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Abstract. We solve the secretary problem in the case that the ranked items arrive in a statistically
biased order rather than in uniformly random order. The bias is given by the left-to-right minimum
exponentially tilted distribution with parameter q ∈ (0,∞). That is, for σ ∈ Sn, the probability of
σ is proportional to qLR−

n (σ), where the left-to-right minimum statistic LR−n is defined by

LR−n (σ) = |{j ∈ [n] : σj = min{σi : 1 ≤ i ≤ j}}|, σ ∈ Sn.
For q ∈ (0, 1), higher ranked items tend to arrive earlier than in the case of the uniform distribution,
and for q ∈ (1,∞), they tend to arrive later, where the highest ranked item is denoted by 1 and the
lowest ranked item is denoted by n. In the classical problem, the asymptotically optimal strategy
is to reject the first M∗n items, where M∗n ∼ n

e , and then to select the first item ranked higher than
any of the first M∗n items (if such an item exists). This yields e−1 as the limiting probability of
success. With the above bias on arrivals, and for the parameter q = qn depending on n, we calculate
the asymptotic behavior of the optimal strategy M∗n and the corresponding limiting probability of
success, for all regimes of {qn}∞n=1. In particular, if the leading order asymptotic behavior of {qn}∞n=1

is at least 1
logn , and if also its order is no more than o(n), then the limiting probability of success

when using an asymptotically optimal strategy is e−1; otherwise, this limiting probability of success
is greater than e−1. Also, the limiting fraction of numbers, limn→∞

M∗
n
n , that are summarily rejected

by an asymptotically optimal strategy lies in (0, 1) if and only if limn→∞ qn ∈ (0,∞).

1. Introduction and Statement of Results

In a recent paper Pinsky (2022b) we analyzed the secretary problem in the case that the order
of arrival is biased by a Mallows distribution. The family of Mallows distributions is obtained by
exponential tilting via the inversion statistic, which introduces a bias whereby smaller numbers tend
to appear earlier and larger numbers tend to appear later (if the parameter q ∈ (0, 1)) or vice versa
(if the parameter q > 1) than in the uniform case. In this paper we study the secretary problem
with a different bias, obtained by exponential tilting via the left-to-right minimum statistic. This
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latter tilting also creates a bias whereby smaller numbers tend to appear earlier and larger numbers
tend to appear later (if the parameter q ∈ (0, 1)) or vice versa (if the parameter q > 1) than in
the uniform case. It turns out that the secretary problem with bias via the left-to-right minimum
statistic yields a richer array of behavior than in the case of the Mallows distribution, and the
proofs of the results require a considerably more delicate analysis than in the case of the Mallows
distribution.

Recall the classical secretary problem: For n ∈ N, a set of n ranked items is revealed, one item at
a time, to an observer whose objective is to select the item with the highest rank. The order of the
items is completely random; that is, each of the n! permutations of the ranks is equally likely. At
each stage, the observer only knows the relative ranks of the items that have arrived thus far, and
must either select the current item, in which case the process terminates, or reject it and continue
to the next item. If the observer rejects the first n− 1 items, then the nth and final item to arrive
must be accepted. Denote by S(n,Mn), forMn ∈ {0, 1, · · · , n−1}, the strategy whereby one rejects
the first Mn items and then selects the first later arriving item that is ranked higher than any of
the first Mn items (if such an item exists). As is very well known, asymptotically as n → ∞, the
optimal strategies S(n,M∗n) are those for whichM∗n ∼ n

e , and the corresponding limiting probability
of successfully selecting the item of highest rank is e−1.

Over the years, the secretary problem has been generalized in many directions. For the secretary
problem in its classical setup, but with items arriving in a non-uniform order, see Gilbert and
Mosteller (1966); Pfeifer (1989); Kesselheim et al. (2015) as well as Pinsky (2022b). See Gnedin and
Derbazi (2022) and Gnedin and Krengel (1995) for some variations of the classical setup with items
arriving in non-uniform order. See Bruss (2000) for a different approach to the secretary problem.
See Ferguson (1989); Freeman (1983) for a history of the problem and some natural variations and
generalizations.

We now define the distribution obtained by exponential tilting via the left-to-right minimum
statistic. For a permutation σ ∈ Sn, a number j ∈ [n] satisfying σj = min{σi : 1 ≤ i ≤ j} is called a
left-to-right minimum for σ; note that a left-to-right minimum denotes the location of a minimum
and not the value of a minimum. (For example, for the permutation 326145 ∈ S6, the positions
1,2 and 4 constitute left-to-right minima. The identity permutation in Sn has just one left-to-right
minimum, while its reverse has n left-to-right minima.) The left-to-right minimum statistic LR−n is
defined by

LR−n (σ) = |{j ∈ [n] : σj = min{σi : 1 ≤ i ≤ j}}|, σ ∈ Sn.

