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Abstract. We compute limit fluctuations of random Motzkin paths with arbitrary end-points as
the length of the path tends to infinity.

1. Introduction

1.1. Model and main result. A Motzkin path of length L is a sequence of steps on the integer
lattice Z≥0 ×Z≥0 that starts at point (0, n0) with the initial altitude n0 and ends at point (L, nL)
at the final altitude nL for some non-negative integers n0, nL, L. The steps can be up, down, or
horizontal, along the vectors (1, 1), (1,−1) and (1, 0) respectively, and the path cannot fall below
the horizontal axis, see Flajolet and Sedgewick (2009, Definition V.4, page 319) or Viennot (1985).
We represent a Motzkin path of length L ≥ 1 as a sequence of integers (γ0, . . . , γL) ∈ ZL+1

≥0 such that
|γk−γk−1| ≤ 1, k = 1, . . . , L subject to the non-negativity condition

∑k
j=0 γj ≥ 0 for k = 0, 1 . . . , L.

We say that the k-th step of the path is up, down, and horizontal respectively, if γk−γk−1 = 1,−1, 0

respectively. By M(L)
i,j we denote the family of all Motzkin paths of length L with the initial altitude

γ0 = i and the final altitude γL = j. Our goal is to study statistical properties of random Motzkin
paths, selected at random from the discrete set

M(L) =
⋃
i,j≥0

M(L)
i,j

in the limit as L→ ∞. Our setup generalizes our previous work Bryc and Wang (2019a), where we
studied statistical properties of the three counting processes that count the up steps, the horizontal
steps, and the down steps for a Motzkin path γ selected at random uniformly from the set M(L)

0,0 .
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To define these counting processes, we first introduce the indicators of these steps:

ε+k ≡ ε+k (γ) := 1{γk>γk−1}, ε−k ≡ ε−k (γ) := 1{γk<γk−1}, ε0k ≡ ε0k(γ) := 1{γk=γk−1}, γ ∈ M(L),
(1.1)

and k = 1, . . . , L. For the sake of simplicity we drop the dependence on γ of ε’s most of the time.
Then given a path γ of length L, the counts of the up steps, down steps and horizontal steps up to
position ⌊xL⌋, where x ∈ [0, 1] are then

UL(x) :=

⌊Lx⌋∑
k=1

ε+k , DL(x) :=

⌊Lx⌋∑
k=1

ε−k , HL(x) :=

⌊Lx⌋∑
k=1

ε0k, x ∈ [0, 1]. (1.2)

We introduce a probability measure on M(L) as follows. For each path γ ∈ M(L)
i,j , we define its

weight
wσ(γ) := σ

∑L
k=1 ε

0
k , γ ∈ M(L)

i,j , L ∈ N.

Note that with σ = 1 this gives each path the same weight. Since M(L)
i,j is a finite set,

W
(L)
i,j =

∑
γ∈M(L)

i,j

w(γ), i, j ≥ 0,

are well defined. In addition to the weights of the edges, we also weight the initial and the final
altitudes of each path with geometric weights

αL,n := (ρL,0)
n, βL,n := (ρL,1)

n, n ≥ 0, (1.3)

with
ρL,0 = 1− c√

L
and ρL,1 = 1− a√

L
for some a, c ∈ R, a+ c > 0. (1.4)

Namely, the countable set M(L) =
⋃

i,j≥0M
(L)
i,j becomes a probability space with the discrete

probability measure PL determined by

PL(γ) ≡ Pa,c,σ,L(γ) ≡ Pa,c,σ,L({γ}) =
αL,γ0βL,γL

CL
w(γ), for all γ ∈ M(L), (1.5)

with
CL :=

∑
i,j≥0

αL,iW
(L)
i,j βL,j <∞.

