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Abstract. A Galton-Watson process in a varying environment is a discrete time branching process
where the offspring distributions vary among generations. It is known that in the critical case, these
processes have a Yaglom limit, that is, a suitable normalization of the process conditioned on non-
extinction converges in distribution to a standard exponential random variable. In this manuscript,
we provide the rate of convergence of the Yaglom limit with respect to the Wasserstein metric.

1. Introduction and main results

The goal of this manuscript is to establish a quantitative comparison between the law of a suitably
re-scaled Galton-Watson process with time dependence offspring distributions, conditioned on being
positive, against a standard exponential distribution, measured with respect to the Wasserstein
distance. The precise setting of this problem lies in the realm of Galton-Watson processes in a
varying environment. Its central concept consists of a system of particles which independently
produce descendants and the offspring distributions vary among generations.

A Galton-Watson processes in a varying environment (GWVE for short) is constructed in the
following way: Consider a collection Q = {qn : n ≥ 1} of probability measures defined over a given
space (Ω,F ,P) and supported on N0 := {0, 1, 2, . . . }. The sequence Q is called an environment. As
it is customary when studying discrete measures, we will interchangeably use the notation qn[{k}]
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and qn[k] for k ∈ N0. A Galton-Watson process Z = {Zn : n ≥ 0} in the environment Q is defined
recursively by

Z0 = 1 and Zn =

Zn−1∑
i=1

χ
(n)
i , n ≥ 1, (1.1)

where {χ(n)
i : i, n ≥ 1} is a sequence of independent random variables over (Ω,F ,P), satisfying

P[χ(n)
i = k] = qn[k], k ∈ N0, i, n ≥ 1.

The quantity χ
(n)
i denotes the offspring of the i-th individual in the (n − 1)-th generation. The

process Zn represents the total population size at generation n. It satisfies the Markov property
with respect to its naturally induced filtration. Without further mention we always require that
0 < E[χ(n)

i ] < ∞ for all n ≥ 1. The classical Galton-Watson process corresponds to qn ≡ q for all
n ≥ 1, and in the sequel, will be referred to as the constant environment regime.

Let us recall what is known in the constant environment regime. In order to exclude trivial cases,
we assume in the following that

q[0] + q[1] < 1 and q[k] ̸= 1 for all k ∈ N0, (1.2)

meaning that the probability of having offspring is strictly positive and that q is not deterministic.
In this case, the mean µ := E[χ(1)

1 ] is a good parameter in order to study the asymptotic behaviour
of the process. More precisely, the process has extinction almost surely if and only if µ ≤ 1.
When µ > 1, (supercritical case), in the event of survival, the process Zn goes to ∞ as n → ∞.
When µ < 1, (subcritical case), the process dies out with probability one and the distribution of
{Zn | Zn > 0} converges to a proper distribution. The critical case, when µ = 1, is in a sense
the most interesting case because Zn → 0 as n → ∞ but the conditional process {Zn | Zn > 0}
is diverging to ∞. Then, a normalization and a finite second moment of the offspring distribution
is needed to make that the conditioned process converge to a non-degenerate limit. If µ = 1,
σ2 := var(Z1) <∞ and E[(Z1)

3] <∞ then as n→ ∞, the survival probability decays as

P[Zn > 0] =
2

σ2n
+O

(
log2(n)

n2

)
. (1.3)

Kolmogorov (1938) first proved P[Zn > 0] ∼ 2(σ2n)−1 without giving explicitly the exact decay, see
Vatutin and Zubkov (1985, Display between (5) and (6), page 2437) for a proof with the explicit
error. Then, Yaglom (1947) proved under a third moment assumption, that 2Zn(σ

2n)−1 conditioned
on the event {Zn > 0} converges in distribution to a standard exponential variable as n→ ∞.

Theorem 1.1 (Yaglom’s limit for GW). Let {Zn : n ≥ 0} be a critical Galton-Watson process
with σ2 <∞. Then, {

2

σ2n
Zn

∣∣∣∣Zn > 0

}
(d)−→ e, as n→ ∞,

where e denotes a standard exponential random variable and “
(d)−→" means convergence in distribu-

tion.

This result has several proofs. Yaglom proved it by using the Laplace transform of the process.
Lyons et al. (1995) gave a proof using a characterisation of the exponential distribution via its size-
biased distribution. They showed that the size-biased process can be related with a Galton-Watson
tree with one distinguished genealogical line (the so-called spine). Later on, Geiger characterised
the exponential random variable by a distributional equation and the author presented another
proof of Yaglom’s limit based on that equation (see Geiger (1999, 2000)). Additionally, Ren et al.
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(2018), developed another proof using a two-spine decomposition technique, where the associated
Galton-Watson tree has two distinguished genealogical lines.

More than 60 years after Yaglom proved Theorem 1.1 in the constant environment, Peköz and
Röllin (2011) obtained explicit error bounds. They used the Wasserstein distance to compare the
distributions. For two measures µ and ν we define the Wasserstein distance, dW , as follows

dW (µ, ν) := sup
f∈F

∣∣∣∣∫
R
f(x)µ(dx)−

∫
R
f(x)ν(dx)

∣∣∣∣ ,
where F = {f : R → R : f is Lipschitz and ∥f ′∥ ≤ 1}, and f ′ is the derivative of f . For random
variables X and Y with respective laws µ and ν, we abuse notation and write dW (X,Y ) in place of
dW (µ, ν). Peköz and Röllin (2011) studied the rate of convergence by using Stein’s method, a collec-
tion of probabilistic techniques tailored for estimating distances by means of differential operators.
The manuscript Peköz and Röllin (2011), building upon previous work by Peköz (1996), presents
a sharp Stein’s method machinery for exponential approximations with a perspective of equilib-
rium distribution. Subsequently, in conjunction with the relation of the size-biased process and the
Galton-Watson process with one spine of Lyons et al. (1995), the authors implement their method-
ology in the framework of branching processes and establish the following quantitative version of
Yaglom’s theorem. In Peköz and Röllin (2011, Theorem 3.3), the authors stated:

If {Zn : n ≥ 0} is a critical Galton-Watson process with σ2 <∞ and E[(Z1)
3] <∞. Then, there

exists a constant C > 0 such that

dW

({
2

σ2n
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ C

log(n)

n
. (1.4)

Unfortunately, the proof of (1.4) in Peköz and Röllin (2011) has a minor mistake: they used Peköz
and Röllin (2011, Theorem 2.1), which is only valid when the random variable of interest has mean
one and thus it is not applicable to {2(σ2n)−1Zn | Zn > 0}. This issue can be easily corrected; we
propose two options for doing so. One is to change the normalization in order to have a mean one
variable. The second option is to extend Peköz and Röllin (2011, Theorem 2.1) to random variables
with finite mean m. We develop such extension in Theorem 3.5, where the distance |m−1| becomes
part of the bound. In other words, these two kind of normalizations yield different bounds which
we state in the following theorem. Its proof is postponed to Section 3.2. Essentially the first bound
follows from Theorem 3.5 and Peköz and Röllin (2011, Theorem 3.3), together with the fact that
the mean of a critical Galton-Watson process satisfies

E
[

2

σ2n
Zn

∣∣∣∣Zn > 0

]
=

2

σ2n

1

P[Zn > 0]
=

1

1 +O
(
log2(n)

n

) = 1 +O

(
log2(n)

n

)
, (1.5)

which is implied by equation (1.3). On the other hand, the second bound is obtained if, instead, we
use the mean one variable and make a slight modification of the proof of Peköz and Röllin (2011,
Theorem 3.3).

Theorem 1.2. Let {Zn : n ≥ 0} be a critical Galton-Watson process with σ2 < ∞ and E[(Z1)
3] <

∞. Then, there exists a constant C > 0 which is independent of n such that

dW

({
2

σ2n
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ C

log2(n)

n
,

and

dW ({ P[Zn > 0] Zn |Zn > 0} , e) ≤ C
log(n)

n
. (1.6)

This bound might be strictly suboptimal, as in some instances can be improved by a factor of
the form 1/ log(n). This is illustrated in Example 2.4, where the offspring has linear fractional
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distribution. For this instance,

dW ({ P[Zn > 0] Zn |Zn > 0} , e) ≤ 4

2 + σ2n
< C

log(n)

n
,

for a constant C independent of n.
The above phenomenology suggests that a similar behaviour should hold for Galton-Watson

processes in a varying environment. We require some knowledge on the long-term behaviour of
these processes. Let Q = {qn : n ≥ 1} be an environment and for every n ≥ 1, denote by fn the
generating function associated with the reproduction law qn, i.e.

fn(s) :=
∞∑
k=0

skqn[k], 0 ≤ s ≤ 1.

