs1,t1
∂s1∂t1

)2
−
(
b(s1, t1, ξ +Ws1,t1) +

∂2ϕs1,t1
∂s1∂t1

)2∣∣∣4]ds1dt1

} 1
4

= I1 × I2,n × (I3,n + I4,n). (3.20)

I1 is finite since h ∈ L4(R; p(x)dx). Next observe that

E
(∫ 1

0

∫ 1

0

{
bn(s1, t1, ξ +Ws1,t1) +

∂2ϕs1,t1
∂s1∂t1

}
· dWs1,t1

)
=E
(∫ 1

0

∫ 1

0
bn(s1, t1, ξ +Ws1,t1) · dWs1,t1

)
E
(∫ 1

0

∫ 1

0

∂2ϕs1,t1
∂s1∂t1

· dWs1,t1

)
× exp

(∫ 1

0

∫ 1

0
bn(s1, t1, ξ +Ws1,t1)

∂2ϕs1,t1
∂s1∂t1

ds1dt1

)
.

Using the boundedness of ∂
2ϕs1,t1
∂s1∂t1

and the uniform boundedness of bn, it follows that I2,n is bounded.
Using the dominated convergence theorem, we get that I3,n and I4,n converge to 0 as n goes to
infinity. Let us for example consider the term I3,n. Using the density of the Brownian sheet for
every q ≥ 1 it holds:

E
[∣∣∣bn(s, t, ξ +Ws,t)− b(s, t, ξ +Ws,t)

∣∣∣q] =
1√

2πst

∫
R
|bn(s, t, ξ + z)− b(s, t, ξ + z)|qe

−|z|2
2st dz

=
1√

2πst

∫
R
|bn(s, t, z)− b(s, t, z)|qe

−|z−ξ|2
2st dz

=
1√

2πst

∫
R
|bn(s, t, z)− b(s, t, z)|qe

−|z−2ξ|2
4st e

−|z|2
4st e

|ξ|2
4st dz

≤ e
|ξ|2
4st

√
2πst

∫
R
|bn(s, t, z)− b(s, t, z)|qe

−|z|2
4st dz.

Thus the result follows by the dominated convergence theorem. �
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3.3. Malliavin regularity under linear growth condition. As in the previous section, we approx-
imate the drift coefficient b = b̂ − b̌ by a sequence of functions bn := b̂n − b̌n, n ≥ 1, where
b̂n = (b̂1,n, . . . , b̂d,n), b̌n = (b̌1,n, . . . , b̌d,n), (b̂j,n)n≥1 and (b̌j,n)n≥1 are smooth, componentwise non-
decreasing and bounded functions satisfying:

• There exists M̃ > 0 such that ‖b̂j,n(s, t, x)‖ ≤ M̃(1 + |x|) and ‖b̂j,n(s, t, x)‖ ≤ M̃(1 + |x|)
for all n ≥ 1 and (s, t, x) ∈ Γ0 × Rd,
• (b̂n)n≥1 (respctively, (b̌n)n≥1) converges to b̂ (respctively, b̌) in (s, t, x) ∈ Γ0×Rd ds×dt×dx-
a.e.

One verifies that for such smooth drift coefficients, the corresponding SDEs have a unique strong
solution denoted by Xξ,n. We show that for s, t small enough, the sequence (Xξ,n

s,t )n≥1 is relatively
compact in L2(Ω,P;Rd). The proofs of the next two results are similar to that of Lemmas 3.8 and
3.6 and are found in Appendix.

Lemma 3.11. There exist C̃2 > 0 and ζ > 0 such that, for any i, j ∈ {1, · · · , d}, any 0 < r < s ≤ 1,
any 0 < u < t ≤ 1 and any k ∈ R+,

E
[

exp
( ζ

δ(r, s)δ(u, t)

∫ s

r

∫ t

u
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

)]
≤ C̃2, (3.21)

and

E
[

exp
( ζ

δ(r, s)δ(u, t)

∫ s

r

∫ t

u
∂ib̌j,n(s1, t1,Ws1,t1)dt1ds1

)]
≤ C̃2, (3.22)

where δ(r, s) =
√
s− r and δ(u, t) =

√
t− u.

