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Abstract. We compute limit fluctuations of random Motzkin paths with arbitrary end-points as
the length of the path tends to infinity.

1. Introduction

1.1. Model and main result. A Motzkin path of length L is a sequence of steps on the integer
lattice Z>¢ X Z>o that starts at point (0,ng) with the initial altitude ng and ends at point (L, np,)
at the final altitude ny for some non-negative integers ng,nr, L. The steps can be up, down, or
horizontal, along the vectors (1,1), (1,—1) and (1,0) respectively, and the path cannot fall below
the horizontal axis, see Flajolet and Sedgewick (2009, Definition V.4, page 319) or Viennot (1985).
We represent a Motzkin path of length L > 1 as a sequence of integers (o, ...,7r) € Zégl such that
|ve —vk—1| < 1,k =1,..., L subject to the non-negativity condition Z?:o v > 0fork=0,1...,L.
We say that the k-th step of the path is up, down, and horizontal respectively, if vp —yx_1 =1,—1,0
respectively. By ./\/lgg) we denote the family of all Motzkin paths of length L with the initial altitude
~v0 = ¢ and the final altitude ~;, = j. Our goal is to study statistical properties of random Motzkin
paths, selected at random from the discrete set

(L) _ (L)
MP =] M;;

4,720
in the limit as L — oo. Our setup generalizes our previous work Bryc and Wang (2019a), where we
studied statistical properties of the three counting processes that count the up steps, the horizontal
steps, and the down steps for a Motzkin path 7 selected at random uniformly from the set M((),Lo)-
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To define these counting processes, we first introduce the indicators of these steps:

bt (A - = () = 0 =00, .= L
€k =Sk () = 1{'Yk>’7k—1}’ €r = ¢k () = 1{’7k<’7k—1}’ e = €r(7) = 1{’Yk:7k—1}’7 e M )’

(1.1)
and kK =1,..., L. For the sake of simplicity we drop the dependence on v of €’s most of the time.
Then given a path v of length L, the counts of the up steps, down steps and horizontal steps up to
position |zL|, where x € [0, 1] are then

|Lz| | Lz | [Lz]
Z er, Dp(z):= Z e, Hp(z):= Z e, xe[0,1]. (1.2)
= k=1

We introduce a probability measure on M@ as follows. For each path v € M,L S we define its
weight

We () == 02£=152, 7€M LeN.

’L]7

Note that with ¢ = 1 this gives each path the same weight. Since Mgg)

L .o
w,i]) = Z w(f}/)uzvj 2 07
'yEME?

is a finite set,

are well defined. In addition to the weights of the edges, we also weight the initial and the final
altitudes of each path with geometric weights

apn = (pro)", Brn:=(pr1)", n=>0, (1.3)
with c 3
pro=1—— and pr1=1——= forsomea,ceR,a+c>0. (1.4)

VL VL

Namely, the countable set ME) = Ui’j>0 ./\/lﬁ) becomes a probability space with the discrete
probability measure P;, determined by

ALy PL

PL(7) = Pacor(1) = Pacor({7}) = =g =w(), for all v € MY, (15)

with

L

&= Z aLyiQBZ(J)ﬁL’j < 0.
4,520

Note that throughout for finite L implicitly we assume L is large enough so that propr1 € (0,1)
and hence Py, is a well-defined probability measure. In our previous work Bryc and Wang (2019a,
Theorem 1.1) we proved that if 7 is selected uniformly from M&LO), then

1 | Lx] [Lz] [ Lz
7oz (e~ )~ ey - B

f.d.d. 1 ex 1 1 1 1 ex
i e i ot )
where (Bz)ge[o,1] is a Brownian motion, (Bg¥),e[o,1 is a Brownian excursion, and the processes
(Bz)zejo) and (Bg¥)gze(o,1) are independent. Formally, this model corresponds to the choice of
pro=0,pr1=0,0=1.

Now, with more general end-point weights that vary with L, the asymptotics of (1.2) relies on
another Markov process instead of the Brownian excursion. Let

o)== [oww (~ 350 = 0?) — e (<5097 ) | 1w >0, (19
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denote the transition kernel of the Brownian motion killed at hitting zero. Consider the Markov
process (ﬁ(a7°))x€[0 1 with joint probability density function at points 0 = zg < z1 < -+ < xg =1

given by
d
1 _
ZA)"(’EE(!)f?.,CEd (y07 ctt 7yd) = Q: € (CyOJrayd)/\/ﬁ H ql‘k—Ik—l(yk—l) yk‘)7 yO) AR yd > 05 (17)
ac k—1
with the normalizing constant
Coc = / e~ (ot a/V2q, (., y)dady, (1.8)
RZ
given by the explicit expression (A.1). Let n(@9) denote the increment process
W0 =729 70 2 e 0,1] (1)
Recall that for each L fixed we let (70,...,7z) denote a sequence from M) sampled from

Py, given in (1.5), including in particular the left-hand side of (1.11), and the counting processes
Ur,Hp, Dy, depend on (7yp,...,7r) as in (1.2). Our main result is the following.

Theorem 1.1. Assume a,c € R,a4+c >0 and o > 0. Set
2a 2c
a = , = . 1.10
V240 V240 ( )

Then the following convergence holds.
(i) As L — oo, we have

240 fid.d. [
7 Ozel)pepoy — (ng(f ’”) - (1.11)

(i) As L — oo, we have

1 1 g
V2L {UL(QJ) 240 (L), Hifx) = 240 [La], Dr(@) - 2+o0 LLIJ}acE[O 1]

f~d~d-{ L CI B A S VA S e Bx—ln(a/’cl)} , (1.12)
2240 22+0)" 240 7 22+0) 7 2240 fiepy

where (By)gejo) @5 a Brownian motion, (ng(cal’c/))ze[(]’l] is given by (1.9), and the processes

(Bz)zep,1) and (néa/’c/))xe[o,l] are independent.

Remark 1.2. Note that as a corollary of Theorem 1.1(ii), using Ur(z) — Dr(%) = 7|12 — Y0, We

have ] 1
f.d.d. (a',c")
—_— J— 0 % K
TL{’YLL@ Yo}eel0,1] ppl
This result, in fact, can be obtained directly by a soft argument and in a stronger convergence
mode, as shown in the next proposition. We thank an anonymous referee for this observation. It is
plausible that convergence in (1.11) and (1.12) can also be strengthened to convergence in DJ[0, 1].

as L — oo.