Let {Zn : n ≥ 0} be a Galton-Watson process in environment Q defined as in (1.1). By a recursive
application of the branching property, we deduce that the generating function of Zn can be written
in terms of the fi’s as

E
[
sZn
]
= f1 ◦ · · · ◦ fn(s), 0 ≤ s ≤ 1, n ≥ 1, (1.7)

where “ ◦ ” denotes the composition of functions. This expression gives an explicit description of
the law of Zn in terms of the reproduction laws {qk : 1 ≤ k ≤ n}. It guarantees that we can obtain
formulas for moments of Zn in a standard manner. More precisely, let µ0 := 1, and for any n ≥ 1,
define

µn := f ′1(1) · · · f ′n(1), νn :=
f ′′n(1)

f ′n(1)
2
, and ρ0,n :=

n−1∑
k=0

νk+1

µk
. (1.8)

Then, by taking derivatives with respect to the variable s and then evaluating the resulting function
at s = 1, we deduce that the mean and the normalized second factorial moment of Zn satisfy

E
[
Zn

]
= µn and

E
[
Zn(Zn − 1)

]
E
[
Zn

]2 = ρ0,n.

The interested reader is referred to the monograph of Kersting and Vatutin (2017) for a detailed
presentation of the formulas above.

Galton-Watson processes in a varying environment may behave different from the constant envi-
ronment regime. During a certain period, research on GWVE was temporarily affected due to the
emergence of families exhibiting exotic properties. For example, they may possesses multiple rates
of growth, as was detected by MacPhee and Schuh (1983). Moreover, D’Souza (1994) constructed
another example where the GWVE has an infinite number of rates of growth. We would like to
present this example here and refer the reader to Section 4 in D’Souza (1994) for further details.
Let {an : n ≥ 0} be a strictly increasing sequence such that a0 > 0 and limn→∞ an := a∞ < ∞.
Choose another sequence {bn : n ≥ 0} satisfying 0 < b0 < a0 < b1 < a1 < . . . and define

βn :=
∞∑
i=1

ai − ai−1

nbi+1
, n ≥ 1.

Now, consider {Zn : n ≥ 0} a GWVE with generation functions given by

fn(s) =
(
1− a0

n
− 2βn

)
s+

(a0
n

+ βn

)
s2 +

∞∑
i=1

ai − ai−1

nbi+1
sn

bi ,

for n ≥ n0, where n0 is large enough such that this defines a proper probability generating function,
and fn(s) = s for n < n0. According to D’Souza (1994, Theorem 6), for any i ∈ N the sequence
{Zn/n

i : n ≥ 0} converges to a finite, positive limit with non-zero probability.
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The presence of these exotic properties gave the impression that understanding a generic be-
haviour for these processes was challenging. However, Kersting (2020) established a certain condi-
tion which excludes such exceptional phenomena: for every ϵ > 0, there is a finite constant cϵ such
that for all n ≥ 1

E
[(
χ(n)

)2
1{χ(n)>cϵ(1+E[χ(n)])}

]
≤ ϵE

[(
χ(n)

)2
1{χ(n)>2}

]
<∞, (⋆)

where χ(n) ∼ qn. We say that a GWVE is regular if it satisfies Condition (⋆). In what follows, we
always consider regular GWVE.

Nonetheless, verifying directly the latter condition for many families of random variables can be
cumbersome, so instead as it is suggested in Kersting (2020) one may use the following mild third
moment condition: there exists c > 0 such that

f ′′′n (1) ≤ cf ′′n(1)(1 + f ′n(1)), for any n ≥ 1. (⋆⋆)

According to Kersting (2020, Proposition 2), it implies condition (⋆) and it is satisfied by the
most common probability distributions, for instance binomial, geometric, hypergeometric, negative
binomial and Poisson distributions.

It turns out that under Condition (⋆), the behaviour of a GWVE is essentially dictated by the
sequences {µn : n ≥ 0} and {ρ0,n : n ≥ 0}. With them, a regular GWVE can be classified into four
regimes. According with Kersting (2020, Theorem 1), a regular GWVE has almost sure extinction if
and only if µn → 0 or ρ0,n → ∞ as n→ ∞. Moreover, under these conditions, E

[
Zn | Zn > 0

]
→ ∞

as n → ∞ if and only if µnρ0,n → ∞ as n → ∞, see Kersting (2020, Theorem 4). Therefore, in
comparison with the constant environment regime, it is natural to give the following definitions. A
regular GWVE is critical if and only if

ρ0,n → ∞ and µnρ0,n → ∞, as n→ ∞. (1.9)

A regular GWVE is subcritical if it has almost sure extinction and lim infn→∞ µnρ0,n < ∞. If the
extinction probability is less than one, the supercritical regime is in the case E[Zn] → ∞, and the
asymptotically degenerate regime otherwise. The latter is a new regime where process may freeze in
a positive state. We refer to Kersting (2020) for the details.

In the sequel, we work exclusively with (regular and) critical Galton-Watson processes and focus
on the study of the asymptotic behaviour of Zn conditioned on being positive. As it was noted by
Kersting (2020), for a critical GWVE the so-called Yaglom’s limit exists:

Theorem 1.3 (Yaglom’s limit for GWVE). Let {Zn : n ≥ 0} be a (regular) critical GWVE.
Then, there is a sequence {bn : n ≥ 0} of positive numbers such that{

1

bn
Zn

∣∣∣∣Zn > 0

}
(d)−→ e, as n→ ∞, (1.10)

where e is a standard exponential random variable. The sequence {bn : n ≥ 0} may be set as
{E[Zn | Zn > 0] : n ≥ 0} or {µnρ0,n/2 : n ≥ 0}, since E[Zn | Zn > 0] ∼ µnρ0,n/2 as n→ ∞.

For the sequence {µnρ0,n/2 : n ≥ 0}, the previous limit was obtained by Jagers (1974) under
extra assumptions. Afterwards, Bhattacharya and Perlman (2017) obtained the same result with
weaker assumptions than Jagers (but stronger than (⋆⋆)). Kersting (2020) provided yet another
proof under condition (⋆). Moreover, he showed the convergence in distribution for both sequences
{µnρ0,n/2 : n ≥ 0} and {E[Zn | Zn > 0] : n ≥ 0}. An extension in the presence of immigration and
the same setting as Kersting’s has been established in González et al. (2019). All these authors
established the exponential convergence using an analytical approach. The asymptotic distributional
behaviour of the variables Zn/bn appearing in (1.10) with {bn : n ≥ 0} given by bn = µnρ0,n/2 was
obtained by Cardona-Tobón and Palau (2021), under condition (⋆⋆), through an approach based
on a two-spine decomposition argument.
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The goal of this manuscript is to study the rate of convergence of the previous limit under the
Wasserstein distance. We want to extend Theorem 1.2 to Galton-Watson processes in a varying
environment. Observe that Theorem 1.2 requires a third moment condition in the offspring distri-
bution. In our case, since the environment is varying, we need to control the third moment of every
qk. Since, in addition we are asking for the regular condition (⋆) and the critical condition (1.9),
then it is natural to just ask conditions (⋆⋆) and (1.9).

In the constant environment regime, consider bn = E[Zn | Zn > 0] = P[Zn > 0]−1, µn = 1 and
ρ0,n = µnρ0,n = σ2n, for any n ≥ 1. Then, bound (1.6) in Theorem 1.2 can be written as

dW

({
1

bn
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ C

log(n)

n
= σ2C

(
log(σ2n) + log(σ−2)

σ2n

)
, (1.11)

for some constant C > 0 independent of n. In this regime, we have that the sequence ρ0,n coincides
with µnρ0,n and is of the order n. In particular, (1.11) implies that the Wasserstein distance in the
left-hand side of (1.11) is bounded by a function of ρ0,n and µnρ0,n. In a general varying environment,
ρ0,n and µnρ0,n do not necessarily coincide. Furthermore, as demonstrated in the examples from
Section 2, these quantities can grow in such a way that their quotient could converge to zero in
some instances or infinity in others. Keeping in mind the fact of the discussion above, we seek
pursuit a bound of the form ψ(µnρ0,n) + ϕ(ρ0,n) for functions ψ, ϕ : R → R continuously vanishing
at infinity. In the following theorems, the results stated exhibit a tradeoff between generality on
the environment Q and simplicity in the form of the resulting bounds. Specifically, if a bound
holds for a wide range of environments Q, it becomes challenging to give a simple expression for it.
Reciprocally, an accurate description of decay is available only for a subgroup of critical GWVE.
This tradeoff may be inherent to the approach we are following, and we have not discovered any
evidence suggesting that the same phenomena will emerge in different perspectives on the problem.
We will start with the general case. We are going to analyse the Wasserstein distance between
{b−1

n Zn | Zn > 0} and the exponential distribution. For {bn : n ≥ 0}, we can use the sequences
{E[Zn | Zn > 0] : n ≥ 0} or {µnρ0,n/2 : n ≥ 0}. We decide to use the first sequence because we
obtain a mean one process. The proof is based on Theorem 3.5, which can be applied to random
variables with finite mean. If one wants to use the second sequence, there will be an extra term
that comes from |2(µnρ0,n)−1E[Zn | Zn > 0]− 1|.

