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Abstract. We prove path-by-path uniqueness of solutions to hyperbolic stochastic partial differ-
ential equations when the drift coefficient is the difference of two componentwise monotone Borel
measurable functions of spatial linear growth. The Yamada-Watanabe principle for SDEs driven by
Brownian sheet then allows to derive strong uniqueness for such equation and thus extending the
results in [Bogso, Dieye and Menoukeu Pamen, Elect. J. Probab., 27:1-26, 2022 and [Nualart and
Tindel, Potential Anal., 7(3):661-680, 1997|. Assuming that the drift is globally bounded, we show
that the unique strong solution is Malliavin differentiable. The case of a spatial linear growth drift
coefficient is also studied.

1. Introduction

The existence, uniqueness and Malliavin differentiability of strong solutions of SDEs on the plane
with smooth coefficients have been obtained in several settings of varying generality. However there
are not many results when the coefficients of the such equation are singular. The purpose of the
present paper is two-fold: first we obtain the existence and uniqueness of strong solution of the
following integral form equation

t s
Xop =&+ / / b(s1,t1, Xey.0,)dsydty + Wiy, for (s,t) € R, (1.1)
0o Jo

when W is a d-dimensional Brownian sheet and the drift b is the difference of two componentwise
monotone functions and of spatial linear growth. We address this problem by using the Yamada-
Watanabe argument for SDEs driven by Brownian sheet derived in Nualart and Yeh (1989) (see also
Yeh (1987), Tudor (1983, Remark 2)), that is, we combine weak existence and pathwise uniqueness
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to obtain the existence of a unique strong solution. More particularly, we replace the pathwise
uniqueness by a stronger notion of uniqueness, namely, the path-by-path uniqueness introduced
in Davie (2007) (see also Flandoli (2011)) in the case of SDEs driven by one-parameter Brownian
motion. This notion was introduced in Bogso et al. (2022) for the two parameter process, as follows:

Definition 1.1. Let V (resp. 9V) be the space of R%valued continuous functions on [0, T]? (resp.
{0} x [0, T]) U ([0,T] x {0}) for some T > 0. We say that the path-by-path uniqueness of solutions
to (1.1) holds when there exists a full P-measure set Qy C € such that for all w € Qg the following
statement is true: there exists at most one function y € V which satisfies

T T
/ / |b(s,t,ys,)|dsdt < oo, dy = z, for some x € OV
o Jo
and
S t
Yst = T +/ / b(s1,t1,Ys, ¢, )ds1dts + Wi (w), V(s,t) € [0,T]2. (1.2)
o Jo

The study of path-by-path uniqueness is motivated by the problem of regularisation by noise
of random ordinary (or partial) differential equations (ODEs or PDEs). In the case of of SDEs
driven by Brownian motion, path-by-path uniqueness of equation (1.1) was proved in Davie (2007)
assuming that the drift is bounded and measurable, and the diffusion is constant. This result
was extended to the non-constant diffusion in Davie (2011) using rough path analysis. There has
now been several generalisation of this result. The authors in Beck et al. (2019) proved a Sobolev
regularity of solutions to the linear stochastic transport and continuity equations with drift in critical
LP spaces. Such a result does not hold for the corresponding deterministic equations. In Butkovsky
and Mytnik (2019), the authors analysed the regularisation by noise for a non-Lipschitz stochastic
heat equation and proved path-by-path uniqueness for any initial condition in a certain class of a
set of probability one. In Amine et al. (2023), the path-by-path uniqueness for transport equations
driven by the fractional Brownian motion of Hurst index H < 1/2 with bounded and integrable
vector-fields is investigated. In Catellier and Gubinelli (2016); Galeati and Gubinelli (2022) the
authors solved the regularisation by noise problem from the point of view of additive perturbations.
In particular, the work Catellier and Gubinelli (2016) considered generic perturbations without
any specific probabilistic setting whereas authors in Amine et al. (2017) construct a new Gaussian
noise of fractional nature and proved that it has a strong regularising effect on a large class of
ODEs. More recently, the regularisation by noise problem for ODEs with vector fields given by
Schwartz distributions in the setting of non-linear Young type of integrals was studied in Harang and
Perkowski (2021). It was also proved that if one perturbs such an equation by adding an infinitely
regularising path, then it has a unique solution. Let us also mention the recent work Kremp and
Perkowski (2022) in which the authors looked at multidimensional SDEs with distributional drift
driven by symmetric a-stable Lévy processes for o € (1,2]. In all of the above mentioned works,
the driving noise considered are one parameter processes.

Our method to prove path-by-path uniqueness follows as in Bogso et al. (2022). We show the
path-by-path uniqueness on T'g = [0, 1]2. More precisely, we consider the integral equation

t s
Xot=¢ —l—/ / b(s1,t1, X, 1y )ds1dty + W for (s,t) € Ty, (1.3)
0 JO

where the drift is of spatial linear growth. We denote by V} the space of continuous R?-valued
functions on I'g which vanish on {0} x [0,1]U[0,1] x {0}. It is shown in Bogso et al. (2022, Section
1) (see also Davie (2007, Section 1)) that path-by-path uniqueness of solutions to (1.3) holds if and
only if, with probability one, there is no nontrivial solution u € V} of

s rt
u(s, t) = /0 /0 {b(s1,t1, Ws, 1, +u(s1,t1)) — b(s1,t1, Wy, 1, ) bdsidty, for (s,t) € Tp. (1.4)
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This is the statement of Theorem 2.10 which is extended to unbounded drifts in Theorem 2.9. The
proof of Theorem 2.10 relies on some estimates for an averaging operator along the sheet (see Lemma
2.3). This result plays a key role in the proof of a Gronwall type lemma (see Lemma 2.15) which
enables us to prove path-by-path uniqueness of solutions to (1.3). The latter combined with the
weak existence yield the existence of a unique strong solution. A crucial idea to obtain the Gronwall
type inequality is to take advantage of the fact that the set of dyadic numbers is dense in [—1,1]%.
Note that Lemma 2.6 involves real numbers z € [—1,1]¢ and not functions u : [0,1]2 — [-1,1]%.
In order to apply Lemma 2.6 in the proof of Lemma 2.15 for a drift that is the difference of two
componentwise monotone functions, one needs to first rewrite (1.4) in each dyadic square and
carefully replace the function u by the maximum of either its positive part or its negative part.
Note that when the drift coefficient is componentwise nondecreasing, similar result can be found in
Bogso et al. (2022); Nualart and Tindel (1997).

Secondly, in this paper, we prove Malliavin smoothness of the unique solution to the SDE (1.3).
When the coefficients are smooth, the authors in Nualart and Sanz (1985, 1989) showed existence,
uniqueness, Malliavin differentiability and smoothness of density of solutions to SDEs on the plane.
Here, assuming that the drift is the difference of two componentwise nondecreasing functions, we
show that the solution is Malliavin differentiable. In the one parameter case, the Malliavin differ-
entiablity of solutions to SDEs with bounded and measeurable coefficients was studied in Meyer-
Brandis and Proske (2010) under an additional commutativity assumption. The later assumption
was removed in Menoukeu-Pamen et al. (2013). It is worth mentioning that in the above work,
the Malliavin smoothness of the unique solutions to the SDEs with rough coefficients and driven
by Brownian motion is obtained as a byproduct of the method used to study existence and unique-
ness. This technique was introduced in Proske (2007) and has now been extensively utilised; see for
example the work Haadem and Proske (2014) for the case of singular SDEs driven by Lévy noise,
Menoukeu-Pamen and Tangpi (2019) for the case of random coefficients and Amine et al. (2023,
2017) for the case of singular SDEs driven by fractional noise. In order to prove the Malliavin
differentiability of the solution to the SDE (1.3), we take advantage of Gaussian white noise theory
and a local time-space integration formula provided in Bogso et al. (2023, Proposition 3.1) to show
that the sequence of approximating sequence of solutions converges strongly in L?(2, R%) to the so-
lution of the SDE (compare with Menoukeu-Pamen et al. (2013)) and we use a compactness criteria
given in Nualart (2006, Lemma 1.2.3) to conclude. An essential step in showing this is to obtain
good enough estimates for the Malliavin derivative of the approximating sequence. This task is not
trivial and requires the use of the Wendroff inequality (Theorem B.1) which plays a crucial role in
the proof.

