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Abstract. We introduce a random absorption barrier to a supercritical branching random walk with
an i.i.d. random environment {Ln} indexed by time n, i.e., in each generation, only the individuals
born below the barrier can survive and reproduce. The barrier is set as χn+anα, where a, α are two
constants and {χn} is a random walk determined by the random environment. We show that for
almost every L := {Ln}, the time-inhomogeneous branching random walk with barrier will become
extinct (resp., survive with positive probability) if α < 1

3 or α = 1
3 , a < ac (resp., α > 1

3 , a > 0

or α = 1
3 , a > ac), where ac is a positive constant determined by the random environment. The

rates of extinction when α < 1
3 , a ≥ 0 and α = 1

3 , a ∈ (0, ac) are also obtained. These extend the
main results in Aïdékon and Jaffuel (2011) and Jaffuel (2012) to the random environment case. The
influence of the random environment has been specified.

1. Introduction

1.1. Description of the model. Branching random walk on R with an i.i.d. random environment
in time is a natural extension of time-homogeneous branching random walk. It contains two levels
of randomness. The first randomness comes from the random environment. Each realization of
the random environment drives a time-inhomogeneous branching random walk, which is the second
stage of randomness. Compared with the time-homogeneous branching random walk, this model no
longer requires the particles in the different generations to have the same reproduction law, instead
allows the laws to vary from generation to generation according to the random environment. Some
relevant literature studying this model is listed in Section 1.3.

We describe the model as follows. Let (Π,FΠ) be a measurable space and Π ⊆ Π̃ := {m :
m is a probability measure on V }, where V := N × R × R × · · · . The random environment L is
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defined as an i.i.d. sequence of random variables {L1, L2, · · · ,Ln, · · · }, where L1 takes values in
(Π,FΠ). Let ν be the law of L, then we call the product space (ΠN,F

⊗
N

Π , ν) the environment space.
For any realization L := {L1, L2, · · · , Ln, · · · } of L, the time-inhomogeneous branching random
walk driven by the environment L is a process constructed as follows.

(1) At time 0, an initial particle ϕ in generation 0 is located at the origin.
(2) At time 1, the particle ϕ dies and gives birth to N(ϕ) children who form the first generation.

These children are located at ζi(ϕ), 1 ≤ i ≤ N(ϕ), where the distribution of the random vector
X(ϕ) := (N(ϕ), ζ1(ϕ), ζ2(ϕ), . . .) is L1. Note that the values ζi(ϕ) for i > N(ϕ) do not play any role
in our model. We introduce them only for convenience. For example, we can take ζi(ϕ) = 0 for any
i > N(ϕ).

(3) Similarly, at generation n+1, every particle u alive at generation n dies and gives birth toN(u)
children. If we denote ζi(u), 1 ≤ i ≤ N(u) the displacement of the children with respect to their
parent u, then X(u) := (N(u), ζ1(u), ζ2(u), · · · ) is of distribution Ln+1. We should emphasize that
conditionally on any given environment L, all particles in this system always behave independently.

Conditionally on L, we write (Γ,FΓ,PL) for the probability space under which the time-inhomog-
eneous branching random walk is defined. The probability PL is conventionally called a quenched
law. We define the probability P := ν

⊗
PL on the product space (ΠN × Γ,F

⊗
N

Π

⊗
FΓ) such that

for any F ∈ F
⊗

N
Π , G ∈ FΓ, we have

P(F ×G) =
∫
L∈F

PL(G) dν(L). (1.1)

The marginal distribution of probability P on Γ is usually called an annealed law. The quenched law
PL can be viewed as the conditional probability of P given L. Throughout this paper, we consider
the case F = ΠN. Hence without confusion we also denote the annealed law P and abbreviate
P(ΠN×G) to P(G). Moreover, we write EL and E for the corresponding expectation of PL and P
respectively.

We denote by T the (random) genealogical tree of the process. For a given particle u ∈ T
we write V (u) ∈ R for the position of u and |u| for the generation at which u is alive. Then
(T, V,PL,P) is called the branching random walk in the time-inhomogeneous random environment
L (BRWre). Especially, if there exists a ι ∈ Π such that P(L1 = ι) = 1 thus P(Li = ι) =
1,∀i ∈ N+ := {1, 2, · · · , n, · · · }, which is conventionally called the degenerate environment (or
constant environment), then the BRWre degenerates to the time-homogeneous branching random
walk (BRW). Of course, one can describe the model by point process; see Mallein and Miłoś (2019).

1.2. The barrier problem of BRW. In this subsection, we will recall some progress for the barrier
problem of BRW, i.e., the constant environment situation, and we use P and E to denote the
probability and the corresponding expectation for the model without random environment (e.g.,
BRW, random walk) in the rest of the present paper.

In order to answer some questions about parallel simulations studied in Lubachevsky et al. (1989,
1991), the barrier problem of BRW was first introduced in Biggins et al. (1991). The conclusion in
Biggins et al. (1991) is closely related to the first order of the asymptotic behavior of

Mn := min{V (u) : u ∈ T, |u| = n},

i.e., the minimal displacement of the particles in the n−th generation. Hammersley (1974), Kingman
(1975) and Biggins (1976) showed that (under some mild assumptions,) there is a finite constant r
such that

lim
n→∞

Mn

n
= r, a.s., (1.2)
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which is the first order of BRW. Addario-Berry and Reed (2009) and Hu and Shi (2009) considered
the second order of Mn. For example, Hu and Shi (2009) showed that

lim
n→∞

Mn − rn
log n

= r0, in Probability, (1.3)

where r0 is a nonzero finite constant. The weak convergence of Mn − rn− r0 log n can be found in
Aïdékon (2013).

We introduce some notation for a better understanding of the barrier problem. On the tree T we
define a partial order > such that u > v if v is an ancestor of u. We write u ≥ v if u > v or u = v.
We define an infinite path u∞ through T as a sequence of particles u∞ := (ui, i ∈ N) such that

∀i ∈ N, |ui| = i, ui+1 > ui, u0 = ϕ (the initial particle).

For any i ≤ |u|, we conventionally write ui for the ancestor of u in generation i. Let Tn := {u ∈ T :
|u| = n} be the set of particles of generation n and T∞ the collection of all infinite paths through
T.

The so-called “barrier" is actually a function φ : N→ R. For any u ∈ T, u and all its descendants
will be removed when V (u) > φ(|u|). In other words, a particle in this system can survive only if all
its ancestors and itself were born below the barrier. When we impose a barrier on a BRW with a
supercritical underlying branching process (i.e., E(

∑
|u|=1 1) > 1), a natural question is to consider

whether the system still survives with positive probability. Define the event

S0 := {∃u∞ = (u0, u1, u2, . . . un, . . .) ∈ T∞, ∀i ∈ N, V (ui) ≤ φ(i)},

then P(S0) is the survival probability of BRW with barrier. In the light of (1.2) and (1.3), if the
barrier function is set as φ(i) := ri+ aiα, a series of predecessors’ achievements is listed as follows.

Under some mild assumptions, Biggins et al. (1991) showed that P(S0) > 0 when α = 1, a > 0
and P(S0) = 0 when α = 1, a < 0.

As a refined version of the above conclusion, Jaffuel (2012) showed that P(S0) > 0 when α =
1
3 , a > a0 and P(S0) = 0 when α = 1

3 , a < a0, where a0 is a positive constant. Obviously, this
conclusion implies that P(S0) = 0 if a = 0.

Let Yn := ♯{u, |u| = n : ∀i ≤ n, V (ui) ≤ φ(i)} be the size of the surviving population in the n-th
generation when we add the barrier φ. Hence we have P(S0) = lim

n→∞
P(Yn > 0). Note that P(S0) = 0

when α = 1, a ≤ 0. Aïdékon and Jaffuel (2011) studied the extinction rate and showed that there
are two finite negative constants r1, r2 (r2 depends on a) such that lim

n→∞
n−1/3 logP(Yn > 0) = r1

when a = 0 and lim
n→∞

n−1 logP(Yn > 0) = r2 when α = 1, a < 0.

For the case α = 1, a > 0, Gantert et al. (2011) gave the asymptotic behavior of P(S0) as a ↓ 0.
They proved that lim

a↓0

√
a logP(S0) = r3, where the constant r3 ∈ (−∞, 0). Mallein (2017) obtained

the same conclusion by an alternative proof. Both Gantert et al. (2011) and Mallein (2017) dealt
with the problem (the asymptotic behavior of P(S0)) in a probabilistic approach—combining a
measure change for the point process with a small deviation estimate for the associated random
walk. Under a special case (assuming that the branching law is binary branching and the random
walk steps are bounded), this problem can be solved in an analytical approach—characterizing the
survival probability as the solution of a non-linear convolution equation (see Bérard and Gouéré
(2011)).

The results mentioned above are all under the assumption that the associated random walk
(derived from the celebrated many-to-one formula, see Shi (2015, Theorem1.1)) has finite variance.
If the variance is infinite but the associated random walk is in the domain of attraction of an α∗-
stable law, α∗ ∈ (1, 2), Liu and Zhang (2019) showed that there exists a constant a∗0 depending on
α∗ such that P(S0) > 0 when α = 1

α∗+1 , a > a∗0 and P(S0) = 0 when α = 1
α∗+1 , a < a∗0.
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We should explain that Biggins et al. (1991), Jaffuel (2012), Aïdékon and Jaffuel (2011), Gantert
et al. (2011) and Liu and Zhang (2019) all suppose that r = 0, which is an assumption of the
so-called “boundary case". Our statement above is essentially consistent with the original results in
the boundary case according to the linear transformation in Gantert et al. (2011).

Kesten (1978), Derrida and Simon (2007); Simon and Derrida (2008), Harris and Harris (2007)
have studied the barrier problem of branching Brownian motion, which can be viewed as the con-
tinuous analog of BRW with barrier.

1.3. The minimal displacement of BRWre. Similar to the time-homogeneous case introduced in
Section 1.2, the asymptotic behavior of the minimal displacement of BRWre is the theoretical
basis for the barrier problem of BRWre. In this part, we list some conclusions about the minimal
displacement of BRWre. The model BRWre was first introduced in Biggins and Kyprianou (2004).
Recall the definition of Mn and the annealed law P. Huang and Liu (2014) proved that there is
a finite constant d such that lim

n→∞
Mn
n = d, P−a.s. Huang and Liu (2014) also obtained the large

deviation principles for the counting measure about the population of the BRWre. Conclusions on
the central limit theorem of the BRWre can be found in Gao et al. (2014) and Gao and Liu (2016).
The moderate deviation principles and the Lp convergence rate have been investigated in Wang and
Huang (2017).

What inspires our work most is the second order of the asymptotic behavior of Mn considered
in Mallein and Miłoś (2019). They showed that there exists a random walk {χn}n∈N (the precise
expression of χn is given in (2.12)) with i.i.d. increments under the annealed law P such that

Mn − χn
log n

→ c, n→∞, in Probability P, (1.4)

where c is a finite constant and E(χ1) = d. (1.4) shows that for BRWre, the trajectory of {Mn}n∈N
is around the random walk {χn}n∈N (but not {dn}n∈N) with a logarithmic correction, which is
different from the corresponding behavior of BRW (see (1.3)). This fact provides a helpful guidance
on how to set a reasonable barrier in the random environment case.

Some other types of inhomogeneous branching random walks have been studied. For exam-
ple, Mallein (2015b) studied the maximal displacement of a branching random walk in time-
inhomogeneous but non-random environment. Baillon et al. (1993) considered a branching random
walk with the environment determined by the space instead of the time. Hu and Yoshida (2009),
as well as other authors, took interest in the branching random walk in a space-time random envi-
ronment.

1.4. Structure of this paper. The rest of the paper is organized as follows.
In Section 2, we introduce some notation, assumptions and the main results. Moreover, we give

an example satisfying our assumptions.
The many-to-one formula of time-inhomogeneous bivariate version is given in Section 3.
Section 4 is devoted to the small deviation principle of a random walk with time-inhomogeneous

random environment. This principle is a basic tool to solve the barrier problem of BRWre.
In Section 5, we give the proof of the propositions and example stated in Section 2.
At last, we prove the main theorems in Section 6 by all the preparations in Sections 3-5.
We comment that in the present paper we not only give the new results (in Section 2) and the proof

(in Sections 3-6), but also give a detail analysis and comprehensive interpretation in Sections 2 (the
proofs to support our analysis are given in Sections 4 and 5) on the setting of the assumptions on our
main results, including the origin, necessity, alternatives, substitutes, comparison, particularity of
these assumptions and an example to satisfy the assumptions. Since the assumptions look different
and more complicated than the corresponding assumptions for the barrier problem of BRW, we take
several pages to show that our assumptions are totally acceptable and reasonable.
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2. Basic assumptions and Main results

2.1. Notation and assumptions. First, we give some notation for the model BRWre. For every
n ∈ N+, define the log-Laplace transform function

κn(θ) := logEL

(
N(u)∑
i=1

e−θζi(u)

)
, |u| = n− 1, θ ∈ [0,+∞).

Note that it is well-defined since conditionally on any realization Ln of Ln, for each u in generation
n − 1, X(u) has the common law Ln. Meanwhile we should note that for a fixed θ, κn(θ) is a
random variable determined by the random environment L. (More precisely, it is determined by
Ln.) Therefore, {κn(θ), n ∈ N+} is a sequence of i.i.d. random variables since {Ln, n ∈ N+} is i.i.d.

Throughout the present paper, we assume that E(κ−n (θ)) < +∞ for all θ ≥ 0, where κ−n (θ) is
defined as max{0,−κn(θ)}. Hence we can define κ : [0,+∞)→ (−∞,+∞] by

κ(θ) := E(κn(θ)).