Note that throughout for finite L implicitly we assume L is large enough so that ρL,0ρL,1 ∈ (0, 1)
and hence PL is a well-defined probability measure. In our previous work Bryc and Wang (2019a,
Theorem 1.1) we proved that if γ is selected uniformly from M(L)

0,0 , then

1√
2L

{
UL(x)−

⌊Lx⌋
3

, HL(x)−
⌊Lx⌋
3

, DL(x)−
⌊Lx⌋
3

}
x∈[0,1]

f.d.d.−−−→
{

1

2
√
3
Bex

x +
1

6
Bx,−

1

3
Bx,

1

6
Bx −

1

2
√
3
Bex

x

}
x∈[0,1]

,

where (Bx)x∈[0,1] is a Brownian motion, (Bex
x )x∈[0,1] is a Brownian excursion, and the processes

(Bx)x∈[0,1] and (Bex
x )x∈[0,1] are independent. Formally, this model corresponds to the choice of

ρL,0 = 0, ρL,1 = 0, σ = 1.
Now, with more general end-point weights that vary with L, the asymptotics of (1.2) relies on

another Markov process instead of the Brownian excursion. Let

qt(x, y) :=
1√
2πt

[
exp

(
− 1

2t
(x− y)2

)
− exp

(
− 1

2t
(x+ y)2

)]
1x>0,y>0, t > 0, (1.6)
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denote the transition kernel of the Brownian motion killed at hitting zero. Consider the Markov
process

(
η̃(a,c)

)
x∈[0,1] with joint probability density function at points 0 = x0 < x1 < · · · < xd = 1

given by

p̃(a,c)x0,...,xd
(y0, . . . , yd) :=

1

Ca,c
e−(cy0+ayd)/

√
2

d∏
k−1

qxk−xk−1
(yk−1, yk), y0, . . . , yd > 0, (1.7)

with the normalizing constant

Ca,c =

∫
R2

+

e−(cx+ay)/
√
2q1(x, y)dxdy, (1.8)

given by the explicit expression (A.1). Let η(a,c) denote the increment process

η(a,c)x := η̃(a,c)x − η̃
(a,c)
0 , x ∈ [0, 1]. (1.9)

Recall that for each L fixed we let (γ0, . . . , γL) denote a sequence from M(L) sampled from
PL given in (1.5), including in particular the left-hand side of (1.11), and the counting processes
UL, HL, DL depend on (γ0, . . . , γL) as in (1.2). Our main result is the following.

Theorem 1.1. Assume a, c ∈ R, a+ c > 0 and σ > 0. Set

a′ =
2a√
2 + σ

, c′ =
2c√
2 + σ

. (1.10)

Then the following convergence holds.
(i) As L→ ∞, we have √

2 + σ

2L

(
γ⌊Lx⌋

)
x∈[0,1]

f.d.d.−−−→
(
η̃(a

′,c′)
x

)
x∈[0,1]

. (1.11)

(ii) As L→ ∞, we have

1√
2L

{
UL(x)−

1

2 + σ
⌊Lx⌋ , HL(x)−

σ

2 + σ
⌊Lx⌋ , DL(x)−

1

2 + σ
⌊Lx⌋

}
x∈[0,1]

f.d.d.−−−→
{

1

2
√
2 + σ

η(a
′,c′)

x +

√
σ

2(2 + σ)
Bx, −

√
σ

2 + σ
Bx,

√
σ

2(2 + σ)
Bx −

1

2
√
2 + σ

η(a
′,c′)

x

}
x∈[0,1]

, (1.12)

where (Bx)x∈[0,1] is a Brownian motion, (η
(a′,c′)
x )x∈[0,1] is given by (1.9), and the processes

(Bx)x∈[0,1] and (η
(a′,c′)
x )x∈[0,1] are independent.

Remark 1.2. Note that as a corollary of Theorem 1.1(ii), using UL(x) − DL(x) = γ⌊Lx⌋ − γ0, we
have

1√
2L

{γ⌊Lx⌋ − γ0}x∈[0,1]
f.d.d.−−−→ 1√

2 + σ
η(a

′,c′) as L→ ∞.

This result, in fact, can be obtained directly by a soft argument and in a stronger convergence
mode, as shown in the next proposition. We thank an anonymous referee for this observation. It is
plausible that convergence in (1.11) and (1.12) can also be strengthened to convergence in D[0, 1].