Equation (1.1) can also be written in a differential form as the following hyperbolic stochastic
partial differential equation

%Xy .
b b(s,t, X)) + Wee, (s,t) €T,
gsor oot Xsa) F Wars (51 € (1.5)

0X =¢,

where X is the restriction of X to the boundary 9I' = {0} x Ry URy x {0} of T' := R2,
b: T xRY — R4 is Borel measurable, W = (W(l), o ,W(d)) is a d-dimensional white noise of
the Brownian sheet on I' given on a probability space (2, F,P) and (s,t) — & (w) is continuous
on JI" for all w € €. Recall that a d-dimensional white noise on I" is a mean-zero Gaussian process
W =W, ..., W) indexed by the Borel field B(T') on T' with covariance functions

E[WOA)W(B)| =6;]ANB|, YA,Be BT
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where | - | denotes the Lebesgue measure on I'" and 6; ; = 1 if ¢ = j and d; ; = 0 otherwise. The

process W = (Ws,t = W([0,s] x [0,t]), (s,t) € I‘) is mean-zero Gaussian process with covariance
functions

E[WQWEL] = bis(s A5 EAE), V(s,0),(51) €T,
By the Kolmogorov continuity theorem, there exists a continuous version of W, still denoted by
W, which is a d-dimensional Brownian sheet. We consider a nondecreasing and right-continuous
family F = (Fs ;) of sub-o-algebras of F each of which contains all negligible sets in (€2, F,[P) such
that W and & are F-adapted, that is Wy, (respectively, &) is Fs-measurable for every (s,t) € T
(respectively, (s,t) € OI'). We refer the reader to Khoshnevisan (2002) for a complete analysis on
multi-parameter processes and their applications.
Equation (1.5) is a particular case of the quasilinear stochastic hyperbolic differential equation
Xy .

= b t XS 7t)XS Syl Jt F
gege &b Kar) Fale b Xa)War, - (s8) € (1.6)

X =¢,

where a : ]Ra_ xR? — R%x R? is a Borel measurable matrix function. A formal % rotation transforms
(1.6) into the following nonlinear stochastic wave equation

%Y, %Y, = . 3 ~
apg,e - 89270 = b(p, 0) Yp,@) + a(p, 9: Yp,G)Wp,Ga (pv 9) € F: (17)

with the Goursat-Darboux type boundary condition oY = £, where I = {(p,0): >0 and |p| <0},

W is a d-dimensional white noise of the Brownian sheet on T, b(p,0,y) = b(%, %, y) (the same

applies to a), Y, 9 = Xo+p 0-p, 59,9 = {300 and é_g,g = §y.a9- The 7 rotation has been used by
‘ } V2 \/§ ) ) ) -

Carmona and Nualart (1988) (see also Farré and Nualart (1993, Section 0) and Quer-Sardanyons
and Tindel (2007, Section 1)) to prove existence and uniqueness of solution to (1.7) under a different

boundary condition when & and b are time-homogeneous.

Equation (1.5) can also be seen as a noisy analog of the so-called Darboux problem given by

9%y dy Oy

e =b(sty 5L S0 for (s.1) €[0,7) x (0,7, (18)
with the initial conditions

y(0,t) = o(t) on [0,7] and y(s,0) = 7(s) on [0,T], (1.9)

where ¢ and 7 are absolutely continuous on [0,77]. Using Caratheodory’s theory of differential
equations, Deimling (1970) proved an existence theorem for the system (1.8)-(1.9) when b is Borel
measurable in the first two variables and bounded and continuous in the last three variables. Hence
the results obtained here can also be seen as a generalisation to the stochastic setting of the above
mentioned one.

The remainder of the paper is organised as follows: In Section 2, we provide a path-by-path
uniqueness result for (1.3) when the drift b is of linear growth. In Section 3, we study the Malliavin
differentiability of the strong solution to (1.3). We show that this solution is Malliavin differen-
tiable for uniformly bounded drifts and when the drift b is of linear growth, we obtain Malliavin
differentiability of the solution only for sufficiently small time parameters.

2. Existence and uniqueness results

In this section, we show that the SDE (1.3) has a unique strong solution. Our approach is
based on the Yamada-Watanabe principle introduced in Nualart and Yeh (1989). As pointed out
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earlier, instead of showing the weak existence and pathwise uniqueness, we show weak existence and
path by path uniqueness (which implies pathwise uniqueness as shown in Catellier and Gubinelli
(2016)). The following preliminary results that have been obtained by applying a local time-space
integration formula for Brownian sheets (see Bogso et al. (2023) for more information) are needed
to show path-by-path uniqueness.

2.1. Preliminary results. Let f : [0,1]2 x R — R be a continuous function such that for any
(s,t) € [0,1]%, f(s,t,-) is differentiable and for any i € {1,---,d}, the partial derivative 0, f

is continuous. We also know from Bogso et al. (2023, Proposition 3.1) that for a d-dimensional
Brownian sheet <Ws¢ = (W(?, Sy WS(’C?); s>0,t> O) defined on a filtered probability space and

S,

for any (s,t) € [0,1]? and any i € {1,--- ,d}, we have

S t
//8xif(317t17Ws1,t1)dt1d31

(%) (@)
d, W, 4, Bl
/ / f Slatlu S1 t1) 517t1d / f 817 t17W$1 t1) - 1t1d (21)
S1 1—t S1
/ fls1,1—t )t Wests dtids
L 17 1 Sl,tl (].—tl) 1 1

where W) = (W(l) = W(l)l 430 < s1,t1 < 1) and B .= (B() 0 < s1,t1 < 1) is a stan-

st "o, S1, t1

dard Brownian sheet with respect to the filtration of W(l), independent of (Wil),s > 0). Here
“dtlw(i) ", resp. “ds B()

s1,t1 s1,t1

" denotes the stochastic line integral with respect to the Brownian
motion (W() 0 <t; <1), resp. (B()

s1,t1 st 0 <t < 1) for sy fixed.
The following result will be extensively used and can be found in Bogso et al. (2022).

Proposition 2.1. Let W = <W8(;), ol Ws(i); (s,t) €0, 1]2> be a R%-valued Brownian sheet defined

on a filtered probability space (2, F,F,P), where F = (Fy4;s,t € [0,1]). Let b€ C ([0, 1]2,C1(]Rd)),
bllco < 1. Let (a,a’,e,¢') € [0,1]*. Then there exist positive constants o and C (independent of
Vyb, a, d, € and €') such that

E[exp (046/6’ /1 /1 Vyb <s,t,WN/§f/) dtdsr)} < C. (2.2)
0 Jo

Here Vyb denotes the gradient of b with respect to the third variable, | -| is the usual norm on R?
and the R -valued two-parameter Gaussian process Wee' = (Ws(;’s/’l), e ,Ws(i’el’d); (s,t) € [0, 1]2>

s given by

_®

a’'+¢€'s,a

W(E e'i) W(l) W( i)

st a'+¢e’s,a+et a’,a+et

+ WP foralli € {1,....d}.

For every 0 <a<v<1,0<d <+ <1and for (z,5) € R? let us define the function g by:

Yoy
o) = [ [ {bst War +0) st Wes 4 ) e,
a’ a
Here is a direct consequence of the previous estimation.

Corollary 2.2. Let b : [ 12 x R? = R be a bounded and Borel measurable function such that

IIb|cc < 1. Let o, C' and Wee' be defined as in Proposition 2.1. Then the following two bounds are
valid:
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(1) For every (x,y) € R??, x # y and every (g,¢') € [0,1]2, we have

ag'e

E[exp
—y\2

‘/ / (5,8, WS+ x) — b(s, t, W, +y)} dtdsr)] <C (2.3)

(2) For any (z,y) € R? and any n > 0, we have

2

P (lo(,y)| = nv/(7 = )7 = )|z —yl) < Cem7". (2.4)

For any positive integer n, we divide [0, 1] into 2™ intervals I, =]k27", (k + 1)27"]. We define
the random real valued function g, on [—1,1]?¢ by

ank’(x>y) = / / {b(svtaws,t +ZE) - b(S,t,W&t —|—y)}dtd8
Ik

The next two lemmas provide an estimate for g,r(x,y) and o,k (0, ) for every dyadic numbers
x,y € [~1,1]%. Their proofs can be found in Bogso et al. (2022, Section 5).

Lemma 2.3. Suppose b: [0,1]2> x R? = R is a Borel measurable function such that |b(s,t,z)| < 1
everywhere on [0,1]2 x R%. Then there exists a subset Q1 of Q with P(Q) = 1 such that for all
w € N,

1
|z — |

for all dyadic numbers x, y € [—1, l]d and all choices of integers n, k, k' withn > 1, 0 < k, k' <
2" — 1, where logtz = max{0, log 2z} for z € (0,00) and Ci(w) is a positive random constant that
does not depend on x, y, n, k and k'.

Jousee (2, ))] < o)z [V + (tog" )] le ol on

Lemma 2.4. Suppose b is as in Lemma 2.3. Then there exists a subset Qo of Q with P(Qg) = 1
such that for all w € Qa, for any choice of n, k, k', and any choice of a dyadic number x € [—1,1]%

[ontre (0, 2) ()| < Ca(w)vn2 ™ (Ja] +27"), (2:5)

where Cy(w) is a positive random constant that does not depend on x, n, k and k'.

Observe that the above two results require only the drift to be bounded and Borel measurable.
Assuming in addition b is nondecreasing, the next two results state that Lemmas 2.3 and 2.4 can
be extended to any z,y € [~1,1]% (not only dyadic). The proof of Lemma 2.6 is omitted since it is
similar to that of Lemma 2.5.