Now we introduce four basic assumptions in the present paper. The time-homogeneous versions of
Conditions 1 and 3 are classic assumptions which often appear in the papers on BRW (for example,
the assumptions (1.3), (2.2)-(2.4) in Gantert et al. (2011)). Conditions 2 and 4 are automatically
satisfied under Conditions 1 and 3 when the random environment degenerates.

Condition 1 Assume that κ(0) > 0, there exists 0 < ϑ < θ̄ such that κ(θ̄) < +∞ and

κ(ϑ) = ϑκ′(ϑ). (2.1)

Condition 2 There exist constants λ1 > 3, λ2 > 2 such that

E
(
|κ1(ϑ)− ϑκ′1(ϑ)|2λ1

)
< +∞; (2.2)

E

([
EL
(∑N(ϕ)

i=1 |ζi(ϕ) + κ′1(ϑ)|λ2e−ϑζi(ϕ)
)

EL
(∑N(ϕ)

i=1 e−ϑζi(ϕ)
) ]λ1)

< +∞. (2.3)

Condition 3 Assume that we can find constants λ3 > 6, λ4 > 0 such that

E(|κ1(ϑ+ λ4)|λ3) +E(|κ1(ϑ)|λ3) < +∞, E([log+EL(N(ϕ)1+λ4)]λ3) < +∞, (2.4)

where we agree log+ · := logmax(1, ·), log− · := | logmin(1, ·)|.
Condition 4 Either

∃λ5 > 2, x ≤ −1, E

([
log−EL

(N(ϕ)∑
i=1

1{ϑζi(ϕ)+κ1(ϑ)∈[x,x−1],N(ϕ)≤|x|}

)]λ5)
< +∞ (2.5)

or

∃λ′5 > 4, x ≤ −1, E

([
log−EL

(N(ϕ)∑
i=1

1{ϑζi(ϕ)+κ1(ϑ)∈[x,x−1]}

)]λ′5)
< +∞ (2.6)

holds.
At least for the method we use, Conditions 1-4 are the almost tight version (i.e. it can not be

further weakened). Condition 1 is set to ensure that Mn/n has a finite limit (all investigations about
the barrier problems are based on this behavior of Mn/n in the time-homogeneous case) and the
underlying branching process in random environment is supercritical. A standard strategy to study
the barrier problems in the time-homogeneous case is to combine the small deviation principle of
random walk with the second moment method. In the present paper, the outline of the strategy
is as follows. Condition 3 is set for applying the second moment method and Conditions 2 and
4 for applying the small deviation principle given in Section 4, where Condition 4 is set specially
for applying the lower bound of the small deviation principle. Conditions 3 and 4 can be further



44 You Lv and Wenming Hong

weakened when the branching and displacement are independent of each other (see Remark 2.11).
Some propositions will be given for a better understanding of Conditions 1-4.

2.1.1. Some explanations of Conditions 1-4. In this section, for a better and intuitive understanding
of the above conditions, we give some properties and descriptions on the conditions.

Proposition 2.1. Condition 1 implies that P(κ′′1(ϑ) > 0) > 0, hence κ′′(ϑ) > 0.
For the time-homogeneous case, this proposition is obvious, while for the random environment

case it needs to be proved (see Section 5). Moreover, this proposition is an indispensable preparation
for the proof of the main results (Theorems 2.5 and 2.6). The following two propositions give some
sufficient conditions (which have a more intuitive description) for Conditions 2-3.

Proposition 2.2. If there exists λ6 > 3
2 such that

E((κ
(4)
1 (ϑ) + 3[κ′′1(ϑ)]

2)λ6) < +∞, (2.7)

where κ(n)1 (ϑ) := dnκ(θ)
dθ |θ=ϑ, then (2.3) holds.

Furthermore, if there exist λ7, λ8 > 0 such that

E(eκ1(ϑ−λ7)−κ1(ϑ) + eκ1(ϑ+λ8)−κ1(ϑ)) < +∞, (2.8)

then (2.7) holds.

Proposition 2.3. If there exist λ9, λ10, λ11 > 0, λ12 > 6 such that

E
(
eκ1(ϑ−λ9)−κ1(ϑ) + e|κ1(ϑ+λ10)−κ1(ϑ)| + |κ1(ϑ)|λ12

)
+E(N(ϕ)1+λ11) < +∞, (2.9)

then Conditions 2-3 hold.

Though (2.9) looks like more intuitive than Condition 2 and Condition 3, we should also note
that it is more restrictive than Conditions 2-3 since in (2.2), (2.3) and (2.4), we actually do not
need κ1(ϑ − λ9) − κ1(ϑ), |κ1(ϑ + λ10) − κ1(ϑ)| and log+EL(N(ϕ)1+λ11) to have finite exponential
moments. We remind that Mallein and Miłoś (2019) (which considered the minimal displacement
of BRWre, see (1.4)) requires that κ1(ϑ−λ9)−κ1(ϑ), |κ1(ϑ+λ10)−κ1(ϑ)|, and log+EL(N(ϕ)1+λ11)
have finite exponential moments (see Mallein and Miłoś (2019, (1.7)-(1.8))). More exactly, the main
results in the present paper do not need that the associated random walk {Tn}n∈N defined in (4.3)
has finite exponential moment while (1.4) needs that.

An explanation of Condition 4 is given in Remark 2.12, which shows that it is a necessary
condition in some extent and specially needed when we consider the barrier problem. (We point
out that Mallein and Miłoś (2019) do not need this assumption since it does not involve the barrier
problem.)

A comparison between Conditions 1-4 and the corresponding assumptions for the barrier problem
of BRW is given in Remark 2.8, in which we can trace why we set these conditions in this way and
see some difficulties brought from the random environment.

Since the proofs of Propositions 2.2-2.3 will involve the many-to-one formula and the associated
random walk, which are introduced in Sections 3 and 4 respectively, we might as well put all the
proofs of the propositions after Section 4.

2.1.2. An example which satisfies Conditions 1-4. Recalling the definition of BRWre in Section 1
we see that the law of L1 totally determines a BRWre. Denote X(m) := (N(m), ζ1(m), ζ2(m), . . .)
a random vector with distribution m ∈ Π (Π has been defined in Section 1.1) taking values on
N×R×R×R · · · . Next we give an example in which the branching law and the displacement law
are independent of each other.
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Example 2.4. Let µ(·) and σ(·) be two functionals defined on Π and σ(m) > 0, ∀m ∈ Π. For any
m ∈ Π, we assume that for any realization of N(m), (ζi(m), i ≤ N(m)) is a sequence of i.i.d. random
variables with a common normal distribution N (µ(m), σ2(m)), where σ2(m) := (σ(m))2. Here we
remind that the values of µ(m) and σ(m) are not affected by the realization of X(m). We assume
that there exist three constants τ0 > 1, τ1 > 6, τ2 > 4 such that

E(logELN) > 0, E{[log+EL(N
τ0)]τ1 + [log−(ELN)]τ2} < +∞, (2.10)

E(σ2τ1) < +∞, E(σ−τ2) < +∞. (2.11)

where we write N(m), σ(m) as N, σ for simplicity. Then this example satisfies Conditions 1-4.

Note that in this example we have not any requirement on the random variable µ(m).
The proof of this example also involves the many-to-one formula and the associated random walk

hence we also give the proof after Section 4.

2.2. Main results. First we introduce the barrier considered in the present paper. The enlightenment
about how to set the barrier function is from the main result in Mallein and Miłoś (2019). Recall
that V (u) presents the position of particle u. In Mallein and Miłoś (2019), they showed that

lim
n→+∞

min|u|=n V (u) + ϑ−1Kn

log n
= c, in Probability P, (2.12)

where c is a finite constant and

Kn :=
n∑
i=1

κi(ϑ), K0 := 0. (2.13)

Hence we see for BRWre, the time-homogeneous random walk {ϑ−1Kn}n∈N gives the first order of
the asymptotic behavior of the minimal displacement. (Of course, this random walk is exactly the
{χn}n∈N mentioned in (1.4)). Recall that the first order of the minimal displacement of a BRW is
rn (r is the one introduced in Section 1.2) and hence the barrier function in Aïdékon and Jaffuel
(2011), Gantert et al. (2011) and Jaffuel (2012) is set as the form φ(i) := ri + aiα. Through the
above analysis, in the present paper we set the barrier function φL(i) := −ϑ−1Ki + aiα, where we
use the notation φL(i) but not φ(i) since L brings randomness to Kn. Hence we can see that the
setting of the barrier is an important difference between our main results and the achieved results
on the barrier problem of BRW. In the present paper, we set the random barrier φL(i) according
to the random environment while for BRW, the barrier φ(i) is non-random because of the constant
environment. Moreover, the barrier φL(i) we set will become φ(i) when the random environment
is degenerate.

Before giving the main results, we need to introduce the function γ with the definition

γ(β) := lim
t→+∞

− logP(∀s≤tBs ∈ [−1
2 + βWs,

1
2 + βWs]|W )

t
, a.s., (2.14)

where B,W are two independent standard Brownian motions and B0 = 0,W0 = 0. γ has been
introduced in Lv (2019, Theorem 2.1). Lv (2019) showed that for any given realization of W (in
the sense of almost surely), γ is a well-defined, positive, convex and even function with γ(0) = π2

2 .
Moreover, γ is strictly increasing on [0,+∞) and strictly decreasing on (−∞, 0].

Throughout this paper, we denote

σA :=

√
E
((
κ1(ϑ)− ϑκ′1(ϑ)

)2)
, σQ := ϑ

√
E(κ′′1(ϑ)), γσ := σ2Qγ

(σA
σQ

)
. (2.15)

The following two theorems are the main results in the present paper.
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Theorem 2.5. (critical criterion) Let the barrier function be φL(i) := −ϑ−1Ki + aiα, ∀i ∈ N.
Recall the definition of the infinite path u∞ and their collection T∞. Define the event

S := {∃u∞ := (u1, u2, . . . un, . . .) ∈ T∞, ∀i ∈ N, V (ui) ≤ φL(i)},

which is the event that the system still survives after we add the barrier φL . Denote ac := 3 3√6γσ
2ϑ .

• Suppose that Conditions 1-4 hold, then the following two statements are true.
(1a) If α > 1

3 , a > 0, then PL(S) > 0, P− a.s.

(1b) If α = 1
3 , a > ac, then PL(S) > 0, P− a.s.

• Suppose that Conditions 1-2 hold, then the following two statements are true.
(1c) If α = 1

3 , a < ac, then PL(S) = 0, P− a.s.

(1d) If α < 1
3 , a ∈ R, then PL(S) = 0, P− a.s.

Theorem 2.6. (extinction rate) Define

Yn := ♯{|u| = n : ∀i ≤ n, V (ui) ≤ φL(i)},
which represents the number of the surviving particles in generation n after we add the barrier φL.
Assume that Conditions 1-3 hold.

• If (2.5) holds with some λ5 ≥ 1 or (2.6) holds, then we have the following (2a)-(2c).
(2a). Let α = 1

3 , a ∈ (0, ac). Then

lim
n→∞

logPL(Yn > 0)
3
√
n

= −ϑq̃(0), P− a.s., (2.16)

where q̃ is the unique solution in C[0, 1] of the integral equation

∀ t ∈ [0, 1], −ϑq(0) = ϑat
1
3 − ϑq(t)− γσ

∫ t

0
(ϑq(x))−2dx (2.17)

and satisfies

q̃(0) > 0, q̃(1) = 0,

∫ 1

0
(q̃(x))−2dx < +∞. (2.18)

(2b). Let α ∈ (0, 13), a ≥ 0. Then it is true that

lim
n→∞

logPL(Yn > 0)
3
√
n

= − 3
√
3γσ, P− a.s. (2.19)

(2c). Define

PL(n, c) := PL(∃|u| = n,∀i ≤ n, V (ui) ≤ ci− ϑ−1Ki).

For any constant b > 0, we have

lim
n→∞

1

n1/3
logPL

(
n, bn−

2
3
)
≤ −xb, P− a.s., (2.20)

lim
n→∞

1

n1/3
logPL

(
n, bn−

2
3
)
≥ −

√
γσ
ϑb
, P− a.s., (2.21)

where xb is the solution of 3γσ
x2
− x = 3ϑb on (0,+∞).

• If Condition 4 holds, then we have the following (2d).
(2d). Let α = 1

3 , a > ac. For any given constant ε > 0, there exists M ∈ N large enough
such that

PL

(
lim

k→+∞

log YMk

M
k
3

> b2ϑ− ε
)
> 0, P− a.s., (2.22)

where b2 is the maximum b satisfying ϑa = ϑb+ 3γσ
b2ϑ2

.
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Remark 2.7. If the random environment degenerates to the time-homogeneous environment (i.e.,
the model BRWre degenerates to BRW), then Condition 1 implies that σA = 0, and hence γσ =

σ2Qγ(0) =
π2σ2

Q

2 . That is to say, our results are consistent with the corresponding conclusions about
BRW in Aïdékon and Jaffuel (2011) and Jaffuel (2012).

Remark 2.8. Let us compare Conditions 1-4 and the corresponding assumptions for the barrier
problem of BRW in Jaffuel (2012). When the model BRWre degenerates to BRW, Condition 1 and
Condition 3 are the basic assumptions in Jaffuel (2012), which considers the barrier problem of
BRW. In our notation, the basic assumptions in Jaffuel (2012) can be stated as follows: there exist
constants ϑ, λ13, λ14 > 0 such that

κ1(ϑ)− ϑκ′1(ϑ) = 0, Φ1(ϑ+ λ13) < +∞, EL(N(ϕ)1+λ14) < +∞, EL(N(ϕ)) > 1. (2.23)

(Note that for a BRW, κ1(x),Φ1(x) := eκ1(x),EL(N(ϕ)) are all constants since there is only one
element in the state space of L.) Hence (2.23) is the degenerate version of the Condition 1 and
Condition 3 in the present paper.