Proposition 1.3. Under the assumptions of Theorem 1.1, with

En(x) = YLz — 70, % € [0,1],

1 2 ’ et
) e -
{ \/E z€[0,1] 2 to xE[O,l]

as L — oo in Skorohod’s space of cadlag functions DI0,1].

we have
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Remark 1.4. One can also work with random Motzkin paths with fixed left-end point zero and geo-
metric weights for the right-end point, and obtain a corresponding joint convergence with a ‘random-
ized” Brownian meander (with joint probability density function proportional to
e—2'v/V2 Hz_l Aop—ap_1 (Yk—1,yx) for a’ > 0) in place of B®" and n@><) above. Both Brownian
excursion and randomized Brownian meanders showed up already in Bryc et al. (2023b) in the
study of limit fluctuations of height functions for open ASEP, denoted by n(oo’oo),n(a/’oo) therein.
We omit the details for this case.

1.2. Motivation. Process (ng(ﬁa’c))me[o’l} from (1.9) has recently appeared in investigations of non-
equilibrium systems in the mathematical physics literature.

First, it was shown in Barraquand and Le Doussal (2022) and Bryc and Kuznetsov (2022) that
n(a’c) can be obtained as a re-scaling of the processes that appeared in the description of the station-
ary measure of open KPZ (on an interval), recently identified in Corwin and Knizel (20241 ), Bryc
et al. (2023a) and Barraquand and Le Doussal (2022). Namely, one can represent the stationary
measure of the open KPZ equation on an interval [0, 7] as

1
—B, +{ylo _y o : 1.14
{ \/i }xE[OJ] { 0 }IEE[O,T] ( )

where B is a Brownian motion, and processes B and Y are independent. As 7 — oo, we then have

1 f.d.d. 1 _
ym(i/ﬁﬂ/ﬁ)} Jfdd, {nga,c)} 7
{ VT z€(0,1] V2 z€[0,1]
and hence

1 f.d.d. 1
L (v _yaivievm } fad, {n;m} asT o0 (115)
{\/F ( 0 ) z€[0,1] \/5 z€[0,1]

(The process denoted by 77 in Bryc and Kuznetsov (2022, Theorem 2.1) 7€) here.) The

is %n
identification of the process Y (9 is a recent groundbreaking work. It is a Markov process with
transitional law determined by a Doob’s h-transform applied to the Yakubovich heat kernel; see
Bryc et al. (2023a) for details. The process (1.14) arises in the scaling limit of height function of
particle densities of open ASEP with five parameters a,,, Bn, Yn, On, ¢n all depending on the size n
of the system and appropriately chosen (known as the Liggett’s condition). It was conjectured by
Barraquand and Le Doussal (2022) that n(@<) appears in the description of the stationary measure
of open KPZ fixed point, a space-time Markov process that has not been rigorously defined yet in
the literature. Note that the limit theorem (1.15) leading to n@9) as summarized above can be
understood as a double-limit theorem (first the convergence from height function of open ASEP to
{Yx(a’c) - Yo(a’c)}ze[oﬁ], and then the second convergence (1.15)).

Second, it was later shown by Bryc et al. (2023b) that with parameters «,, 5, n, 0n appropriately
chosen and ¢ € [0,1) fixed, the process (¢ + B)/v/2, where B is an independent Brownian
motion, arises directly as the scaling limit of height function of particle densities. This convergence,
in contrast to the first case, can be understood as a single-limit theorem.

The contribution of this paper is a third limit theorem for the process ﬁ(avc). We show that this
process arises as the scaling limit of random Motzkin paths. Our model and analysis is considerably
simpler than the open ASEP, and therefore the limit theorem provides a quick access to the process
7739 At the same time, we emphasize that we focus on the stationary measure of conjectured
open KPZ fixed point, instead of the dynamics of the model (say starting from an arbitrary initial
configuration).
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The paper is organized as follows. Section 2 provides matrix and Markov representations for a
larger class of random Motzkin paths including the one in Theorem 1.1. Section 3 provides the
proof of Theorem 1.1. Section 4 provides the proof of Proposition 1.3.

2. Matrix and Markov representations for random Motzkin paths

Our method is based on the fact that explicit integral representations of statistics of interest
are available in closed form, and moreover they are convenient for asymptotic analysis. We shall
establish these representations for a larger class of random Motzkin paths than those considered in
Theorem 1.1 (which corresponds to taking @ = ¢ = (1,1,...) and b = (0,0,...) below).

Throughout this section, the length of the Motzkin paths L is fixed. We first construct the
weights of edges from three sequences

a = (aj)j>0, b=(bj)jz0, ¢=I(cj)j>1,

of real numbers, where we assume that ag,a1,... > 0, bg,b1,... > 0, and c1,co,... > 0. For each

path

. . L
Y= (’70 =%y YL-1,7L :]) € MEJ’)?

we define its weight
T8 (L)
w(y) = Waper(y) = Ay by iy Y E Mi,j , L eN.
k=1
That is, we take a, b and c as the weights of the up steps, horizontal steps and down steps, and the
(L)

weight of a step depends also on the altitude of the left-end of an edge. Since M; p

the normalization constants @
W= D wy)

WEME?

is a finite set,

are well defined for all 4,5 > 0.

In addition to the weights of the edges, we wish to also weight the end-points, i.e. the initial and
the final altitudes of a Motzkin path. To this end we choose two additional non-negative sequences
a = (a;)i>0 and B = (B;)i>0 such that

¢ = Qza,,@,a,b,c,L = Z azﬂﬁgs)ﬁj < oQ. (2.1)
3,j>0
Most of the time, for the sake of simplicity we drop the dependence on the boundary-weight pa-
rameters a, 3 and edge-weight parameters a, b, ¢, but keep the dependence on the length L.

Note that ‘ZI]SI;) = 0 for |j —i| > L. So if the sequences a,b,c are bounded, then QBEI;) are
also bounded, and (2.1) is finite if Y - nfBny; < oo for —L < j < L. With finite normalizing
constant (2.1), the countable set M(E) =
probability measure

i.j>0 ./\/15?) becomes a probability space with the discrete

(8%
P1(1) = Papaser(s) = “2%u(y), for ally € MY,

By a random Motzkin path of length L, we refer to the random element in M@ with law Py
Such a construction seems to be a folklore. The case a« = (1,0,0...),8 = (1,0,0,...) and

a=b=(1,1,...),¢c=(1,1,...) recovers the uniform choice of Motzkin paths from M(()],:o) that we
considered in Bryc and Wang (2019a, Theorem 1.1). Of our special interest is the example with
bounded a, b, ¢ and geometric weights

an = py, Bn = pr,n >0, forsome pg,p1 >0,ppp1 < 1. (2.2)
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In this case, the normalizing constant (2.1) is finite when the product ppp1 < 1.
For non-uniform laws and geometric boundary weights, we mention an example that motivated
our framework here.

Ezample 2.1. Flajolet and Sedgewick (2009, Section V.4) and and Viennot (1985) consider the case
of equal weights @ = (1,1,...) for the up-steps, with varying weights of horizontal and down steps.