Lemma 2.5. Suppose b, Q1 and Ci are as in Lemma 2.3. Suppose in addition that b is componen-
twise nondecreasing. Then for all w € Q,

1
|z — |

for all z, y € [~1,1]% and all choices of integers n, k, k" withn > 1,0 < k, k' < 2" — 1.

Jousie () (@) < @2 [Vt (tog" ) ]le 4 on

Proof: Fix w € Qy, z,y € [-1,1]4, n > 1 and 0 < k, k' < 2" — 1. Suppose without loss of
generality that opui(z,y)(w) > 0. For every i € {1,...,d} and ¢ € N, define y,, = 27424,
zl, =1-272(1—=)), v, = (Yy oYz, andz) = (2, ...,2},). Observe that 2} (respectively

y, ) is a componentwise non-increasing (respectively non-decreasing) sequence of dyadic vectors



Malliavin differentiability of solutions of hyperbolic SPDEs with irregular drifts 1543

that converges to x (respectively y). Hence, as b(s,t, W, (w) + z) < b(s,t, Wy(w) + 2) and
b(s,t, Wes(w) +y, ) < b(s, t, W (w) +y), it follows from Lemma 2.3 that

it (2 9) ()| = ot (2, 9) () = / / {b(s, £, Wap(w) + ) — b(s, b, Way(w) + )} dids

< / [b(s, £, Was (@) + 7)) — b(s, £, Was () + 97 )} deds
Lo Ik

n

1 1/2
<Ci(w)2™" [\/ﬁ + (10g+ ﬁ) ] |93? -y, |-
lz, —y, |
Then, letting ¢ tends to oo, we obtain the result. ]

Lemma 2.6. Suppose b, Qs and Cy are as in Lemma 2./. Suppose in addition that b is componen-
twise nondecreasing. Then for all w € Qg

[onki (0, 2) (w)] < 02(W)\/ﬁ2_n<|$| + 2_4n) on Qs

for all x € [-1,1]% and all choices of integers n, k, k" withn > 1, 0 < k, k' <27 — 1.

2.2. Main results and proofs. In this section, we prove the path-by-path uniqueness of the solution
to (1.3). We use this result to derive the existence and uniqueness of a strong solution to (1.3). We
assume the following conditions on the drift. We endow R? with the partial order “<" defined by
x <y when x; <vy; for all i € {1,...,d}.
Hypothesis 2.7.
(1) b: [0,1]% x RY — R? is Borel measurable and admits the decomposition b = b — b, where
b(s,t,-) and b(s,t,-) are componentwise nondecreasing functions, that is each component b;
and b;, 1 < i < d is componentwise nondecreasing. Precisely, for every z,y € R%,
x = Yy = Bi(87t7$) < (;i(‘g?tv y) and Bi(s7t7x) < Bi(87t>y)‘

(2) b is of linear growth uniformly on (s,t); precisely, there exists a positive constant M such
that

lb(s,t,2)] < M(1+|z|), V(s,t,z)e[0,1]2 xR
The main results of this section are the following :

Theorem 2.8. Suppose b satisfies Hypothesis 2.7. Then the SDE (1.3) admits a unique strong
solution.

The above result constitutes an extension to those in Bogso et al. (2022); Nualart and Tindel
(1997) by allowing the drift b to be the difference of two monotone functions. It is proved by using
the Yamada-Watanabe principle. However, instead of showing the pathwise uniquess we show the
following path-by-path uniqueness property.

Theorem 2.9. Suppose b satisfies Hypothesis 2.7. Then for almost every Brownian sheet path W,
there exists a unique continuous function X : [0,1]> — R? satisfying (1.3).

The proof of Theorem 2.9 is omitted since it follows the same lines as that of Bogso et al. (2022,
Theorem 3.2). It follows from both Gronwall inequality on the plane and the next result.

Theorem 2.10. Suppose b is as in Theorem 2.9. Suppose in addition that b is uniformly bounded.
Then for almost every Brownian sheet path W, there exists a unique continuous function X :
[0,1]% — R? satisfying (1.3).
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Proof of Theorem 2.8: Tt follows from the conditions of the theorem that, (1.3) has a weak solution.
In addition, since path by-path uniqueness implies pathwise uniqueness (see e.g. Beck et al. (2019,
Page 9, Section 1.8.4) where the result is provided in the one-parameter case. This may be extend
easily to the two-parameter case.), the result follows from the Yamada-Watanabe type principle for
SDEs driven by Brownian sheets (see e.g. Nualart and Yeh (1989)). O

Corollary 2.11. Suppose that b is as in Theorem 2.9. Then for almost every Brownian sheet path
W, there exists a unique continuous function X : [0,1]% — R? satisfying (1.5).

Corollary 2.12. Suppose that b is as in Theorem 2.9. Then for almost every Brownian sheet path
W, there exists a unique continuous function X : [0,1]? — RY satisfying the stochastic wave equation
(1.7) when a is the identity matriz.

Below we provide a non trivial example of functions satisfying hypothesis of Theorem 2.9. This
comes from the Jordan decomposition of real-valued functions of bounded variation on R (see e.g.
Folland (1999)|Theorem 3.27, b.]).

Ezxample 2.13. Let g1, ..., gq be real-valued functions of bounded variation on R and let Ay, ..., hq
be the functions defined on R by h;(z) = |z]gi(z) for all z € R and 4. It follows from Jordan
decomposition that g; = §; — §;, where gl, g; are two bounded nondecreasing functions on R. It
also holds that h; = h hl, where hl, h are two nondecreasing functions of linear growth on
R. This follows from the fact that z — |z| is the difference of two non-decreasing functions and
z— 12[(gi(2) — 3i(0)) (resp. z — |2[(gi(2) — g:(0))) is non-decreasing on R. Then

1. the function b := (by,...,bg) : [0,1]2 x R — R? defined by
d
bi(s,t,x1,...,24) = gi (m(s,t) + ng), for all (s,t,z1,...,2q) and i
/=1

satisfies Hypothesis 2.7 for any Borel mesurable functions k1,. .., kq : [0,1)? = R,
2. the function b := (by,...,bq) : [0,1]2 x R — R? defined by

d
bi(s,t,x1,...,xq) = hy (Q(S,t) + Z:Cg), for all (s,t,2z1,...,24) and @
/=1

satisfies Hypothesis 2.7 for any bounded Borel mesurable functions (i, ...,z : [0,1]> = R.

2.3. Proof of Theorem 2.10. In this subsection, we prove Theorem 2.10. As already pointed out in
the introduction, this is equivalent to showing that for almost all Browman sheet path, the unique
continuous solution u to (1.4) is zero. More precisely, Theorem 2.10 is equivalent to:

Theorem 2.14. Let W := (Ws,t, (s,t) €0, 1]2) be a d-dimensional Brownian sheet defined on a
filtered probability space (Q, F,F,P), where F = {Fs 1} 0,1 Let b: [0, 1]2 x R? — RY be a Borel
measurable function such that for every i € {1,...,d}, bi(s,t,-) = l;i(s,t, ) — bi(s, t,-), where bi, b,
are bounded and componentwise nondecreasing in x for all (s,t). Then there exists Q1 C Q with
P(Q1) = 1 such that for any w € 1, u = 0 is the unique continuous solution of the integral equation

(S t / / {b SlatlaWsl tl( )—{—u(sl,tl))—b(sl,tl,Wsl tl( ))}dsldtl, V(S,t) S [O, 1]2.
(2.6)

The proof of Theorem 2.14 relies on the following Gronwall type result.
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Lemma 2.15. Suppose conditions of Theorem 2.1/ are valid. Then there exists Q1 C Q with
P(Q1) = 1 and a positive random constant Cy such that for any w € Qi, any sufficiently large

positive integer n, any (k, k') € {0,1,2,--- ,2"}2  any B(n) € [2*4%/4, 2*4271/3] , and any solution u
of the integml equation

— u(s,0) — u(0, t) + u(0,0)

// Bls1, 1, Wy 0 () (1, 12)) = b(s, b1, Wy, (@) bst i, ¥ (s,8) € 01 (27)

satisfying

lrgaxdmax{]uz\(s 0), [ug (0,8)} < B(n), V(s,t) €[0,1]% (2.8)
we have
ktk'—1 ktE
e mas {1, (k. k). a5, K} < 3574 (1 +3Ch (w)Vdn2~ ) B(n), (2.9)
where Wy, = (Un,1,- - Un,d), Uy = (Up 1, - Uyq) and for every i € {1,...,d},
Uni(k, k') = sup max{0, ui(s,t)} and u, ;(k, k') = sup max{0, —u;(s,t)}.
(s,t)eln,kfl X]n,k’fl (S’t)eln,kfl XInyklfl

Proof: Suppose without loss of generality that ||b;]lso < 1 and ||b;]lse < 1 for every i € {1,...,d}.
By Lemma 2.6, there exists a subset Qo C 2 with P(Q9) = 1 such that for all w € Qy,

e |44 (0,2)(w )| < Caw)vm2™ (ja| + B(n)) on Qp (2.10)
and
lréllagxd @%k,(o,m)(w)’ < Co(w)vn27 ™ (|z] + B(n)) on Qs (2.11)

for all integers n, k, k' with n > 1, 0 < k, k' <2" — 1 and all 2 € [~1, 1]¢, where

Q) (k+1)27™  p(K'+1) R .
oo = [ [bils1. 11, Wy @)+ 2) = Bisn. 1, Wy 1, () b di,
k k

2-n 19—n
and
4 (k+1) (k' +1) 3 3
890, 2)(w) = /kQ ) /M2 ) {bi(sl,tl,Wshtl(w)—kx) —bi(sl,tl,Wsl,tl(w))}dsldtl.