For each q > 0, define the left-to-right minimum exponentially tilted distribution PLR−;q
n on Sn by

PLR−;q
n (σ) =

qLR−
n (σ)

q(n)
, σ ∈ Sn,

where
q(n) := q(q + 1) · · · (q + n− 1) (1.1)

is the raising factorial. The fact that q(n) is the correct normalization constant follows from the
constructions in section 2.

Before presenting our results on the secretary problem, we present a simple result concerning the
behavior of the expectation of the left-to-right minimum statistic under PLR−;qn

n for various regimes
of {qn}∞n=1.

Proposition 1.1.

ELR−;qn
n LR−n = 1 +

n−1∑
j=1

qn
j + qn

. (1.2)

Furthermore,
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i. Let qn = o( 1
logn). Then

lim
n→∞

ELR−;qn
n LR−n = 1.

ii. Let limn→∞ qn log n = c ∈ (0,∞). Then

lim
n→∞

ELR−;qn
n LR−n = 1 + c.

iii. Let limn→∞ qn log n =∞ and qn = O(1). Then

ELR−;qn
n LR−n ∼ qn log n.

iv. Let qn →∞ and qn = o(n). Then

ELR−;qn
n LR−n ∼ qn log

n+ qn
1 + qn

.

In particular, if qn ∼ cnα, with c > 0 and α ∈ (0, 1), then

ELR−;qn
n LR−n ∼ c(1− α)nα log n.

v. Let qn ∼ cn, with c > 0. Then

ELR−;qn
n LR−n ∼ c(log

1 + c

c
)n.

In particular, c(log 1+c
c )→

{
0, if c→ 0;

1, if c→∞.
vi. Let limn→∞

qn
n =∞. Then

ELR−;qn
n LR−n ∼ n.

For any permutation, the right-most location of a left-to-right minimum is the location at which
the number 1 appears. In light of this, it is intuitive from the definition of the distribution and
from Proposition 1.1 that when q ∈ (0, 1) there is a tendency for the number 1 to appear early and
when q > 1 there is a tendency for the number 1 to appear late. In fact, for i < j, an exponentially
tilted distribution via the left-to-right minimum statistic has a greater effect on the placement of
the number i than on the placement of the number j, and in particular, it has the greatest effect on
the placement of the number 1. This tendency can be understood much more explicitly from the
first of two constructions of PLR−;qn

n given in section 2. In that construction, a random permutation
distributed as PLR−;qn

n is built location by location, starting with the nth and final location, and
moving backward one location at a time. The probability that any number j is placed in the final
location is the same for all j ∈ [n] − {1}, but is q times as much for j = 1. Using induction,
let m ∈ {1, · · · , n − 2}, and assume now that the locations n, n − 1, · · · , n −m + 1 have already
been filled, say by numbers {ik}nk=n−m+1. Then every number in [n]−{ik}nk=n−m+1, except for the
smallest one of them, has the same probability of appearing in location n −m, while the smallest
of them has q times as much probability to appear there. In the final step, location 1 is filled by
the one remaining number.

In light of the discussion in the above paragraph, as we turn now to the secretary problem, our
convention will be that the number 1 represents the highest ranking. Thus, for q ∈ (0, 1), there is a
tendency for the highest ranked item to arrive earlier than in the case of the uniform distribution,
while for q > 1, their is a tendency for it to arrive later.

If the order of arrival of the items is biased via the left-to-right minimum exponentially tilted
distribution PLR−;q

n with parameter q > 0, let Pqn(S(n,Mn)) denote the probability of successfully
selecting the item of highest rank when employing the strategy S(n,Mn), which was defined in the
second paragraph of the paper. The following theorem gives the exact formula for Pqn(S(n,Mn)),
for any n, q,Mn.
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Theorem 1.2. For n ∈ N and q > 0,

Pqn(S(n,Mn)) =

q
Mn
n

(
n!
Mn!

1∏n−1
l=Mn

(l+q)

)∑n−1
j=Mn

1
j , Mn ∈ {1, · · · , n− 1};

(n−1)!∏n−1
l=1 (l+q)

, Mn = 0.
(1.3)

It follows from a result of Bruss (2000) that there exists an optimal strategy and it is of the
form S(n,M), for some M . See Remark 1.4 after Theorem 1.3 for more on this. The following
theorem determines the asymptotically optimal strategies S(n,M∗n) and the corresponding limiting
probability of success, for all regimes of {qn}∞n=1.