Proposition 1.3. Under the assumptions of Theorem 1.1, with

ξL(x) := γ⌊Lx⌋ − γ0, x ∈ [0, 1],

we have {
1√
L
ξL(x)

}
x∈[0,1]

⇒

{√
2

2 + σ
η(a

′,c′)
x

}
x∈[0,1]

, (1.13)

as L→ ∞ in Skorohod’s space of càdlàg functions D[0, 1].
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Remark 1.4. One can also work with random Motzkin paths with fixed left-end point zero and geo-
metric weights for the right-end point, and obtain a corresponding joint convergence with a ‘random-
ized’ Brownian meander (with joint probability density function proportional to
e−a′y/

√
2
∏d

k−1 qxk−xk−1
(yk−1, yk) for a′ > 0) in place of Bex and η(a

′,c′) above. Both Brownian
excursion and randomized Brownian meanders showed up already in Bryc et al. (2023b) in the
study of limit fluctuations of height functions for open ASEP, denoted by η(∞,∞), η(a

′,∞) therein.
We omit the details for this case.

1.2. Motivation. Process (η
(a,c)
x )x∈[0,1] from (1.9) has recently appeared in investigations of non-

equilibrium systems in the mathematical physics literature.
First, it was shown in Barraquand and Le Doussal (2022) and Bryc and Kuznetsov (2022) that

η(a,c) can be obtained as a re-scaling of the processes that appeared in the description of the station-
ary measure of open KPZ (on an interval), recently identified in Corwin and Knizel (2024+), Bryc
et al. (2023a) and Barraquand and Le Doussal (2022). Namely, one can represent the stationary
measure of the open KPZ equation on an interval [0, τ ] as{

1√
2
Bx

}
x∈[0,τ ]

+
{
Y (a,c)
x − Y

(a,c)
0

}
x∈[0,τ ]

, (1.14)

where B is a Brownian motion, and processes B and Y are independent. As τ → ∞, we then have{
1√
τ
Y (a/

√
τ ,c/

√
τ)

xτ

}
x∈[0,1]

f.d.d.−−−→
{

1√
2
η̃(a,c)x

}
x∈[0,1]

,

and hence{
1√
τ

(
Y (a/

√
τ ,c/

√
τ)

xτ − Y
(a/

√
τ ,c/

√
τ)

0

)}
x∈[0,1]

f.d.d.−−−→
{

1√
2
η(a,c)x

}
x∈[0,1]

as τ → ∞. (1.15)

(The process denoted by η̃ in Bryc and Kuznetsov (2022, Theorem 2.1) is 1√
2
η̃(a,c) here.) The

identification of the process Y (a,c) is a recent groundbreaking work. It is a Markov process with
transitional law determined by a Doob’s h-transform applied to the Yakubovich heat kernel; see
Bryc et al. (2023a) for details. The process (1.14) arises in the scaling limit of height function of
particle densities of open ASEP with five parameters αn, βn, γn, δn, qn all depending on the size n
of the system and appropriately chosen (known as the Liggett’s condition). It was conjectured by
Barraquand and Le Doussal (2022) that η(a,c) appears in the description of the stationary measure
of open KPZ fixed point, a space-time Markov process that has not been rigorously defined yet in
the literature. Note that the limit theorem (1.15) leading to η(a,c) as summarized above can be
understood as a double-limit theorem (first the convergence from height function of open ASEP to
{Y (a,c)

x − Y
(a,c)
0 }x∈[0,τ ], and then the second convergence (1.15)).

Second, it was later shown by Bryc et al. (2023b) that with parameters αn, βn, γn, δn appropriately
chosen and q ∈ [0, 1) fixed, the process (η(a,c) + B)/

√
2, where B is an independent Brownian

motion, arises directly as the scaling limit of height function of particle densities. This convergence,
in contrast to the first case, can be understood as a single-limit theorem.