For any w € Qy, we choose n € N* such that Cy(w)vdn2™™ < 1/6 and split the set [0,1] x [0,1]
onto 4" squares I, X Inp. We set u = (ug,...,uq), with u™ = (uf, . ,u(';), u- = (ul_, .. ,ud),
uf = max{0,v;} and u; = max{0, —u;} for every i € {1,...,d}. Since bi(s1,t1,-) and b;(sy,t1,-)
are nondecreasing, we deduce from (2.7) that for all i € {1,...,d} and all (s,t) € I,k X Ly,

wi(s,t) = wi(s, K'27") — ui (k27" 8) +wi (27" (k, &)
:/k: ) /1:2 ) bi(s1,t1, Wy 4, (w) 4 u(s1,t1)) — bi(s1, 11, W81’t1(w))}d51 dty
/2 : /m ) bi(s1,t1, Wey 1y (w) +u(s1,t1)) — bi(s1, t1, Wsl,tl(w))}dsl dty
< /kQ ) //«2 ) 3i(81,t1, Wiy, (@) +ut(s1,11)) — Bi(sl,tl,Wsl,tl(w))}dsl dty

/ / Slytlawsl,tl(w) —U_(Sl,t]_)) _Bi(slat].)WSLtl(w))}dSl dtl
k2—n k'2—n
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Then, using the fact that max{0,z + y} < max{0, 2} + max{0, y}, we have
uf (s,t) <max{0,u;(s, k'27") + u; (k27" t) — u; (27" (k, K'))}

S t
+ / / {bi(shth Wiy 1y (w) +ut(s1,t1)) — bi(s1,t1, W, 1, (w))}dsl dt;
k2-n Jrro-n

s t
- / / {bi(shth Wiy 1 (W) —u™ (s1,t1)) — bi(s1,t1, Wiy 1y (w))}dsl di;.
k2-n Jk2-n

As a consequence,

ul(s,t) <uf (s, K'27") +uf (k27" t) +uy (27" (k, K)) + @S,ik, (0,Tp(k+ 1, +1)) (w) (2.12)

— o (0, (k + LK +1)) ()

for all (s,t) € Ly X L. Similarly, we can show that

U (5,8) < U (8, K27) (K27 0) i (2700 K)) — 00 (0~ (B + 1K + 1)) (@) (2.13)

+ 89 (0, (k + 1K +1)) (w)

for all (s,t) € Ly, X L. For any k, k' € {1,2,---,2"} and i € {1,...,d}, we define u, ;(k, k') =
max{n;(k, k'), u, ;(k,k')}. We deduce from Inequalities (2.10)-(2.13) that

Uni(k+ 1,k +1) < max Uy j(k, k' + 1) + max @, ;(k+1,k") + max U, ;(k, k')
1<j<d 1<j<d 1<j<d

+ 205 (w)y/n2™" (\/& max Unj(k+ 1,k +1)+ 5(”))
1<j<d

and
: 1LE+1)< Up. i "+1 Up. i 1,k Up. i !
Up (k4 1,k + )_lréljagxdu (kK + )+1I£?§Xdu Sk + ,k)—i—lrg?gdu (kK
+ 2C5(w)y/n27" <\/g112a<xdﬂn7j(k +1L,K +1)+ B(n)) .
<j<
Then

Upi(k+1,K +1) < Upi(k, K +1 Upi(k+1,K Uni(k, K
120 T (B LR+ 1) < e Tona (B K4 1) o Tk o 1K)+ pa B o )

+205(w)v/n2™" (\/glrg%lﬂn,i(k +1L,E +1)+ 5(n)> :

Since Ca(w)Vdn2™™ < 1/6, we have (1 — 202 (w)vVdn27")~! < (1 + 3C2(w)Vdn2™™) and the above
inequality implies

max tni(k + 1,k + 1) <(1 + 3Cs(w)Vdn2™) - ( max tni(k, ¥ + 1) + max Gni(k + 1, k')+
1<i<d 1<i<d 1<i<d

~ ’ -n
+ 1n§1?§xdum(k, K') + 2C5(w)y/n2 5(n))

The desired result then follows by induction on k and k' as in the proof of Lemma 3.9 in Bogso
et al. (2022).
O

We now turn to the proof of Theorem 2.14.



Malliavin differentiability of solutions of hyperbolic SPDEs with irregular drifts 1547

Proof of Theorem 2.1/: Choose €1, w, n and B(n) as in Lemma 2.15. Let u be a solution of (2.6).
We have max{|u|(s,0), |u[(0,t)} = 0 < B(n) for all (s,t) € [0, 1]?. Moreover, we deduce from (2.9)
that

sup max max{Tn,i(k, k'), w, ;(k, &)} < 22n+2ﬂ( ) (2.14)
k‘,k"E{O,l,Q 2n} 1<i<d

for all n satisfying Co(w)vdn2™™ < 1/9. Since the right hand side of (2.14) converges to 0 as n
goes to oo, then, for all (s,t), we have u(s,t) =0 on ;. O

3. Malliavin regularity

In this section we study the Malliavin regularity of the strong solution to (1.3).

3.1. Basic facts on Malliavin calculus and compactness criterion on the plane. We first recall some
basic facts on Malliavin calculus for Wiener functionals on the plane which can be found in Nu-
alart and Sanz (1985, Section 2) (see also Nualart and Sanz (1989, Section 1)). Let (Q,F,P) be
the canonical space associated to the d-dimensional Brownian sheet, that is {2 is the space of all
continuous functions w : I' — R% which vanish on the axes, P is the Wiener measure and F is the
completion of the Borel o-algebra of Q with respect to P. Let (Fsy,(s,t) € I') denote the nonde-
creasing family of o-algebras where Fj; is generated by the functions (sq,t1) — w(s1 A s,t1 At),
(s1,t1) € ', w € Q and the null sets of F. Consider the following subset H of {2

there exists @ € L*(I',R?) such that }

H = { Q:
v e fo fo (s1,t1)dt1dsy, for any (s,t) € I’

Endowed with the inner product

(w1, w2) H Z/wl (s1,t1)w )(81,t1)d81dt1,

the set H is a Hilbert space. We call Wiener functional any measurable function defined on the
Wiener space (2, F,P). A Wiener functional F': Q — R is said to be smooth if there exists some
integer n > 1 and an infinitely differentiable function f on R™ such that

(i) f and all its derivatives have at most polynomial growth order,

(ii) F(w) = f(w(Sh tl)v s 7w(3n7 tn)) for some (517 tl)v AR (Snv tn) el
Every smooth functional F' is Fréchet-differentiable and the Fréchet-derivative of F' along any vector
h € H is given by

n

ZZ of W(s1,t1), -, w(Sn, tn)) 0 (si,1;) Z/@ q,m)h9) (¢, r)dgdr,

J=11i= 18.73

where

£J(Q7 T) = Z W(w(sla tl)a s 7w(8n7 tn))l[o,si]x[o,ti](qv 7’)-
i=1 0T

Let Da ; denote the closed hull of the family of smooth functionals with respect to the norm

1131 = IF1Z2 () + IDF I 20,m)-

Now we present a useful characterization of relatively compact subsets in the space L?(Q, R?).
Let us recall the following compactness criterion provided in Da Prato et al. (1992, Theorem 1).
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Theorem 3.1. Let A be a self-adjoint compact operator on H. Then, for any ¢ > 0, the set
G={GeDy;: Gl 2 + HA_lDG”L2(Q;H) <c}
is relatively compact in L?(Q, R?).

In order to apply the above result, we consider the fractional Sobolev space:

2017y 2 , lg(u) —g()]? .

where U is a domain of RP, p > 1 and the norm is given by

lg(u) — g(u)? 1/2
HgHG?g’p(U;R) = HgHL2(U;R) + (/U U Wdudu') .

We need the next compact embedding result from Palatucci et al. (2013, Lemma 10) (see also
Di Nezza et al. (2012, Theorem 7.1)).

Lemma 3.2. Let p > 1, U C RP be a Lipschitz bounded open set and J be a bounded subset of

L*(U;R). Suppose that
o 1\|2
9geJ JU JU ’u_u‘p-i- g

for some B € (0,1). Then J is relatively compact in L?*(U;R).