Theorem 1.3. i. Let qn = o( 1
logn). Then the asymptotically optimal strategy is S(n,M∗n), where

M∗n = 0. (That is, the optimal strategy is to choose the first item.) The corresponding limiting
probability of success is

lim
n→∞

Pqn(S(n,M∗n)) = 1.

ii. Let qn ∼ c
logn , with c ∈ (0, 1). Then the asymptotically optimal strategy is S(n,M∗n), where

M∗n = 0. (That is, the optimal strategy is to choose the first item.) The corresponding limiting
probability of success is

lim
n→∞

Pqn(S(n,M∗n)) = e−c.

iii. Let qn ∼ 1
logn . Then the asymptotically optimal strategies are S(n,M∗n), where M∗n satisfies

limn→∞
logM∗

n
logn = 0. (In particular, one can choose M∗n = k, for all n ∈ N, where k ∈ Z+ is

arbitrary.) The corresponding limiting probability of success is

lim
n→∞

Pqn(S(n,M∗n)) = e−1.

iv. Let qn satisfy limn→∞qn = 0 and limn→∞ qn log n > 1. Then the asymptotically optimal
strategies are S(n,M∗n), where qn log n

M∗
n
∼ 1. (If qn ∼ c

logn with c > 1, then limn→∞
logM∗

n
logn = c−1

c ,

and in particular, one can choose M∗n ∼ n1−
1
c .) The corresponding limiting probability of success is

lim
n→∞

Pqn(S(n,M∗n)) = e−1.

v. Let limn→∞ qn = q ∈ (0,∞). Then the asymptotically optimal strategies are S(n,M∗n), where

M∗n ∼ ne
− 1
q .

The corresponding limiting probability of success is

lim
n→∞

Pqn(S(n,M∗n)) = e−1.

vi. Let qn →∞ and qn = o(n). Then the asymptotically optimal strategies is S(n,M∗n), where

n−M∗n ∼
n

qn
.

(In particular, if qn ∼ cnα, with α ∈ (0, 1), then n −M∗n ∼ n1−α

c .) The corresponding limiting
probability of success is

lim
n→∞

Pqn(S(n,M∗n)) = e−1.

vii. Let qn ∼ cn, with c ∈ (0, 1). Then the asymptotically optimal strategy is S(n,M∗n), where

M∗n = n− L, if
1

L
≤ c < 1

L− 1
, where 2 ≤ L ∈ N. (1.4)

The corresponding limiting probability of success is

lim
n→∞

Pqn(S(n,M∗n)) =
cL

(1 + c)L
, if

1

L
≤ c < 1

L− 1
, where 2 ≤ L ∈ N. (1.5)
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In particular,
lim
n→∞

Pqn(S(n,M∗n)) > e−1.

viii. Let qn ∼ cn, with c ≥ 1. Then the asymptotically optimal strategy is S(n,M∗n), where M∗n =
n−1. (That is, the optimal strategy is to choose the last item.) The corresponding limiting probability
of success is

lim
n→∞

Pqn(S(n,M∗n)) =
c

1 + c
.

ix. Let limn→∞
qn
n =∞. Then the asymptotically optimal strategy is S(n,M∗n), where M∗n = n− 1.

(That is, the optimal strategy is to choose the last item.) The corresponding limiting probability of
success is

lim
n→∞

Pqn(S(n,M∗n)) = 1.

Remark 1.4. The fact that the optimal asymptotic probability of success is always at least 1
e can

be explained by a result of Bruss (2000). For n ∈ N, let {Ij}nj=1 be a sequence of independent
indicator functions, which are observed sequentially. The observer’s objective is to stop at the last
k for which Ik = 1. Let pj denote the probability that Ij = 1. One of the results of that paper is
that there exists an optimal strategy and it is of the following form: let the first M observations
go by without choosing them, and then choose the first subsequent observation that is a “one” (if
such an observation exists), where M ∈ {0, · · · , n− 1}. It is also shown that an optimal strategy as
n→∞ yields an optimal limiting probability of at least 1

e , for all choices of {pj}
∞
j=1. This result of

Bruss can be applied to the classical secretary problem. Indeed, let Ik be equal to 1 or 0 according
to whether or not the kth item is the highest ranked item among the first k items. It is easy
to check that the {Ik}nk=1 are independent under the uniform distribution. It turns out that this
independence also holds under the distributions PLR-;q

n (as well as under the Mallows distributions
mentioned above). The proof of this independence for PLR-;q

n is given in section 2.