Furthermore, if the random environment is degenerate, Condition 2 and Condition 4 will hold
automatically under Condition 1 and Condition 3. Let us check them one by one. The first equality
in (2.23) means that the left hand side of (2.2) is 0 thus (2.2) holds. We see Φ1(0) ∈ (0,+∞) since
Φ1(0) = EL(N(ϕ)) and EL(N(ϕ)1+λ14) < +∞. As Φ1 is the log-Laplace transform of a measure on
R and the condition max{Φ1(0),Φ1(ϑ+ λ13)} < +∞, we see that dnΦ(θ)

dθ exists and is finite for any
n ∈ N and θ ∈ (0, ϑ+ λ13), which means that (2.7) holds and thus (2.3) holds.

At last, we show that Condition 4 also holds when the random environment is degenerate.
The statement that “Condition 4 is not true” is equivalent to saying that for any given x ≤ −1,
EL
(∑N(ϕ)

i=1 1{ϑζi(ϕ)+κ1(ϑ)∈[x,x−1]}
)
= 0, which means that theX1 given in Gantert et al. (2011, (2.10))

(i.e., the first step of the associated homogeneous random walk with respect to the branching random
walk) satisfies

EL(X1 ∈ [x, x−1]) = 0, ∀x ≤ −1. (2.24)

However, Conditions 1-3 imply EL(X
2
1 ) ∈ (0,+∞) and EL(X1) = 0, which means that (2.24) can

not be true and hence Condition 4 holds naturally in a degenerate environment.

Remark 2.9. The impact from the random environment to the survival probability and the extinction
rate is reflected by the quantity σA. We should note that all the conclusions in Theorem 2.5 and
Theorem 2.6 reflect that the event {Yn ≥ 1} and S will happen with smaller probability when
σA takes a larger value. As an example, here we compare the critical coefficient ac in the present
paper with the corresponding one (i.e. the critical coefficient of the 1

3 order of the barrier for
BRW, we denote it a0) in Jaffuel (2012). With the notation in the present paper, the value of

a0 is 3 3
√

3π2ϑ2κ′′1 (ϑ)

2ϑ . On the other hand, according to the relationship γ(β) ≥ π2(1+β2)
2 which has

been shown in Lv (2019), we have γσ ≥
π2(σ2

A+σ2
Q)

2 hence ac = 3 3√6γσ
2ϑ ≥

3 3
√

3π2σ2
A+3π2σ2

Q

2ϑ . Note that
σ2Q := ϑ2E(κ′′1(ϑ)). Hence the term containing σ2A can be seen as an extra increment of the critical
coefficient brought by the random environment.

Remark 2.10. (1) The upper bounds in Theorem 2.6 only need Conditions 1-2. In other words,
under Conditions 1-2, it is true that lim

n→∞
logPL(Yn>0)

3√n ≤ −ϑq̃(0) in (2a), lim
n→∞

logPL(Yn>0)
3√n ≤ − 3

√
3γσ

in (2b) and lim
n→∞

1
n1/3 logPL(n, b) ≤ −xb in (2c).

(2) Set φL(i) := −ϑ−1Ki + ψ(i), from the proof of (2b) we can see that (2.19) still holds if the
function ψ satisfies that lim

n→+∞
maxi≤n ψ(i)

n1/3 = 0 and ψ(i) ≥ 0,∀i ∈ N.
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(3) We remind that the Propositions 3.2-3.6 in Jaffuel (2012) have shown that the integral equa-
tion (2.17) has an unique solution satisfying the boundary condition (2.18).

Remark 2.11. If N(ϕ) and (ζi(ϕ), i ≤ N(ϕ)) are independent of each other (i.e. the branching law
and the displacement law are independent), then the restriction E(|κ1(ϑ+ λ4)|λ3) +E(|κ1(ϑ)|λ3) <
+∞ in Condition 3 is no longer needed. Moreover, we do not need Condition 4 but only require that
(2.6) holds with λ′5 > 2, x ≤ −1. The explanations of this remark are given in the last paragraph in
the proofs of Corollaries 4.3 and 4.6.

Remark 2.12. We can see that Condition 4 is almost a necessary condition in some extent from the
following analysis. Now we give a new condition which is slightly weaker than Condition 4. The
new condition is that there exists a constant λ5 > 2, c > 0 such that

E

(∣∣∣∣∣ logEL(
N(ϕ)∑
i=1

1{ϑζi(ϕ)+κ1(ϑ)≤c}

)∣∣∣∣∣
λ5)

< +∞. (2.25)

(We should note that under the second assumption in Condition 3, Condition 4 implies (2.25).)
Then we can see that (2.25) is a necessary condition for some conclusions in Theorem 2.5 when the
distribution of L1 is supported in only finite elements (denoted by m1, · · · ,mk) in Π.

The explanation is as follows. Note that for the finite environments case, the statement that
(2.25) is not satisfied is equivalent to saying that there exists a j ≤ k such that

EL

(N(ϕ)∑
i=1

1{ϑζi(ϕ)+κ1(ϑ)≤c}

∣∣∣L1 = mj

)
= 0,

which means PL
(
mini≤N(ϕ) ζi(ϕ) > −ϑ−1K1 + ϑ−1c|L1 = mj

)
= 1. Then for the barrier function

φL(i) := −ϑ−1Ki + aiα, a > 0, α < 1 and an integer l large enough such that ϑ−1cl > alα, we have

PL(S) = 0 if Li = mj , ∀i ≤ l. (2.26)

But P({Li = mj , ∀i ≤ l}) > 0 since we assume that L1 only takes finite states with positive
probability. Hence (2.26) contradicts Theorem 2.5 (1b) and the α ∈ (13 , 1) part of Theorem 2.5 (1a).

3. The many-to-one formula of time-inhomogeneous bivariate version

The many-to-one formula (a kind of measure transformation named from changing all the paths
in the random genealogical tree to a random walk) is an essential tool in the study of the branching
random walks. It can be traced down to the early works of Peyrière (1974) and Kahane and Peyrière
(1976). We refer also to Biggins and Kyprianou (2004) for more variations of this result. The version
of time-inhomogeneous many-to-one formula has been first introduced in Mallein (2015a). On the
other hand, for the time-homogeneous case the bivariate version of many-to-one formula can be
found in Gantert et al. (2011). In this paper we need to establish a bivariate version of many-to-one
formula in a time-inhomogeneous random environment. Let τn,L be a random probability measure
on R× N such that for any x ∈ R, A ∈ N, we have

τn,L((−∞, x]× [0, A]) =
EL
(
1{N(u)≤A}

∑N(u)
i=1 1{ζi(u)≤x}e

−ϑζi(u)
)

EL
(∑N(u)

i=1 e−ϑζi(u)
) , |u| = n− 1, (3.1)

where ϑ has been introduced in Condition 1. Hence we can see that the randomness of τn,L comes
entirely from Ln. Moreover, since N(u) only takes values on N, we have

τn,L(R× ([0,+∞) \ N)) = 0, P− a.s.
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Under the quenched law PL, we introduce a series of independent two-dimensional random vectors
{Xn, ξn}n∈N+ whose distributions are {τn,L}n∈N+ . Define

S0 := 0, Sn :=
n∑
i=1

Xi, ∀n ∈ N+. (3.2)

Before we give the many-to-one formula to show the relationship between {(Sn, ξn), n ∈ N+} and
the BRWre, we still need the shift operator.

Since the typical realization of L is a time-inhomogeneous environment, it is necessary to introduce
the shift operator T. Define

T0L := L, TL := (L2,L3, . . .), Tk := T∗k, ∀k ∈ N+,

hence TkL = (Lk+1,Lk+2, . . .). We use Pk
L to present the distribution of (T, V,PTkL). Denote EkL

the corresponding expectation of Pk
L. (Obviously, P0

L and E0
L are PL and EL respectively.) Slightly

abusing notation we denote

Sn :=

n∑
i=1

Xk+i and {ξn}n∈N := {ξk+n}n∈N under Pk
L. (3.3)

That is to say, in this scenario and (3.1), we have P− a.s.,

Pk
L(X1 ≤ x, ξ1 ≤ A) =PL(Xk+1 ≤ x, ξk+1 ≤ A)

=EL

(
1{N(u)≤A,|u|=k}

N(u)∑
i=1

1{ζi(u)≤x}e
−ϑζi(u)−κk+1(ϑ)

)

=EkL

(
1{N(ϕ)≤A}

N(ϕ)∑
i=1

1{ζi(ϕ)≤x}e
−ϑζi(ϕ)−κk+1(ϑ)

)
. (3.4)

The following formula gives the relationship between {(Sn, ξn), n ∈ N+} and the BRWre.

Lemma 3.1. (Many-to-one) For any n ∈ N+, k ∈ N, a positive sequence {Ai}i∈N+ and a
measurable function f : Rn → [0,+∞), in the sense of P− a.s., we have

EkL

[ ∑
|u|=n

f(V (ui), 1 ≤ i ≤ n)1{N(ui−1)≤Ai,1≤i≤n}

]

= EkL

[
eϑSn+

∑n
i=1 κk+i(ϑ)f(Si, 1 ≤ i ≤ n)1{ξi≤Ai,1≤i≤n}

]
. (3.5)

Borrowing the idea from the proof of Shi (2015, Theorem1.1), we also prove it by induction.
Proof of Lemma 3.1

We prove it by induction on n. For n = 1, if f has the form f(x) = e−x1{x≤A}, (3.5) can be
deduced easily by (3.1) and (3.4). Hence (3.5) also holds when f is a non-negative measurable
function by the standard method.

We assume that (3.5) holds as n = j.
Now we consider n = j + 1. We should note that the ancestor ϕ of the particle system under

Pk
L can also be viewed as a particle alive at the k-th generation under PL. For any non-negative

measurable function f defined on Rj+1, we denote gx : Rj → [0,+∞) by

gx(y1, y2, . . . , yj) := f(x, x+ y1, x+ y2, . . . , x+ yj).
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Recalling X(ϕ) := (N(ϕ), ζ1(ϕ), ζ2(ϕ), . . .), we have

EkL

[ ∑
|u|=j+1

f(V (ui), 1 ≤ i ≤ j + 1)1{N(ui−1)≤Ai,1≤i≤j+1}

]

=EkL

[
EkL

( ∑
|u|=j+1

f(V (ui), 1 ≤ i ≤ j + 1)1{N(ui−1)≤Ai,1≤i≤j+1}

∣∣∣X(ϕ)

)]

=EkL

[
1{N(ϕ)≤A1}

∑
|v|=1

E
k+1

L

( ∑
|u|=j

g
V (v)

(V (ui)− V (v), 1 ≤ i ≤ j)1{N(ui−1)≤Ai+1,1≤i≤j}

)]

=EkL

[
1{N(ϕ)≤A1}

∑
|v|=1

E
k+1

L

(
e
ϑSj+

j∑
i=1

κ
k+1+i

(ϑ)
g
V (v)

(Si, 1 ≤ i ≤ j)1{ξi≤Ai+1,1≤i≤j}

)]

=EkL

[
1{ξ1≤A1}e

ϑS1+κk+1
(ϑ)E

k+1

L

(
e
ϑSj+

j+1∑
i=2

κ
k+i

(ϑ)
gS1|k

(Si, 1 ≤ i ≤ j)1{ξi≤Ai+1,1≤i≤j}

)]

=EkL

[
1{ξ1≤A1}e

ϑS1+κk+1
(ϑ)

×EkL

(
e
ϑ(Sj+1−S1)+

j+1∑
i=2

κ
k+i
f(Si, 1 ≤ i ≤ j + 1)1{ξi≤Ai,2≤i≤j+1}

∣∣∣S1, ξ1)]

=EkL

[
eϑS1+κk+1(ϑ)eϑ(Sj+1−S1)+

∑j
i=1 κk+1+if(Si, 1 ≤ i ≤ j + 1)1{ξi≤Ai,1≤i≤j+1}

]
. (3.6)

It should be noted that the notation S1|k in Ek+1
L (·) on the fifth line of (3.6) is to emphasize that

this is the S1 under EkL. For the above equalities, the first one and the last one are due to the
smoothness of the conditional expectation. The second one and the penultimate one are obtained
by the Markov property of BRWre and {Si}i∈N respectively. Let the n in Lemma 3.1 be j (resp. n
be 1), we can get the third one (resp. the fourth one) by using (3.5). □

4. The small deviation principle for the associated random walk with random environ-
ment in time (RWre)

Lv and Hong (2023) considered the small deviation principle for RWre. In this section, we give
some corollaries of the main results in Lv and Hong (2023), which will be the essential tools for the
barrier problem of BRWre. For the case of time-homogeneous, it is a standard and effective way to
solve the barrier problem of BRW by applying some estimates on the so-called associated random
walk. Let us first give a short review on it.

The small deviation principle for the random walk {Vn}n∈N with i.i.d. random increments has
been given in Mogul’skii (1975). When Vi+1−Vi has expectation 0 and variance σ2 < +∞, Mogul’skĭı
showed that for two continuous functions g, h such that g(0) < 0 < h(0), g(s) < h(s), ∀s ∈ [0, 1], α ∈
(0, 12), x ∈ R,

lim
n→+∞

logP(∀i≤nVi ∈ [g(i/n)nα, h(i/n)nα]|V0 = x)

n1−2α
=
−π2σ2

2

∫ 1

0

1

(h(s)− g(s))2
ds. (4.1)

(The small deviation principle focuses on the probability that a stochastic process has fluctuations
below its natural scale. Therefore, we call (4.1) a small deviation principle according to the setting
α ∈ (0, 12) and the central limit theorem.)