As a consequence of Theorem 3.1 and Lemma 3.2, we have the following compactness criterion
for subsets in the space L%(Q, R?).
Corollary 3.3. Denote by FY the o-algebra generated by the d-dimensional Brownian sheet W =
(WO, WDy, Let (XM n € N) be a sequence of (FY, B(R))-measurable random variables

and let Ds; be the Malliavin derivative associated with the random vector Wy = (nglt), ceey Ws(i)).
Suppose

81€1p HX HLz (Qre) < 00 and SEEHD X HL2 (@x[0,1]2,Rdxd) < OO (3.1)
as well as
LE [||Ds X ™ — Dy pp X ™)||2]
dsds’dedt’ 3.2
“E//// (s — o]+t —pppems  Qsdsdidii<oo (32)

for some B € (0,1). Then (X™ n € N) is relatively compact in L*(Q,R?).

Proof: The proof is inspired from Haadem and Proske (2014, Section 5). We consider the symmetric
form £ on L2((0,1)%,RY) defined as

//f 5,) - g(s,t) dsdt+/ / // (5,1) s—ss’r/—)i—)]t(g(;\)g)“ﬁg( S0 gsadtar

for functions f, g in the dense domain D(£) C L?((0,1)%,RY) and a fixed 8 € (0, 1), where

g(s,t st 2
D(L) = { ||9||L2(012Rd //// |s|—s’]+|t( |))2|+2ﬁdsds/dtdt/<oo}.

Then L is a positive symmetric closed form and, by Kato’s first representation theorem (see e.g.
Kato (1995)), one can find a positive self-adjoint operator T such that

L(f,g) = ([ T£g>L2((o,1)2,Rd)

for all g € D(T) and f € D(L). Further, one may observe that the form £ is bounded from below
by a positive number. Indeed,

L(g,9) > l9ll 2((0,1)2,r4) (3.3)
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for all g € D(L). Hence, we have that D(L) = D(TLI/Q).

Now, define the operator A as A = Tl/ ?. It follows from Lemma 1 in Lewis (1982, Section 1)
(see also Haadem and Proske (2014, Lemma 9)) and Lemma 3.2 applied to p = 2, U = (0, 1)? that
A has a discrete spectrum and a compact inverse A1, Then, using (3.1)-(3.3), the operator A and
the sequence (X () neN ) satisfy the assumptions of Theorem 3.1. O

3.2. Malliavin differentiability for bounded drifts. In this subsection, we assume in addition the drift
b is bounded. The main result of this subsection which significantly generalised those in Nualart
and Sanz (1989) when the diffusion is constant is the following

Theorem 3.4. The strong solution {ng’t, s,t €[0,1]} of the SDE (1.3) is Malliavin differentiable.

The proof of this theorem is done is two steps:
Step 1: We use standard approximation procedure to approximate the drift coefficient b =b—b
by a sequence of functions
by o= bp — bp,n > 1

such that b,, = (131 "y - - Edn) b, = (51 R bdn) (b;, n)n>1 and (l;] n)n>1 are smooth and compo-

<°‘>

nentwise non—decreasmg functions with sup,, Hbj nlloo < ||b oo < 00 and sup,, [|bjnlleo < [1B)]loe < 0.
In addition, (b,)n>1 (respctively, (by)n>1) converges to b (vespctively, b) in (s,t,z) € [0,1]* x R?
ds x dt x dz-a.e. We know that for such smooth drift coefficients, the corresponding SDEs have
a unique strong solution denoted by X&™. We then show that for each s,t € [0, 1], the sequence
(Xft" )Jn>1 is relatively compact in L2(€2, P;RY).

Step 2: We show that the the sequence of solutions (X&), converges strongly in L?(Q2, P; RY).

From Step 1 and Step 2, the result will follow by application of a compactness criteria Nualart
(2006, Lemma 1.2.3).

The next result corresponds to a L?(£2) compactness criteria. It is analogous to the result derived
in Menoukeu-Pamen et al. (2013) for the case of Brownian motion.

Theorem 3.5. For every (s,t) € Iy, the sequence (Xs’f)nzl, is relatively compact in L*(Q,P;RY).
The proof of the above theorem uses Corollary 3.3, which in our case is reduced to proving;:

Lemma 3.6. There exists Cy > 0 such that for every (s,t) € 'y, the sequence (ng:tn)nZI satisfies

sup [| X 571172 ppe) < C (3.4)
n>1
and
sup sup E [||DTUX§f||2] < (1. (3.5)
n>1 0<r<s
0<u<t

Moreover for all 0 < r',r <s, 0 <u,u<t,
E 1D X57 = Dy XEIP] < Callr = ') 4 Ju—w]), (3.6)
where || - || denotes the max norm.

Remark 3.7. If (3.0) is satisfied, then for any 8 € (0,1/2), (3.2) holds. Indeed, since, for any s, s/,
t, t’, one has

|5 = s [V2t =t V2 < S(|s = o'+ |t = 1),

| =
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then for any n € N,

'E 1Dt X" = Doy X)L
//// (s — o'+ [t —])2+28 7
<Cl/ / // dsds’'dtdt/ // dsds’ // dedt! o
= JoJo Jo Jo (Is=s[+[t—1]) HM— 2 |s — s'|1/2+8 \t—t’|1/2+,6’ :

To prove the result above, we need some preliminary estimates.

Lemma 3.8. There exists a non-decreasing function Cy Ry x Ry — Ry such that for any

O<r<s<l,any0<u<t<1,anyk €Ry and anyi,j e {1,---,d},
k S t N ~ ~
E[ exp (W / / Objnls1. 11, Wy )dbrds )| < Cuh, gl (3.7)
and
k S t . ~ v
Elew (5o [ #bielontn Wan)dds)] < Guik i), 69

where §(r,s) = /s —r and §(u,t) = /t — u.

Proof: We only prove (3.7) and the proof of (3.8) follows anagously. Using integration with respect
to local time formula (see e.g. Bogso et al. (2023, Corollary 2.3)), we have

S t
//aibj,n(317t17Wsl,tl)dtldtsl

s t d d B(Z)
_/ / bj,n(517t17Ws1,t1) Shtld +/ / ]n 817 tl)WShl—tl)%dsl (39)
1

W
et Wl 1 ﬁdt dsy,
/ /1 jn 517 1 s1,1 tl) (1 _ tl) 1481

where (Bg, (s,t) € [0,1]%) is the Brownian sheet given by the following representation provided by

1]

Dalang and Walsh (2002)
. . . t @

wi_, =wl)+ Bl - /0 S g,

1—u

Since the function x — €3% is convex,
k s t .
E|:6Xp (M‘ / / 6Z'bj7n(81,t1, Wsl,tl)dt1d31‘>:|
dy, W

( o(r, 8)0(u,t) ‘/ / n(s1t, sltl)lThtldSlD} (3.10)
dtlB(i)t
W 1y, ) st g ’
[EXP<5 (r,s)0(u,t ‘/ /1 n(s1 00 Wor1-0) 51 51 )}

‘/ / 81 t1, We, 1 )ngimdtldsl‘)}} = 1([1—%[2—"-[)
(57‘3 (u,t) 1 b (1 — ) 3 e
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By Jensen inequality

4, Wot

)]

. _ dtlws(l)tl s

S/T E[exp (61{:\[ \f ‘/ n(s1,t1, We t1) 51 )} 2\/5(?/1_ NG
s dths(f?l S

S/r E[exp (5(?1,kt) bj,n(Slytl,Wshm) \/gt )]2\/5((\1/51_ \/F)

Since for every s; € [r, s],

t1 dt W(l)
(szl,tl ::/ bj,n(shtz,VVsl,th)QTSIM2 u<t; < t)
u

is a square integrable martingale, it follows from the Barlow-Yor inequality (see e.g. Barlow and
Yor (1982, Proposition 4.2) and Carlen and Krée (1991, Theorem A in Appendix)) that there exists
a positive constant ¢; such that for any positive integer m and any s € [r, s],

E[Vor "] <E| sup (Yo |"] < o Vi "E[Y:,, )

u<lt1 <
m m 72 m/2
=C \/TTL E[(/ ijn(slatthl,tl)dh) :|
<efVm"™ 6 (u, )™ [bjn 2.

Hence, using the following exponential expansion formula,

oxp (- 51y, of) = 3 S Wasel”
P 5(u, )Mt 5(u, t)ymm! ’
we obtain

s 6k t. dt1 W81 t1 dSl

< : ’
Il—/r E[exp(é(u,t)’/ub]’”(sl’“’W51’“) NG ﬂ%/ﬁ(ﬁ—ﬁ)

_ [ 6k dsy [ 6TRTE[|Ys, ™) ds
—/T E[exp (5(u,t)nlvt’>}2\/§(\/g_\/;) _/T 2oty 251V — V)

o 67k im " [bjnl

m)!