Lemma 3.12. There exist C2 > 0 and τ ∈ (0, 1) such that for every (s, t) ∈ [0, τ ], the sequence
(Xξ,n

s,t )n≥1 satisfies

sup
n≥1
‖Xn

s,t‖2L2(Ω,P;Rd) ≤ C2 (3.23)

and

sup
n≥1

sup
0≤r≤s
0≤u≤t

E
[
‖Dr,uX

n
s,t‖2

]
≤ C2. (3.24)

Moreover, for all 0 ≤ r′, r ≤ s ≤ τ, 0 ≤ u′, u ≤ t ≤ τ ,

E
[
‖Dr,uX

n
s,t −Dr′,u′X

n
s,t‖2

]
≤ C2(|r − r′| + |u− u′|). (3.25)

Here is the main result of this section which is a consequence of Lemma 3.12 and the compactness
criterion provided in Corollary 3.3.

Theorem 3.13. There exist τ ∈ (0, 1) such that for any ξ the strong solution {Xξ
s,t, s, t ∈ [0, τ ]} of

the SDE (1.3) is Malliavin differentiable.

Proof : As in the proof of Lemma 3.10, we show that (Xξ,n
s,t )n≥1 converges weackly in L2(Ω,P;Rd)

to Xξ
s,t for every (s, t) ∈ [0, τ ]2. Hence, using Lemma 3.12 and the compactness criterion provided

in Corollary 3.3, we deduce that (Xξ,n
s,t )n≥1 converges strongly in L2(Ω,P;Rd) to Xξ

s,t. Then, since
(Dr,uX

ξ,n
s,t )n≥1 is bounded in the L2([0, 1]2×Ω,ds×dt×P;Rd×d)-norm uniformly in n (see (3.24)),

it follows from Nualart (2006, Lemma 1.2.3) that the limit Xξ
s,t is also Malliavin differentiable. �
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Appendix A. Proofs of Lemmas 3.11 and 3.12

In this section we provide the proofs of Lemmas 3.11 and 3.12. Let us start with a useful estimate.

Lemma A.1. There exist τ1 ∈ (0, 1) such that

sup
n≥1

E
[
E
(∫ τ1

0

∫ τ1

0
bn(s, t,Ws,t) · dWs,t

)2]
<∞. (A.1)

Proof : By Cauchy-Schwarz inequality, we have

E
[
E
(∫ τ1

0

∫ τ1

0
bn(s, t,Ws,t) · dWs,t

)2]
=E
[

exp
(

2

∫ τ1

0

∫ τ1

0
bn(s, t,Ws,t) · dWs,t −

∫ τ1

0

∫ τ1

0
|bn(s, t,Ws,t)|2dsdt

)]
=E
[

exp
(

2

∫ τ1

0

∫ τ1

0
bn(s, t,Ws,t) · dWs,t − 4

∫ τ1

0

∫ τ1

0
|bn(s, t,Ws,t)|2dsdt

+ 3

∫ τ1

0

∫ τ1

0
|bn(s, t,Ws,t)|2dsdt

)]
≤E
[
E
(

4

∫ τ1

0

∫ τ1

0
bn(s, t,Ws,t) · dWs,t

)] 1
2E
[

exp
(

6

∫ τ1

0

∫ τ1

0
|bn(s, t,Ws,t)|2dsdt

)] 1
2
.

Since bn is bounded, we have (see e.g. Nualart and Pardoux (1994, Proposition 1.6))

E
[
E
(

4

∫ τ1

0

∫ τ1

0
bn(s, t,Ws,t) · dWs,t

)]
= 1, ∀n ≥ 1, τ1 > 0.