Theorem 1.4. Let {Zn : n ≥ 0} be a critical GWVE that satisfies condition (⋆⋆) and define
bn := E[Zn | Zn > 0], n ≥ 0. Then,

dW

({
1

bn
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ C

(
1

µnρ0,n
+

rn
ρ0,n

)
,

where e is a standard exponentially distributed random variable, C > 0 is a constant which is
independent of n and

rn :=
n−1∑
j=1

νj
µj−1

(
1 + f ′j(1)

)
µj(ρ0,n − ρ0,j)

+
νn
µn−1

(
1 + f ′n(1)

)
, n ≥ 2. (1.12)

It seems difficult to directly deduce rates of convergence from (1.12), as the term n is both in the
upper limit of the sum, and in the denominator ρ0,n − ρ0,j . The following estimates may be more
useful. For stating the result in its most general version, we define the following bound on the first
moment of the offspring,

Mn := sup
1≤k≤n

f ′k(1), for n ≥ 1,
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as well as the following sum

sn =
n−1∑
k=2

(
log(ρ0,kµk) + log

(
f ′k(1)

)) ∣∣∣∣ 1

µk−2
− 1

µk

∣∣∣∣ , for n ≥ 3. (1.13)

In a variety of examples, these two terms are bounded uniformly over n, instance in which they
might be controlled from above by fixed constants.

Theorem 1.5. Let {Zn : n ≥ 0} be a critical GWVE that satisfies condition (⋆⋆) and define
bn := E[Zn | Zn > 0], n ≥ 0. Assume that there exists a > 0 such that f ′′n(1) ≥ a for all n ≥ 1.
Then

dW

({
1

bn
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ C(1 +Mn)

5

(
log(µnρ0,n) + log(f ′n(1))

µnρ0,n
+

sn
ρ0,n

)
, (1.14)

where e is a standard exponentially distributed random variable and C > 0 is a constant which is
independent of n.

Remark 1.6. A sufficient condition for the sequence {f ′′n(1) : n ≥ 1} to be bounded away from zero
is the following

lim sup
n→∞

(
qn[0] + qn[1]

)
< 1.

The latter condition tells us that we are excluding trivial situations as we already mentioned for the
analogue condition (1.2) in the constant environment case. This condition implies that the sequence
{qn[0] + qn[1] : n ≥ 0} is bounded away from one. Roughly speaking, this condition prevents the
scenario where the population stagnates in a state where every individual only produces zero or one
offspring in the next generation. Bhattacharya and Perlman asked for the latter condition in their
hypothesis for Yaglom’s Theorem, see (H2) in Bhattacharya and Perlman (2017).

In particular, if the mean and the second factorial moment of the offspring distribution are
bounded away from zero and infinity and if we also assume limn→∞ sn < ∞, we can obtain an
explicit bound only depending on ρ0,n and µnρ0,n. More precisely, we have the following direct
consequence.

Corollary 1.7. Let {Zn : n ≥ 0} be a critical GWVE that satisfies condition (⋆⋆) and define bn :=
E[Zn | Zn > 0], n ≥ 0. Assume that there exists 0 < a ≤ A < ∞ such that a ≤ f ′n(1), f

′′
n(1) ≤ A

for all n ≥ 1, then

dW

({
1

bn
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ C

(
log(µnρ0,n)

µnρ0,n
+

sn
ρ0,n

)
. (1.15)

where e is a standard exponentially distributed random variable and C > 0 is a constant which is
independent of n. In particular, if we also assume limn→∞ sn <∞, we have

dW

({
1

bn
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ C

(
log(µnρ0,n)

µnρ0,n
+

1

ρ0,n

)
. (1.16)

Remark 1.8. In the constant environment regime, the hypotheses of Corollary 1.7 hold. Indeed, in
the critical case, f ′n(1) = 1, µn = 1, νn = σ2, ρ0,n = σ2n, bn = P[Zn > 0]−1 and sn = 0, for all
n ≥ 3. Moreover, condition (⋆⋆) is equivalent to E[(Z1)

3] < ∞. Then, the bound (1.16) is exactly
inequality (1.11) and it implies Theorem 1.2 as a consequence.

The remainder of this paper is organized as follows. In Section 2 we discuss a variety of different
examples. In Section 3 we present Stein’s method for an exponential distribution and we relate
it with the size biased distribution of {Zn : n ≥ 0}. Section 4 contains the proofs of our main
theorems.
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2. Examples

In the next examples we discuss some cases where we can find explicitly the rate of convergence
in Yaglom’s Theorem. In the first three, we use Theorem 1.5 or Corollary 1.7 to give the bounds.
Example 2.4 shows that this rate could be suboptimal. In what follows, C1, C2, . . . are strictly
positive constants independents of n that change between examples.

Example 2.1 (Symmetric distributions). For each n ≥ 1 and a ∈ (0, 1), let

qn[0] = qn[2] =
1

2na
and qn[1] = 1− 1

na
.

Then, f ′n(1) = 1, f ′′n(1) = 1/na, and f ′′′n (1) = 0 for every n ≥ 1. The conditions of Theorem 1.5 do
not hold due to the fact that f ′′n(1) converges to zero, so we will make use of Theorem 1.4 instead.
Note that,

µn = 1, νn =
1

na
and ρ0,n =

n−1∑
k=0

1

(k + 1)a
, for n ≥ 1.

By an integral comparison, one can check that ρ0,n ∼ n1−a/(1 − a) as n tends to infinity and we
are in the critical regime. By the same integral comparison, we also have as n→ ∞

ρ0,n − ρ0,j =

n−1∑
k=j

1

(k + 1)a
≥
∫ n−1

j

1

(x+ 1)a
dx =

1

1− a
(n1−a − (j + 1)1−a).

Moreover, by a Taylor expansion, n1−a − (j + 1)1−a ≥ (1 − a)n−a(n − j − 1), so we deduce that
there exists a constant C1 > 0 such that

n−1∑
j=1

1

ja(n1−a − (j + 1)1−a)
≤ C1n

a
n−1∑
j=1

1

ja(n− j)
≤ C2n

a

n/2∑
j=1

1

ja(n− j)
+

n−1∑
j=n/2

1

ja(n− j)


≤ C3n

a

 2

n

n/2∑
j=1

1

ja
+

2a

na

n−1∑
j=n/2

1

n− j


= C4

 2

n

n/2∑
j=1

1

(j/n)a
+

2a

na

n/2∑
j=1

1

j

 .

The second term in the right is bounded by a constant multiple of log(n)/na, while the first one
converges towards 2

∫ 1/2
0 x−adx, which is finite due to the condition a ∈ (0, 1). From this point, we

conclude that there exists a constant K > 0 such that
n−1∑
j=1

1

ja(n1−a − (j + 1)1−a)
≤ K.

From here, it easily follows that rn is bounded. Hence, appealing to Theorem 1.4,

dW

({
1

bn
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ C5

1

na
.

Example 2.2 (Poisson distributions with µn increasing linearly). Let Q = {qn : n ≥ 1} be a
sequence of Poisson distributions with parameters λn = f ′n(1) for n ≥ 1. Recall that for a Poisson
distribution f ′′n(1) = f ′n(1)

2 and f ′′′n (1) = f ′n(1)
3 ≤ f ′n(1)

2(1+f ′n(1)) for all n ≥ 1. This implies that
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(⋆⋆) is satisfied and

µn = λ1 · · ·λn, νn = 1, and ρ0,n =

n−1∑
k=0

1

µk
, n ≥ 1.

Let us consider the special case when

λ1 = 1 and λn =
n

n− 1
for n > 1.

It follows that µn = n for n ≥ 1 and ρ0,n ∼ log(n) as n → ∞. Thus, the criticality condition (1.9)
is satisfied, and we are in a critical region close to supercritical behaviour. Observe that 1 ≤ λn ≤ 2
for any n ≥ 1, so that f ′′n(1) = λ2n lies within the interval [1, 4] for all n ≥ 1. Moreover,

sn ≤ C1

∞∑
k=3

1

k(k − 2)
+

∞∑
k=2

log(kρ0,k)

∣∣∣∣ 1

k − 2
− 1

k

∣∣∣∣ ≤ C2

∞∑
k=3

log(k log(k))

k(k − 2)
,

Note that the right-hand side sequence converges, so the conditions of the second part of Corol-
lary 1.7 hold. Hence, appealing to Corollary 1.7, we deduce that

dW

({
1

bn
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ C3

(
log(n log(n))

n log(n)
+

1

log(n)

)
≤ C4

1

log(n)
.