IN

= Cuu(k, 1bjnlloo),

which is finite by ratio test. Similarly, we also have

I < Cra(k, |[bjnlloo).
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To estimate I3 we apply one more Jensen inequality and obtain

w
I _E[ ( ‘/ / (51t War 1y ) —=8 g4 q D]
3 €xp r s u t . g 81 1 1,1 tl) (1_t1) 1451

s 1 12k(y/3 — /7) (VT — VI )
S/ / E[exp ( 5(r, )0 1)
% dtl d81
N A ¢1 =) 255 — V)

bt - 2 )
1bj,n (51,81, Wy 1 tl\\ﬁm

- \Fx/l 2Tt (VT = — VT 1) 2515 = v/7)
<2exp (m?ubj,nuio) = Cualk, Hbj,nlloo),

(1)

since |—1= | ig a mean-zero Gaussian random variable of variance 1.
Vs1ivV1—t1
The proof is completed by choosing C7 = 2C1 1 + Cy 2. ]

Proof of Lemma 3.6: Without loss of generality, we suppose { = 0. Further we set X, := Xg’tn .

We start with the proof of (3.5). Suppose for every j € {1,...,d}, I;j,n (respectively, b;,) is
componentwise nondecreasing and continuously differentiable with bounded derivatives. Then for
any (r,u) € [0,1]? with (0,0) < (r,u) < (s, 1),

s t
Dy X0y = Ig+ / / Vb, (s1,t1, X2 ) Dru X2, dtydsy, (3.11)
r Ju

where I, is the identity matrix, Vb, = (0;b;, n)1<m<dv Oibjn belng the partial derivative of b;(s,t,-)

with respect to z;, and Dy, X, = (D’ Xst Ji<i,j<d- Since 0 b]n and 0; b]n are nonnegative, we
have

iz <t [1f S {0y 51010, X0 0) 0485100, D X2 s

i,j=1

Therefore (see e.g. Theorem B.1),

||D7"qut|| <exp / / Sl’tlegl,tl) + 8ilv)j’n(51,t1, 1 tl)}dtldsl) (3.12)
i,j= 1

Squaring both sides of the inequality, taking the expectation and using the Girsanov theorem (see
e.g. Dalang and Mueller (2015, Theorem 3.5) and Nualart and Pardoux (1994, Proposition 1.6))
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and the Cauchy-Schwarz inequality, we obtain

E[| Dru X 1I7)

<E exp //Z ab]n(sl,tl,X51t1)+8b]n(81,t1, sltl)}dtld*gl)}

7.7_

:E[E(/O /o bn(Sl,tthl,tl)'dWsl,tl)'

exp //Z 8bjn 517t17W31»t1)+8byn(sl’tlaWsl,tl)}dhdslﬂ

,j=1
1
<COE exp / / Z 8bjn(81,t1,X81 t1)+8b]n(31,t1, s1 tl)}dtldﬁl)}
1,j=1
d s R s t 1
:COE[ H exXp (4/ / 8ibj,n(81,t1,Wsl,tl)dt1d51> eXp (4/ / aibj’n(sl,tl,Wsl’tl)dt1d81>:| 2,

3,j=1

where

n>1

Co = supE[E(/l /1 bu(s1,t1, W, 4,) dWsl,t1)2} 2 (3.13)

is finite (see Lemma A.1 and Remark A.2 in the Appendix), with

// n(81, 1, 517t1) dWSlJl)
= exp // 517t1; 817t1) dWsl,tl_ // ’b 317t17W81,t1)’ dsldtl)

Hence, by Hélder inequality, we have

_1
E[|| Dy X2 |2 <Co HE[exp 8d2/ / 8bjn51,t1,W51tl)dt1dsl)] @

1,j=1
E{exp <8d2/ / abjn sl,tl,Wshtl)dtldsl)]z.

Then, by Lemma 3.8, we obtain
[ Dy X24|%) < Co x Cr (8%, max (1B nlloc + [Bjnll} ) < Co x G (82, bl + 1Bl

which means that the Malliavin derivative of X™ is bounded in L?(Q,P; R%).
Next we prove (3.6). We deduce from (3.11) that for all 0 <7’ <r<s<1, 0<uv/ <u<t <1,

DruX;Lt — Dy u’Xn
s rt

/ / Vb 81, t]_, Xsl tl) Drr qul tl dtlds]_ / / Vbn(s]_, t]_, Xgll7tl) ‘DT’I,’U/X,;Ll,tl dtlds]_
,,-./ u/

/ / Vb (1,11, X0y 1) (DraXEs i, = Do X5y, ) dtrdsy

r t
- / / Vbnslatleng,tl)Dr’,u’Xthtl dtldsl - / / Vbn(slatlanl,tl)DT’,u’Xsnl,tl dtldsl.
r Ju! r Ju
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Taking the norm on both sides and using the fact that b,, = En — Bn, with En, by, nondecreasing, gives

n n
HDTu“Xs,t - DT',U'Xs,t

s t d
S/ / Z {aibj’n(sl,tl,X?htl) + aibj,n(sl’tbXgl,h)}HDT,UX?htl — DT’,U’X;Zl,tl dtldsl
Tt =1
s pu 4 . .
+/ / Z {&bj’n(sl,tl,Xghtl) +aibj,n(shtl’XSTL1,151)}HD7"/,U'X;11¢1 dtldsl
I =1
T t d R .
+ / / > {0bgalsns b X2 1))+ 0iby (11, X2 ) | Do X2, [dtadisn.
r Ju ij=1
Applying Theorem B.1, we obtain
HDT,qu;t - DT',u’Xg,t ‘ (314)
s pu d R .
S(/ / Z {aiijn(sl,tl,X;ll’tl) +aibjﬂl(sl’tl’X;,h)}HDT/vU'X?Ltl dtldsl
T =1
r t d R .
+/ / Z {aibj,n(slatlaXsnl,tl)+aibj,n(shtlvXgl,tl)}HDT’,u’Xgl,tl dt1d81>
v =1

s t d
x exp ( / / S {01by (51,11, X2 ) + 08 (51,01, X3, ) bltads )

i,j=1

Since aiiam and aiéjm are nonnegative, it follows from (3.12) that

s t d
”DT/,u’X?l,tl ” S exp (/ / Z {8ibj7n($2,t2,Xg2’t2) + aibjﬂ.b(SQ,tQ,X;’LZJQ)}dthSQ).
I =1

Hence, we deduce from (3.14) that it holds:

n n
HDr,qu,t - Dr’,u’Xs,t

s u d
‘ S(/T, /u, Z {aibj7n(81,t1,X;7tl) +8Z-bj7n(51,t1,X;’tl)}dtldsl

1,7=1

r t d
+/ / Z {aibjm(slatl,Xgl,tl)+8ibj7n<317tthl,tl)}dtld31>

ij=1

s t d
X exp (2 /T/ /u/ Z {8ibj,n(51>tlanl,t1) + 8ibj,n(517tlaX?l,tl)}dtldsl)~

1,j=1
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Squaring both sides of the inequality, taking the expectation and using Cauchy-Schwarz inequality
and Girsanov theorem give
il

g4700( Zd:{E[(/f/?&iéjyn(sl,tl,Wsl,tl)dtldsl)g] —i—E[(/i/Tﬁil}j’n(sl,tl,Wshtl)dtldsl)g]

ij=1

—|—E[(/j/tf)il;j’n(sl,tl,wshtl)dt1d31>8} +E[(/Tj/utf)il}m(sl,tl,WShtl)dt1d51>8} })‘1‘

< E[exp (16 / /t Zd: [0y (31,1, War 1) + Oy (5111 Wiy ) btads )

2,7=1

=47Co(Jy + Jo + Jg + J)Y* x Js,

E[||DruX, = Dy X2,

=

where Cj is given by (3.13). It follows from Holder inequality and the estimates (3.7)-(3.8) that

Js :E[exp (16 //S /f il: {&Bj,n(sl,th We ) + 31'5]-7,,1(81,751, Wsl,tl)}dtldﬁ)]i

i,j=1

1
2

SiﬁlE[exp (32d2 /rs /ut8i[;j7n(81,t1,Ws1,t1)dt1dsl):|Sd

s t 1

. E[exp (32d2/ / ai6j7n(81, tl, Ws1,t1)dtld51)] 8
~ ~ > 1
<C1(32d%, ||l oo + [[Blloo) -

Moreover, using the inequality z® < 8le? (z € R), we have

s ru ] s pu 8
E[(// // 8ibj,n(517t17Wsl,tl)dtldsl) ] +E|:(// // aibjyn(sl,tl,Wshtl)dtld81> }
1 sopu

ST, J, Osatonth Wit
1 S
150+ 88 (a) )8 —‘ i ‘
+816(r, ) 5(u,u)E[exp (6(7,,78)5(1/7”) / /u &b]’n(sl,tl,Wshtl)dtldsl)}

<2(8!)C1 (L, [[bloo + [1Bloc)d(u’, u)*

IE[(//T /t &‘Bj,n(sht1,W51,t1)dt1d81>8] —|—E[(/j /t 82-13].7”(517151,WShtl)dtldsl)S}

st L saton o Wovstsan )
/ /t Oib (51,1, Wiy )dtrdst )|

<815(r", 5)%5 (v, u)SE[exp (

and

<8!5(r', )85 (u, t)8E[exp (

1
<2(81)C1(1, [blloc + [1Blloc)d(r, 7).