The choice
1— n+1 1— n+1
Om:< a) ’/871:<5> ’azc:(lvlv"')’b:(2727"‘)’

o B

with «, 8 € (0,1) such that o + 8 > 1 recovers Motzkin paths that appear in the analysis of open
TASEP in Derrida et al. (2004, Section 2.2) (after shifting their paths down by one unit).

FIGURE 2.1. Motzkin path v = (0,0,1,0,1,1,2,1,0,1) € M) with weight contri-
butions marked at the edges. The probability of selecting this path from M©® is
P(v) = ag—flboblagalc%cz. The total number of horizontal steps is Hg(1) = 2 and
the total number of up steps is Ug(1) = 4.

Recall that the general framework of the random Motzkin paths depending on the edge-weight
parameters a, b, c and boundary-weight parameters «, 3. For such a random Motzkin path with
length L, we let

P, = ]Pa,B,a,b,c,L

denote its law (a probability measure on M(L)), and E;, the expectation with respect to Py,.

2.1. Matriz representation. We first start with a matrix representation, known as the matrix ansatz
in the literature. Introduce

0 ap 0 0 ... bp 0 0 0 ... 0O 0 0 0
0 0 a1 O 0 b 0 O cc 0 0 O
A=10 0 0 a s B=10 0 b 0 yC=10 ¢ 0 0
Furthermore, introduce two vectors
Bo

Wal2) = [o0 a1z asz? ...], [Va(2)) = | 2|

which are viewed as functions of z. Recall the “decomposition" of a Motzkin path defined in (1.1).
Throughout, for product of matrices My, ..., M}, we take the convention H£:1 My = MiMs--- My,



Fluctuations of random Motzkin paths II 79

Lemma 2.2. Under assumption (2.1), given s, ti, ur > 0 and zg, 21 € (0,1], we have

L
> T (F ) annts, =< 2(:0)| [[ (554 + 4C + ucB) vﬁ<zl>>,
~eM(L) k=1 k=1
€= ayu(1)By, = (Wa(D|(A+C+ B)HVa(1). (2.3)
yeM(E)
In particular,
1 L
E z s"ts’“ue’“z% = — { Walz spA +t.C +upB)|Va(z . 2.4
L Hk kl] €L< (0)1;[(k: . ¥B)|Va(21) (2.4)
Proof: We first notice that, by definition,
L L0 > J>0 azzoﬂg% ZVGM(L) Hk 1(5kk tk uk ) ()
Er ngH ktk utz" | = , (2.5)
el Zi,jzo a;f; ZVGMEL].>M(7)

and the denominator on the right-hand side is nothing but €, in (2.1). Recall that €’s are functions
of ~.

We start by proving the formula for €. First recall the following well-known fact. Consider a
finite (say n) state Markov chain. Let P = (P; ;)i j=1,..n be its transitional probability matrix, so
that P;; is the probability of transitioning from state ¢ to j in one step. Let 7, a vertical vector
in R", represent a marginal law of the Markov chain. Then, 77 P* represents the marginal law of
the Markov chain starting from the law represented by 7 in k steps. This representation can be
extended to Markov chain with countably infinite states, and also to inhomogeneous ones.

Moreover, this presentation can be further extended to the situation where P is replaced by a
weight matrix (each entry is non-negative but the sum of each row is not necessarily one), and
also that the sum of entries in 7 is not necessarily one. In this case, @ and 77 P*¥ are no longer
interpreted as probability laws. However, by the proof behind the interpretation of @7 P*¥ above, it
is readily checked that (77 P*); is the total weights of all paths (understood in the obvious way)
ending at location 7 in k steps, with unit weight assigned to the location 1.

The above discussion provides an interpretation of (Wq(1)|(A+C + B)"|, with P= A+C + B
and 77 = (Wq(1)|, as the total weights of L step paths with initial weight 7 and weight matrix
P, and uniform weight on the end points. Now, the right-hand side of (2.3), with the extra factor
|V3(1)) on the right, can be interpreted similarly, with weights 3 assigned additionally to the end
locations. Therefore (2.3) follows.

For the numerator on the right-hand side of (2.5), notice that one can write

L

~ . ~ 0 -

Z Hszkt ) Z w(7> with w H Ska% 1 ukbw 1)Ek(tkc“/k—1)€k'
EM ) WGMZ(-E-) k=1

So, again by the same interpretation before but now for inhomogeneous weight matrices (spA +
t,C + upB)p=1, .1, we see

<Wa(20)

This completes the proof. O

L
H (sk A+ t,C + upB)

Va(z1 > Z 0‘2205121 Z w(7).

L
1,20 em®)
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The left-hand side of (2.4) can be related to the joint Laplace transform of finite-dimensional
distributions of the random Motzkin paths. However, the matrix representation on the right-hand
side is not always convenient for asymptotic analysis.

2.2. Markov representation. The next step is to re-express the matrix representation in terms of
integrals (expectations) involving certain Markov process. Also in this step, we eliminate one of
the 3 variables by the relation € + &, + €9 = 1. That is, we shall be interested here in (2.1) with
S = 1.
First, for t > 0 consider a family of orthogonal polynomials {p,(x;t)}n>0 with Jacobi matrix
A +tC. That is, with
po(x;1)
. pr(x;t)
p(x;t) = pa(z;t)|

the orthogonal polynomials are determined by
zp(z;t) = (A +tC)p(z;t),t > 0,
or equivalently,
xpn(x;t) = appn—1(x;t) + tepppsa (z;t),n >0, (2.6)
with po(x;t) = 1,p—1(z;t) = 0. For each t > 0 let 14 denote the associated orthogonal measure.

Assumption 2.1. Consider p and {v;}+>0 as above for A and C given. We assume that there exists
a Markov process (X¢)i>0 such that the law of X; is 14 and furthermore that for each n > 0, the
stochastic process {pn(X¢;t) >0 is a martingale polynomial in the sense that

E(pn(Xe;t)|Xs) = pn(Xs, s) for all 0 < s < ¢.

Some general conditions in terms of matrices A and C for the existence of such Markov process
could be read out from Bryc et al. (2007); there are also many classical as well as less-classical
examples, see e.g. Bryc and Wesotowski (2005, 2010).

It is easy to check that with

pn() = pn(z; 1),
the solution of the three step recursion (2.6) is

pn(z;t) = tn/Qpn(x/\/i)' (2.7)

so measure v; is just a dilation of measure v = vy, in the sense that v,(-) = v(v/t). It is also well
known (Askey and Wilson (1985, (1.23))) that that

3

Hp”(';t)”%%ut : /an(x t)ve(dx) = tn”pn”%%u)'

k 1

We next introduce two generating functions

— ianz"pn(x) and  ¢g(x,2) Zﬁn "
n=0

We assume that both series converge absolutely at 2z = 1 on the support of probability measure
v, and that the product of sums of the absolute values are integrable with respect to the measure
|z|v(dx) so that Fubini’s theorem can be used in the proof below. That is, we need to assume a
stronger property that

Ip num)'

/Zan

mnO

T ‘x Dn(x )pm(x)| v(dx) < oo. (2.8)
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In view of (2.7), we have

Soenimn(G5) m Srehto(5)

Proposition 2.3. Consider fived parameters

t1>te>-- >t >0 and |zt |21)?/tp < 1.