It needs to be pointed out that, the latter rate is slower than that of a constant environment with
offspring distribution given by a Poisson with parameter 1. The reason for this is that the normalized
second factorial moment in a constant environment (equivalently the variance) grows faster than in
a varying environment as n tends to infinity. In other words, in a constant environment we have
that ρ0,n = var(Zn) = σ2n, while in this varying environment ρ0,n ∼ log(n) as n→ ∞.

Example 2.3 (Poisson distributions with µn decreasing at an exponential rate). Let Q =
{qn : n ≥ 1} be a sequence of Poisson distributions with parameters

λ1 = exp(−1), and λn =
exp(−

√
n)

exp(−
√
n− 1)

, for n > 1.

Observe that limn→∞ λn = 1, thus implying that f ′n(1), f ′′n(1) are bounded away from zero and
infinity. Moreover µn = exp(−

√
n) for n ≥ 0 and by using L’Hopital’s rule we get∫ n

0
exp(

√
x)dx ∼ 2

√
n exp(

√
n), as n→ ∞.

Thus ρ0,n ∼ 2
√
n exp(

√
n) as n → ∞. Therefore, the criticality condition (1.9) is satisfied, and we

are in a critical region close to the subcritical behaviour. We observe that

sn ≤ C1

n−1∑
k=2

(log(ρ0,kµk) + 1)
(
e
√
k − e

√
k−2
)
≤ C2

n−1∑
k=2

log(2
√
k)
(
e
√
k − e

√
k−2
)

≤ C3 log(2
√
n− 1)e

√
n−1 ≤ C4 log(2

√
n) exp(

√
n),

Therefore, from first part of the Corollary 1.7 we obtain that

dW

({
1

bn
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ C5

(
log(

√
n)√
n

+
log(2

√
n) exp(

√
n)√

n exp(
√
n)

)
≤ C6

log(
√
n)√
n

Example 2.4 (Linear fractional distributions). For each n ≥ 1, we assume that qn is a linear
fractional distribution, i.e. there exist pn ∈ (0, 1) and an ∈ (0, 1] such that

qn(0) = 1− an and qn(k) = anpn(1− pn)
k−1, k ≥ 1.
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In this case,

fn(s) = 1− an(1− s)

1− (1− pn)s
, s ∈ [0, 1], f ′n(1) =

an
pn
, νn =

f ′′n(1)

f ′n(1)
2
=

2(1− pn)

an
.

According with Kersting and Vatutin (2017, Chapter 1), Zn is again linear fractional with mean
and normalized second factorial moment as follows

µn =
a1 · · · an
p1 · · · pn

and ρ0,n = 2

n−1∑
k=0

p1 . . . pk(1− pk+1)

a1 . . . ak+1
.

Furthermore, Zn conditioned on {Zn > 0} has a geometric distribution, i.e. for k ≥ 1

P
(
Zn = k | Zn > 0

)
= p̂n(1− p̂n)

k−1, where p̂n =
2

2 + µnρ0,n
.

Denote by Gn this geometric distribution. Observe that bn = E[Zn | Zn > 0] = (2 + µnρ0,n)/2.
Assume that the GWVE is critical, that is µn and ρ0,n satisfy the criticality conditions (⋆⋆) and
(1.9). Thus, appealing to Theorem 3.5, we deduce

dW

({
2

2 + µnρ0,n
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ 2E

[∣∣∣∣ 2Gn

2 + µnρ0,n
−
(

2Gn

2 + µnρ0,n

)e∣∣∣∣] .
According to Ross (2011, Example 5.9), if Gn is a geometric distribution then, Gn − U has the
equilibrium distribution of Gn, where U ∼ Unif[0, 1] is independent of Gn. Together with the fact

that (cGn)
e (d)
= cGe

n for any constant c, we deduce

dW

({
2

2 + µnρ0,n
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ 4

2 + µnρ0,n
E[U ] =

4

2 + µnρ0,n
.

3. Preliminary results

Peköz and Röllin (2011) obtained the explicit error bounds discussed in equation (1.4) by an
implementation of their abstract results from Stein’s method in the context of branching processes.
This was carried through the construction of some couplings of the size-biased distribution of Zn,
which in turn incarnated couplings for the equilibrium distribution. The enhancement of these ideas
with the major advances in the understanding of the size-biased distribution of a GWVE, naturally
suggests that their methodology has the potential of being successfully implemented in the varying
environment regime. Throughout the rest of this paper, we will show that this is indeed possible.

First, we present some preliminaries on Stein’s method for the exponential distribution and extend
the results of Peköz and Röllin to distributions with finite mean. After that, we give the proof of
Theorem 1.2. Then, we present the size-biased distribution of Zn and we relate it with a GWVE tree
with one spine. We also provide a brief review of the shape function associated with a probability
generating function.

3.1. Stein’s method. In this subsection we develop Stein’s method for bounding the Wasserstein
distance between an exponential distribution and another variable. We refer to the survey Ross
(2011) to explore the techniques of Stein’s method for distributional approximation involving normal,
Poisson, exponential, and geometric distributions. Recall that the Wasserstein distance, dW , is
defined as

dW (µ, ν) := sup
f∈F

∣∣∣∣∫
R
f(x)µ(dx)−

∫
R
f(x)ν(dx)

∣∣∣∣ ,
where F = {f : R → R : f is Lipschitz and ∥f ′∥ ≤ 1}. In the field of distributional approximation,
the problem of finding sharp bounds for quantities of the form dW (µ, ν), for probability measures µ
and ν, had its first developments within a perspective of Fourier analysis arguments. This approach
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followed the heuristic that the Fourier inversion formula could transfer information regarding the
characteristic functions of µ and ν, to information about the action of test functions over the
distributions, ultimately leading to bounds for dW (µ, ν). This method remains remarkably useful
nowadays in a variety of situations. However, the distributional approximation problem witnessed
a major breakthrough with the paper Stein (1972), where Charles Stein proposed an alternative
methodology based on the idea of expressing the difference between the actions of a test function f
over µ and ν in the form∫

R
f(x)µ(dx)−

∫
R
f(x)ν(dx) =

∫
R
S[f ](x)µ(dx),

where S[f ] is a differential operator with the property that its annihilation over a suitable domain
of test functions under the action of µ, is equivalent to the identity µ = ν. The original analysis
from Stein focuses exclusively on the case where ν is the standard Gaussian distribution. However,
many improvements and developments have since been made, allowing the field’s community to
develop tools for incorporating other choices for ν. In this direction, we would like to highlight
the work on the exponential distribution by Peköz and Röllin (2011), which serves as one of the
main components of our proofs. We take as our starting point the Stein characterization of the
exponential distribution, as given by the following lemma. For the proof, refer to, for example, Ross
(2011, Lemma 5.2).

Lemma 3.1. A random variable X has standard exponential distribution if and only if for every
continuously differentiable test function h : R → R with bounded derivative,

E[A[h](X)] = 0,

where A denotes the operator

A[h](x) := h′(x)− h(x) + h(0).

Let e be a standard exponential random variable, and let X be a random variable, both defined
on the same probability space. This lemma, suggests implementing Stein’s method by finding a
solution hf (depending on f) of the following equation

f(x)− E[f(e)] = h′f (x)− hf (x) + hf (0). (3.1)

It is straightforward to prove that the previous equation has a unique solution that satisfies hf (0) = 0
(see Ross (2011, Lemma 5.3)). By applying (3.1) to X, we obtain

E[f(X)]− E[f(e)] = E[A[hf ](X)].

Therefore, the problem is reduced to bound the quantity E[A[hf ](X)]. The first step to obtain a
sharp estimation on this quantity requires some knowledge on the regularity of the solution hf to
(3.1), we refer the reader to Peköz and Röllin (2011, Lemma 4.1) or Ross (2011, Lemma 5.3). With
that estimation in hand, they obtained the following result, see Ross (2011, Theorem 5.4).

Theorem 3.2. Let X be a non-negative random variable with E[X] < ∞ and e be a standard
exponential random variable. Then,

dW (X, e) ≤ sup
f∈FW

∣∣E[f ′(X)− f(X)]
∣∣ ,

where FW = {f : R → R : f(0) = 0, ∥f ′∥ ≤ 1, and ∥f ′′∥ ≤ 2}.

Considering the shape of the error, it becomes necessary to identify a structure that facilitates the
comparison between E[f(X)] and E[f ′(X)] for some f , thereby obtaining a bound for the distance
between X and e. We introduce the following definition.
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Definition 3.3. Let X be a non-negative random variable with a positive finite mean. We say that
Xe has the equilibrium distribution with respect to X, if for every Lipschitz function f : R → R,

E[f ′(Xe)] =
E
[
f(X)− f(0)

]
E[X]

.