Remark 1.5. Note that if the leading order asymptotic behavior of {qn}∞n=1 is at least
1

logn , and if also
its order is no more than o(n), then the limiting probability of success when using an asymptotically
optimal strategy is e−1; otherwise, this limiting probability of success is greater than e−1. Note also
that the limiting fraction of numbers, limn→∞

M∗
n
n , that are summarily rejected by an asymptotically

optimal strategy lies in (0, 1) if and only if limn→∞ qn ∈ (0,∞).

Remark 1.6. Note the following asymmetry with respect to the cases where an optimal strategy is
M∗n = k, for fixed k ∈ N, and the cases where the optimal strategy is M∗n = n− L, for 2 ≤ L ∈ N.
For k ∈ N, the strategy M∗n = k is optimal when qn ∼ 1

logn , in which case the limiting probability
of success is e−1. However, for such qn, this strategy M∗n = k is not the unique optimal strategy.
On the other hand, for 2 ≤ L ∈ N, the strategy M∗n = n − L is optimal when qn ∼ cn, where
1
L ≤ c <

1
L−1 . This strategy is the unique optimal strategy for such qn, and the limiting probability

of success is cL
(1+c)L

> e−1.

Remark 1.7. As noted in the introduction, the secretary problem with bias via a Mallows distribution
was analyzed in Pinsky (2022b). The Mallows distributions PMall;q

n are obtained by exponential
tilting via the inversion statistic In, which is defined by In(σ) =

∑
1≤i<j≤n 1σj<σi , for σ ∈ Sn.

Thus, PMall;q
n (σ) is proportional to qIn(σ). There are a variety of ways to see that tilting via the

inversion statistic has a stronger effect than tilting via the left-to-right minimum statistic. In terms
of the secretary problem, this can be seen from the fact that the limiting probability of success with
left-to-right minimum tilting is e−1 as long as {qn}∞n=1 behaves like o(n) and is at least as large
as 1

logn . However, as seen in Pinsky (2022b), for constant qn = q 6= 1, the limiting probability of
success is larger than e−1.
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The number s(n, j) of permutations of Sn with exactly j left-to-right minima coincides with the
number of permutations of Sn with exactly j cycles. The numbers {s(n, j)} are called the unsigned
Stirling numbers of the first kind. A proof of this equivalence can be given by showing that the two
quantities above satisfy the same difference equation and the same boundary conditions. An alter-
native proof is via the explicit bijection provided by Foata’s Transition Lemma Bóna (2012). This
bijection maps permutations with j cycles to permutations with j left-to-right minima. (Actually,
using the definition of canonical cycle notation as presented in Bóna (2012), permutations with j
cycles are mapped to permutations with j left-to-right-maxima, but one can easily adjust the defi-
nition of canonical cycle notation so that permutations with j cycles are mapped to permutations
with j left-to-right minima.)

The well-known Ewings sampling distributions are the family of distributions on Sn obtained by
exponential tilting via the cycle statistic. That is, the probability of any σ ∈ Sn is proportional
to qcycn(σ), where cycn(σ) denotes the number of cycles in σ. It then follows that the distribu-
tion PLR−;q

n is the push-forward distribution obtained from the Ewings sampling distribution with
parameter q via the bijection from the Transition Lemma.

In order to prove Proposition 1.1 and Theorem 1.3, it will be essential to have a so-called online
construction of a random permutation distributed as PLR−;q

n . Such an online construction for the
Ewens sampling distributions can be obtained by a minor tweaking of the classical Feller construction
that builds a uniformly random permutation cycle by cycle Arratia et al. (2003); Pinsky (2014).
However, combining this construction with the push forward defined above does not yield a useful
tool for proving Proposition 1.1 and Theorem 1.2. In section 2 we give two useful online constructions
of a random permutation distributed according to a left-to-right minimum exponentially tilted
distribution. The first one will be used to prove Proposition 1.1 and Theorem 1.2, and the second
one will be used to establish the independence noted in Remark 1.4 after Theorem 1.3.

We prove Proposition 1.1 in section 3. We prove Theorem 1.2 in section 4, and then use it to
prove Theorem 1.3 in section 5.