We have
[ - X, z L
Y0 YL €k . gk t1 tr, 1
Z 20° 2] H ey E |¢a ( zo\F> g < , ) H(Uuk + X4, |- (2.9)
~EMIE) k=1 Vi ViL ViL k=1

In particular,

o E [%(th/\/tbZovt1)¢B(XtL/vtL7Z1/vtL) [Tz (ous + th)}

Z’Y()Z’YLlltk k| )

0 ~1 k Yk
k=1

E [pa (X1, D)hg(X1, 1) (0 + X1)1]

Er

(2.10)

The proof is based on the ideas in Bryc and Wesolowski (2010), but there are also significant
differences. In particular we do not rely on g-commutation equations or quadratic harnesses.

Proof: Denote
po(;t)

. pi(z;t)

P(a;t) = | py(ast)

—~~

First, notice that by orthogonality, and Fubini’s theorem justified by (2.8)

Bo

B1z nXL,t
Va(a)) = | gyt | = Ex Zﬁn? DXy 1)

[\

(XtL ) tL)

— s |ua (S L) ).

[Pn (DI

Note also that
(A +uB +tC)p(x;t) = (x4 ou)p(z; t).
So
(A + tLC + uLB)‘Vg(Zl» =E [1/)5(XtL/\/t>, Zl/\/i)(A + tLC + ULB) (XtL, tL)]
=E [¢5(XtL/\/Ea Zl/\/E)(XtL + UuL)p(XtL;tL)]
= E [¢p(Xe, /ViL, 21/ViL)( Xy, +our)B(Xe, y3tr-1)]

where in the last step we used the fact that t7_y > tr, and that if {M;};>0 is a martingale with
respect to the filtration {F;}+>0, then for all Y measurable with respect to Fs, and 0 < s < ¢,
E(Y M) = E(Y M,;) provided that integrability is guaranteed.

Hence
(A+t,1C+ur1B)(A+t,C +urB)|Vg(z1))
=E [vg(Xe, /Vir, 21/VEL)(Xe, + our)(A+tp1C +up1B)P(Xe, itr—1)]
=B [¢p(Xs, /ViL, 21/ViL)(Xe, +our)(Xe,, +oup—1)B(Xe,_5tr-1))
=E [¢p(Xe, /ViL, 21/VEL)(Xey, + our)(Xe,_, +oup—1)B(Xe,_o5t-2)],
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where in the last step we used the martingale property and t;_o > t;_1. Proceeding recurrently,
we get

L L
[[(A +tC + uw.B)[Va(21)) H Xy, + ou)B(Xey5t1)0p(Xe, /VEL, 21/V1L)
k—1 k=1
Since
(Wa(20)[P(X70570) Z anzg (70)" n(XTo/\/%) = ¢a(X7o/V/T0, 207/T0),
this ends the proof of (2.9). For the denommator in (2.10), it suffices to take t; = -+ =t =1 and
20 = 21 = 1. ]

2.3. Formulae with constant step weights and geometric boundary weights. We have shown in Propo-
sition 2.3 how to represent the probability generating function in terms of expectations of certain
Markov processes. To make use of such a representation, we would like to work with Markov pro-
cesses with explicit formulae, and also the appropriate choice of boundary weights a, 3 so that the
introduced functions ¢q, g has simple formulae.

From now on we restrict to constant step weights and geometric boundary weights. For conve-
nience we recall them here:

a=(1,1,...), b=(o,0,...), c=1,1,...), an=p), Bn=7p7, (2.11)
with o > 0, pg, p1 > 0,ppp1 < 1. The corresponding orthogonal polynomials (depending on a, b, ¢
alone) are determined by

Tpn () = pny1(z) + po-1(z),
we are now dealing directly with the Chebyshev polynomials of the second kind. It is well known
that the associated measure is the semi-circular law
V4 — a2
I/(dﬂ?) = Tl{lw\ﬂ}d”
It is also well known that [p,(z)| < n + 1 on the support [—2,2] of v, that ||p,||3 = 1, and that the
generating function is

o0

1
y2) 1= " =—— |2l <1z €[22
003 = 3o = T < L (2.
(The above formulas follow from Ismail (2009, (4.5.28), (4.5.20), (4.5.23)) by a change of variable

to x/2.)

The Markov processes and orthogonal martingale polynomials in Assumption 2.1 in this case have
been studied. It is known (Bryc and Wesolowski, 2005, Remark 4.1) that the functions {p,(z;t)}+>0
defined by (2.7) are then orthogonal martingale polynomials for a Markov process (X;)i>o with
univariate distributions P(X; € dz) = p¢(x)dx given by

\/4t — 72

or py = v; with 14 determined by a dilation Of v, and with transition probabilities P(X; € dy | X =
r) = ps(z,y)dy for 0 < s <t given by

1 (t—5)V/4t —y?

o f <2 < 2V/t.

2w t$2+5y2 — (S—{—t)xy+(t_8)2 or ‘fL’| = \/57‘y| = \[

With geometric weights (2.2), the functions ¢q,1g now can be expressed as,

balt,2) = ¢(x,2p0) and  Yp(z,z) = d(x, 2p1),

ps,t (xa y) =
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for z such that |zpg| < 1 and |zp;1| < 1, respectively.

Combining the above with Proposition 2.3, we have arrived at the following. Note that [E;, the
probability measure on M), depends now on o, pg, p1. We let E also denote the expectation for
functionals of the associated Markov process {X;}+>o0.

Proposition 2.4. Assume (2.11). If pop1 < 1, t1 > ta > --- > tr > 0 and 29,21 are close enough
to 0 so that

pilz|
polzolvVti <1  and = <1, 919
o N (2.12)
then
E, |20 L e L e, (oug + Xz,) o1
L | % U, 2 [ — . '
0 kl_ll kE Yk ~1 ¢ (1 — pozoXe, + pgzgtl)(l — 121 XtL/tL + p%z%/tL)

Here €y, is the normalization constant (2.1).

Remark 2.5. If one is interested only in Theorem 1.1(i), then (2.13) can be simplified as follows.
With zg and 7 < 7 < --- < 7, small enough we have

L
Hk:l(g + Tle/T,?)