It is not clear whether an equilibrium distribution for X exists. However, Xe can be related to
a uniform random variable and the size-biased distribution of X. We recall that a random variable
Ẋ has the size-biased distribution of X if, for all bounded or Lipschitz functions f ,

E
[
f(Ẋ)

]
=

E[Xf(X)]

E[X]
.

The existence of a size-biased distribution is directly guaranteed by the Radon-Nikodym Theorem.
Let U be a uniformly distributed random variable over [0, 1] and independent of Ẋ. For every x ∈ R,
the Fundamental Theorem of Calculus allows us to express f(x) − f(0) = E[xf ′(xU)]. Then, by
independence,

E[f(X)− f(0)] = E[Xf ′(XU)] = E[X]E[f ′(ẊU)].

This proves the following lemma.

Lemma 3.4. Let Ẋ be the size-biased distribution of X and U a Uniform (0, 1) random variable
independent of Ẋ. Then, UẊ has the equilibrium distribution of X.

Now that we know the existence of the equilibrium distribution, we are ready to bound the
Wasserstein distance of X and e.

Theorem 3.5. Let X be a non-negative random variable such that E[X] = m and E[X2] <∞. Let
Xe be the equilibrium distribution of X and e be a standard exponential random variable. Then,

dW (X, e) ≤ 2E
[
|X −Xe|

]
+ |m− 1|.

Proof : Let f ∈ FW . Since f(0) = 0 we have mE[f ′(Xe)] = E[f(X)]. Therefore,∣∣E[f ′(X)− f(X)]
∣∣ ≤ ∣∣E[f ′(X)− f ′(Xe)]

∣∣+ |1−m| |E[f ′(Xe)]|
≤ ∥f ′′∥ E[|X −Xe|] + |1−m| ∥f ′∥.

The result holds by taking supremum over f ∈ FW and Theorem 3.2. □

The previous theorem was proved by Peköz and Röllin under the assumptions E[X] = 1 and
E[X2] < ∞, as shown in Peköz and Röllin (2011, Theorem 2.1), and another similar proof can be
found in Ross (2011, Lemma 5.6). From the previous result and Lemma 3.4, we obtain the following
bound in terms of the size-biased distribution:

dW (X, e) ≤ 2E
[
|X − UẊ|

]
+ |m− 1|. (3.2)

The above bound shifts the focus of the problem towards the description of the size-biased
distribution of Zn conditioned on {Zn > 0}. In this regard, let X̃ denote the law of X conditioned
on the event {X > 0}. Using the fact that every measurable and bounded function f : R → R
satisfies

E[f(Ẋ)] =
E[Xf(X)]

E[X]
=

E[Xf(X) | X > 0]

E[X | X > 0]
=

E[X̃f(X̃)]

E[X̃]
,

we deduce the following simple but useful result.

Lemma 3.6. Let X be a non-negative random variable with finite mean and let Y be X conditioned
on {X > 0}. Then the size-biased distributions of X and Y coincide.
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3.2. Rates on Yaglom’s limit in a constant environment. In this section, we show Theorem 1.2. The
proof basically follows the same arguments as those used in the proof of Peköz and Röllin (2011,
Theorem 3.3), with a slight modification. We use their notation and encourage the reader to read
our proof alongside theirs for a better understanding.

Proof of Theorem 1.2: Let {Zn : n ≥ 0} be a critical Galton-Watson process with constant envi-
ronment such that σ2 < ∞ and E[(Z1)

3] < ∞. In what follows, C1, C2, . . . are strictly positive
constants independents of n. We begin by showing the first bound. We define the random variables
R∗

n, Rn, U as in Peköz and Röllin (2011, Theorem 3.3), as well as

W :=
2

σ2n
R∗

n and W e :=
2

σ2n
(Rn − U).

From Peköz and Röllin (2011, Theorem 3.3), we notice that W and {2(σ2n)−1Zn | Zn > 0} have
the same law and

E
[
|W −W e|

]
≤ C1

log(n)

n
.

Further, from (1.5) we obtain that∣∣∣∣E [ 2

σ2n
Zn

∣∣∣∣Zn > 0

]
− 1

∣∣∣∣ ≤ C2
log2(n)

n
.

With this in hand, the claim follows from Theorem 3.5. Indeed,

dW

({
2

σ2n
Zn

∣∣∣∣Zn > 0

}
, e

)
≤ 2E

[
|W −W e|

]
+

∣∣∣∣E [ 2

σ2n
Zn

∣∣∣∣Zn > 0

]
− 1

∣∣∣∣ ≤ C3
log2(n)

n
.

For the second bound, we make the following modification in the proof of Peköz and Röllin (2011,
Theorem 3.3). The random variables W and W e are now defined as follows

W := P[Zn > 0]R∗
n and W e := P[Zn > 0](Rn − U).

Then, the claims (i)-(vii) about Rn and R∗
n in the proof of Peköz and Röllin (2011, Theorem 3.3),

imply that
1

P[Zn > 0]
E
[
|W −W e|

]
≤ C5 log(n).

Now, appealing to Kolmogorov’s estimate (1.3), we have that limn→∞ nP[Zn > 0] = 2/σ2, so

E
[
|W −W e|

]
≤ C6

log(n)

n
.

Since E[{P[Zn > 0] Zn | Zn > 0}] = 1, we can apply Peköz and Röllin (2011, Theorem 2.1) (or
equivalently Theorem 3.5) to conclude the desired bound. □

3.3. The size-biased distribution of Zn. In this subsection, we examine the size-biased process Ż :=
{Żn : n ≥ 0} and establish a connection between Zn and the population size at generation n of a
random tree. The material presented here is comprehensively explained in Kersting and Vatutin
(2017, Sections 1.4.1 and 1.4.2) and Cardona-Tobón and Palau (2021, Section 2 and 3). We will
only present the key ideas to enhance the readability of our manuscript and ensure its self-contained
nature.

We recall that there exists a relationship between Galton-Watson processes and Galton-Watson
trees, both of which have a varying environment Q = {qn : n ≥ 1}. Specifically, Zn represents
the number of particles at generation n of the random tree constructed as follows: any particle in
generation i gives birth to particles in generation i+ 1 with distribution qi+1.

For this purpose, we introduce a labelling of particles, known as the Ulam-Harris labelling, which
directly reveals ancestral relationships. In this approach, particles are identified by elements u in U ,
the set of finite sequences of strictly positive integers, including ∅. For u ∈ U , we define the length
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of u as |u| := n, if u = u1 · · ·un, where n ≥ 1 and |∅| := 0 if u = ∅. If u and v are two elements in
U , we denote their concatenation as uv, with the convention that uv = u if v = ∅. The genealogical
line of u is denoted by [∅, u] = {∅} ∪ {u1 · · ·uj : j = 1, . . . , n}.

A rooted tree t is a subset of U that satisfies ∅ ∈ t, [∅, u] ⊂ t for any u ∈ t, and if u ∈ t and
i ∈ N satisfy ui ∈ t, then uj ∈ t for all 1 ≤ j ≤ i. We denote by T = {t : t is a tree} the subspace
of rooted trees. The vertex ∅ is called the root of the tree. For any u ∈ t, we define the number of
children of u as lu(t) = max{i ∈ Z+ : ui ∈ t}. The height of t is defined by |t| = sup{|u| : u ∈ t}.
For any n ∈ N and trees t and t̃, we write t n

= t̃ if they coincide up to height n. The population
size in the n-th generation of the tree t is denoted by Xn(t) = #{u ∈ t : |u| = n}.

A Galton-Watson tree in a environment Q = {qn : n ≥ 1} is a T -valued random variable T such
that

P[T n
= t] =

∏
u∈t: |u|<n

q|u|+1[lu(t)], (3.3)

for any n ≥ 0 and any tree t. As mentioned before, the process Z = {Zn : n ≥ 0} defined as
Zn = Xn(T) is a Galton-Watson process in a environment Q.

In a similar way, Żn is the population size at generation n of some random tree. According to
Kersting and Vatutin (2017, Sections 1.4.1 and 1.4.2), the tree associated with Ż is a size-biased
tree in a varying environment Q. The size-biased tree in a varying environment Q is constructed
similarly to a Galton-Watson tree, but it incorporates additional information regarding a marked
particle that is distinguished from the rest. This marked particle is ultimately forced to fit the
definition of Żn. More precisely, let q̇i be the size-biased distribution of qi, for each i ≥ 1. We define
a size-biased tree in a varying environment Q as follows:

(i) We start with an initial marked particle.
(ii) The marked particle in generation i ≥ 0, gives birth to particles in generation i+1 according

to q̇i+1. Uniformly over the progeny, we select one of the individuals and classify it as a
marked particle. The remaining members of the offspring remain unmarked.