2. On-line constructions of left-to-right minimum exponentially tilted distributions

We describe two online methods for constructing a random permutation Π(n) distributed as
PLR−;q
n . Fix q > 0. The first construction builds the permutation location by location, starting

with the right-most location. For each m ∈ N, define the distribution p(m) on [m] by

p
(m)
i =

{
q

q+m−1 , i = 1;
1

q+m−1 , i = 2, · · · ,m.
(2.1)

Fix n ∈ N. To construct the random permutation Π(n) = Π
(n)
1 Π

(n)
2 · · ·Π

(n)
n , distributed as PLR−;q

n ,
make n independent samples, one from each of the distributions {p(m)}nm=1. For m ∈ [n], de-
note by κm the number obtained in sampling from p(m). Define Π

(n)
n = κn. Now inductively,

if Π
(n)
n ,Π

(n)
n−1, · · · ,Π

(n)
m+1 have already been defined, let Π

(n)
m = Ψm(κm), where Ψm is the in-

creasing bijection from [m] to [n] − {Π(n)
k }

n
k=m+1. Thus, for example, if n = 8 and we sample

κ8 = 2, κ7 = 6, κ6 = 1, κ5 = 4, κ4 = 2, κ3 = 2, κ2 = 1, κ1 = 1, then Π(8) = 83546172. By construc-
tion, the random permutation Π(n) has a left-to-right minimum at location m if and only if κm = 1.

Thus, from (2.1), for any σ ∈ Sn, the probability that Π(n) = σ is equal to qLR−
n (σ)

q(n)
, where q(n) is as

in (1.1).

The above construction of a random permutation is a minor adaptation of the so-called p-shifted
construction of a random permutation. See, for example, Pitman and Tang (2019) and Pinsky
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(2022a). From Proposition 1.7 and Remark 3 following it in Pinsky (2022a), it follows that a p-
shifted random permutation can also be constructed in a useful alternative fashion. This leads to
the second construction of a random permutation Π(n) with a left-to-right minimum exponentially
tilted distribution. Let {Ym}∞m=2 be a sequence of independent random variables with

P (Ym = j) =

{
q

q+m−1 , j = 0;
1

q+m−1 , j = 1, · · · ,m− 1.
(2.2)

Consider now a horizontal line on which to place the numbers in [n]. We begin by placing down
the number 1. Then inductively, if we have already placed down the numbers 1, 2, · · · ,m − 1, the
number m gets placed down in the position for which there are Ym numbers to its left. For example,
for n = 8, if Y2 = 1, Y3 = 0, Y4 = 1, Y5 = 1, Y6 = 3, Y7 = 5, Y8 = 0, then we obtain the
permutation Π(8) = 83546172. By the construction, for m ∈ [n] − {1}, the location of m in the
random permutation Π(n) will be a left-to-right minimum for the random permutation Π(n) if and
only if Ym = 0. Also, the location of m = 1 is a left-to-right minimum. Thus, from (2.2), it follows

that for any σ ∈ Sn, the probability that Π(n) = σ is equal to qLR−
n (σ)−1

(q+1)···(q+n−1) = qLR−
n (σ)

q(n)
.

We use this second construction now to prove the independence noted in Remark 1.4 after The-
orem 1.3. We want to prove that for any n ∈ N, the events {σ ∈ Sn : σm = min(σ1, · · · , σm)},m =

1, · · · , n, are independent under PLR−;q
n . (The event {σ ∈ Sn : σm = min(σ1, · · · , σm)} is the

event that m is a left-to-right minimum for σ.) It is easy to show that the number of left-to-right
minima in a permutation coincides with that of its inverse; that is, LR−n (σ) = LR−n (σ−1), σ ∈ Sn.
From this fact along with the definition of the exponentially tilted measure, it follows that if σ is
distributed according to PLR−;q

n , then σ−1 is also distributed according to PLR−;q
n . Consequently,

to prove the independence of the above events under PLR−;q
n , it suffices to prove the independence

of the events {σ ∈ Sn : σ−1m = min(σ−11 , · · · , σ−1m )},m = 1, · · · , n, under PLR−;q
n . The event

{σ ∈ Sn : σ−1m = min(σ−11 , · · · , σ−1m )} is the event that in the permutation σ, the number m appears
to the left of the numbers 1, · · · ,m− 1. Thus, from the second construction, this event is the event
{Ym = 0}. This completes the proof since the {Ym}nm=1 are independent.