On the barrier problem of BRWre 51

By the time-homogeneous many-to-one formula (see Shi (2015, Theorem 1.1)), we can construct
a bijection between a BRW and a random walk with i.i.d. increments (which is usually called the
associated random walk). Based on this relationship, Jaffuel (2012) and Aïdékon and Jaffuel (2011)
have studied the barrier problems of BRW by applying (4.1).

In the present paper we consider the barrier problem of BRWre. We use the many-to-one formula
given in Lemma 3.1 to construct a corresponding associated random walk for BRWre. In the next
section, we will show that the corresponding associated random walk for BRWre is just the RWre
studied in Lv and Hong (2023).

4.1. The associated RWre and its small deviation principle. Let us give the definition of RWre. We
denote µ := {µn}n∈N+ an i.i.d. sequence with values in the space of probability measures on R.
Conditioned to a realization of µ, we sample {Vn}n∈N+ a sequence of independent random variables
such that for every n ∈ N+, the law of Vn is the realization of µn. Set

V0 = x ∈ R, Ṽn := V0 +
n∑
i=1

Vi. (4.2)

We call {Ṽn}n∈N the random walk with time-inhomogeneous random environment µ, which is often
abbreviated as RWre in the rest of this paper1.

Note that the {Sn}n∈N defined in (3.5) is a RWre with time-inhomogeneous random environment
L (More precisely, the random environment is the {τn,L}n∈N+ with A = +∞ which is defined in
(3.1). Note that {τn,L}n∈N+ is totally determined by L hence we say “with random environment L").
That is to say, Lemma 3.1 constructs the relationship between BRWre and RWre. The studying of
small deviation principle for RWre is an important step to solve the barrier problem of BRWre.

Now we introduce the associated RWre. Recall (3.2) and (3.3) and define

Tn := ϑSn +Kn+k −Kk under Pk
L, (4.3)

where Kn, ϑ and Sn have been defined in (2.1), (2.13) and Lemma 3.1. Obviously, it is a RWre
(with random environment TkL). Next we will show under Conditions 1-2 in the present paper,
the {Tn}n∈N defined in (4.3) satisfies all the basic assumptions in Lv and Hong (2023) (thus we can
apply the main result in Lv and Hong (2023) to {Tn}n∈N).

Proposition 4.1. (i) If the BRWre satisfies Condition 1, then the associated RWre T satisfies
E[(T1 −ELT1)

2] > 0 and E(T1) = 0.
(ii) If the BRWre satisfies Condition 2, then the associated RWre T satisfies E([EL(T1)]

λ1) < +∞,
and E{[(T1 −ELT1)

λ2 ]λ1} < +∞.
In conclusion, if the BRWre satisfies Conditions 1-2, then the associated RWre T satisfies Lv and

Hong (2023, Assumptions (H1)-(H3)).

Proof of Proposition 4.1
(i) Recall that Tn := ϑSn + Kn, Xn := Sn − Sn−1,Kn :=

∑n
i=1 κi(ϑ), κ(ϑ) := E(κ1(ϑ)) and

{κn(ϑ)}n∈N is a sequence of i.i.d. random variables. By the many-to-one formula (Lemma 3.1), we
see

EL(Xn) =
EL

(∑N(u)
i=1 ζi(u)e

−ϑζi(u)
)

EL

(∑N(u)
i=1 e−ϑζi(u)

) = −κ′n(ϑ), |u| = n− 1. (4.4)

1Note that the process we consider in the present paper is not the classical random walk in random environment
which has been well-studied in Zeitouni (2004) and many other papers. For the classical random walks in random
environment, the random environment is either purely spatial or space-time. However, in our model, the random
environment is in time.
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Then it is not hard to see E(T1) = 0 since

E(Tn − Tn−1) =ϑE(Xn) +E(Kn −Kn−1) = ϑE(EL(Xn)) +E(κn(ϑ))

=− ϑE(κ′n(ϑ)) +E(κn(ϑ)) = −ϑκ′(ϑ) + κ(ϑ) = 0. (4.5)

Lemma 3.1 also tells that

κ′′1(ϑ) =
EL

(∑N(ϕ)
i=1 ζ2i (ϕ)e

−ϑζi(ϕ)
)
EL

(∑N(ϕ)
i=1 e−ϑζi(ϕ)

)
−
[
EL
(∑N(ϕ)

i=1 ζi(ϕ)e
−ϑζi(ϕ)

)]2
[
EL

(∑N(ϕ)
i=1 e−ϑζi(ϕ)

)]2
=EL(S

2
1)− (ELS1)

2. (4.6)

Then it is true that

EL((T1 −ELT1)
2) = EL((ϑS1 − ϑELS1)2) = ϑ2κ′′1(ϑ). (4.7)

Hence we get E((T1 −ELT1)
2) = ϑ2κ′′(ϑ) > 0 by the Proposition 2.1.

(ii) By Lemma 3.1 we also have

ELT1 = κ1(ϑ)− ϑκ′1(ϑ). (4.8)

Hence E([ELT1]
λ1) < +∞ is equivalent to (2.2). Moreover, according to the many-to-one formula

we can see directly that E
{
[(T1 −ELT1)

λ2 ]λ1
}
< +∞ is equivalent to (2.3). □

We stress that from the definitions in (2.15) and the above proof, one can see that

σ2A = E[(ELT1)
2] < +∞, σ2Q = E[(T1 −ELT1)

2] ∈ (0,+∞).

Recalling the notation γσ := σ2Qγ
(
σA
σQ

)
and applying the main result in Lv and Hong (2023) to

{Tn}n∈N we get the following result.

Theorem 4.2. (Lv and Hong (2023, Corollary 2)) Let g(s), h(s) be two continuous functions on
[0, 1] and g(s) < h(s) for any s ∈ [0, 1]. We set g(0) < a0 ≤ b0 < h(0), g(1) ≤ a′ < b′ ≤
h(1) and Cg,h :=

∫ 1
0

1
[h(s)−g(s)]2ds. Let {tn}n∈N be a sequence of non-negative integers and t̄n := tn+n.

For any α ∈ ( 1
λ1
, 12), (for the present paper we only need the case α = 1

3 hence we require λ1 > 3 in
Condition 2,) under Conditions 1-2 we have

lim
n→+∞

sup
x∈R

logPL

(
∀0≤i≤nTtn+i ∈

[
g
(
i
n

)
nα, h

(
i
n

)
nα
]∣∣Ttn = x

)
n1−2α

= −Cg,hγσ, P− a.s., (4.9)

lim
n→+∞

inf
x∈[a0nα,b0nα]

logPL

(
∀0≤i≤nTtn+i ∈

[
g
(
i
n

)
nα, h

(
i
n

)
nα
]
, Tt̄n ∈ [a′nα, b′nα]

∣∣Ttn = x
)

n1−2α

= −Cg,hγσ, P− a.s., (4.10)

where {Tn}n∈N is the one in (4.3).

Therefore, if the random environment L is degenerate (thus σA = 0), then we can see that
Theorem 4.2 is consistent with the Mogul’skĭı estimate (4.1) since γ(0) = π2

2 (see (2.14)).
However, Theorem 4.2 still can not be applied directly to prove the main results in the present

paper. Hence we need the following three useful corollaries of Theorem 4.2.
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4.2. Some Corollaries of Theorem 4.2. In the forthcoming three corollaries, we will see why we need
Condition 3 and Condition 4. In short, Condition 3 allows us to add some extra events in the lower
bound (4.10) and Condition 4 ensures that (4.10) holds even though b0 = h(0).

From now on, we always set α = 1
3 since in the present paper we only need the case α = 1

3 . But we
point out that Corollaries 4.3-4.4 (resp. Corollary 4.6) holds also for α ∈ ( 1

λ1
, 12) (resp. α ∈ ( 1

λ1
, 13 ]),

where λ1 is the one defined in Condition 2.

Corollary 4.3. {ξn}n∈N has been introduced in Section 3. The setting of g, h, a0, b0, a′, b′, tn, t̄n
and Cg,h are the same as what we introduce in Theorem 4.2. Let v ∈ ( 2

λ3
,+∞), where λ3 is the one

introduced in Condition 3. Then under Conditions 1-3 we have

lim
n→+∞

inf
x∈[a0nα,b0nα]

logPL

(
∀0≤i≤n

Ttn+i
nα ∈

[
g
(

i
n

)
,h
(

i
n

)]
,

Tt̄n
nα ∈[a′,b′], ξtn+i≤exp{nv}

∣∣∣∣∣Ttn = x

)
n1−2α

= −Cg,hγσ, P− a.s. (4.11)

Corollary 4.4. Let l,m,N ∈ N, 0 ≤ l < m ≤ N, v ∈ ( 2
λ3
,+∞). Let g(s), h(s) be two continuous

functions on [0, 1] such that g(s) < h(s),∀s ∈ [0, 1], g(l/N) < a0 ≤ b0 < h(l/N), g(m/N) ≤ a′ <
b′ ≤ h(m/N). For 0 ≤ z1 < z2 ≤ 1, define Cz1,z2g, h :=

∫ z2
z1

1
[h(s)−g(s)]2ds. Under Conditions 1-3, we

have

lim
k→+∞

sup
x∈R

logPL

(
∀lk≤i≤mk Ti

(Nk)α ∈ [g( i
Nk ), h(

i
Nk )]

∣∣Tlk = x
)

(Nk)1−2α
= −C

l
N
,m
N

g, h γσ, P− a.s.

lim
k→+∞

inf
x∈[a0(Nk)α,b0(Nk)α]

logPL

(
∀lk≤i≤mk

Ti
(Nk)α

∈[g( i
Nk

),h( i
Nk

)],
Tmk

(Nk)α
∈[a′,b′], ξi≤exp{(Nk)v}

∣∣∣∣∣Tlk = x

)
(Nk)1−2α

= −C
l
N
,m
N

g, h γσ, P− a.s.

We should note that the above two corollaries both need the condition g(0) < a0 ≤ b0 < h(0). In
the next corollary we consider the case h(0) = b0. The following lemma is a necessary preparation
for the next corollary.

Lemma 4.5. Let {Xn}n∈N be a sequence of i.i.d. random variables and {tn}n∈N a sequence of
non-negative integers. Assume that there exists an ϵ > 0 such that E(|X1|2+ϵ) < +∞, then

lim
n→+∞

n−1
tn+n∑
i=tn+1

Xi = E(X1), a.s. (4.12)

Corollary 4.6. The setting of g, h, a′, b′, tn and Cg,h are the same as what we introduce in Theorem
4.2. Suppose that h(s) ≥ h(0),∀s ∈ (0, 1]. Under the Conditions 1-4, we have

lim
n→+∞

logPL

(
∀0≤i≤n

Ttn+i
nα ∈

[
g
(

i
n

)
,h
(

i
n

)]
,

Ttn+n
nα ∈[a′,b′], ξtn+i≤exp{nv}

∣∣∣∣∣Ttn = h(0)nα

)
n1−2α

= −Cg,hγσ, P− a.s. (4.13)

Especially, if tn ≡ k, k ∈ N, then (4.13) still holds under Conditions 1-4 even though the λ5 described
in Condition 4 only satisfies λ5 ≥ 1.

4.3. The proofs of Corollaries 4.3-4.6 and Lemma 4.5.
Proof of Corollary 4.3
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The only gap between (4.10) and (4.11) is the term “ξtn+i ≤ en
v
”. We will cross the gap by using

Condition 3. With the help of (4.9), to prove (4.11) we only need to show

lim
n→+∞

inf
x∈[a0nα,b0nα]

logPL

(
∀0≤i≤n

Ttn+i
nα ∈

[
g( i

n
),h( i

n
)
]
,

Ttn+n
nα ∈[a′,b′], ξtn+i≤en

v

∣∣∣∣∣Ttn = x

)
n1−2α

≥ −Cg,hγσ, P− a.s. (4.14)

First, we consider the case that g(x) = a, h(x) = b,∀x ∈ [0, 1], where a < a0 ≤ b0 < b, a ≤ a′ < b′ ≤
b. The proof has the same spirit as the proof of the lower bound in Lv and Hong (2023, Theorem
2). Now we show the adjustments required in the proof of Lv and Hong (2023, Theorem 2). Choose
a′′, b′′ satisfying a′ < a′′ < b′′ < b′. Let D ∈ N+, J := ⌊Dn2α⌋, K := ⌊nJ ⌋, tn,k := tn + kJ. By
Markov property we have

inf
x∈[a0nα,b0nα]

PL

(
∀tn≤i≤t̄n Ti ∈ [anα, bnα], Tt̄n ∈ [a′nα, b′nα], ξi ≤ en

v
∣∣∣Ttn = x

)
≥
K−1∏
k=0

inf
x∈[a0nα,b0nα]

PL

(
∀i≤J Ttn,k+i ∈ [anα, bnα], Ttn,k+1

∈ [a′′nα, b′′nα], ξi ≤ en
v ∣∣Ttn,k

= x
)

× inf
x∈[a′′nα,b′′nα]

PL

(
∀i≤t̄n−tn,K

Ttn,K+i ∈ [anα, bnα], Tt̄n ∈ [a′nα, b′nα], ξi ≤ en
v ∣∣Ttn,K = x

)
:=

K−1∏
k=0

qn,k × qn,end. (4.15)

To find the lower bound of qn,k, we note that

qn,k ≥ inf
x∈[a0nα,b0nα]

PL

(
∀i≤J Ttn,k+i∈[anα,bnα],

Ttn,k+1
∈[a′′nα,b′′nα]

∣∣∣Ttn,k
= x

)
−

tn,k+1∑
i=tn,k+1

PL(ξi > en
v
).

Moreover, by the many-to-one formula, we have

PL(ξi > en
v
) =

EL

(
1{N(u)>env}

N(u)∑
j=1

e−ϑζj(u)

)

EL

(
N(u)∑
j=1

e−ϑζj(u)

) =

EL

(
1{N(u)>en

v}

N(u)∑
j=1

e−ϑζj(u)

)
eκi(ϑ)

, |u| = i− 1.