L
_ 1
EL Z’Yo T’Yk Te—1 - K
e & " | = ooy + RATD = 1Koy - 77)

] L (2.14)

To see this, we use (2.13) with z = zg, 21 = 1, we take t;, = 1/77 and uj, = 1/75. After multiplying
_9.—_.0

both sides by 71 ... 7z, on the left hand side of (2.14) we get Ef, [zgo H£:1 z; %k Ek} . To complete

the derivation we note that 1 — 2¢;,” — e = (5§ +e9+ €, ) — 265, — e = 5,6+ — € =Tk~ Vk-1-

The integral formula for the normalization constant €, however, will require additional effort as
we want to include the case where p; can be larger than 1 in our asymptotic analysis. In particular
the following representation of €y will be useful.

Proposition 2.6. Assume py € (0,1), pop1 € (0,1). Then,

(z +o)F
¢ :/ =T (dx), 2.15
L Rl—l'pO‘f'P%upl( ) ( )

where the probability measure pi,, of a possibly mized type is given by

1 V4—x? 1

(Here x4 := max{0,x}.)

We remark that measure (2.16) is a shifted Marchenko—Pastur law.
Proof: We first note that the result holds if both pg, p1 < 1. Indeed, in this case, we can apply
(2.13) with zg = 23 = tx = u = 1. Then the left hand side of (2.13) is 1, so the right hand side

gives the integral formula for € that we want. We now fix py € (0,1). As a function of p;, this
explicit integral formula extends analytically to complex argument, defining a function

1 (0 + )" —
f0) =5 /2 (1 —xpo+ p3)(1 — zp + p?) VA = adr, (2.17)

which is analytic in the complex unit disk |p| < 1.
Next we note that since the edge-weights are bounded by max{o, 1}, the function

o0

o)=Y pho'ml) (2.18)

1,J=0
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is analytic in the complex disk |p| < 1/po (see (2.1)). Since we deduced from (2.13) that f(p) = €(p)
for p € (0,1), expression (2.18) coincides with (2.17) for |p| < 1 and is its analytic extension to the
complex disk |p| < 1/po.

Our goal is to extend the integral representation (2.17) to a larger domain by explicit analytic
continuation. We first re-write (2.17) as a complex integral. Substituting z = 2cosf, and then

z=¢? in (2.17) we get

L[ (0 +2)" A

21 o (1 —2po + p3)(1 — zp + p?

1T 4sin? 0(o + 2cos O 40
21 Jo (1 —2pocost+ p)(1 —2pcosf + p?)
1 [7 4sin? 0(o + 2 cos §)F
=— do
4 ) (1 —2pgcosf + p2)(1 — 2pcosf + p?)
1 1 (22 —1)? (0+z+1)L dz
— (1) b E iy (2.19)
2) 3w s A= por) e —po) (1= p2) o= p) =

which is valid for all |p| < 1. Consider now |p| € (po,1). In the last line above one can replace the
contour |z| = 1 by |z| = r, and this replacement is valid as long as the circle does not cross any pole
of the integrand, that is, for r € (1,1/|p|). Next, let the contour cross the pole at 1/p and (because
of the additional factor —1/2 in front of the integral) add half of the residue at z = 1/p. We arrive
at

1 E-o+zed)t e 10D (orgro)t
Ami Jio=r (L= poz)(z = po)(L = p2)(z—p) 2~ 2 p(p—po) (1= pop)

filp) = ;o (220)

which coincides with f(p) for |p| € (po, 1), by deformation of contour as explained above, and, with
r fixed, gives the analytic extension of f to all p such that 1/r < |p| < r. In particular, €(p) = f1(p)
for 1/r < |p| < r. Note that r can be taken arbitrarily close to 1/pg.

Next, consider the expression (2.20) for r € (1,1/pg) and p such that |p| € (1,7), and deform the
contour of integration back to |z| = 1. This subtracts half of the residue of the integrand at z = p.
Since r can be taken arbitrarily close to 1/pg, fi(p) is equal to

L ) R T Gl (A R
4mi Jiy=1 (1= po2)(z — po)(1 — pz)(2 — p) = p(p—po) (1= pop)

fa(p) = (2.21)

for all p such that |p| € (1,1/pp). In particular, €(p) = fa(p) for |p| € (1,1/pp). Returning back
to the real arguments, we see that (2.17), (2.19) and (2.21) can be combined together into a single
formula which gives

1 [? (0 +az)t
¢ :/ V4 — 2%dx
)= 5 —o (L—=mpo + pg)(1 — zp + p?)
L
1 1
(1—p2)+p<p+;+o>

(p = po) (1 = pop)

» p€(0,1/po),p # 1.

This formula extends to p = 1 by continuity, establishing (2.16) for p; < 1. To prove (2.16) for
p1 € (1,1/po), we note that by an elementary calculation the contribution of the atom of p,,
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matches the additional term arising from the residua in (2.21):

(z +o)F 1 1 (o4 x)F
/1_ 2 1_72 5P+1/P(dx): 1_72 1— 210
R xpo + Py P P Tpo + pyle=p+1/p

-(-3)ehe

p?) (p—po) (1 —ppo)

3. Proof of Theorem 1.1

We first note that since Ur(z) + Hp(z) + Dr(x) = | Lx], it is enough to prove joint convergence
of two of the three processes. We will show that

1 o f.d.d. \/§ ~(a’,c") \/%
— o1 H — L <, B, ENCH
ﬁ{(vLL ) Hi(@) 2+o0 L :EJ)};KE[O,I] {(mn 2+o z€[0,1] &0

where ﬁ(a/’c/), B are independent and a’,c’ are given by (1.10). The above implies the desired joint
convergence of Uy, (z), Hy(z), Dr(x), as

UL(x) + DL(x) = LLQSJ — HL(QZ),
UL(x) — Dr(z) = v|12) — 70-
To prove (3.1), we fix d € N, and © = (z1,...,24) with g :=0 <z < --- < 24 = 1. Denoting

g
hk = HL(:IZk) _ LL:L’kJ y
240

we introduce the Laplace transform ®; by the formula

d d
exp (— VL + D 9khk>] : (3.2)

k=0 k=1

q)L(C, 9) = EL

In this section, recall that Ey, is the expected value with respect to probability measure P, on M5
defined by formula (1.5) with parameters (1.4). Since @ is fixed throughout this proof, we suppress
dependence of ®;, on © = (zg,...,xq) in our notation.

Our goal is to compute ®7(L~/2¢, L=1/20) and identify the limit. The main step in the proof is
to show that the expression for the limiting Laplace transform factors and takes the following form.