3. Proof of Proposition 1.1

We use the first online construction in section 2 and employ the notation from there. Under the
distribution PLR−;q

n , a left-to-right minimum occurs at position j if and only if κj = 0, which occurs
with probability q

j−1+q . Therefore

ELR−;qn
n LR−n =

n∑
j=1

qn
j − 1 + qn

= 1 +

n−1∑
j=1

qn
j + qn

, (3.1)

which gives (1.2). We have
n∑
j=2

1

j + qn
≤
∫ n−1

1

1

x+ qn
dx ≤

n−1∑
j=1

1

j + qn
,

from which it follows that

qn log
n− 1 + qn

1 + qn
≤

n−1∑
j=1

qn
j + qn

≤ qn log
n− 1 + qn

1 + qn
+

qn
1 + qn

− qn
n+ qn

. (3.2)

Parts (i)-(v) follow almost immediately from (3.1) and (3.2). Part (vi) follows from (3.1) and (3.2)
and the fact that log n−1+qn

1+qn
= log(1 + n−2

1+qn
) ∼ n

qn
, for qn as in part (vi). �
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4. Proof of Theorem 1.2

Let σ = σ1σ2 · · ·σn ∈ Sn represent the rankings of the n items that arrive one by one. That is, σj
is the ranking of the jth item to arrive. Recall that our convention is that the number 1 represents
the highest ranking. First consider the case Mn = 0. The strategy S(n, 0) will select the highest
ranked item if and only if σ1 = 1. We use the first online construction in section 2, and employ the
notation from there. The event {σ1 = 1} occurs if and only if κl 6= 1, for l = 2, · · · , n. Thus

PLR−;q
n (σ1 = 1) =

n∏
l=2

l − 1

l − 1 + q
.

This gives (1.3) for the case Mn = 0.
From now on, assume that Mn ≥ 1. Then the strategy S(n,Mn) will select the highest rank-

ing item if and only if for some j ∈ {Mn + 1, · · · , n}, one has σj = 1 and min(σ1, · · · , σj−1) =
min(σ1, · · · , σMn). So

Pqn(S(n,Mn)) =

n∑
j=Mn+1

PLR−;q
n (σj = 1,min(σ1, · · · , σj−1) = min(σ1, · · · , σMn)). (4.1)

We continue to use the first online construction in section 2, and to employ the notation from there.
The event {σj = 1} occurs if and only if κl 6= 1, for l = j + 1, · · · , n and κj = 1, while the event
min(σ1, · · · , σj−1) = min(σ1, · · · , σMn) occurs if and only if κl 6= 1, for l = Mn+1, · · · , j−1. Thus,

PLR−;q
n (σj = 1,min(σ1, · · · , σj−1) = min(σ1, · · · , σMn))

=
( n∏
l=j+1

l − 1

l − 1 + q

)( q

j − 1 + q

)( j−1∏
l=Mn+1

l − 1

l − 1 + q

)
=

q(n− 1)!

(j − 1)(Mn − 1)!

1∏n
l=Mn+1(l − 1 + q)

.

(4.2)

Now (1.3) follows from (4.1) and (4.2). �

5. Proof of Theorem 1.3

To prove the theorem, we perform an asymptotic analysis on (1.3) with q = qn. We begin with
the estimates that are needed to analyze the cases (v)-(ix), in which {qn}∞n=1 is bounded away from
zero. In these cases, it is easy to see that Mn = 0 is not optimal, so we assume that Mn ≥ 1.
Then we prove cases (v)-(ix) of the theorem. After that we prove some additional estimates that
are needed for the cases (i)-(iv), in which limn→∞ qn = 0. And then we prove cases (i)-(iv) of the
theorem.

Using the well-known fact that
n∑
j=1

1

j
= log n+ γ +O(

1

n
), where γ is the Euler-Mascheroni constant,

we have
n−1∑
j=Mn

1

j
= log

n

Mn
+O(

1

Mn
). (5.1)

We write
n!

Mn!

1∏n−1
l=Mn

(l + qn)
=

n∏
l=Mn+1

l

l − 1 + qn
. (5.2)
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Using the Taylor expansion

log(1 + x) = x− 1

2

1

(1 + cx)2
x2, for x > −1, where cx is between 0 and x, (5.3)

and using (5.1) for the final equality, we have

log
n∏

l=Mn+1

l − 1 + qn
l

=
n∑

l=Mn+1

log(1 +
qn − 1

l
)

=
n∑

l=Mn+1

(qn − 1

l
− 1

2
cqn,l

(qn − 1)2

l2
)

= (qn − 1) log
n

Mn
+O(

qn − 1

Mn
) +O

(
(qn − 1)2(

1

Mn
− 1

n
)
)
,

(5.4)

where cqn,l ∈ (0, 4). From (5.2) and (5.4), we have

n!