Let v1 := λ4
ϑ+λ4

, where the λ4 has been introduced in Condition 3. By Hölder’s inequality we get

EL

(
1{N(u)>env}

N(u)∑
j=1

e−ϑζj(u)

)

=EL

(
1{N(u)>env}N(u)v1N(u)−v1

N(u)∑
j=1

e−ϑζj(u)

)

≤

[
EL

(
1{N(u)>env}N(u)

)]v1[
EL

((N(u)∑
j=1

N(u)−v1e−ϑζj(u)
) 1

1−v1

)]1−v1
. (4.16)

The fact 1
1−v1 > 1 implies that(

N(u)∑
j=1

N(u)−v1e−ϑζj(u)

) 1
1−v1

≤ N(u)
1

1−v1
−1

N(u)∑
j=1

(
N(u)

− v1
1−v1 e

−
ϑζj(u)

1−v1

)
=

N(u)∑
j=1

e−(ϑ+λ4)ζj(u).
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Hence by Markov property and the above inequality we get

EL

(
1{N(u)>env}

N(u)∑
i=1

e−ϑζi(u)
)

≤
[
EL

(
1{N(u)>en

v}
N(u)1+λ4

eλ4nv

)]v1
(eκi(ϑ+λ4))1−v1

≤e−λ4v1nv
EL(N(u)1+λ4)v1(eκi(ϑ+λ4))1−v1 . (4.17)

Choose v2 ∈ ( 2
λ3
, v) and define

În :=
{
max
|u|≤n

EL(N(u)1+λ4) ≤ env2
,max
i≤n

[(1− v1)κi(ϑ+ λ4)− κi(ϑ)] ≤ nv2
}
. (4.18)

Hence on the event În, for n large enough, we have

qn,k ≥ inf
x∈[a0nα,b0nα]

PL

(∀i≤J Ttn,k+i∈[anα,bnα],

Ttn,k+1
∈[a′′nα,b′′nα]

∣∣∣Ttn,k
= x

)
− e−

λ4v1n
v

2 := q∗n,k − e−
λ4v1n

v

2 .

The analog argument can also be applied to qn,end, that is,

qn,end ≥ inf
x∈[a′′nα,b′′nα]

PL

(∀i≤t̄n−tn,K
Ttn,K+i∈[anα,bnα],

Tt̄n∈[a
′nα,b′nα]

∣∣∣Ttn,K = x
)
− e−

λ4v1n
v

2 := q∗n,end − e−
λ4v1n

v

2 .

Therefore, Lv and Hong (2023, (3.13)) still holds even though we change the left hand side of Lv
and Hong (2023, (3.13)) from

Pµ

(
∀i≤⌊Dn2α⌋, Stn,k+i∈[anα,bnα],

Stn,k+1
∈[a′′nα,b′′nα]

∣∣∣Stn,k
= x

)
to qn,k or qn,end. (The {Sn}n∈N with random environment µ in Lv and Hong (2023) and the
{Tn}n∈N with random environment L in the present paper satisfy the same assumptions.) Then
according to the method of the proof of Lv and Hong (2023, Theorem 2), we only need to show
lim

n→+∞
1În = 1, P− a.s.

Note that {EL(N(u)1+λ4) ≤ env2} = {max{EL(N(u)1+λ4), 1} ≤ env2}, hence

P(Îcn) ≤ n · n−λ3v2
[
E([log+EL(N(u)1+λ4)]λ3) +E(|κ1(ϑ)|λ3) +E(|κ1(ϑ+ λ4)|λ3)

]
.

Note that λ3v2 > 2, then by Borel-Cantelli lemma we get lim
n→+∞

1În = 1, P− a.s. Hence we have

lim
n→+∞

1În∩Hn
= 1, P− a.s., where the event Hn is defined in Lv and Hong (2023, (3.19)) and we

have shown that lim
n→+∞

1Hn = 1, P− a.s. in Lv and Hong (2023). We remind that on Hn therein,

we have mink≤K−1 q∗n,k ≥ 2e−
λ4v1n

v

2 and q∗n,end ≥ 2e−
λ4v1n

v

2 . Combining with (4.15), we see

inf
x∈[a0nα,b0nα]

PL

(
∀tn≤i≤t̄n Ti ∈ [anα, bnα], Tt̄n ∈ [a′nα, b′nα], ξi ≤ en

v ∣∣Ttn = x
)

≥
K−1∏
k=0

(1
2
q∗n,k

)
× 1

2
q∗n,end. (4.19)

Following the steps 1-2 in the proof of Lv and Hong (2023, Theorem 2), we find the lower bounds
(expressed by two independent Brownian motions) of q∗n,k and q∗n,end. That is, conditionally on
În ∩ Hn, Lv and Hong (2023, (3.21)) still holds in our context. Then by the light of the step 3
in the proof of Lv and Hong (2023, Theorem 2) and the fact lim

n→+∞
1În∩Hn

= 1, P− a.s. verified

above, we get (4.11) in the case g(x) = a, h(x) = b,∀x ∈ [0, 1]. Finally, by the method used in
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Lv and Hong (2023, Corollary 2), we can let g, h be any continuous functions on [0, 1] as long as
g(0) < a0 ≤ b0 < h(0), g(1) ≤ a′ < b′ ≤ h(1).

Especially, if the branching and displacement are independent of each other, then

PL(ξi > en
v
) =

EL
(
1{N(u)>env}N(u)

)
EL
(
N(u)

) , |u| = i− 1,

which means that the proof still runs when we remove the second term in the definition of In. This
explains the statement on Condition 3 in Remark 2.11. □

Proof of Corollary 4.4
Define two continuous functions on [0, 1]

g̃(x) :=
( N

m− l

)α
g
((
x+

l

m− l

)m− l
N

)
, h̃(x) :=

( N

m− l

)α
h
((
x+

l

m− l

)m− l
N

)
.

Then the event {
∀lk≤i≤mk

Ti
(Nk)α

∈
[
g
( i

Nk

)
, h
( i

Nk

)]}
can be rewritten as {

∀i≤mk−lk
Ti+lk

(mk − lk)α
∈
[
g̃
( i

mk − lk

)
, h̃
( i

mk − lk

)]}
.

Then we replace the time length n and the starting time tn in (4.9) and (4.11) by n := mk − lk
and tn := ln

m−l = lk respectively. Then we can deduce that the limits in (4.9) and (4.11) are both

C0,1

g̃,h̃
γσ
(
m−l
N

)1−2α. At last, by some standard calculations we get
(
m−l
N

)1−2α
C0,1

g̃,h̃
= C

l
N
,m
N

g, h , which
completes the proof. □

Proof of Lemma 4.5
We know (4.12) can be obtained directly by Borel-Cantelli lemma if E(X4

1 ) < +∞. But using
the strong approximation method we only need the assumption E(X2+ϵ

1 ) < +∞. Define X̄i :=
Xi − E(X1). By Sakhanenko (2006, Theorem 1) we can construct a standard Brownian motion W
such that

∀x > 0, n ∈ N+, P
(
max
k≤n

∣∣∣ k∑
i=1

X̄i −Wkσ2
X

∣∣∣ ≥ C∗(2 + ϵ)x
)
≤

2nE(X̄2+ϵ
i )

x2+ϵ
,

where σ2X is the variance of X1 and C∗ is a positive absolute constant. Moreover, by the Csörgő and
Révész’s estimation Csörgő and Révész (1979, Lemma 1) we can find two constants cs, c′s > 0 such
that P(Wnσ2

X
> y) ≤ cs exp{−c

′
sy

2

nσ2
X
},∀y > 0. Hence for any ε > 0 we can find constants c′′s , ϵ > 0

such that

P
(∣∣∣ n∑

i=1

X̄i

∣∣∣ ≥ 2εn
)
≤ P

(∣∣∣ n∑
i=1

X̄i

∣∣∣ ≥ 2εn, |Wnσ2
X
| ≤ εn

)
+ P

(
|Wnσ2

X
| > εn

)
≤ c′′sn−1−ϵ.

Note that P(|n−1
∑tn+n

i=tn+1Xi − E(X1)| ≥ 2ε) = P
(∣∣∣∑n

i=1 X̄i

∣∣∣ ≥ 2εn
)
. Hence we get (4.12) by

Borel-Cantelli lemma and the above inequalities.
Proof of Corollary 4.6

Here we mainly give the proof under (2.6), since it needs more techniques than we set (2.5) as
an assumption. With the help of (4.9), to prove Corollary 4.6 we only need to show

lim
n→+∞

logPL

(∀0≤i≤n
Ttn+i
nα ∈

[
g
(

i
n

)
,h
(

i
n

)]
,

Ttn+n
nα ∈[a′,b′], ξtn+i≤en

v

∣∣∣Ttn = h(0)nα
)

n1−2α
≥ −Cg,hγσ, P− a.s. (4.20)
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According to the many-to-one formula, (2.6) is equivalent to saying

∃ x < y < 0, λ′5 > 4, E
(
| logPL(x ≤ T1 ≤ y|T0 = 0)|λ′5

)
< +∞. (4.21)

Choose a small enough constant δ > 0 such that g(0)−h(0) > xδ, then there exists a constant ϵ > 0
such that g(0) + ϵ− h(0) < xδ. Denote δn := ⌊δnα⌋. By the continuity of g one can choose n large
enough such that g(s) ≤ g(0) + ϵ for any s ∈ [0, δnn ]. Note that h(s) > h(0), s ∈ (0, 1], then for
any i ∈ [0, δn] ∩ N, we have

(g(i/n)− h(0))nα < xi ≤ yi ≤ (h(i/n)− h(0))nα (4.22)

and (h(δn/n)− h(0))nα > 0, where (4.22) can be derived from

(g(i/n)− h(0))nα ≤ (g(0) + ϵ− h(0))nα < xδnα ≤ xi, ∀i ∈ [0, δn] ∩ N.
By Markov property, we have

PL

(
∀0≤i≤n

Ttn+i
nα ∈

[
g
(

i
n

)
,h
(

i
n

)]
,

Ttn+n
nα ∈[a′,b′], ξtn+i≤en

v

∣∣∣∣∣Ttn = h(0)nα

)
≥PL(∀0≤i≤δn Ttn+i ∈ [xi, yi], ξtn+i ≤ en

v |Ttn = 0)

× inf
z∈[xδn,yδn]

PL

(
∀δn≤i≤n

Ttn+i
nα ∈[g( i

n
)−h(0),h( i

n
)−h(0)],

Ttn+n
nα ∈[a′−h(0),b′−h(0)], ξtn+i≤en

v

∣∣∣Ttn+δn = z
)

≥
δn∏
m=1

PL(Ttn+m ∈ [x, y], ξtn+m ≤ en
v |Ttn+m−1 = 0)

× inf
z∈[xδn,yδn]

PL

(
∀0≤i≤n−δn

Ttn+δn+i
nα ∈[g( i+δn

n
)−h(0),h( i+δn

n
)−h(0)],

Ttn+n
nα ∈[a′−h(0),b′−h(0)], ξtn+δn+i≤en

v

∣∣∣Ttn+δn
= z

)
. (4.23)

We observe that for any i ≤ n− δn,∣∣∣ i

n− δn
− i+ δn

n

∣∣∣ = ∣∣∣δ2n + δni− nδn
(n− δn)n

∣∣∣ ≤ δ2n + nδn
(n− δn)n

≤ δ2n + δn
n− δn

. (4.24)

By recalling δn := ⌊δnα⌋ and α ∈ (0, 13 ], one sees that δ2n+δn
n−δn → 0. Moreover, note that g, h are

both continuous functions on [0, 1] hence they are bounded and uniformly continuous. Thus for any
given ε > 0 and n large enough, from (4.24) we have

sup
i≤n−δn

∣∣∣(n− δn)α
nα

g
( i

n− δn

)
− g
( i+ δn

n

)∣∣∣ < ε

4
,

nα

(n− δn)α
< 2,

sup
i≤n−δn

∣∣∣(n− δn)α
nα

h
( i

n− δn

)
− h
( i+ δn

n

)∣∣∣ < ε

4
and

∣∣∣(n− δn)α
nα

h(0)− h(0)
∣∣∣ < ε

4
.

From the above analysis, we can obtain

log inf
z∈[xδn,yδn]

PL

(
∀i≤n−δn

Ttn+δn+i
nα ∈[g( i+δn

n
)−h(0),h( i+δn

n
)−h(0)],

Ttn+n
nα ∈[a′−h(0),b′−h(0)], ξtn+δn+i≤en

v

∣∣∣Ttn+δn
= z
)

n1−2α

≥
log inf

z∈[xδn,yδn]
PL

(∀i≤n−δn

Ttn+δn+i
(n−δn)α

+h(0)∈[g( i
n−δn

)+ε,h( i
n−δn

)−ε],
Ttn+n

(n−δn)α
∈[a′−h(0)+ε,b′−h(0)−ε], ξtn+δn+i≤en

v

∣∣∣Ttn+δn=z

)(
n−δn
n

)1−2α

(n− δn)1−2α
≥− Cg+ε,h−εγσ. (4.25)

The last inequality holds because one can view n−M (resp., tn+δn) as the n (resp., tn) in Corollary
4.4 and hence we can apply Corollary 4.4 to get the lower bound −Cg+ε,h−εγσ.
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Now we focus on the fourth line in (4.23). Denote

βn,m := PL(Ttn+m ∈ [x, y], ξtn+m ≤ en
v |Ttn+m−1 = 0), β∗n,m := PL(Ttn+m ∈ [x, y]|Ttn+m−1 = 0).