The contribution of this paper is a third limit theorem for the process η̃(a,c). We show that this
process arises as the scaling limit of random Motzkin paths. Our model and analysis is considerably
simpler than the open ASEP, and therefore the limit theorem provides a quick access to the process
η̃(a,c). At the same time, we emphasize that we focus on the stationary measure of conjectured
open KPZ fixed point, instead of the dynamics of the model (say starting from an arbitrary initial
configuration).
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The paper is organized as follows. Section 2 provides matrix and Markov representations for a
larger class of random Motzkin paths including the one in Theorem 1.1. Section 3 provides the
proof of Theorem 1.1. Section 4 provides the proof of Proposition 1.3.

2. Matrix and Markov representations for random Motzkin paths

Our method is based on the fact that explicit integral representations of statistics of interest
are available in closed form, and moreover they are convenient for asymptotic analysis. We shall
establish these representations for a larger class of random Motzkin paths than those considered in
Theorem 1.1 (which corresponds to taking a = c = (1, 1, . . . ) and b = (σ, σ, . . . ) below).

Throughout this section, the length of the Motzkin paths L is fixed. We first construct the
weights of edges from three sequences

a = (aj)j≥0, b = (bj)j≥0, c = (cj)j≥1,

of real numbers, where we assume that a0, a1, . . . > 0, b0, b1, . . . ≥ 0, and c1, c2, . . . > 0. For each
path

γ = (γ0 = i, γ1, . . . , γL−1, γL = j) ∈ M(L)
i,j ,

we define its weight

w(γ) ≡ wa,b,c,L(γ) =
L∏

k=1

a
ε+k
γk−1b

ε0k
γk−1c

ε−k
γk−1 , γ ∈ M(L)

i,j , L ∈ N.

That is, we take a, b and c as the weights of the up steps, horizontal steps and down steps, and the
weight of a step depends also on the altitude of the left-end of an edge. Since M(L)

i,j is a finite set,
the normalization constants

W
(L)
i,j =

∑
γ∈M(L)

i,j

w(γ)

are well defined for all i, j ≥ 0.
In addition to the weights of the edges, we wish to also weight the end-points, i.e. the initial and

the final altitudes of a Motzkin path. To this end we choose two additional non-negative sequences
α = (αi)i≥0 and β = (βi)i≥0 such that

CL ≡ Cα,β,a,b,c,L :=
∑
i,j≥0

αiW
(L)
i,j βj <∞. (2.1)

Most of the time, for the sake of simplicity we drop the dependence on the boundary-weight pa-
rameters α,β and edge-weight parameters a, b, c, but keep the dependence on the length L.

Note that W
(L)
i,j = 0 for |j − i| > L. So if the sequences a, b, c are bounded, then W

(L)
i,j are

also bounded, and (2.1) is finite if
∑

n≥0 αnβn+j < ∞ for −L ≤ j ≤ L. With finite normalizing

constant (2.1), the countable set M(L) =
⋃

i,j≥0M
(L)
i,j becomes a probability space with the discrete

probability measure

PL(γ) ≡ Pα,β,a,b,c,L(γ) =
αγ0βγL
CL

w(γ), for all γ ∈ M(L).

By a random Motzkin path of length L, we refer to the random element in M(L) with law PL.
Such a construction seems to be a folklore. The case α = (1, 0, 0 . . . ), β = (1, 0, 0, . . . ) and

a = b = (1, 1, . . . ), c = (1, 1, . . . ) recovers the uniform choice of Motzkin paths from M(L)
0,0 that we

considered in Bryc and Wang (2019a, Theorem 1.1). Of our special interest is the example with
bounded a, b, c and geometric weights

αn = ρn0 , βn = ρn1 , n ≥ 0, for some ρ0, ρ1 > 0, ρ0ρ1 < 1. (2.2)
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In this case, the normalizing constant (2.1) is finite when the product ρ0ρ1 < 1.
For non-uniform laws and geometric boundary weights, we mention an example that motivated

our framework here.