Moreover, by Jensen inequality,

E
[

exp
(

6

∫ τ1

0

∫ τ1

0
|bn(s, t,Ws,t)|2dsdt

)]
≤ 1

τ2
1

∫ τ1

0

∫ τ1

0
E
[

exp
(
6τ2

1 |bn(s, t,Ws,t)|2
) ]

dsdt

≤ 1

τ2
1

∫ τ1

0

∫ τ1

0
E
[

exp
(

24τ2
1 M̃d(1 + |Ws,t|2)

) ]
dsdt

=
exp

(
24τ2

1 M̃d
)

τ2
1

∫ τ1

0

∫ τ1

0
E
[
exp(24τ2

1 M̃d st|G|2)
]

dsdt

≤ exp
(

24τ2
1 M̃d

)
E
[
exp(24τ4

1 M̃d|G|2)
]
,

where G = (G1, . . . , Gd) is a mean-zero random vector with identity covariance matrix.
The proof is completed since E

[
exp(12τ4

1 M̃d|G|2)
]
<∞ for τ1 small enough. �

Remark A.2. When the drift b is bounded, the functions bn, n ≥ 1 are uniformly bounded and, as
a consequence,

C0 = sup
n≥1

E
[
E
(∫ 1

0

∫ 1

0
bn(s, t,Ws,t) · dWs,t

)2] 1
2
<∞.
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Proof of Lemma 3.11. We only prove (3.21) since the proof of (3.22) follows the same lines. We
deduce from the local time-space integration formula (2.1) that

E
[

exp
( ζ

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ t

u
∂ib̂j,n(s1, t1,Ws1,t1)dt1ds1

∣∣∣)]
≤1

3

{
E
[

exp
( 3ζ

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ t

u
b̂j,n(s1, t1,Ws1,t1)

dt1W
(i)
s1,t1

s1
ds1

∣∣∣)] (A.2)

+ E
[

exp
( 3ζ

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ 1−u

1−t
b̂j,n(s1, t1,Ws1,1−t1)

dt1B
(i)
s1,t1

s1
ds1

∣∣∣)]
+ E

[
exp

( 3ζ

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ 1−u

1−t
b̂j,n(s1, t1,Ws1,1−t1)

W
(i)
s1,1−t1

s1(1− t1)
dt1ds1

∣∣∣)]} =
1

3
(I1 + I2 + I3).

By Jensen inequality,

I1 =E
[

exp
( 3ζ

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ t

u
b̂j,n(s1, t1,Ws1,t1)

dt1W
(i)
s1,t1

s1
ds1

∣∣∣)]
≤
∫ s

r
E
[

exp
(6ζ(

√
s−
√
r)

δ(r, s)δ(u, t)

∣∣∣ ∫ t

u
b̂j,n(s1, t1,Ws1,t1)

dt1W
(i)
s1,t1√
s1

∣∣∣)] ds1

2
√
s1(
√
s−
√
r)

≤
∫ s

r
E
[

exp
( 6ζ

δ(u, t)

∣∣∣ ∫ t

u
b̂j,n(s1, t1,Ws1,t1)

dt1W
(i)
s1,t1√
s1

∣∣∣)] ds1

2
√
s1(
√
s−
√
r)

Since, for every s1 ∈ [r, s],(
Ys1,t1 :=

∫ t1

u
b̂j,n(s1, t2,Ws1,t2)

dt2W
(i)
s1,t2√
s1

, u ≤ t1 ≤ t
)

is a square integrable martingale and similar reasoning as before gives

E[|Ys1,t|m] ≤ 2mc2m
1 M̃mmmδ(u, t)m.

From this and the exponential expansion formula, we get

I1 ≤
∞∑
m=0

24mζmc2m
1 mmM̃m

m!
:= C̃1,1,

which is finite if ζ < e/24c2
1M̃ (by ratio test). Similarly, we also have

I2 ≤ C̃1,1.