Proposition 3.1. If01,0,,...,0; € R and cy,c1,...,cq > 0 are such that

c+c >0 and cg+a>0, (3.3)
then
d
lim & | —— 6 = U(c) - exp (xp —x (3.4)
with 3 = Y9, 05,k =1,...,d, and
W(e) = LT [ e o M eatmman 63
c) = e 2to u1)g(u e (Ug, .
\/§7r€a’,c’ - 1)9(uq) L 1Pk ks U1
with
Ul 1
F) = N g =
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and

Tt (y—2)? +2(y +2)tt ‘

The proof of this proposition is postponed to Section 3.1. The transition probability density (3.6)
appeared as the tangent process in Bryc and Wang (2016), and later as the square of the radial part
of a 3-dimensional Cauchy process in Kyprianou and O’Connell (2021, Corollary 1).

The second step in the proof of Theorem 1.1 is to use the following re-write of Bryc et al. (2023h,
Proposition 4.10) which uses change of variables and self-similarity pq(a®z,ay) = pi(z,y)/a?,
da2z(az,a2’) = qz(z,2")/a, a > 0, of kernels (3.6) and (1.6) to insert an auxiliary parameter 7 > 0
into the formula.

pe(z,y) =

Proposition 3.2. Let f,g be two measurable functions on Ry. With 7,¢1, -+ ,cq-1 > 0 and
O=zg<z1 < - <z9 <1, We have

d—1
d
/d e—TZk:1(Ik—xk—1)ukf(ul> (H Pes (Uk7uk+1)> g(ug)du
RY k=1
d—1 d—1
4 = >0 Ckzk ~ R
= ; /d—l € k=1 f(Zl) <H qQT(:Dk—Ikl)(Zk—I’Zk)) g(Zd_l)dZ, (37)
RY k=2
where
f(z) = f(u?) sin(uz)e_mluzdu, (3.8)
Ry
9(z) := / g(u?)u sin(uz)e_T(‘Bd_“—l)“Qdu, (3.9)
Ry

provided that the functions under the multiple integrals in (3.7) are absolutely integrable.

We apply Proposition 3.2 to (3.5), using an auxiliary Markov processes ¢ with transition proba-
bilities P(¢; € dy|(s = ) = pi—s(z,y)dy for s < t with density (3.6).

Proposition 3.3.

Vudu

V2+o 1 0 6724%7 S (@r—zk-1)sy
E .
\/§ TrQ:alaC/ A Csl + (C + CO)2 Csd (a + Cd)Q _|_ m
=K |:62+10 Zﬁ:o Ckﬁag:ak’c) ] (310)

Proof: We use Proposition 3.2 with 7 = 1/(2 + o), f(u) = vu/((c + co)? +u) and g(u) = 1/((a +

cq)? +u). Since [7° e % sin(uz)dz = iz, We have
2 U > —(c+c0)z0 o
f(u ) = m = ) e SlIl(Z'[)'LL)dZO7
2 u > —(a+cd)zd :
ug(u®) = i) = ; e sin(zqu)dzg.
Formulas (3.8) and (3.9) become
o
f(z) = f(u?) sin(uzl)e_mlugdu = / e_(°+c°)zo/ e sin(uz1) sin(zou)dudzg
R, 0 R
™

= / 6_(C+CO)ZOq27x1 (207Z1)d207
2 Ry
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and

2

9(z4-1) = / ug(u?) sin(uzq)e”T@aTTE gy
R4

:/ (/ o (atca)za sin(zdu)dzd) Sin(uzd)ei‘r(xd*l’dfﬂquu
Ry \JO

:/ e~ (w1 )u? sin(zqu) sin(uzg)dudzg
Ry

™

= 2/ emCeazagy o (2d-1, za)dzg.
Ry

Thus by (3.7), the left hand side of (3.10) becomes
T ! d
240 1 = O gz ( ) e Fldz

H 927 (zp—xh_1) (Zk—b Zk)
k=1

d d
240 1 - > ckze _
B V2 €y /Rd+1 ¢ e”" (H qu(xk_xk—l)(zk—bzk’)) e *dz

k=1

)
_l_
Q
N =
™o
-
L
&
[\
T
u
*
a
i M=

d

Ckz

0 " gm0 (H Qup—z_y (Z—1/V2T, zk/\/27)> e Fddz,
k=1

where we used scaling qor.(z,2") = \/%qx(z/\/%', 2'/v/27). Substituting 2z = z,/v27 into the
integral and dropping the primes on z, we get

d
d
1 — > ez V2T
— —cV 212 —av2rz
C. o Jpd+1 e = € ’ quk—xk—l(zkfl’zk) € ‘dz,
a’,d JR k=1

which we recognize as the desired right-hand side of (3.10). O

Proof of Theorem 1.1: By Proposition 3.1, the limiting Laplace transform factors. Proposition 3.3
identifies the first factor in (3.4) as the Laplace transform of the first component of the process in
(3.1). We recognize the second factor in (3.4) as the Laplace transform of the second component of
the process in (3.1). To see this, we write it as

o d
E 62+0' Zk 15k (Bzy, —Bay, 1):| E [eg Zk_lekak] .

This identifies the limit of the Laplace transforms (3.4) as a Laplace transform of a probability
measure. To conclude the proof we invoke Bryc and Wang (2019b, Theorem A.1), which asserts
that convergence of Laplace transforms on an open set to a Laplace transform of a probability
measure implies convergence in distribution. O

3.1. Proof of Proposition 3.1. By symmetry, we assume ¢ > (0. We start by rewriting the expression
(3.2) solely in terms of £, and €Y. The first step is to write (recall that hg = 0)

d
d )
‘I)L(C, 0) = EL e o Zj:o € exp Z YL — VYLi_1 ZC]' =+ Z(hk — hk,1> Z(gj

d Ly, d Ly
~ g
=FEp |e ™ Mexp | — E Sk E (a;r—sj_)+ E Sk 5 (69— 2+J> ,
k=1 j=Lj_ j=
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with
sk=Y cpk=0,...,d, 5= 8, k=1, 4d
j=k j=k
Since 52 —e, =1—¢€% —2e;, we get

®r(c,0) =e” S (Lg—Lg—1)(sp+05k/(2+0))

d Ly d Ly,
x Er e exp [ 2 E Sk Z g + Z(gk + sk) Z 8?
k=1 j=Lp_1+1 k=1 j=Li_1+1

We therefore get

d
Lk Ly_1)/2 7(Lk*Lk71)2+g
ULk

(77 71)
i

Lk €0
t J Lk 1+1 &j j=Lp_1+17J
Lk ’

gk/\/f

k=1 k=1

with

—So/ﬁ 2519/\/f

ULk = \/tLEVL k-

Next, we apply the Markov representation (2.13), but before that we verify that (2.12) holds. We
note that ¢y, 1 > tr o > -+ > t1 4 and that our assumptions on the coefficients co, ..., cq in (3.3)
guarantee that

<\ . L1 3 ) eea/VLT
. (1<), O/ﬁ<1 and —(1—)@ a/VL 1
prolzrol Vira ( \@) ViLa VL

for L large enough. We assume implicitly L large enough so the above holds from now on. Thus
after some rewriting we have

ZL():e th:e va:e

( c 0 > Hk ) Lk(Lk Lyx—1)/(2+0)

VL' VL €L
B [y (0026 + Xy o/ Frg)
(1= pr020,0Xe,, + 07070 otr,)(L = praXe, 4 /tr.a + 071 /tr.a)
Lemma 3.4. The normalizing constant satisfies:
V2
L~ @2+ LV L2 ¢y as L — oo, (3.11)
V2+o ’

where €, ¢ is given by (A.1) and a’,c" are from (1.10).