Define Γn := ∩δnm=1{2PL(ξtn+m > en
v
) ≤ β∗n,m}. Note that βn,m ≥ β∗n,m −PL(ξtn+m > en

v
). Hence

we have
∏δn
m=1 βn,m ≥

∏δn
m=1(β

∗
n,m/2) on Γn, which means that

1

n1−2α
log
( δn∏
m=1

βn,m

)
≥

(
∑δn

m=1 log β
∗
n,m − δn log 2)
δn

δn
n1−2α

.

Recalling α = 1/3 and applying Lemma 4.5 we get

lim
n→∞

1

n1−2α
log

(
δn∏
m=1

βn,m

)
≥ δ E(logPL(T1 ∈ [x, y]|T0 = 0))− δ log 2, on Γn.

Then the above inequality holds almost surely if we can show limn→∞ 1Γn → 1 almost surely.
According to the Borel-Cantelli lemma it is enough to show

∑+∞
n=1P(Γcn) < +∞. From (4.16)−(4.17)

we see

PL(ξtn+m > en
v
) ≤ e−λ3v1nv

EL(N(u)1+λ3)v1eκ|u|+1(ϑ+λ4)(1−v1)−κ|u|+1(ϑ),

where |u| = tn +m− 1. Therefore, for n large enough we have

P(2PL(ξtn+m > en
v
) > β∗n,m)

≤P
(
|κ|u|+1(ϑ)|+ |κ|u|+1(ϑ+ λ4)|+ v1 log

+EL(N(u)1+λ3) + | log β∗n,m| >
1

2
λ3v1n

v
)
.

According to the Markov inequality, Condition 3 and (4.21) ensure that

lim
n→+∞

nvmin(λ3,λ′5)P(2PL(ξtn+m > en
v
) > β∗n,m) < +∞.

The relationship λ3 > 6 and λ′5 > 4 allow us to choose v ∈ ( 4
3min(λ3,λ′5)

, 13). Then we have

+∞∑
n=1

P(Γcn) ≤
+∞∑
n=1

δnP(2PL(ξtn+1 > en
v
) > β∗n,1) < +∞,

which completes the proof under Conditions 1-3 and (2.6).
If the assumptions of this corollary include (2.5) but not (2.6), then we do not need to construct

Γn because

∃x ≤ −1, lim
n→∞

1

n1−2α
log

(
δn∏
m=1

βn,m

)
≥ δE(logPL(T1 ∈ [x, x−1], ξ1 ≤ |x||T0 = 0)) > −∞

can be obtained directly by applying Lemma 4.5. Moreover, we can even use the law of large number
directly instead of Lemma 4.5 when tn does not depend on n. That is why we only require λ5 ≥ 1
in Theorem 2.6 (2a)-(2c).

In addition, by some standard calculations we get βn,m = β∗n,mPL(ξtn+m ≤ en
v
) when the

branching and displacement are independent of each other. In this case we redefine Γn as

∩δnm=1{2PL(ξtn+m ≤ e
nv
) ≥ 1},

hence we only need λ′5 > 2 to support the proof. □
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5. Proofs of Propositions and Example

Proof of Proposition 2.1
Recall the notation Φ1 = eκ1 . Note that for any constant a,Ai ∈ R, n ∈ N, by Cauchy-Schwarz

inequality we have( n∑
i=1

A2
i e
aAi

)( n∑
i=1

eaAi

)
=
( n∑
i=1

A2
i e

2aAi +
∑

1≤i<j≤n
(A2

i +A2
j )e

a(Ai+Aj)
)

≥
( n∑
i=1

A2
i e

2aAi +
∑

1≤i<j≤n
2AiAje

a(Ai+Aj)
)

=
( n∑
i=1

Aie
aAi

)2
. (5.1)

By the Hölder inequality and (5.1) we get

Φ′′1(ϑ)Φ1(ϑ) ≥

[
EL

((N(ϕ)∑
i=1

ζ2i (ϕ)e
−ϑζi(ϕ)

)1/2(N(ϕ)∑
i=1

e−ϑζi(ϕ)
)1/2)]2

≥

(
EL

∣∣∣N(ϕ)∑
i=1

ζi(ϕ)e
−ϑζi(ϕ)

∣∣∣)2

≥[Φ′1(ϑ)]2. (5.2)

Note that

κ′′1(ϑ) =
EL
(∑N(ϕ)

i=1 ζ2i (ϕ)e
−ϑζi(ϕ)

)
EL
(∑N(ϕ)

i=1 e−ϑζi(ϕ)
)
−
[
EL
(∑N(ϕ)

i=1 ζi(ϕ)e
−ϑζi(ϕ)

)]2[
EL
(∑N(ϕ)

i=1 e−ϑζi(ϕ)
)]2 .

Hence by (5.2) we know κ′′1(ϑ) ≥ 0,P− a.s.
We call the environment L a constant jumping environment if we can find a constant c(L) such

that PL(ζi(ϕ) = c(L),∀i ≤ N(ϕ)|L = L) = 1, where we write c(L) but not c since different
environments L may correspond to different constants.

Now we use the proof by contradiction to show that κ′′1(ϑ)|L=L > 0 when L is not a constant
jumping environment.

We suppose that κ′′1(ϑ) = 0, which means that the three “ ≥ ” in (5.2) are all “ = ”. By the
Hölder’s inequality, we know that the first “ ≥ ” can be “ = ” only if there exists a constant b ≥ 0
(b may depend on the realization of L) such that(

N(ϕ)∑
i=1

ζ2i (ϕ)e
−θζi(ϕ)

)
= b

(
N(ϕ)∑
i=1

e−θζi(ϕ)

)
, PL − a.s. (5.3)

According to (5.1), the second inequality in (5.2) holds only if for any n ≥ 1, on the event {N(ϕ) = n}
we have

ζ1(ϕ) = ζ2(ϕ) = · · · = ζn(ϕ)(:= bn), where bn is a constant. (5.4)

Combining (5.3) with (5.4) we deduce that

bn =
√
b or −

√
b, ∀n ≥ 1.

Note that for any random variable Y, |EY | = E|Y | only if Y is non-negative or non-positive.
Therefore, from the third inequality in (5.2) we deduce that

bn =
√
b, ∀n ≥ 1 or bn = −

√
b, ∀n ≥ 1,
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which means that we can find a constant c(L) (−
√
b or
√
b) such that

PL=L(ζi(ϕ) = c(L),∀i ≤ N(ϕ)) = 1.

This contradicts the assumption that L is not a constant jumping environment. So far we have
shown that κ′′1(ϑ)|L=L > 0 when L is not a constant jumping environment.

Next, we use proof by contradiction again to show P(κ′′1(ϑ) > 0) > 0. We suppose that P(κ′′1(ϑ) >
0) = 0, which is equivalent to saying P(κ′′1(ϑ) = 0) = 1. According to the above conclusion, it
means that in the sense of P− a.s., for any realization L of L we can find a constant c(L) such that
PL=L(ζi(ϕ) = c(L),∀i ≤ N(ϕ)) = 1. In this case, it is easy to see

κ1(ϑ) = −ϑc(L) + logEL
(
N(ϕ)

)
and κ′1(ϑ) =

−c(L)e−ϑc(L)EL
(
N(ϕ)

)
e−ϑc(L)EL

(
N(ϕ)

) = −c(L).

Recall that in Condition 1 we have assumed that κ(ϑ)− ϑκ′(ϑ) = 0. Hence we have

0 = κ(ϑ)− ϑκ′(ϑ) = E(κ1(ϑ)− ϑκ′1(ϑ)) = E(logEL
(
N(ϕ)

)
) = κ(0).

But this contradicts the assumption κ(0) > 0 in Condition 1. Hence we get P(κ′′1(ϑ) > 0) > 0. □

Proof of Proposition 2.2
First we show (2.7) ⇒ (2.3).
By the many-to-one formula, (2.3) is equal to E((EL|T1 − ELT1|λ2)λ1) < +∞. By Jensen’s

inequality we see that if there exists λ6 > 3
2 such that E((EL(T1 − ELT1)

4)λ6) < +∞, then
E((EL(T1 − ELT1)

λ2)λ1) < +∞ since λ2 > 2, λ1 > 3. Moreover, using the many-to-one formula
again we get

EL
(
(T1 −ELT1)

4
)
=

EL

(∑N(ϕ)
i=1 |ζi(ϕ) + κ′1(ϑ)|4e−ϑζi(ϕ)

)
EL

(∑N(ϕ)
i=1 e−ϑζi(ϕ)

) .

Now we only need to show

EL
(∑N(ϕ)

i=1 |ζi(ϕ) + κ′1(ϑ)|4e−ϑζi(ϕ)
)

EL
(∑N(ϕ)

i=1 e−ϑζi(ϕ)
) = κ

(4)
1 (ϑ) + 3[κ′′1(ϑ)]

2, (5.5)

which will completes this proof.
Let Φ1 := eκ1 . Obviously, EL

(∑N(ϕ)
i=1 ζni (ϕ)e

−ϑζi(ϕ)
)
= (−1)nΦ(n)

1 . Moreover, we can see

Φ′1 = κ′1Φ1,Φ
′′
1 = ([κ′1]

2 + κ′′1)Φ1, Φ
(3)
1 = ((κ′1)

3 + 3κ′1κ
′′
1 + κ

(3)
1 )Φ1.

Φ
(4)
1 = ((κ′1)

4 + 6(κ′1)
2κ′′1 + 4κ′1κ

(3)
1 + 3(κ′′1)

2 + κ
(4)
1 )Φ1.

Then we get (5.5) by direct calculation.
Secondly, we show (2.8) ⇒ (2.7).
Without loss of generality we take λ6 = 2 and hence we only need to show that E(S8

1 + (κ′1)
8) <

+∞.
Note that there exists a c1 such that |x| ≤ c1e

λ7
8
x + c1e

−λ8
8
x, ∀x ∈ R. Therefore,

|κ′1| ≤
EL

(∑N(ϕ)
i=1 |ζi(ϕ)|e−ϑζi(ϕ)

)
EL

(∑N(ϕ)
i=1 e−ϑζi(ϕ)

) ≤ c1eκ1(θ−
λ7
8
)−κ1(ϑ) + c1e

κ1(θ+
λ8
8
)−κ1(ϑ).

By the convexity of κ1 we see κ1(θ− λ7
8 )−κ1(ϑ) ≤ κ1(θ− (i+1)λ78 )−κ1(ϑ− iλ78 ) and κ1(θ+ λ8

8 )−
κ1(ϑ) ≤ κ1(θ + (i+ 1)λ78 )− κ1(ϑ+ iλ78 ). Note that (a+ b)8 ≤ 27(a8 + b8),∀a, b ∈ R. Hence

E((κ′1)
8) ≤ c127E(eκ1(θ−λ7)−κ1(ϑ) + eκ1(θ+λ8)−κ1(ϑ)) < +∞.
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The way to show E(S8
1) < +∞ is similar. We can also find a c2 > 0 such that x8 ≤ c2(e

λ7x +
e−λ8x), ∀x ∈ R. By the many-to-one formula we see

EL(e
λ7S1 + e−λ8S1) = eκ1(θ−λ7)−κ1(ϑ) + eκ1(θ+λ8)−κ1(ϑ).

So far we have shown E(S8
1 + (κ′1)

8) < +∞. □

Proof of Proposition 2.3
It is obvious by Jensen’s inequality and Proposition 2.2.

Proof of Example 2.4
In this proof, N(m), µ(m) and σ2(m) are always abbreviated by N,µ and σ respectively. Hence

we should note that N,µ, σ are random variables under the annealed law P. By the statement of
this example we see κ1(x) = logELN − xµ + 1

2x
2σ2, ∀x ∈ R hence κ′1(x) = σ2x − µ, κ′′1(x) = σ2.

Note that (2.10) implies (κ(0) =)E(logELN) ∈ (0,∞) and (2.11) implies E(σ2) > 0. Taking
ϑ :=

√
2E(logELN)

E(σ2)
, we have ϑκ′(ϑ)− κ(ϑ) = 0, which means that Condition 1 holds.

Obviously, (2.10) and (2.11) imply that (2.2) holds. Note that κ(4)1 (x) ≡ 0, hence (2.3) also holds
by Proposition 2.2 and (2.11). Thus the example satisfies Condition 2. Condition 3 holds because
of Remark 2.11 and (2.10).

At last, we verify Condition 4. From Remark 2.11 and (4.21) we see it is enough to verify

∃λ5 > 2, E
(
| logPL(T1 ∈ [−2,−1]|T0 = 0)|λ5

)
< +∞. (5.6)

By the many-to-one formula we see that for any λ ∈ R,

logEL(e
λ(T1−ELT1)) =κ1(ϑ− λϑ)− κ1(ϑ) + λϑκ′1(ϑ) =

1

2
λ2ϑ2σ2, P− a.s.

That is to say, under PL, T1 −ELT1 has the normal distribution N (0, ϑ2σ2). Hence we have

PL(T1 ∈ [−2, 1]) =
∫ −ELT1−1

−ELT1−2

1√
2πϑσ

e−
z2

2ϑ2σ2 dz, (5.7)

which means that

| logPL(T1 ∈ [−2,−1])| ≤ | log(
√
2πϑσ)|+ (max{|ELT1 + 1|, |ELT1 + 2|, 1})2

2ϑ2σ2
.

Note that ELT1 = κ1(ϑ)− ϑκ′1(ϑ) = logELN − 1
2ϑ

2σ2, thus

| logPL(T1 ∈ [−2,−1])| ≤ | log(
√
2πϑσ)|+

(1
2
ϑσ +

| logELN |+ 2

ϑσ

)2
.