(iii) Any unmarked particle in generation i ≥ 0, gives birth to unmarked particles in generation
i+ 1 according to qi+1, independently of other particles.

The marked genealogical line is known as the spine. This construction is recognized as the one-
spine decomposition of the tree. Now, we associate a probability measure in the set of rooted trees
to the size-biased tree. First, we require a probability measure on the set of rooted trees with one
spine. A spine or distinguished path v on a tree t is a sequence {v(k) : k = 0, 1, . . . , |t|} ⊂ t (or
{v(k) : k = 0, 1, . . .} ⊂ t if |t| = ∞) such that v(0) = ∅ and v(k) = v(k−1)j for some j ∈ N, for any
1 ≤ k ≤ |t|. We denote by Ṫ , the subspace of trees with one spine given by

Ṫ = {(t,v) : t is a tree and v is a spine on t},

and by Tn = {t ∈ T : |t| = n} and Ṫn = {(t,v) ∈ Ṫ : |t| = n} the restriction of T and Ṫ to trees
with height n. Then, the size-biased tree with one spine can be seen as a Ṫ -valued random variable
(Ṫ,V) with distribution

P[(Ṫ,V)
n
= (t,v)] : =

∏
u∈v: |u|<n

q̇|u|+1[lu(t)]
1

lu(t)

∏
u∈t\v: |u|<n

q|u|+1[lu(t)]

=
∏

u∈v: |u|<n

q|u|+1[lu(t)]
f ′|u|+1(1)

∏
u∈t\v: |u|<n

q|u|+1[lu(t)]

=
1

µn
P[T n

= t]

(3.4)



Rates on Yaglom’s limit for Galton-Watson processes in a varying environment 15

for any n ≥ 0 and (t,v) ∈ Ṫn, where we have used the definition of q̇, (1.8) and (3.3). Hence,
by summing over all the possible spines, we obtain that the distribution of the size-biased Galton-
Watson tree in an environment Q on T is given by

P[Ṫ n
= t] =

∑
v:(t,v)∈Ṫn

P[(Ṫ,V)
n
= (t,v)] =

1

µn
Xn(t)P[T

n
= t], (3.5)

for any n ≥ 0 and any t ∈ Tn (see also Kersting and Vatutin (2017, Lemma 1.2)). Let Ż = {Żn :

n ≥ 0} be the process defined as Żn = Xn(Ṫ), for each n ≥ 0. By the previous equation, we can
see that Żn is the size-biased distribution of Zn for each n ≥ 0.

Lemma 3.6 tells us that Żn is also the size-biased distribution of Zn conditioned on {Zn > 0},
which implies that Żn > 0 for all n ≥ 0 and |Ṫ| = ∞. Let V = {V (k) : k = 0, 1, . . .} be the associated
spine. For each n ≥ 0, denote by Ln and Rn the number of particles at the left (excluding V (n))
and at the right (including V (n)), respectively, of particle V (n) in Ṫ. Then,

Żn = Ln +Rn, n ≥ 0.

We can classify these particles according to the generation at which they split off from the spine.
More precisely, for each j ∈ {1, . . . , n}, denote by Żn,j the number of particles at generation n

in Ṫ that are descendants of the siblings of V (j) but not V (j) itself. In the same spirit, denote
by Ln,j and Rn,j the number of particles at generation n in Ṫ that stem from the siblings to the left
and right, respectively, of V (j) (both excluding V (j)). Note that for fixed j ∈ {1, . . . , n}, the random
variables Ln,j and Rn,j are in general not independent, as they are linked through the offspring
number of V (j−1). However, by the branching property, the couples (Ln,1, Rn,1), . . . , (Ln,n, Rn,n)
are independent. For each n ≥ 1, we have the following

Ln =
n∑

j=1

Ln,j , Rn = 1 +
n∑

j=1

Rn,j and Żn = 1 +
n∑

j=1

(Ln,j +Rn,j). (3.6)

3.4. The shape function. Recall that fn denotes the generating function associated with qn. For
each 0 ≤ m < n and s ∈ [0, 1], we define fm,n(s) := [fm+1 ◦ · · · ◦ fn](s) and fn,n(s) := s. According
to equation (1.7), the generating function of Zn is equal to f0,n. An essential part of our proof is
to understand {f0,n : n ≥ 1}. To handle such iterated compositions of generating functions, we
utilize the shape function, a common device in the theory of branching processes. For a generating
function f , we define the shape function φ : [0, 1) → R associated with f as

φ(s) :=
1

1− f(s)
− 1

f ′(1)(1− s)
, 0 ≤ s < 1.

Due to the convexity of f , the function φ is non-negative. Moreover, by Taylor expansion of f
around 1, one can extend the definition of φ to 1 as

φ(1) := lim
s↑1

φ(s) =
f ′′(1)

2f ′(1)2
.

Kersting (2020) showed in Lemma 1 and 6 that under condition (⋆), there exists a C > 0 such that

Cφl(1) ≤ φl(s) ≤ φl(1), for every s ∈ [0, 1], l ≥ 1, (3.7)

where φl is the shape function of fl. According to Kersting (2020, Lemma 5), for every 0 ≤ k < n,
the shape function φk,n of fk,n is given by

φk,n(s) := µk

n−1∑
l=k

φl(fl,n(s))

µl−1
, s ∈ [0, 1).

For further details about the shape function see for instance Kersting (2020, Section 3).
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4. Proofs of main theorems

In this section, we prove our main results. Let Q be a varying environment such that conditions
(⋆⋆) and (1.9) are satisfied. In the sequel, C will denote a generic constant independent of n, whose
value might vary from one line to another. Denote by Yn the law of Zn conditioned on {Zn > 0}
and let bn := E[Yn] = E[Zn | Zn > 0] its mean. By equation (3.2), we have

dW

(
Yn
bn
, e

)
≤ 2E

[∣∣∣∣∣Ynbn − U
Ẏn
bn

∣∣∣∣∣
]
=

2

bn
E
[∣∣∣Yn − UẎn

∣∣∣] , (4.1)

where Ẏn is the size biased distribution of Yn. According to Lemma 3.6, Ẏn coincides with Żn, the
size-biased distribution of Zn. Therefore, in order to have a bound, it is natural to embed Yn and
UẎn into the size-biased tree Ṫ in a varying environment Q.

We start with the embedding of UẎn. Let V be the associated spine. According to (3.4) and
(3.5), V (n) is selected uniformly between the individuals at generation n. This implies that Rn,
the number of particles at the right (including) of particle V (n) in Ṫ, is uniform in {1, . . . , Żn}.
This discrete uniformity can be adjusted by an additive continuous uniform variable. Let U be
a Uniform[0, 1] random variable independent of the Galton-Watson tree. We have the following
identity

UẎn = UŻn
(d)
= Rn − U = 1− U +

n∑
j=1

Rn,j , (4.2)

where we have used (3.6).
Now, we will construct an embedding of Yn into Ṫ. Recall {Zn | Zn > 0} is the population size

at generation n of a Galton-Watson tree with alive individuals in that generation, while Żn is the
population size at generation n of a tree where we select one spine uniformly at random from the
particles alive in that generation. Then, a way to undo this size-biased and obtain {Zn | Zn > 0} in
terms of Żn is to condition that the spine is a specific live particle, for example the leftmost particle,
i.e.

Yn
(d)
= {Żn | Ln = 0}. (4.3)

Indeed, we use Bayes’ formula, the definition of size-biased distribution, and that V (n) is uniform
in {1, . . . , Żn}, to obtain

P
[
Żn = k | Ln = 0

]
=

P
[
Ln = 0 | Żn = k

]
P
[
Żn = k

]∑∞
j=1 P[Ln = 0 | Żn = j]P[Żn = j]

=
k−1 kP

[
Zn = k

]
(µn)

−1∑∞
j=1 j

−1jP
[
Zn = k

]
(µn)−1

=
P
[
Zn = k

]
P[Zn > 0]

= P [Yn = k] ,

for every k ≥ 1. Recall the definitions of Rn, Ln, Rn,j and Ln,j from Section 3.3. For each j ≤ n
define the event An,j := {Ln,j = 0}. By the branching property, the events An,1, . . . , An,n are
independent and

{Ln = 0} =

n⋂
r=1

An,r, n ≥ 1.

Moreover, by (3.6) and the independence of the couples {(Ln,j , Rn,j) : 1 ≤ j ≤ n}, we have

{Żn | Ln = 0} =

1 +

n∑
j=1

Rn,j

∣∣∣ Ln = 0

 (d)
= 1 +

n∑
j=1

{Rn,j | An,j} . (4.4)
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We want to give a better formulation of {Rn,j | An,j}. Denote by Ac
n,j the complement of An,j .