To estimate I3 we apply Jensen inequality again and we obtain

I3 =E
[

exp
( 3ζ

δ(r, s)δ(u, t)

∣∣∣ ∫ s

r

∫ 1−u

1−t
b̂j,n(s1, t1,Ws1,1−t1)

W
(i)
s1,1−t1

s1(1− t1)
dt1ds1

∣∣∣)]
≤
∫ s

r

∫ 1−u

1−t
E
[

exp
(12ζ(

√
s−
√
r)(
√

1− u−
√

1− t)
δ(r, s)δ(u, t)

|b̂j,n(s1, t1,Ws1,1−t1)|
∣∣∣ W

(i)
s1,1−t1√

s1
√

1− t1

∣∣∣)]
× dt1

2
√

1− t1(
√

1− u−
√

1− t)
ds1

2
√
s1(
√
s−
√
r)

≤
∫ s

r

∫ 1−u

1−t
E
[

exp
{

24M̃ζ
(

1 +
|W (i)

s1,1−t1 |
2

s1(1− t1)

)}] dt1

2
√

1− t1(
√

1− u−
√

1− t)
ds1

2
√
s1(
√
s−
√
r)

:=C̃1,2,
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with C̃1,2 finite provided that 24M̃ζ < 1/2.
The proof is completed by choosing ζ = 1/26c2

1M̃ and C̃1 = (2C̃1,1 + C̃1,2)/3. �

Proof of Lemma 3.12. Fix τ ∈ (0,min{τ1, ζ/32d2}), where τ1 is the constant in Lemma A.1 and ζ
is the constant in Lemma 3.11. We deduce from Theorem B.1 and the linear growth condition on
the drift bn that E[‖Xn

s,t‖2] ≤ C2,1 for all (s, t) ∈ [0, τ ]2 and n ≥ 1, where C2,1 does not depend of
(s, t) and n. Let 0 ≤ r′ ≤ r ≤ s ≤ τ and 0 ≤ u′ ≤ u ≤ t ≤ τ . Since

τ ≤ τ1 and δ(r′, s)δ(u′, t) ≤ τ ≤ ζ

32d2
,

then, using similar computations as in the proof of Lemma 3.6, one can deduce from Lemma A.1,
Girsanov theorem and Hölder inequality that

sup
n≥1

sup
0≤r≤s
0≤u≤t

E
[
‖Dr,uX

n
s,t‖2

]
:= C2,2 <∞

and

E
[
‖Dr,uX

n
s,t −Dr′,u′X

n
s,t‖2

]
≤ C2,3(|r − r′|+ |u− u′|)

for some positive constant C̃2 independent of n.
The proof is completed by taking C2 = max{C2,1, C2,2, C2,3}. �

Remark A.3. It is worth noting that if the drift is in addition the difference of two convex or concave
functions, then the solution to the equation (1.3) is twice Malliavin differentiable. Indeed, b = b̂− b̌
is Lipschitz with the second order weak derivatives of b̂, b̌ positive or negative.

Appendix B. A Gronwall type inequality for functions of two variables

The next result which is originally due to Wendroff, extends Gronwall inequality to functions of
two variables (see e.g. Qin (2016, Theorem 5.1.1)).

Theorem B.1. Let g(s, t), a(s, t), k(s, t) be non-negative continuous functions for all s ≥ s0, t ≥ t0,
and let a(s, t) be non-decreasing in each of the variables for all s ≥ s0, t ≥ t0. Suppose that for all
s ≥ s0, t ≥ t0,

g(s, t) ≤ a(s, t) +

∫ s

s0

∫ t

t0

k(s1, t1)g(s1, t1) dt1ds1.

Then for all s ≥ s0, t ≥ t0,

g(s, t) ≤ a(s, t) exp
(∫ s

s0

∫ t

t0

k(s1, t1) dt1ds1

)
.
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