Proof: We use the explicit form of expression (2.15):

L
1 [? (0 4 z)"V4 — a2 1 (PL1+pT1+ )
CL=— 5 s—dr+ ( pr1 —
2 ) o (1 — prox + pm)(l —prLar+ pLJ) pL1/ o (pr1 — pro)(1 — propr,1)
=:1; + Dy,. (3.12)

The dominant term in the integral I, comes from the integral over [0,2]. This is easy to see as
|z + o]% < (maz{2 — 0,0})" = 0((2 + 0)E) for —2 < 2 < 0 when o > 0.
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The argument for the asymptotics of the integral over [0, 2] relies on the substitution x = 2—u?/L
that appeared in similar context in paper Bryc and Wang (2016) and later in Bryc and Wang (2019b),
Bryc et al. (2023b).

1 [? (0 + 2)l/4 — 22

Iy, ~ — dx
o )y (1= proz +pi o) = praz+p7 ;)
2+ o)L vaL (1 (}: ) u? 2 odu
~ o ANV TR T
T (Gprra- ) (G- pE) !

L

L 2

/ 1 ) 2 _u

2 L 1/2/ 2L ( (2+0’ ) 2 L 1/22/ ue 2+ du
~ —(2 L du ~ (2 L/°— .
ACHVER) ere@ e M CTEL  Era@ )

The integral is an explicit expression (A.2), compare Bryc et al. (2023b, (4.38) and Lemma A.2).
For a # ¢ we get

2 |dH(|d|/2) — [a"[H(]a"]/2) V2
I~ (2+0)"VL- =24 0)"VL ——=¢ . (313
L ( +U) \/m C/273/2 ( +J) \/m EURIS ( )
This proves (3.11) for a # c. For a = ¢ we get
VT (a?+2)H (%/) —2a V2
Ir ~ (2 4+ L\/E~ =(2+ L\/E- .
L ( J) 2\/77_a, /70_’_2 ( U) /724_0 a’a

Thus (3.11) holds also for a =c > 0.
When a < 0,¢ > 0 (but a + ¢ > 0) we need to include the contribution of the discrete part. It is

easy to see that with prq = 1 —a/v/L > 1 the discrete part in (3.12) is

aL<2ﬁ—a> (—f+1 +a+1)L 23(1+ﬁ12))L

Dy, = ~ VL2 +0o)F 55
(a—c)(ﬁ—a)(ﬁ(a—kc)—ac) a—c
32 a/2
2ae7+2 V2 o 2y2adle’T
L _ L
~ VL2 + o) ~a2_c2_\fL(2+a) A
Combining this with (3.13) we see that for a < 0, we have
a2
I V2 2v/2ae’T
@LN\/E(2+O') ﬁ Q:—a’,c’—i_ﬂ
We now use the identity erfc(x) + erfe(—x) = 2 to verify that
2\@a e
< 't 2 Ca’,c“
—c
This completes the proof. ]

It turns out that it suffices to restrict the expectation to the event {X;, > 0}, as shown below.
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Lemma 3.5. If o > 0 then

I W |
(ﬁ’ ﬁ) - ¢
ngl((ng,k’ + XtL,k/ \% tL’k)Lk_Lk_ll{XtL kzo})

(1= prozr,0Xu + 7 027 otr1) (1 = praXe, o /tra + p% 1 /tr.a)

x |E

(3.14)

Proof: Since —2Vt < Xy <2yt fort >0, x; —xj—1 > 0and tr g > 1, the expected value over the
set X, ; < 0 is bounded by a factor

(max{o,2 — o })Li=Li-1(2 + )L~ (Li=Li-1)

(1= prozro\/tr1)*(1 = pri/+/tr.a)?

_ L(zj—zj—1)
~ O+ o)L <max{a,2 o})
240

:0<(2—|-U)L\/z> as L — oo
By (3.11) this proves (3.14). O
To determine the asymptotics of the expectation, introduce
Us:=e X 2,8 €R.
This is a stationary [—2, 2]-valued Markov process with univariate probabilities
JI—g?

Y
IP(US = dy) = Tl{‘mgg}dy (3.15)

and transition probabilities
]P(US = dy’Us’ = y/)

e (2e=s) _ 1

= dy, s <s,y,y €[-2,2].
2m  —2yy cosh(s — ') 4+ 2cosh(2(s — s')) + y2 + /% — 2 Y vy €l ]

(3.16)
So we arrive at
c 0 Hk L ’UZL]:; (Ly—Lk-1)/(2+0)
t (ﬁ ﬁ) ¢
. [Ty ((ovrn + U, yp) 11y, so) (317
X )
(1= prozro\/taUs, 1z + 07077 ot) (L = praUs,/\/tra + o7 1 /tr.q)
Introduce

Yi(s) =L (2= U, 7))

This is a well-studied Markov process, and we shall explain it later. Now, we re-write the expectation
on the right-hand side of (3.17) as

d
H 2+U'ULI<: Lk
k=1

d Y (s —
Hk:l(l - (2+§1(;Lk2)L)Lk kall{YL(Sk)<2L}

4 PL pL1Y1(ca)
(1= prozro\/tr1)? + prozroYo(s1)/L) x (1 — pri/v/tr.d) Tl )

x I
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Grouping the first product above with the first product on the right-hand side of (3.17), we arrive

at
c 0 ~ 0 0
where
d Li—Lj_
e 0 /(2+0) 2 —o/(2+0) Rkl
( /> 1;[<2+UU’ +2+UUL’k ’
2+a
w <L1/2’ L1/2> [GL (YL(sl)a cee 7YL(5d))] ) (319)

with

d vi L—L;_
1= (U = oo z) ™ Ly <2Ly)
(L(1 = prozo\/t1)? + prozrovi) (L(L — pra//tr.q)* + prava//tr.d)

GL(y17 tee 73/d) =

It is clear that
(7] __o _\~d _ 32
lim Q;[)L <L1/2> = e (240)2 > k=1(Tk xk—l)sk' (320)

L—oo

This determines the second factor on the right hand side of (3.4). For (3.19), since v = 1+

5/VL +O(L™Y),
(L(1 = prozrovi)? + prozrom) = ((c+co)® + 1) + O(L?),
L= pra/\/tr.a)? + prava//tra = ((a + ca)® +yq) + O(L7?),

we have

exp(— Z;l:1 xj;_fiA vj)
(e +co)? +y1) ((a +ca)® +ya)
Let also 7r,(u) denote the marginal density of Y7, (cq). We have
2 L
ve <L10/2’ L?/2> - (2¢J£ 7 E[Gr (Yr(s1),.- -, Yi(sa))]
L3/2 /2—|-O'
\[Q:a C

2L
:\g@?/ E[GL(Yn(s1), ..., Ya(sqa_1),w)|Yi(ca) = u] L3 mp(v)du.