Mn!

1∏n−1
l=Mn

(l + qn)
= (

Mn

n
)qn−1 exp

(
O(
qn − 1

Mn
) +O

(
(qn − 1)2(

1

Mn
− 1

n
)
))
. (5.5)

From (1.3), (5.1) and (5.5), we have

Pqnn (S(n,Mn))

= qn(
Mn

n
)qn
(

log
n

Mn
+O(

1

Mn
)
)

exp
(
O(
qn − 1

Mn
) +O

(
(qn − 1)2(

1

Mn
− 1

n
)
))
.

(5.6)

Using the inequality 1− x ≤ e−x, for x ≥ 0, we also have
n∏

l=Mn+1

l

l − 1 + qn
=

n∏
l=Mn+1

(1− qn − 1

l − 1 + qn
) ≤ exp

(
− (qn − 1)

n∑
l+Mn+1

1

l − 1 + qn

)
. (5.7)

From (5.1), it follows that
n∑

l=Mn+1

1

l − 1 + qn
≥ Cx,c > 0, if lim

n→∞

qn
n
≤ c <∞ and lim

n→∞

Mn

n
≤ x, for x ∈ (0, 1). (5.8)

From (1.3), (5.1), (5.7) and (5.8), we have

Pqnn (S(n,Mn)) ≤ qn
Mn

n

(
log

n

Mn
+O(

1

Mn
)
)

exp(−Cx,c(qn − 1)),where Cx,c > 0,

if lim
n→∞

qn
n
≤ c <∞ and lim

n→∞

Mn

n
≤ x, for x ∈ (0, 1).

(5.9)

We now use the above results to prove parts (v)-(ix). We begin with part (v). It is easy to see that
without loss of generality we can assume that qn = q is independent of n. If limn→∞

Mn
n = x ∈ [0, 1],

then from (5.6),

lim
n→∞

Pqn(S(n,Mn)) =

{
−qxq log x, if x ∈ (0, 1];

0, if x = 0.

The function −qxq log x, for x ∈ (0, 1], attains its maximum value e−1 at x = e
− 1
q . This completes

the proof of part (v).
We now prove part (vi), where we assume that qn →∞ and qn = o(n). It follows from (5.9) that

if limn→∞
Mn
n < 1, then limn→∞ Pqnn (S(n,Mn)) = 0. Thus, we assume that limn→∞

Mn
n = 1 and

write
Mn = n− yn, where 1 ≤ yn = o(n). (5.10)
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Then from (5.6), we have

Pqn(S(n,Mn)) = qn(1− yn
n

)qn
(

log(1 +
yn

n− yn
) +O(

1

n
)
)
eo(1) =

qn(1− yn
n

)qn
(yn
n

+ o(1)
)
eo(1).

(5.11)

From (5.11), it follows that

lim
n→∞

Pqn(S(n,Mn)) = ze−z, if lim
n→∞

qnyn
n

= z ∈ [0,∞). (5.12)

The function ze−z attains its maximum value of e−1 at z = 1. This completes the proof of part
(vi).

We now turn to parts (vii) and (viii) together, where qn ∼ cn, for some c > 0. In this case too it
follows from (5.9) that if limn→∞

Mn
n < 1, then limn→∞ Pqnn (S(n,Mn)) = 0. Thus, we may assume

that Mn satisfies (5.10). Then from (5.7), we have
n∏

l=Mn+1

l

l − 1 + qn
≤ e−ayn , for some a > 0. (5.13)

And from (1.3), (5.1) and (5.13), we have

Pqn(S(n,Mn)) ≤ qn
Mn

n

(
log

n

Mn
+O(

1

Mn
)
)
e−ayn ∼ cn

(yn
n

+ o(1)
)
e−ayn . (5.14)

From (5.14), it follows that limn→∞ Pqn(S(n,Mn)) = 0, if limn→∞ yn = ∞. Thus, we may assume
now that

Mn = n− L, L ∈ N. (5.15)
From (1.3), we then have

Pqn(S(n,Mn)) ∼ cn(1 + c)−L(
L

n
) =

cL

(1 + c)L
. (5.16)

One has cL
(1+c)L

≥ c(L+1)
(1+c)L+1 if and only if c ≥ 1

L . This shows that if c ∈ (0, 1), then the optimal
strategy is with M∗n as in (1.4), and the limiting probability of success is as in (1.5). It also
shows that if c ≥ 1, then the optimal strategy is with M∗n = n − 1 and the limiting probability of
success is c

1+c . This completes the proof of parts (vii) and (viii), except for the claim in (vii) that
limn→∞ Pqn(S(n,M∗n)) > e−1.