Observe that for every k ≥ 1

P [Rn,j = k | An,j ] =
P [Rn,j = k,An,j ]

P [An,j ]
= P [Rn,j = k,An,j ] +

P [Rn,j = k,An,j ]

P [An,j ]
P
[
Ac

n,j

]
.

Consider a sequence {R̃n,j : 1 ≥ j ≥ n} of random variables independent of the size-biased tree Ṫ

such that R̃n,j :
(d)
= {Rn,j | An,j} for each 1 ≤ j ≤ n. Then, from the previous computation, we have

{Rn,j | An,j}
(d)
= Rn,j1An,j + R̃n,j1Ac

n,j
, 1 ≤ j ≤ n.

The above analysis, together with (4.1), (4.2), (4.3) and (4.4) imply

dW

(
Yn
bn
, e

)
≤ 2

bn

E [U ] +
n∑

j=1

E
[
R̃n,j1Ac

n,j
+Rn,j1Ac

n,j

] . (4.5)

In the next subsections, we are going to analyse the previous bound in order to give the precise rate
of decay in Theorems 1.4 and 1.5.

4.1. Proof of Theorem 1.4. First, let us introduce some notation. Given an environment Q =
{qn : n ≥ 1} and m ≥ 0, we define the shifted environment as Qm := {qm+n : n ≥ 1}. Let
Z = {Zn : n ≥ 0} be a Galton-Watson process in a environment Q. The branching property of Z,
implies that for every m ≥ 0,

{Zm+n, n ≥ 0 | Zm = 1} is a Galton-Watson process in an environment Qm. (4.6)

In some parts, we need to keep track of the environment. In these occasions, we are going to denote
a Galton-Watson process in an environment Q by {ZQ

n : n ≥ 0}. Observe that

E
[
sZ

Qm
n

]
= fm,n(s), 0 ≤ s ≤ 1.

By taking derivatives with respect to the variable s, evaluating the resulting function at s = 1 and
using Cardona-Tobón and Palau (2021, equation (17)) with s = 1 we obtain

E
[
ZQm
n

]
=
µm+n

µm
and

E
[
ZQm
n (ZQm

n − 1)
]

E
[
ZQm
n

]2 = µm

(
m+n−1∑
k=m

νk+1

µk

)
. (4.7)

We recall that in the construction of the size biased tree Ṫ, the marked particle in generation
i, gives birth to particles in generation i + 1 according to q̇i+1. Uniformly over the progeny, we
select one of the individuals and classify it as a marked particle. The remaining members of the
offspring remain unmarked. Therefore, the marked particle gives birth to k unmarked particles
with probability q̇i+1[k + 1]. This new distribution will be denoted by [q̇i+1 − 1], i.e. for all k ≥ 0,
[q̇i+1 − 1][k] = q̇i+1[k + 1].

The proof is divided into five steps. In the first one and second one, we find bounds for
E
[
R̃n,j1Ac

n,j

]
and E

[
Rn,j1Ac

n,j

]
in terms of P[Ac

n,j ] and P
[
Z

Qj

n−j > 0
]
. In the third and four steps,

we find a bound for these probabilities. In the last one we combine all our findings for obtaining
the desired result.

Step I: Our first goal is to show that for each 1 ≤ j ≤ n, we have

E
[
R̃n,j1Ac

n,j

]
≤ µn

νj
µj−1

P[Ac
n,j ]. (4.8)
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By definition, R̃n,j and An,j are independent and R̃n,j
(d)
= {Rn,j | An,j} =

{
Żn,j | An,j

}
. Then,

E
[
R̃n,j1Ac

n,j

]
=

E
[
Żn,j1An,j

]
P[An,j ]

P[Ac
n,j ].

Since Żn,j = Rn,j + Ln,j and An,j = {Ln,j = 0}, the variables 1An,j and Żn,j are negatively
correlated, which yields

E
[
Żn,j1An,j

]
≤ E

[
Żn,j

]
P[An,j ].

It follows that

E
[
R̃n,j1Ac

n,j

]
=

E
[
Żn,j1An,j

]
P[An,j ]

P[Ac
n,j ] ≤ E

[
Żn,j

]
P(Ac

n,j).

It remains to find the upper estimate for the expectation of Żn,j . Now, we need to keep track on the
environment and we are going to denote {ZQ

n : n ≥ 0} a Galton-Watson process in an environment
Q. Since Żn,j the number of particles at generation n in Ṫ that are descendants of the siblings of
V (j) but not V (j) itself, we have that

E
[
ŻQ
n,j

]
= E

[
ŻQ
n

∣∣∣ ŻQ
j−1 = 1

]
− E

[
ŻQ
n

∣∣∣ ŻQ
j = 1

]
= E

[
Ż

Qj−1

n−(j−1) − 1
]
− E

[
Ż

Qj

n−j − 1
]

=
E
[
Z

Qj−1

n−(j−1)

(
Z

Qj−1

n−(j−1) − 1
)]

E
[
Z

Qj−1

n−(j−1)

] −
E
[
Z

Qj

n−j

(
Z

Qj

n−j − 1
)]

E
[
Z

Qj

n−j

] ,

where we have used the branching property (4.6) and the size-biased distribution in the last two
lines. We use (4.7) for the environments Qj−1 and Qj to conclude that

E
[
ŻQ
n,j

]
= µn

n−1∑
k=j−1

νk+1

µk
− µn

n−1∑
k=j

νk+1

µk
= µn

νj
µj−1

.

This completes the proof of (4.8).

Step II: Our second goal is to show that for each 1 ≤ j ≤ n, we have

E
[
Rn,j1Ac

n,j

]
≤ µn
µj

(
f ′′′j (1) + f ′′j (1)

f ′j(1)

)
P
[
Z

Qj

n−j > 0
]
. (4.9)

Let V = {V (k) : k = 0, 1, . . .} be the spine associated with Ṫ. In the sequel, for each j ≥ 1,
we denote Sj the random number of siblings of V (j). By construction of Ṫ, we know that Sj is
distributed as [q̇j − 1]. Moreover, there exists Ij uniformly distributed on {1, . . . , Sj + 1} such that
V (j) = V (j−1)Ij . We observe that, conditional on Sj and Ij , the random variables Rn,j and Ln,j

are independent. Hence,

E
[
Rn,j1Ac

n,j

]
= E

[
E
[
Rn,j1Ac

n,j

∣∣Sj , Ij]] = E
[
E
[
Rn,j | Sj , Ij

]
E
[
1Ac

n,j
| Sj , Ij

]]
.

Further, by construction of Ṫ and the branching property (4.6), we obtain

E
[
Rn,j | Sj , Ij

]
≤ SjE

[
ZQ
n | ZQ

j = 1
]
= SjE

[
Z

Qj

n−j

]
,

and

E
[
1Ac

n,j
| Sj , Ij

]
= P

[
Ln,j ̸= 0 | Sj , Ij

]
≤ SjP

[
ZQ
n > 0 | ZQ

j = 1
]
= SjP

[
Z

Qj

n−j > 0
]
. (4.10)
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By putting both terms in the previous expectation, we have

E
[
Rn,j1Ac

n,j

]
≤ E

[
S2
j

]
E
[
Z

Qj

n−j

]
P
[
Z

Qj

n−j > 0
]
.

Now, we use that Sj is distributed as [q̇j − 1] and the size-biased distribution of ZQj

1 , to show that

E
[
S2
j

]
= E

[
(Ż

Qj−1

1 − 1)2
]
=

P
[
(Z

Qj−1

1 − 1)2Z
Qj−1

1

]
P
[
Z

Qj−1

1

]
=

P
[
(Z

Qj−1

1 − 2)(Z
Qj−1

1 − 1)Z
Qj−1

1

]
+ P

[
(Z

Qj−1

1 − 1)Z
Qj−1

1

]
P
[
Z

Qj−1

1

] =
f ′′′j (1) + f ′′j (1)

f ′j(1)
.

Therefore, by using (4.7) with the environment Qj , the claim holds

E
[
Rn,j1Ac

n,j

]
≤ E

[
S2
j

]
E
[
Z

Qj

n−j

]
P
[
Z

Qj

n−j > 0
]
=

(
f ′′′j (1) + f ′′j (1)

f ′j(1)

)
µn
µj

P
[
Z

Qj

n−j > 0
]
.

Step III: We will show that for each 1 ≤ j ≤ n,

P[Ac
n,j ] ≤

f ′′j (1)

f ′j(1)
P
[
Z

Qj

n−j > 0
]
. (4.11)

First, we use (4.10) to get that for each 1 ≤ j ≤ n,

P[Ac
n,j ] ≤ E

[
Sj
]
P
[
Z

Qj

n−j > 0
]
.