Now we take a closer look at the process {Y7,(s)}s>0. This is a Markov process with the univariate
law that can be computed from (3.15) such that

lim GL(yly---yyd) = G(yl,...,yd) =
L—oo

E[Gr (YL(s1),...,YL(s4))]

v(4L —v)
P(Y; =dv) = dv = F————=d
(Yr(s) v) = 7 (v)dv 512 v,
compare Bryc and Wang (2019b, Lemma 4.2), and transition probabilities for s > spi1 that can

be computed from (3.16). Moreover, it is known (Bryc and Wang, 2016) that as L — oo,
fd.d.

£ (L) ze, | Yolea) = u) 25 £((6) ey | G = )

where we let ¢ denote the Markov process with transition probabilities P({; € dy|¢s = x) =
pt—s(,y)dy given in (3.6). In the above, L(- | -) is understood as the law induced by the conditional
law of the corresponding Markov process starting at fixed time from a fixed point u.
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In view of the bound (1 —y/((2 4 0)L))"* < exp(—zy/(2 + 0)) which is valid for 0 < y < 2L,
we see that

c d
Gr(yi,.--,vd) < Cr et o) P (- kzl(xk — op-1)ye/(2+ U))

for some C and large L. (More precisely, there is Ly and C such that this bound holds for all L > L
and all 0 < y; < 2L, but the bound extends to all 0 < y; < oo as Gr(y) = 0 when some y, > 2L.)
So either invoking Billingsley (1999, Exercise 6.6) or the dominated convergence theorem, we see

that
, c 0 V2 + o
ngrolOT/JL <L1/2’ L1/2> - \/ETFCa’O,;:/ /o E [G(C517 cee 7C8d)KSd = u] \/ﬂdu = w(c)

Combined with (3.18) and (3.20), this completes the proof of (3.4).

4. Proof of Proposition 1.3

To avoid cumbersome notation and additional technicalities, we prove Proposition 1.3 for

PLO = eI, pL1 = e—?/VL (4.1)

instead of the asymptotically equivalent expression (1.4).
First, it is known, see Barraquand and Le Doussal (2022), that the law P, o /yz o0 C10,1] of

process 7<) /v/2 is absolutely continuous with respect to the law Pp of the Brownian motion of
variance 1/2 with the Radon-Nikodym derivative

AP yeosva _ 2
dPg (a+c)C,c

where €, ¢ is the normalizing constant (1.8).

Next, denote by S = {S1,59,...,S51} a random walk starting at 0 with i.i.d increments taking
values in {1, 0} with probabilities 1/(2+ o) and 0/(2 + o) respectively. Introduce its partial-sum
process

6(a—l—c) mingeo,1 Bm—aBl7 (42)

CL(t) = SLLtJatE [0, 1]. (43)

The law of £, is absolutely continuous with respect to the law of ¢z, on D[0, 1], denoted by P¢, , P¢,
respectively. To see this, it suffices to compare the laws of the vectors v = {yx —Y0}x=1,.. 1 and
Sr = (S1,...,51) on Z%, denoted by Pye,Pg, respectively. By summing over the values of
Yo € Z>o such that ming<p<z{vx} > 0, for s = {s1,...,s.} in the support of Sy, the Radon-

Nikodym derivative is
" (5) = 2 (pr0ns)
S) =
dPsg, C, PLOPL1

where Cy, is the normalizing constant and sop = 0. It then follows that with w = {w;}4ep0,1) € D0, 1]
we have

—ming—o,...,1 Sk piLl
b
b

dPe, 1 i 1
_ minge[o,1] We ,W1 L 4.4
dP,, (w) C (pLopL1) PLa CLS(W/\F)a (4.4)

L
where we used (4.1) and denoted £(w) := exp ((a + ¢) inf,e)p 1] we — awr). Formula (4.4) implies
that for any bounded continuous function ® : D[0, 1] — R we have

()] &b ()2 (%)

Since the increments of S have mean zero and variance 2/(2 + o), by Donsker’s theorem

1 2
ﬁ{CL(«T)}IE[O,l] = ﬁ{BCU}CL‘E[O,l]
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2
in D[0,1]. Since sup,_;o I [5 (%) } < oo and ® is bounded, the real random variables

) (%) £ (%), L = 1,2... are uniformly integrable. Uniform integrability and weak conver-

gence imply convergence of expectations (Billingsley (1999, Theorem 3.5)), so it follows that

e () ()] e () )

B) e(aJrc) infigo,1) \/7 \/%Blj|

[ 2
=FE |
I <\/2—|-U

I 2 / / H /
—FE|® B e(a +c )mlnogzgl By—a B1:| . 46
L <\/2 +o > (4.6)
In particular, (4.6) with ® = 1 implies that the normalizing constants converge, C;, — (a’ +
c’)€4 /2. Dividing (4.6) by these normalizing constantsand using formulas (4.5) and (4.2) we get

pmslo (5] oo (1)

for all continuous and bounded functions ® from D[0,1] to R. This completes the proof of (1.13)
under assumption (4.1). We omit the proof of (1.13) under assumption (1.4), as it requires cum-
bersome notation and additional steps.
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Appendix A. Auxiliary formulas

The following integral is known, for a derivation, see for example Bryc et al. (2023b, Lemma A.2).

Lemma A.1. The normalizing constant
Coe = / | e (P, (2, y)dedy
R

s given by the expression

V3. aH(a/2) —cH(c/2)

2o , ifa#c,a+c>0,
Coc= (A1)

7 2 4 a?
m-ﬂ(am)—

1
—— ifa=c>0,
V2T /
where for v € R,

H(x):ererfc(:E) with  erfe(z /
f

The following is a minor re-write of known integrals, see Bryc and Kuznetsov (2022, Lemma 4.5)
or Bryc et al. (2023b, formula after (4.38)).

Lemma A.2. Fora+c>0 and 7 > 0, we have

1 &0 2 41)2
— —Tv%/2 = . A2
o7 Jy € Ero)E+o)” VT Calyar s (A-2)
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