+ 816(r,7)%6 (u, t)E { exp (

As a consequence,

Ji 4 Jo 4 Jg + Ji < ABNCL, |bllso + [1B]lec) (|7 — 7'|* + [u — o/ |%).
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Therefore

E[HD X7, — Dy oy X7 2} < 48(81)Co x C1(32d2, [[Blloo + [IBlloc)2(|r — 7| + [u — 2'])
U<t t ru' At = -)0 1 ) 00 00 .

Finally, by the Girsanov theorem and the Cauchy-Schwarz inequality, we have

!

< Co\kih

SUPHXst”m(Qde)—SUPEUX | —SUPE // n(s1,t1, Way ) - dWS1,t1)|W

n>1

Si;Il)E[g(/o /0 bn(slatlaWsl,tl)'dWsl,h) ]éE[|Ws,t|4}

where Cp is given by (3.13). _
The proof is completed by taking C; = Co max{+v/3d, 43(8!)C1(32d2, ||b]|oo + ||D]lec)}- O

N

For ¢ > 1, let us consider the following space L9(R%; p(x)dx) defined by
LYRY: p(z)dx) = {h : R? — R? measurable and such that / |h(z)|%p(z)dz < oo}, (3.15)
Rd

where the weight function p(x) is defined by

~lz|?
p(z) =e 2t , xR

Theorem 3.9. Let b, be defined as before and let (X57”)n21 be the sequence of corresponding

strong solutions to the SDE (1.3). Then for any fized s,t € [0, 1], (ng)nzl converges strongly in
L*(Q,P;RY) to X,

In order to prove the above theorem we need the subsequent result.

Lemma 3.10. Let (Xg’”)nzl be the sequence of corresponding strong solutions as given before.
Then for every s,t € [0,1] and function h € L*(R% p(x)dx), it holds that the sequence (h(Xi’tn))nZl
converges weakly in L?(Q,P;R?) to h(Xg,t).
Proof of Theorem 5.9: Using Theorem 3.5, we know that for each s,t, there exists a subsequence
(Xi’t"’“)kzl that converges strongly in L?(Q,P;R9). Set h(z) = x, x € R? and use Lemma 3.10 to
obtain that (Xf”tn’“)nzl converges weakly to th in L2(Q,P; R?). Thanks to the uniqueness of the
limit, there exists a subsequence nj such that (Xft" ")n>1 converges strongly to X ft in L2(Q, P;RY).
The convergence then holds for the entire sequence by uniqueness of the limit. To see this, suppose
by contradiction that for some s, t, there exist € > 0 and a subsequence n;,l > 0 such that

HXf”t"’ - Xf,t”LQ(Q,JP;Rd) > €.
We also know from the compactness criteria that there exists a further subsequence n,,, m > 0 of
ny, 1 > 0 such that

X‘f”tn”m — X, in L2(Q,P;R?) as m — oo.
However, (Xftn In>1 — Xst as k — oo weakly in L?(Q,P; R?), and hence by the uniqueness of the
limit, we obtain
Xt = Xg,t'

Since

1X5 = XSl e 2 €

we obtain a contradiction. O
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Proof of Theorem 3./: We know from Theorem 3.9 that (X o1 Jn>1 converges strongly in L?(Q,P; RY)
to Xét and from (3.5) in Lemma 3.6 that (D, qu ' )n>1 is bounded in the L2([0,1]% x ©,ds x dt x

P; ]RdXd) -norm uniformly in n. Thefore, using Nualart (2006, Lemma 1.2.3), we also have that the
limit X {t is Malliavin differentiable. O

Proof of Lemma 3.10: Let us first noticing that the space

1 1 828051 ¢ , ;
{g(/o /0 m'dWsl,n> cp € Cp([0,1]%,R )}

is a dense subspace of L2(Q,P;R%). Here Cy,([0,1],R9) is the space of bounded vector functions

i 92t
© such that each component ¢* has a second partial derivative 8%61;1 of bounded variation with

values in R. Hence, it suffices to show that for every i,

n Lot 62@31 t1 82S031 "
6(/0 /0 6518t1 'dWSl,tl)] — ]E / / 6518t1 'dWsl,tl):| as 1 — oo,

Since 2 is a Wiener space, then, as in Kitagawa (1951, proof Lemma 2) or Yeh (1963, proof of
Theorem 2), one can show a multidimensional analog of the Cameron-Martin translation theorem.
Precisely for every g : R? — R measurable, one has

Bo(xS )¢ / L Pean gy )] = / 9(XE,(w + ) dP(w). (3.16)
s,t 0 0 aslatl 81,01 Q s,t

Let ¢ € Ca,([0,1]%,R%). For every n, the process X" given by Xff(w) = Xé’t”(w + ) solves the
SDE

82‘;05,7&
0s0t

dX5) = (bn(t,ffﬁjt") + )dsdt+ AW, . (3.17)

Since X¢ is also the solution to the SDE it holds that X¢(w) := X¢(w + ¢) satisfies

- - 920,
dxé, = (b(t,thH a%t)d sdt +dW,,, P-a.s. (3.18)

Applying (3.16) and the Girsanov theorem, we have

82@ ' 1 18290 '
IE hi(XSME U AW, 4 ) — hi(XS,)E // LB qW,
st / / 6513161 1,t1> ( s,t) ( o Jo 0510t 1,t1)}
82
— 57 £ Spslytl .
=E _(hl(XS,t ) Xst / / 6$1at1 dWSlJl)]
- 82 s
=E hi(g"_Wst / / 81)t17€+W51,t1) azal:;} 'dW51,t1)

/ / (s1,t1,6 + Wart,) + fsalé? } : dWsl,tl) H . (3.19)
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Using the fact that |e® — €| < |e® + €®||a — b|, the Hélder inequality and Burkholder-Davis-Gundy
inequality, we get

wf:w(/l/l?iz:;-dw neoe([[ [ o amwan)]

%o
<CE {h (J; + Wst / / Sl’tlaf + W51,t1) 8.:81:11 } : dWSlytl)

+5// b(s1,t1, &+ Wey ) + f;t’il}-dwsl,h))j‘l‘

4
/ / Slatl €+W81,t1)_b(slatlvf+Ws1,t1)) 'dWShtl) }

829051,151 2 629051,751 2 4
+]E // 817t17£+W51,t1) a 18t1 >_ (b(517t17£+W81,t1)+m) dSldt]_) :|}

! s
SCE[h ($+Wst 2 / / 817t17€+W51,t1) 88181:11} 'dWShtl)

ve( [ [ {pon i wan+ G20 awe, )

NI

4
/ / T £+WS1 tl) _b(817t17£+W51,t1) :|d5].dt1
829081,751 2 82@81@ 2|4 i
/ / Slvtlag—’_WSl,h) aslatl ) - (b(slat17§+W51,t1) + W) ‘ ]dSldtl}
= -71 X Ipp % (I3 + Iap)- (3.20)

I is finite since h € L*(R;p(z)dz). Next observe that

82(,031,1‘,1
/ / n(s1,t1,§ 4+ Wy 4,) + m} 'dWs1,t1)

02
_5 / / 817 tl 5 + W81 tl dW81 tl / / asf(?l);tll : 81,t1>

X exp / / n(s1,t1, &+ Wy 4) a@g;ﬁ; dsidt )

Using the boundedness of 8%31;1 and the uniform boundedness of by, it follows that I3 ,, is bounded.
Using the dominated convergence theorem, we get that I, and I, converge to 0 as n goes to

infinity. Let us for example consider the term I3,. Using the density of the Brownian sheet for
every g > 1 it holds:

|

bn(satag"”Ws,t) _b(sataf"i'Ws,t)‘ } / ‘b S, t §+z) —b(S 3 §+z)‘q€ 28t dZ

2V 27rs

lbn (s, t,2) — b(s, t,2)|[%e " =t S dz
\/2773 /

|bn(s,t,2) — b(s,t z)|qei‘ @fwel‘jfelfsf dz
\/% X
2
e‘fs‘t —1z/2
5 /|b s,t,z) — b(s,t,z)|9e ast dz.
st

Thus the result follows by the dominated convergence theorem. O
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3.3. Malliavin regqularity under linear growth condition. As in the prev1ous section, we approx-
imate the drift coefficient b = b — b by a sequence of functions b, = by — bp,n > 1, where
by, = (b1n7 .. bd n) b, = (bln, . ,bd,n), (b],n)n21 and (bj,n)n21 are smooth, componentwise non-
decreasing and bounded functions satisfying;:

e There exists M > 0 such that ||bj,(s,t,z)|| < M(1+ |z|) and ||bjn(s, ¢, )| < M(1 + |z|)
for all n > 1 and (s,t,z) € Iy x RY,
o (bn)n>1 (respetively, (by)n>1) converges to b (respetively, b) in (s, ¢, x) € To x RY ds x dt x dz-
a.e.
One verifies that for such smooth drift coefficients, the corresponding SDEs have a unique strong
solution denoted by X&™. We show that for s,t small enough, the sequence (th Jn>1 is relatively

compact in L?(Q, P; Rd). The proofs of the next two results are similar to that of Lemmas 3.8 and
3.6 and are found in Appendix.