We remind that in this example ELN and σ are independent of each other and E(| log σ|z) < +∞
for any z ∈ R because of (2.11). Therefore, (2.10) and (2.11) ensure the truth of (5.6) when we
choose λ5 ∈ (2,min{3, τ22 }). □

6. Proof of Theorems

Let us sort out the relationship between Theorem 2.5 and Theorem 2.6. It is obvious that (2a),
(2b), and (2d) imply (1c), (1d) and (1b) respectively. Moreover, based on the small deviation
principle for RWre (Corollaries 4.3-4.6), the proofs of (2a), (2b) and (2c) will be very similar to
the proofs of Jaffuel (2012, Proposition 1.5), Aïdékon and Jaffuel (2011, Theorem 1.2) and Gantert
et al. (2011, Lemma 4.6) respectively. Hence we omit these three proofs and only give the proofs of
(1a), (1b) and (2d). The main task in this section is to show (1b). As long as we get (1b), (1a) is
not hard to show by combining (1b) and (2c). In addition, during our proof of (1b), we can find we
have even shown (2d). We borrow some ideas from the proof of Jaffuel (2012, Proposition 1.4) to
prove (1b), but there are some differences in details. (The main differences appear in (6.20)-(6.22)
and (6.24). For the convenience of reading and a better understanding, we give the complete proof
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of (1b).) We point out that even though the following long proof has some similarities with the
proof in Jaffuel (2012), it is far from all the efforts to the main theorems. The preparation in Section
4 and Proposition 2.1, which are the new difficulties as we deal with the random environment, are
also necessary to prove the main theorems.
Proofs of Theorem 2.5 (1b)

In this proof we let M ∈ N+ , k ∈ N and the barrier function

φL(i) := −ϑ−1Ki + ai
1
3 .

First we should emphasize again that the φL(i) is a random variable depending on the random
environment L because {Kn}n∈N is a random walk under P. To simplify the presentation, we
sometimes omit “P− a.s.” after some equalities or inequalities without causing confusion. As the
model of BRWre with barrier, in the i-th generation, any individual born above the barrier φL(i) is
removed and consequently does not reproduce. We only care about the surviving particles in this
system, i.e., the particle z satisfying V (zi) ≤ φL(i),∀i ≤ |z|. We pick a surviving individual z in
generation Mk and consider Uk(z), which represents the number of surviving descendants of z in
generation Mk+1. We see that under this barrier the rightmost position of the surviving particle in
the Mk-th generation is no larger than −ϑ−1KMk + aM

k
3 . Therefore, we can find a naturally lower

bound of Uk(z) by considering, instead of z, a virtual individual z̃ in the same generation Mk but
positioned on the barrier at V (z̃) := −ϑ−1KMk+aM

k
3 ≥ V (z). Since the number and displacements

of the descendants of z̃ are exactly the same as those of z, the descendants of z̃ are more likely to
cross the barrier and thus be killed, which means that Uk(z) ≥ Uk(z̃). Let rk := ek

v
, k ∈ N+, where

v ∈ ( 2
λ3
, 13) and λ3 is the one introduced in Condition 3. Further, we define

Zk,b := ♯
{
u ∈ TM(k+1) , u > z̃ : ∀Mk < i ≤M (k+1), V (ui)∈[(a−b)i1/3−ϑ−1Ki,ai

1/3−ϑ−1Ki],
N(ui−1)≤rk

}
,

where the notation ♯, Tn, N(·), > have been defined in Section 1 and b ∈ (0, a). The exact value
of constant b will be given later. It is obvious that Zk,b ≤ Uk(z̃). Hence for any k ∈ N, we have
Zk,b ≤ Uk(z̃) ≤ Uk(z), P− a.s.

Recall the definition Yn := ♯{u ∈ Tn, ∀i ≤ n, V (ui) ≤ ai
1
3 − ϑ−1Ki} in Theorem 2.6 and define

Pn,L :=PL(∀1 ≤ k ≤ n, YMk ≥ ηEL(Zk−1,b)), (6.1)

where the constant η ∈ (0, 1). Then by Markov property and the definition of Pn,L we have
Pn+1,L
Pn,L

:=PL(∀1 ≤ k ≤ n+ 1, YMk ≥ ηEL(Zk−1,b)|∀1 ≤ k ≤ n, YMk ≥ ηEL(Zk−1,b))

≥1−
⌊ηEL(Zn−1,b)⌋∏

i=1

PL(Un(z
(i)) < ηEL(Zn,b))

≥1−PL(Zn,b < ηEL(Zn,b))
⌊ηEL(Zn−1,b)⌋, (6.2)

where {z(i), i = 1, 2, . . . , ⌊ηEL(Zn−1,b)⌋} represents ⌊ηEL(Zn−1,b)⌋ different surviving individuals in
the Mk-th generation. Denote

Ak,L := PL(Zk,b ≥ ηEL(Zk,b)), (6.3)

then we have

Pn,L ≥P1,L

n−1∏
k=1

(1− (1−Ak,L)⌊ηEL(Zk−1,b)⌋)

≥P1,L

n−1∏
k=1

(1− e−⌊ηEL(Zk−1,b)⌋Ak,L). (6.4)
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Moreover, it is not hard to see

PL(S) ≥ lim
n→+∞

Pn,L. (6.5)

Note that for any η ∈ (0, 1), by the facts YM ≥ Z0,b and Z0,b ≥ 0 we can see

P1,L = PL(YM ≥ ηEL(Z0,b)) ≥ PL(Z0,b ≥ ηEL(Z0,b)) > 0, P− a.s. (6.6)

Therefore, if we can show

+∞∑
k=1

e−⌊ηEL(Zk−1,b)⌋Ak,L < +∞, P− a.s., (6.7)

which will imply
∏+∞
k=1(1 − e−⌊ηEL(Zk−1,b)⌋Ak,L) > 0, P− a.s., then combining with (6.4)-(6.6) we

see

PL(S) ≥ lim
n→+∞

Pn,L ≥ P1,L

+∞∏
k=1

(1− e−⌊ηEL(Zk−1,b)⌋Ak,L) > 0, P− a.s., (6.8)

which is exactly the conclusion in Theorem 2.1 (1b).
Hence in the rest part of this proof we only need to show (6.7). That is to say we want to find

the lower bound of Ak,L. By the Paley-Zygmund inequality, we have

Ak,L := PL(Zk,b ≥ ηEL(Zk,b)) ≥ (1− η)2
[EL(Zk,b)]

2

EL(Z2
k,b)

, P− a.s. (6.9)

According to (6.9), first we try to get the upper bound of EL(Z2
k,b) by using the second moment

method. Recalling the important information we set for the particle z̃ : |z̃| = Mk, V (z̃) = aM
k
3 −

ϑ−1KMk . Define

Θ :=
{
u ∈ T :

u>z̃, |u|≤Mk+1, ∀Mk<i≤|u|, N(ui−1)≤rk
V (ui)∈[(a−b)i

1
3−ϑ−1Ki, ai

1
3−ϑ−1Ki]

}
,

thus Zk,b also has the representation Zk,b :=
∑
|u|=Mk+1 1{u∈Θ}. For any particle v, denote

Zvk (Θ) := 1{v∈Θ}

( ∑
|u|=Mk+1,u>v

1{u∈Θ}

)
. (6.10)

Let w be a child of v, i.e., w|w|−1 = v and set Zvk (Θ, w) :=
∑{

w′:|w′|=|v|+1,w′>v,w′ ̸=w
} Zw′

k (Θ),

which stands for the number of the surviving descendants of v in generation Mk+1 who are not the
descendants of w. Through the definitions above, for any particle u in generation Mk+1, Zk,b can
also be expressed as

Zk,b := 1{u∈Θ} +

Mk+1−1∑
j=Mk

Z
uj
k (Θ, uj+1).
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On the other hand, note that Z2
k,b = Zk,b

(∑
|u|=Mk+1 1{u∈Θ}

)
=
∑
|u|=Mk+1 Zk,b1{u∈Θ}, hence we

have

Z2
k,b − Zk,b =

∑
|u|=Mk+1

1{u∈Θ}(Zk,b − 1{u∈Θ})

=
∑

|u|=Mk+1

Mk+1−1∑
j=Mk

1{u∈Θ}Z
uj
k (Θ, uj+1)

=
Mk+1−1∑
j=Mk

∑
|u|=Mk+1

1{u∈Θ}Z
uj
k (Θ, uj+1). (6.11)

We observe that for any two particles u(1), u(2) in generation Mk+1 with u(1)j = u
(2)
j , if u(1)j+1 = u

(2)
j+1

(i.e., they have a common ancestor in the (j + 1)-th generation), then

Z
u
(1)
j

k

(
Θ, u

(1)
j+1

)
= Z

u
(1)

j

k

(
Θ, u

(2)
j+1

)
.

Hence we have ∑
|u|=Mk+1

1{u∈Θ}Z
uj
k (Θ, uj+1) =

∑
|u′|=j+1

∑
|u|=Mk+1,
uj+1=u

′

1{u∈Θ}Z
uj
k (Θ, uj+1)

=
∑

|u′|=j+1

(
Z
u′j
k (Θ, u′)

∑
|u|=Mk+1,
uj+1=u

′

1{u∈Θ}

)

=
∑

|u′|=j+1

(
Z
u′j
k (Θ, u′)Zu

′
k (Θ)

)
. (6.12)

Combining (6.12) with (6.11) we obtain

Z2
k,b − Zk,b =

Mk+1−1∑
j=Mk

∑
|u′|=j+1

(
Z
u′j
k (Θ, u′)Zu

′
k (Θ)

)
=

Mk+1∑
j=Mk+1

∑
|v|=j

(
Z
←−v
k (Θ, v)Zvk (Θ)

)
, (6.13)

where ←−v represents the parent of v (i.e., ←−v := v|v|−1).
Now let us find the upper bound of

∑
|v|=j

(
Z
←−v
k (Θ, v)Zvk (Θ)

)
. Define the σ−algebra Fj :=

σ(X(u), |u| < j). Then for any j ∈ [Mk + 1,Mk+1], we have

EL

( ∑
|v|=j

Zvk (Θ)Z
←−v
k (Θ, v)

)
=EL

(
EL

( ∑
|v|=j

Zvk (Θ)Z
←−v
k (Θ, v)

∣∣∣Fj))

=EL

( ∑
|v|=j

EL

[ ∑
v′=bro(v)

[
Zvk (Θ)Zv

′
k (Θ)

]∣∣∣Fj]), (6.14)

where bro(v) := {v′ : |v′| = |v|, v′|v|−1 = v|v|−1, v
′ ̸= v} and v′ ̸= v represents that v′ is different

from v. That is to say, the set contains all siblings of v. Note that ♯bro(v) is Fj-measurable because
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of |v| = j. Therefore, we have

EL

[ ∑
v′∈bro(v)

[
Zvk (Θ)Zv

′
k (Θ)

]∣∣∣Fj] =
∑

v′∈bro(v)

EL

[
Zvk (Θ)Zv

′
k (Θ)|Fj

]
=

∑
v′∈bro(v)

EL

[
Zvk (Θ)|Fj

]
EL

[
Zv

′
k (Θ)|Fj

]
=EL

[
Zvk (Θ)|Fj

] ∑
v′∈bro(v)

EL

[
Zv

′
k (Θ)|Fj

]
, (6.15)

where the second equality is because conditionally on Fj , Zvk (Θ) and Zv
′
k (Θ) are independent of

each other. From (6.14) and (6.15) we see

EL

( ∑
|v|=j

Zvk (Θ)Z
←−v
k (Θ, v)

)
= EL

{ ∑
|v|=j

(
EL

[
Zvk (Θ)|Fj

] ∑
v′=bro(v)

EL

[
Zv

′
k (Θ)|Fj

])}
.

We see that if v /∈ Θ, then EL

[
Zvk (Θ)

∣∣Fj] = 0 by (6.10). If v ∈ Θ, the set bro(v) has at most rk− 1

elements because of the definition of Θ. Moreover, EL
[
Zv

′
k (Θ)

∣∣Fj] only depends on v′, hence we
have

EL

( ∑
|v|=j

Zvk (Θ)Z
←−v
k (Θ, v)

)
≤EL

{ ∑
|v|=j

(
EL

[
Zvk (Θ)|Fj

]
(rk − 1) sup

V (v′)∈R,|v′|=j
EL

[
Zv

′
k (Θ)

])}

=(rk − 1) sup
V (v′)∈R,|v′|=j

EL

[
Zv

′
k (Θ)

]
EL

{ ∑
|v|=j

(
EL

[
Zvk (Θ)|Fj

])}

=(rk − 1) sup
V (v′)∈R,|v′|=j

EL

[
Zv

′
k (Θ)

]
EL(Zk,b). (6.16)

The last equality is due to the smoothness of conditional expectation and the fact Zk,b =
∑
|v|=j

Zvk (Θ).

Taking expectations to both sides of (6.13) and then substituting it into (6.16), we get

EL(Z
2
k,b) ≤ EL(Zk,b)

(
1 + (rk − 1)

Mk+1∑
j=Mk+1

sup
|v′|=j,V (v′)∈R

EL

[
Zv

′
k (Θ)

])
.