Example 2.1. Flajolet and Sedgewick (2009, Section V.4) and and Viennot (1985) consider the case
of equal weights a = (1, 1, . . . ) for the up-steps, with varying weights of horizontal and down steps.
The choice

αn =

(
1− α

α

)n+1

, βn =

(
1− β

β

)n+1

, a = c = (1, 1, . . . ), b = (2, 2, . . . ),

with α, β ∈ (0, 1) such that α + β > 1 recovers Motzkin paths that appear in the analysis of open
TASEP in Derrida et al. (2004, Section 2.2) (after shifting their paths down by one unit).

b0

a0 c1 a0

b1

a1 c2

c1 a0

1 2 3 4 5 6 7 8 9

Figure 2.1. Motzkin path γ = (0, 0, 1, 0, 1, 1, 2, 1, 0, 1) ∈ M(9) with weight contri-
butions marked at the edges. The probability of selecting this path from M(9) is
P(γ) = α0β1

C9
b0b1a

3
0a1c

2
1c2. The total number of horizontal steps is H9(1) = 2 and

the total number of up steps is U9(1) = 4.

Recall that the general framework of the random Motzkin paths depending on the edge-weight
parameters a, b, c and boundary-weight parameters α,β. For such a random Motzkin path with
length L, we let

PL ≡ Pα,β,a,b,c,L

denote its law (a probability measure on M(L)), and EL the expectation with respect to PL.

2.1. Matrix representation. We first start with a matrix representation, known as the matrix ansatz
in the literature. Introduce

A =


0 a0 0 0 . . .
0 0 a1 0
0 0 0 a2
...

. . .

 , B =


b0 0 0 0 . . .
0 b1 0 0
0 0 b2 0
...

. . .

 , C =


0 0 0 0 . . .
c1 0 0 0
0 c2 0 0
...

. . .

 .
Furthermore, introduce two vectors

⟨Wα(z)| =
[
α0 α1z α2z

2 . . .
]
, |Vβ(z)⟩ =


β0
β1z
β2z

2

...

 ,
which are viewed as functions of z. Recall the “decomposition" of a Motzkin path defined in (1.1).
Throughout, for product of matrices M1, . . . ,ML, we take the convention

∏L
k=1Mk =M1M2 · · ·ML.
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Lemma 2.2. Under assumption (2.1), given sk, tk, uk > 0 and z0, z1 ∈ (0, 1], we have

∑
γ∈M(L)

zγ00

L∏
k=1

(
s
ε+k
k t

ε−k
k u

ε0k
k

)
zγL1 αγ0w(γ)βγL =

〈
Wα(z0)

∣∣∣∣∣
L∏

k=1

(skA+ tkC + ukB)

∣∣∣∣∣Vβ(z1)
〉
,

CL =
∑

γ∈M(L)

αγ0w(γ)βγL = ⟨Wα(1)|(A+C +B)L|Vβ(1)⟩. (2.3)

In particular,

EL

[
zγ00

L∏
k=1

s
ε+k
k t

ε−k
k u

ε0k
k z

γL
1

]
=

1

CL

〈
Wα(z0)

∣∣∣∣∣
L∏

k=1

(skA+ tkC + ukB)

∣∣∣∣∣Vβ(z1)
〉
. (2.4)

Proof : We first notice that, by definition,

EL

[
zγ00

L∏
k=1

s
ε+k
k t

ε−k
k u

ε0k
k z

γL
1

]
=

∑
i,j≥0 αiz

i
0βjz

j
1

∑
γ∈M(L)

i,j

∏L
k=1(s

ε+k
k t

ε−k
k u

ε0k
k )w(γ)∑

i,j≥0 αiβj
∑

γ∈M(L)
i,j

w(γ)
, (2.5)

and the denominator on the right-hand side is nothing but CL in (2.1). Recall that ε’s are functions
of γ.