We now prove this last claim. One can show that for fixed 2 ≤ L ∈ N, the expression on the right
hand side of (1.5), considered as a function of c ∈ [ 1L ,

1
L−1 ] attains its maximum value at the right

hand endpoint, where it is equal to (1 + 1
L−1)−(L−1). The claim is proved by noting that (1 + 1

n)n

increases to e as n→∞.
Finally, we turn to part (ix). The proof of this part follows from part (vi) of Proposition 1.1.
We now turn to the additional estimates needed to treat the cases in which limn→∞ qn = 0. From

(1.3), for M∗n = 0,

logPqnn (S(n, 0)) =

n−1∑
l=1

log
l

l + qn
=

n−1∑
l=1

log(1− qn
l + qn

) = −qn
n−1∑
l=1

1

l + qn
+O(q2n)

= −qn log n+O(qn), if lim
n→∞

qn = 0.

(5.17)

For fixed M ∈ N, we have
n∏

l=M+1

l − 1 + qn
l

=
M + qn

n

n−1∏
l=M+1

(1 +
qn
l

). (5.18)
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Also, using a Taylor expansion and (5.1), we have

log
n−1∏

l=M+1

(1 +
qn
l

) =
n−1∑

l=M+1

log(1 +
qn
l

) = qn

n−1∑
l=M+1

1

l
− q2n

2

n−1∑
l=M+1

cqn,l
l2

= qn
(

log n+O(1)
)

+O(q2n) = qn log n+O(qn), if lim
n→∞

qn = 0,

(5.19)

where cqn,l ∈ (0, 1). From (5.2), (5.18) and (5.19), we have

n!

M !

1∏n−1
l=M (l + qn)

∼ n1−qn

M
, if lim

n→∞
qn = 0, for M ∈ N. (5.20)

From (1.3), (5.1) and (5.20), we have

Pqnn (S(n,M)) ∼ qn
M

n

n1−qn

M
(log n) ∼ qn(

1

n
)qn log n = (qn log n)e−qn logn,

if lim
n→∞

qn = 0, for M ∈ N.
(5.21)

From (5.6), we have

Pqnn (S(n,Mn)) ∼ qn(
Mn

n
)qn log

n

Mn
= (qn log

n

Mn
)e−qn log n

Mn ,

if qn is bounded and lim
n→∞

Mn =∞.
(5.22)

We now prove parts (i)-(iv). We begin with part (i), where qn = o( 1
logn). From (5.17), (5.21) and

(5.22), and the fact that the function xe−x attains its maximum at x = 1, it follows that the optimal
strategy is S(n,M∗n), with M∗n = 0, and the limiting probability of success is 1. (Alternatively, part
(i) follows from part (i) of Proposition 1.1.)

We now turn to part (ii), where qn ∼ c
logn , with c ∈ (0, 1). If we choose Mn = M to be fixed,

then by (5.21),
Pqnn (S(n,M)) ∼ ce−c. (5.23)

If we choose Mn such that limn→∞Mn =∞, then from (5.22),

Pqnn (S(n,M)) ∼ c(1− logMn

log n
)e
−c(1− logMn

logn
)
. (5.24)

If c ∈ (0, 1), the function Hc(x) = c(1 − x)e−c(1−x) attains its maximum over x ∈ [0, 1] at x = 0,
where it is equal to ce−c. Thus, from (5.24),

lim sup
n→∞

Pqnn (S(n,Mn)) ≤ ce−c. (5.25)

On the other hand, from (5.17),
lim
n→∞

Pqnn (S(n, 0)) = e−c. (5.26)

From (5.23), (5.25) and (5.26), if follows that the optimal strategy is S(n,M∗n)), with M∗n = 0, and
the limiting probability of success is e−c.

We now turn to part (iii), where qn ∼ 1
logn . The analysis above for part (ii) goes through just

as well when c = 1. Thus, from the previous paragraph we conclude that the optimal strategies
S(n,M∗n) are those with limn→∞

logMn

logn = 0, and the limiting probability of success is e−1.
We now turn to part (iv), where limn→∞ qn = 0 and limn→∞ qn log n > 1. From (5.17), (5.21)

and (5.22), and the fact that the function xe−x attains its maximum at x = 1, it follows that that
optimal strategies are S(n,M∗n), where qn log n

Mn
∼ 1, and the limiting probability of success is e−1.

�
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