The proof is completed by using that Sj is distributed as [q̇j − 1], and the size-biased distribution
of ZQj

1 to obtain

E
[
Sj
]
= E

[
Ż

Qj−1

1 − 1
]
=

P
[
Z

Qj−1

1 (Z
Qj−1

1 − 1)
]

P
[
Z

Qj−1

1

] =
f ′′j (1)

f ′j(1)
.

Step IV: We will show that there exists a positive constant C such that

P
[
ZQn
0 > 0

]
= 1 and P

[
Z

Qj

n−j > 0
]
≤ C

µj(ρ0,n − ρ0,j)
, for 0 ≤ j < n. (4.12)

We are going to rely on the use of the shape functions defined in Subsection 3.4. By definition of
the shape function φj,n of fj,n evaluated at s = 0, we have that P

[
ZQn
0 > 0

]
= 1, and for each

0 ≤ j < n

P
[
Z

Qj

n−j > 0
]
= 1− fj,n(0) =

(
µj
µn

+ φj,n(0)

)−1

=

µj
µn

+ µj

n∑
l=j+1

φl(fl,n(0))

µl−1

−1

.

Now, we use the bound (3.7) together with φl(1) = νl/2 to get

P
[
Z

Qj

n−j > 0
]
≤

µj n∑
l=j+1

φl(fl,n(0))

µl−1

−1

≤

µj n∑
l=j+1

C

2

νl
µl−1

−1

=
C ′

µj(ρ0,n − ρ0,j)
.

Then, we obtained (4.12).

Step V: Now, we put together all the ingredients to prove Theorem 1.4 under Assumption (⋆⋆).
The previous assumption implies (⋆). According with Kersting (2022, equation (3.2)), condition (⋆)
implies that there exists a constant C2 > 0 such that

f ′′j (1) ≤ C2(1 + f ′j(1))f
′
j(1), j ≥ 1. (4.13)
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Recall that bn = E[ZQ
n | ZQ

n > 0] = µn/P[ZQ
n > 0]. Then, we use (⋆⋆) together with (4.5), (4.8),

(4.9), (4.11), (4.13) and the definition of νj to obtain

dW

(
Yn
bn
, e

)
≤ 2P[ZQ

n > 0]

µn

1 +
n∑

j=1

E
[
R̃n,j1Ac

n,j
+Rn,j1Ac

n,j

]
≤ 2P[ZQ

n > 0]

µn

1 +
n∑

j=1

µn

(
νj
µj−1

f ′′j (1)

f ′j(1)
+
f ′′′j (1) + f ′′j (1)

µjf ′j(1)

)
P
[
Z

Qj

n−j > 0
]

≤ 2P[ZQ
n > 0]

µn

1 + Cµn

n∑
j=1

νj
µj−1

(1 + f ′j(1))P
[
Z

Qj

n−j > 0
] .

Therefore, by using (4.12), we have

dW

(
Yn
bn
, e

)
≤ C

µnρ0,n
+

C

ρ0,n

n−1∑
j=1

νj
µj−1

(1 + f ′j(1))

µj

1

(ρ0,n − ρ0,j)
+

νn
µn−1

(1 + f ′n(1))

 .

Finally, if we define rn as in (1.12) we get that Theorem 1.4 is true.

4.2. Proof of Theorem 1.5. By Theorem 1.4, it suffices to bound the term rn given by (1.12). Define

ln :=
n−1∑
j=1

νj
µj−1

(
1

µj
+

1

µj−1

)
1

(ρ0,n − ρ0,j)
.

Using the identity µj = µj−1f
′
j(1), we deduce that

rn = ln +
νn
µn−1

(1 + f ′n(1)),

so the problem is reduced to estimating ln. In order to do so, introduce the following quantities

hk =
1

µk
+

1

µk−1
, g

(n)
1 = 0, and g

(n)
k =

k−1∑
j=1

νj
µj−1

1

(ρ0,n − ρ0,j)
, for 2 ≤ k ≤ n.

Then,

ln =
n−1∑
j=1

hj(g
(n)
j+1 − g

(n)
j ).

Applying summation by parts, we get

ln = hn−1g
(n)
n +

n−1∑
k=2

(hk−1 − hk) g
(n)
k =

(
1

µn−1
+

1

µn−2

)
g(n)n +

n−1∑
k=2

(
1

µk−2
− 1

µk

)
g
(n)
k .

Recall that {ρ0,n : n ≥ 0} is an increasing sequence. Therefore, g(n)k ≤ g
(k)
k , for each 2 ≤ k ≤ n,

which gives

ln ≤ f ′n−1(1)(1 + f ′n(1))
g
(n)
n

µn
+

n−1∑
k=2

g
(k)
k

∣∣∣∣ 1

µk−2
− 1

µk

∣∣∣∣ .
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In order to bound the right-hand side, we will show that there is a constant C > 0 such that for
every 2 ≤ m ≤ n,

g(m)
m =

m−1∑
j=1

νj
µj−1

1

(ρ0,m − ρ0,j)
≤ C(1 +Mn)

2
(
log(µmρ0,m) + log

(
f ′n(1)

))
. (4.14)

In this aim, consider the following partition of [0, 1],

P (n) := {0 = t
(n)
0 < t

(n)
1 < · · · < t(n)n = 1} where t

(n)
j :=

ρ0,j
ρ0,n

, for j ∈ {0, . . . , n},

recalling that by definition ρ0,0 = 0. Observe that

g(n)n =
n−1∑
j=1

t
(n)
j − t

(n)
j−1

1− t
(n)
j

, n ≥ 2, (4.15)

and g(n)n can be regarded as the Riemman approximation of
∫ 1
0 (1−x)

−1dx. Additionally, appealing
to (4.13), we get for all j = 1, . . . , n− 2,

t
(n)
j − t

(n)
j−1 =

1

ρ0,n

νj
µj−1

=
1

ρ0,n

νj+1

µj

µjνj
µj−1νj+1

= (t
(n)
j+1 − t

(n)
j )f ′j(1)

νj
νj+1

= (t
(n)
j+1 − t

(n)
j )f ′j+1(1)

f ′j+1(1)

f ′j(1)

f ′′j (1)

f ′′j+1(1)
≤ C(t

(n)
j+1 − t

(n)
j )f

′
j+1(1)

2
1 + f ′j(1)

f ′′j+1(1)

≤ C(1 +Mn)
3(t

(n)
j+1 − t

(n)
j ),

where in the last inequality we have used that the sequence {f ′′n(1) : n ≥ 1} is bounded away from
zero by assumption.

We thus conclude that

t
(n)
j − t

(n)
j−1

1− t
(n)
j

≤ C(1 +Mn)
3
t
(n)
j+1 − t

(n)
j

1− t
(n)
j

, for all j = 1, . . . , n− 2.

Moreover, by first separating the term j = n − 1 in the right-hand side of (4.15), we can obtain,
after a suitable change of indices,

g(n)n ≤ C(1 +Mn)
3
n−1∑
j=2

t
(n)
j − t

(n)
j−1

1− t
(n)
j−1

+ f ′n−1(1)
f ′n(1)

2

f ′n−1(1)
2

f ′′n−1(1)

f ′′n(1)

≤ C(1 +Mn)
3

n−1∑
j=2

t
(n)
j − t

(n)
j−1

1− t
(n)
j−1

+ 1

 ,

where in the last inequality we have again used (4.13) and that the sequence {f ′′n(1) : n ≥ 1} is
bounded away from zero. By the monotonicity of the function x 7→ (1− x)−1, we deduce

n−1∑
j=2

t
(n)
j − t

(n)
j−1

1− t
(n)
j−1

≤
∫ t

(n)
n−1

0

dx

1− x
= − log(1− t

(n)
n−1) = − log

(
νn/µn−1

ρ0,n

)

= log(ρ0,nµn) + log

(
f ′n(1)

f ′′n(1)

)
≤ log(ρ0,nµn) + log

(
f ′n(1)

)
.
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Therefore, (4.14) holds. Finally, we are going to apply (4.14) to prove Theorem 1.5. In this case,

rn = ln +
νn
µn−1

(1 + f ′n(1))

≤ f ′n−1(1)(1 + f ′n(1))
g
(n)
n

µn
+

n−1∑
k=2

g
(k)
k

∣∣∣∣ 1

µk−2
− 1

µk

∣∣∣∣+ νn
µn−1

(1 + f ′n(1))

≤ C(1 +Mn)
5

µn

(
log(ρ0,nµn) + log

(
f ′n(1)

))
+ C(1 +Mn)

2sn +
1

µn
(1 +Mn)

2,

where sn is defined as in (1.13). This concludes the proof.
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