We start by proving the formula for CL. First recall the following well-known fact. Consider a
finite (say n) state Markov chain. Let P = (Pi,j)i,j=1,...,n be its transitional probability matrix, so
that Pi,j is the probability of transitioning from state i to j in one step. Let π⃗, a vertical vector
in Rn, represent a marginal law of the Markov chain. Then, π⃗TP k represents the marginal law of
the Markov chain starting from the law represented by π⃗ in k steps. This representation can be
extended to Markov chain with countably infinite states, and also to inhomogeneous ones.

Moreover, this presentation can be further extended to the situation where P is replaced by a
weight matrix (each entry is non-negative but the sum of each row is not necessarily one), and
also that the sum of entries in π⃗ is not necessarily one. In this case, π⃗ and π⃗TP k are no longer
interpreted as probability laws. However, by the proof behind the interpretation of π⃗TP k above, it
is readily checked that (π⃗TP k)i is the total weights of all paths (understood in the obvious way)
ending at location i in k steps, with unit weight assigned to the location i.

The above discussion provides an interpretation of ⟨Wα(1)|(A+C+B)L|, with P = A+C+B
and π⃗T = ⟨Wα(1)|, as the total weights of L step paths with initial weight π⃗ and weight matrix
P , and uniform weight on the end points. Now, the right-hand side of (2.3), with the extra factor
|Vβ(1)⟩ on the right, can be interpreted similarly, with weights β assigned additionally to the end
locations. Therefore (2.3) follows.

For the numerator on the right-hand side of (2.5), notice that one can write

∑
γ∈M(L)

i,j

L∏
k=1

s
ε+k
k t

ε−k
k u

ε0k
k w(γ) =

∑
γ∈M(L)

i,j

w̃(γ) with w̃(γ) =

L∏
k=1

(skaγk−1
)ε

+
k (ukbγk−1

)ε
0
k(tkcγk−1

)ε
−
k .

So, again by the same interpretation before but now for inhomogeneous weight matrices (skA +
tkC + ukB)k=1,...,L, we see〈

Wα(z0)

∣∣∣∣∣
L∏

k=1

(skA+ tkC + ukB)

∣∣∣∣∣Vβ(z1)
〉

=
∑
i,j≥0

αiz
i
0βjz

j
1

∑
γ∈M(L)

i,j

w̃(γ).

This completes the proof. □
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The left-hand side of (2.4) can be related to the joint Laplace transform of finite-dimensional
distributions of the random Motzkin paths. However, the matrix representation on the right-hand
side is not always convenient for asymptotic analysis.

2.2. Markov representation. The next step is to re-express the matrix representation in terms of
integrals (expectations) involving certain Markov process. Also in this step, we eliminate one of
the 3 variables by the relation ε+k + ε−k + ε0k = 1. That is, we shall be interested here in (2.4) with
sk = 1.

First, for t > 0 consider a family of orthogonal polynomials {pn(x; t)}n≥0 with Jacobi matrix
A+ tC. That is, with

p⃗(x; t) =


p0(x; t)
p1(x; t)
p2(x; t)

...

 ,
the orthogonal polynomials are determined by

xp⃗(x; t) = (A+ tC)p⃗(x; t), t > 0,

or equivalently,
xpn(x; t) = anpn−1(x; t) + tcnpn+1(x; t), n ≥ 0, (2.6)

with p0(x; t) = 1, p−1(x; t) = 0. For each t > 0 let νt denote the associated orthogonal measure.

Assumption 2.1. Consider p⃗ and {νt}t≥0 as above for A and C given. We assume that there exists
a Markov process (Xt)t>0 such that the law of Xt is νt and furthermore that for each n ≥ 0, the
stochastic process {pn(Xt; t)}t>0 is a martingale polynomial in the sense that

E(pn(Xt; t)|Xs) = pn(Xs, s) for all 0 ≤ s ≤ t.

Some general conditions in terms of matrices A and C for the existence of such Markov process
could be read out from Bryc et al. (2007); there are also many classical as well as less-classical
examples, see e.g. Bryc and Wesołowski (2005, 2010).