Combining with (6.9), we get

Ak,L ≥ (1− η)2
[EL(Zk,b)]

2

EL(Z2
k,b)

≥
(1− η)2EL(Zk,b)

1 + (rk − 1)
Mk+1∑

j=Mk+1

sup|v′|=j,V (v′)∈REL

[
Zv

′
k (Θ)

] , P− a.s. (6.17)

Next we begin to find the upper bound of sup
|v′|=j,V (v′)∈R

EL

[
Zv

′
k (Θ)

]
. By (6.10) we know

sup
|v′|=j,V (v′)∈R

[
Zv

′
k (Θ)

]
= sup
|v′|=j,v′∈Θ,V (v′)∈R

[
Zv

′
k (Θ)

]
.
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According to the above definition Ij := [(a−b)j
1
3 −ϑ−1Kj , aj

1
3 −ϑ−1Kj ], we see that v′ ∈ Θ means

V (v′) ∈ Ij and hence

sup
|v′|=j, V (v′)∈R

EL

[
Zv

′
k (Θ)

]
= sup
|v′|=j, V (v′)∈Ij

EL

[ ∑
uj=v

′, |u|=Mk+1

1{u∈Θ}

]

≤ sup
|v′|=j

V (v′)∈Ij

EL

[ ∑
uj=v

′

|u|=Mk+1

1
{∀i≤Mk+1−j, V (uj+i)+ϑ−1Ki+j∈[(a−b)(i+j)

1
3 , a(i+j)

1
3 ]}

]
. (6.18)

By the definition of the shifted expectation EjL (see Section 3), we have

sup
|v′|=j,V (v′)∈Ij

EL

[ ∑
uj=v′,|u|=Mk+1

1
{∀i≤Mk+1−j, V (uj+i)∈[(a−b)(i+j)

1
3−ϑ−1Ki+j , a(i+j)

1
3−ϑ−1Ki+j ]}

]
= sup
y∈Ij

EjL

( ∑
|v|=Mk+1−j

1
{∀i≤Mk+1−j, V (vi)+ϑ−1Ki+j∈[−y+(a−b)(i+j)

1
3 , −y+a(i+j)

1
3 ]}

)
= sup

x∈[(a−b)j
1
3 , aj

1
3 ]

EjL

(
e
T
Mk+1−j1

{∀i≤Mk+1−j, Ti
ϑ
∈[−x+(a−b)(i+j)

1
3 , −x+a(i+j)

1
3 ]}

)
≤eϑaM

k+1
3 −ϑ(a−b)j

1
3 ×Hj , (6.19)

where Hj := sup
x∈[(a−b)j

1
3 , aj

1
3 ]
Pj
L

(
∀i≤Mk+1−j , x + Ti

ϑ ∈ [(a − b)(i + j)
1
3 , a(i + j)

1
3 ]
)
. The second

inequality above is due to the many-to-one formula (3.5) and the fact that y + ϑ−1Kj,ϑ ∈ [(a −
b)j

1
3 , aj

1
3 ].

Now we divide the time axis dk := Mk+1 −Mk into M2 −M segments equally. Let K(M) :=
M2 − M − 1 and cl := Mk + lMk−1 for l ∈ [0,K(M)] ∩ N. By Markov property we see that
if j1 < j2 ≤Mk+1, then

Hj1 ≤ sup
x∈[(a−b)j1/31 , aj

1/3
1 ]

Pj1
L

(
∀i≤j2−j1 , x+

Ti
ϑ
∈ [(a− b)(i+ j1)

1
3 , a(i+ j1)

1
3 ]
)
×Hj2 ≤ Hj2 .

That is to say, {Hj}j≤Mk+1 is an increasing random sequence of j. We have mentioned above that
the choice of b satisfying b ∈ (0, a). Combining with (6.19), we have

lim
k→+∞

log

(
Mk+1∑

j=Mk+1

sup |v′|=j
V (v′)∈R

EL

[
Zv

′
k (Θ)

])
d
1/3
k

≤ lim
k→+∞

log

(
K(M)∑
l=0

cl+1∑
j=cl+1

eϑaM
k+1
3 −ϑ(a−b)j

1
3 ×Hj

)
d
1/3
k

≤ lim
k→+∞

log
(K(M)∑

l=0

Mk−1eϑaM
k+1
3 −ϑ(a−b)c

1
3
l Hcl+1

)
d
1/3
k

= max
l∈[0,K(M)]

[
lim

k→+∞

ϑaM
k+1
3 − ϑ(a− b)c

1
3
l

d
1/3
k

+ lim
k→+∞

logHcl+1

d
1/3
k

]
. (6.20)
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Note that when M is fixed, K(M) is finite and does not depend on k, which means that the last

equality in (6.20). Denote gM (x) :=
(
x + 1

M−1

)1/3
. By the notation cl := Mk + lMk−1 we have

lim
k→+∞

ϑaM
k+1
3 −ϑ(a−b)c

1
3
l

d
1/3
k

= ϑagM (1)− ϑ(a− b)gM
(

l
M2−M

)
. By Corollary 4.4, we see

lim
k→+∞

logHcl+1

d
1/3
k

= − 3γσ
ϑ2b2

(
gM (1)− gM

( l + 1

M2 −M

))
, P− a.s.

By the concavity of gM (x), we know for any l ∈ [0,K(M)], gM
(

l+1
M2−M

)
−gM

(
l

M2−M
)
≤
(

1
M2−M

) 1
3 =

g
M

(0)

M1/3 . Hence it is true that

lim
k→+∞

log

(
Mk+1∑

j=Mk+1

sup |v′|=j
V (v′)∈R

EL

[
Zv

′
k (Θ)

])
d
1/3
k

≤ max
l∈[0,K(M)]

[(
ϑa− 3γσ

ϑ2b2

)
gM (1)−

[
ϑ(a− b)− 3γσ

ϑ2b2

]
gM

( l

M2 −M

)
+
gM (0)

M1/3

]

≤ sup
x∈[0,1]

[(
ϑa− 3γσ

ϑ2b2

)
gM (1) +

( 3γσ
ϑ2b2

− ϑ(a− b)
)
gM (x) +

gM (0)

M1/3

]
. (6.21)

We observe that the equation 3γσ
ϑ2b2
−ϑ(a− b) = 0 about b has two solutions in (0, a) since a > ac :=

3 3√6γσ
2ϑ . We might as well write them as b1 and b2 (b1 < b2). Choose b ∈ (b1, b2) and note that gM is

an increasing function with gM (1) =M1/3gM (0), then we get

G(M) := sup
x∈[0,1]

[(
ϑa− 3γσ

ϑ2b2
)
gM (1) +

( 3γσ
ϑ2b2

− ϑ(a− b)
)
gM (x) +

gM (0)

M1/3

]
=
[(
ϑa− 3γσ

ϑ2b2

)
M1/3 +

3γσ
ϑ2b2

+ ϑb− ϑa+ 1

M1/3

]
gM (0). (6.22)

Recall that rk = ek
v
, v ∈ ( 2

λ3
, 13). Hence when b ∈ (b1, b2), we have

lim
k→+∞

log
(
1 + (rk − 1)

Mk+1∑
j=Mk+1

sup |v′|=j
V (v′)∈R

EL

[
Zv

′
k (Θ)

])
d
1/3
k

= lim
k→+∞

log 1

d
1/3
k

∨ lim
k→+∞

log
(
(rk − 1)

Mk+1∑
j=Mk+1

sup |v′|=j
V (v′)∈R

EL

[
Zv

′
k (Θ)

])
d
1/3
k

≤G(M). (6.23)

In the light of (6.17), it is time to estimate the lower bound of EL(Zk,b). Recall c0 :=Mk, V (z̃) =

ac
1
3
0 − ϑ−1Kc0 and dk := Mk+1 −Mk. For any ϵ ∈ (0, b), by the definition of Zk,b, (3.3) and (3.5)
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we can see

ELZk,b =EL

( ∑
|u|=Mk+1

1{u∈Θ}

)

=Ec0L

( ∑
|u|=dk

1{
∀i≤dk,N(ui−1)≤rk,V (ui)+ϑ

−1Kc0+i+V (z̃)∈[(a−b)(i+c0)
1
3 , a(i+c0)

1
3 ]

}∣∣∣V (u0) = 0

)

=Ec0L

(
eTdk1

{0<i≤dk,ξi≤rk,Ti∈[ϑ(a−b)(i+c0)
1
3−ϑac

1
3
0 ,ϑa(i+c0)

1
3−ϑac

1
3
0 ]}

∣∣∣T0 = 0

)

≥eϑ(a−ϵ)M
k+1
3 −ϑac

1
3
0 Pc0
L

(
∀0<i≤dk,Ti∈

[
ϑ(a−b)(i+c0)

1
3 ,ϑa(i+c0)

1
3

]
ξi≤rk, Tdk∈

[
ϑ(a−ϵ)M

k+1
3 ,ϑaM

k+1
3

] ∣∣∣∣∣T0 = ac
1
3
0

)
. (6.24)

Applying the Corollary 4.6 2, we obtain

lim
k→+∞

logEL(Zk,b)

d
1/3
k

≥ ϑ(a− ϵ)
( M

M − 1

) 1
3 − aϑ

( 1

M − 1

) 1
3 − γσ

b2ϑ2

∫ 1

0

(
x+

1

M − 1

)− 2
3
dx.

Letting ϵ ↓ 0, we get

lim
k→+∞

logEL(Zk,b)

d
1/3
k

≥
(
aϑ− 3γσ

b2ϑ2

)(
gM (1)− gM (0)

)
=
(
aϑ− 3γσ

b2ϑ2

)
(M1/3 − 1)gM (0), P− a.s. (6.25)

From the above discussion and the fact aϑ− 3γσ
b2ϑ2

> 0 we can see lim
k→+∞

EL(Zk,b) = +∞, P− a.s.,

which means that ⌊ηEL(Zk,b)⌋ ≥ η
2EL(Zk,b) for large enough k. Then (6.25) tells us

lim
k→+∞

log⌊ηEL(Zk−1,b)⌋
d
1/3
k

≥ 1

M1/3

(
aϑ− 3γσ

b2ϑ2

)
(M1/3 − 1)gM (0), P− a.s.

Recall the definition of Ak,L in (6.3). Combining (6.25) with (6.23) we get

lim
k→+∞

log
(
⌊ηEL(Zk−1,b)⌋Ak,L

)
d
1/3
k

≥
(
aϑ− 3γσ

b2ϑ2

)(
1− 1

M1/3

)
gM (0)−G(M)

=
[(
ϑa− ϑb− 3γσ

ϑ2b2
)
− 2

M1/3

]
gM (0). (6.26)

Note that ϑa > 3γσ
b2ϑ2

+ ϑb for b ∈ (b1, b2). We choose a large enough constant M such that
(
ϑa −

ϑb− 3γσ
ϑ2b2

)
− 2

M1/3 > 0, which means

lim
k→+∞

log
(
⌊ηEL(Zk−1,b)⌋Ak,L

)
dk

> 0, P− a.s.

Thus (6.7) holds. Recalling the analysis at the beginning of this proof we finally get (6.8). So far
we have shown PL(S) > 0, P− a.s. when the barrier function with parameter α = 1

3 and a > ac.
□

2Note that we can not utilize Corollary 4.4 here for the reason of T0 = ϑa(0 + c0)
1
3 , which is located on the

boundary but not the interior of the interval (ϑ(a− b)i1/3, ϑac
1/3
0 ). That is why we need Condition 4 in Section 2.
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Proof of Theorem 2.6 (2d)
By reviewing the above proof again, we can even get Theorem 2.6 (2d). According to (6.5), we

get PL(S) > 0, P− a.s. by proving lim
n→+∞

Pn,L > 0, P− a.s. By the definition of Pn,L we see

lim
n→+∞

Pn,L =PL

(
∀k ∈ N, ♯{u ∈ TMk ,∀i ≤Mk, V (ui) ≤ ai

1
3 − ϑ−1Ki} ≥ ηEL(Zk−1,b)

)
=PL

(
∀k ∈ N, YMk ≥ ηEL(Zk−1,b)

)
. (6.27)

According to (6.25) and the fact aϑ− 3γσ
b2ϑ2

> bϑ, we obtain lim
k→+∞

logEL(Zk,b)

d
1/3
k

≥ bϑ
(
gM (1)− gM (0)

)
.

Hence we have gM (1) → 1, gM (0) → 0,
dk−1

Mk → 1 as M → +∞. It means that for any ε > 0, we

can find a large enough M such that lim
k→+∞

log(ηEL(Zk−1,b))

Mk/3 ≥ bϑ− ε, P− a.s. Note that b ∈ (b1, b2),

then by (6.27) we have

PL

(
lim

k→+∞

log YMk

Mk/3
≥ b2ϑ− ε

)
≥ lim

n→+∞
Pn,L > 0, P− a.s.,

which is the conclusion in (2.22). □

At last, we turn to Theorem 2.5 (1a).
The proof of Theorem 2.5 (1a)

Let ac+ be a constant such that ac+ > ac. Define jn := (ac+)
1
αn

1
3α − a

1
αn, n ∈ N+. Since the

case in Theorem 2.5 (1a) is α > 1/3, we have jmax := maxn∈N+ jn < +∞. Choose k large enough
such that ka

1
α > jmax, which ensures that a(n + k)α > ac+n

1/3,∀n ∈ N+. Note that α > 1/3,

hence it is true that infn∈N+(a(n + k)α − ac+n1/3) > 0. we can find a− > 0 small enough such
that a(n + k)α > a−k + ac+n

1/3,∀n ∈ N+ and a− < min{akα−1, a}. In this way we can ensure
that aiα > a−i for 1 ≤ i ≤ k and aiα > a−k + ac+(i− k)1/3 for i > k. By Markov property we see

PL(S) =PL(∃u ∈ T∞, ∀i ∈ N, V (ui) ≤ aiα − ϑ−1Ki)

≥PL(∃u ∈ Tk,∀i ≤ k, V (ui) ≤ a−i− ϑ−1Ki)

×Pk
L(∃u ∈ T z∞, ∀i ∈ N, V (ui) ≤ ac+i1/3 + ϑ−1(Kk+i −Kk)|V (z) = 0)

:=U1 × U2,

where T z∞ represents an infinite path in T z and T z the genealogical tree with ancestor z. Theorem
2.5 (1b) tells us U2 > 0,P− a.s. and Theorem 2.6 (2c) means that U1 > 0, P− a.s. Hence we
have PL(S) > 0, P− a.s. □
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