Lemma 3.11. There exist Co > 0 and ¢ > 0 such that, for anyi,j € {1,---,d}, any0<r <s<1,
any 0 <u <t <1 and any k € Ry,

A :
b < .
E[exp <(5(’l“, s)é(u, t) : 5 azbj,n(sla tla W31,t1)dt1d51)] ~ 027 (3 21)
and
C s t 5 .
E|:6Xp <6(T’5)6(u’t)/7‘ /1; azb‘%n(317 tl, Wshtl)dtldSl)] S 02, (322)

where 6(r,s) = /s —r and 0(u,t) =/t — u.

Lemma 3.12. There exist Co > 0 and 7 € (0,1) such that for every (s,t) € [0,7], the sequence
(Xs’f)nzl satisfies

sup HX;l,tH%Q(QJP;Rd) < (O (3.23)
n>1
and
sup sup E [||Dp X7 [°] < Co. (3.24)
n>10<r<s
0<u<t

Moreover, for all0 <7r'r<s<7, 0<v,u<t<rT,
E [ DruX? — Dy X2411%] < Co(lr — o[ + Ju —u')). (3.25)

Here is the main result of this section which is a consequence of Lemma 3.12 and the compactness
criterion provided in Corollary 3.3

Theorem 3.13. There exist T € (0,1) such that for any £ the strong solution {Xf’t, s, t €10,7]} of
the SDE (1.3) is Malliavin differentiable.

Proof: As in the proof of Lemma 3.10, we show that (Xftn Jn>1 converges weackly in L2(Q, P; R?)
to th for every (s,t) € [0,7]2. Hence, using Lemma 3.12 and the compactness criterion provided
in Corollary 3.3, we deduce that (ng )n>1 converges strongly in L?(€2, P; RY) to th. Then, since
(Dr,qu,’tn)nzl is bounded in the L?([0,1]% x ©,ds x dt x P; R¥*?)-norm uniformly in n (see (3.24)),
it follows from Nualart (2006, Lemma 1.2.3) that the limit X £t is also Malliavin differentiable. [
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Appendix A. Proofs of Lemmas 3.11 and 3.12

In this section we provide the proofs of Lemmas 3.11 and 3.12. Let us start with a useful estimate.

Lemma A.1. There exist 1y € (0,1) such that

2
supIE / / (s,t,Wsy) - dWs,t> } < 0. (A1)

n>1

Proof: By Cauchy-Schwarz inequality, we have

E[e / / (5., W) dWs,t>2}

—E| exp / / (5,6, Wez) - AWy — / / (s,t, Wy)] dsdt)]

:IE | exp / / (s,t,Wsy) - dWs — / / |bn (s, t, Wst)\ dsdt
+3/ / (5,8, Ws)] dsdt)]

1
/ / bn(s,t,Ws1) dWSt eXp / / (s,t, Ws4)] dsdtﬂ2

Since by, is bounded, we have (see e.g. Nualart and Pardoux (1994, Proposition 1.6))

/ / (5.t W) - dWS,t)}:L Vn>1,7 > 0.

Moreover, by Jensen inequality,

eXp / / n(s,t, We i)l dsdt)] 7_112/0 /0 {
Sflf/o /0 E[exp<24712Md1+|Wst\ ))}dsdt
)

exp (2471 Md

E|exp 671 (s,t,Ws 1)l )}dsdt

/ / exp(247'12Md st|G]| )} dsdt
ut

<exp (247'1 Md) E [exp(24TfMd|G| )} ;

where G = (G, ...,Gy4) is a mean-zero random vector with identity covariance matrix.

The proof is completed since E [exp(lZTfM d|G |2)} < oo for 71 small enough. O

Remark A.2. When the drift b is bounded, the functions b,, n > 1 are uniformly bounded and, as
a consequence,

co=susfe( [ [ mismi am)’)
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Proof of Lemma 5.11. We only prove (3.21) since the proof of (3.22) follows the same lines. We
deduce from the local time-space integration formula (2.1) that

¢ Yy |
E|:eXp <5(T7 S)é(u,t) (] ],n(817t17 Wsl,tl)dtldsl )]
(@)
1 3¢ t. de, W 't
< . 7’ .
_3{E[exp (75(7“ 50 b],n(sl,tl, Wi t1) . dsl‘)} (A.2)
(@)
3 dy, B
+]E[exp 5(r.s) Cu n ‘/ / S1,t1,W31,17t1)71 Sll’tldsl‘ﬂ
1
(@)
w 1
s1,1—t1 _ =
—l—E[exp 7’ S u t ‘/ /1 Slatlawsl,l—t1>7(l — tl)dtldsl‘)}} 3(]1 + I —i—Ig).

By Jensen inequality,
(4)

3 de, W
I ZE[GXP 50 s) C n(s1,t1, Wi, tl)tlsill’tld&‘)}
(3)
s 6<(f_ \/F) 7 dtl WSl t1 dsy
< .
_/r E[exp ( o(r, s)d(u,t) /u bin(s1:t1, Wora) /51 ﬂ 2./51(\/s — \/T)

sz
251 (V5 — V")

t d; W()
bin(s1,t1, Wi Lol
/1; Js ( 1 1 17t1) \/a

< [ =l (s

Since, for every s; € [r, s],

o d,, w®
(Ysl,tl = / bj,n(slatQ; VVsl,tz)QTgll’l52 S tl S t)
u

is a square integrable martingale and similar reasoning as before gives
B[ Y, | < 27" N5 (u, )™
From this and the exponential expansion formula, we get

X 94m,m ,2m,,,m A fm
11§Z2 CclmM

m=0

= Cl,lv

m)!

which is finite if ¢ < e/2%c}M (by ratio test). Similarly, we also have
I < 51,1-

To estimate I3 we apply Jensen inequality again and we obtain
(4)

Wit
Is _E[exp ) . S1,t1,Wsl,1—t1)Mdtldsl‘ﬂ
s pl-u —VNWI=u—V1—=1),. s1,1—t;
" o (2 e S Y O
dt ds
2\/1—1:1(\/1—1u—\/1—t)2xf(\f1 V)

s pl-u w2 d ds
<[ [, Elew eSS s e
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with 51’2 finite provided that 24MC < 1/2.
The proof is completed by choosing ¢ = 1/26¢2M and C; = (2C1 1 + C12)/3. O

Proof of Lemma 3.12. Fix 7 € (0,min{r, (/32d?}), where 71 is the constant in Lemma A.1 and ¢
is the constant in Lemma 3.11. We deduce from Theorem B.1 and the linear growth condition on
the drift b, that E[|X7||*] < Cy,1 for all (s,t) € [0,7]> and n > 1, where C5,1 does not depend of
(s,t)and n. Let 0 <7’ <r<s<7and 0 <u <u<t<r7. Since

¢
7 <7 and §(r',s)d(v/,t) < 7 < o

then, using similar computations as in the proof of Lemma 3.6, one can deduce from Lemma A.1,
Girsanov theorem and Holder inequality that

sup sup IE[HDTMX;AP] i=Cp < 0
n>1 0<r<s
0<u<t

and
E 1Dy X2 = Do Xl2] < Coallr = ') + Ju—w])
for some positive constant Cs independent of n.
The proof is completed by taking Cy = max{Cs1,C22,C23}. O

Remark A.3. It is worth noting that if the drift is in addition the difference of two convex or concave
functions, then the solution to the equation (1.3) is twice Malliavin differentiable. Indeed, b =b—b
is Lipschitz with the second order weak derivatives of b, b positive or negative.

Appendix B. A Gronwall type inequality for functions of two variables

The next result which is originally due to Wendroff, extends Gronwall inequality to functions of
two variables (see e.g. Qin (2016, Theorem 5.1.1)).

Theorem B.1. Let g(s,t), a(s,t), k(s,t) be non-negative continuous functions for all s > sg, t > ty,
and let a(s,t) be non-decreasing in each of the variables for all s > sg, t > to. Suppose that for all
s 2 80, t > 1o,

S t
g(s,t) < af(s,t) +/ / k(s1,t1)g(s1,t1) dt1dsy.
sg Jto

Then for all s > sg, t > tg,

s t
g(s,t) < a(s,t)exp (/ / k(sl,tl)dtldsl).
so Jto
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