It is easy to check that with
pn(x) := pn(x; 1),

the solution of the three step recursion (2.6) is

pn(x; t) = tn/2pn(x/
√
t). (2.7)

so measure νt is just a dilation of measure ν ≡ ν1, in the sense that νt(·) = ν(
√
t·). It is also well

known (Askey and Wilson (1985, (1.23))) that that

∥pn(·; t)∥2L2(νt)
:=

∫
R
p2n(x; t)νt(dx) =

n∏
k=1

tck
ak−1

= tn∥pn∥2L2(ν).

We next introduce two generating functions

ϕα(x, z) =
∞∑
n=0

αnz
npn(x) and ψβ(x, z) =

∞∑
n=0

βnz
n pn(x)

∥pn∥2L2(ν)

.

We assume that both series converge absolutely at z = 1 on the support of probability measure
ν, and that the product of sums of the absolute values are integrable with respect to the measure
|x|Lν(dx) so that Fubini’s theorem can be used in the proof below. That is, we need to assume a
stronger property that ∫

R

∞∑
m,n=0

αn
βm

∥pm∥22

∣∣xLpn(x)pm(x)
∣∣ ν(dx) <∞. (2.8)
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In view of (2.7), we have
∞∑
n=0

αnz
npn(x; t) = ϕα

(
x√
t
,
z√
t

)
and

∞∑
n=0

βnz
n pn(x; t)

∥pn(·; t)∥2L2(νt)

= ψβ

(
x√
t
,
z√
t

)
.

Proposition 2.3. Consider fixed parameters

t1 ≥ t2 ≥ · · · ≥ tL > 0 and |z0|2t1, |z1|2/tL < 1.

We have∑
γ∈M(L)

[
zγ00 z

γL
1

L∏
k=1

t
ε−k
k u

ε0k
k

]
= E

[
ϕα

(
Xt1√
t1
, z0

√
t1

)
ψβ

(
XtL√
tL
,
z1√
tL

) L∏
k=1

(σuk +Xtk)

]
. (2.9)

In particular,

EL

[
zγ00 z

γL
1

L∏
k=1

t
ε−k
k u

ε0k
k

]
=
E
[
ϕα(Xt1/

√
t1, z0

√
t1)ψβ(XtL/

√
tL, z1/

√
tL)
∏L

k=1(σuk +Xtk)
]

E [ϕα(X1, 1)ψβ(X1, 1)(σ +X1)L]
.

(2.10)

The proof is based on the ideas in Bryc and Wesołowski (2010), but there are also significant
differences. In particular we do not rely on q-commutation equations or quadratic harnesses.

Proof : Denote

p⃗(x; t) =


p0(x; t)
p1(x; t)
p2(x; t)

...

 .
First, notice that by orthogonality, and Fubini’s theorem justified by (2.8)

|Vβ(z1)⟩ =


β0
β1z1
β2z

2
1

...

 = EL

[ ∞∑
n=0

βnz
n
1

pn(XtL ; tL)

∥pn(·; t)∥2L2(νt)

p⃗(XtL ; tL)

]
= EL

[
ψβ

(
XtL√
tL
,
z1√
tL

)
p⃗(XtL ; tL)

]
.

Note also that
(A+ uB + tC)p⃗(x; t) = (x+ σu)p⃗(x; t).

So

(A+ tLC + uLB)|Vβ(z1)⟩ = E
[
ψβ(XtL/

√
tL, z1/

√
tL)(A+ tLC + uLB)p⃗(XtL ; tL)

]
= E

[
ψβ(XtL/

√
tL, z1/

√
tL)(XtL + σuL)p⃗(XtL ; tL)

]
= E

[
ψβ(XtL/

√
tL, z1/

√
tL)(XtL + σuL)p⃗(XtL−1 ; tL−1)

]
,

where in the last step we used the fact that tL−1 > tL, and that if {Mt}t≥0 is a martingale with
respect to the filtration {Ft}t≥0, then for all Y measurable with respect to Fs, and 0 ≤ s < t,
E(YMs) = E(YMt) provided that integrability is guaranteed.

Hence

(A+ tL−1C + uL−1B)(A+ tLC + uLB)|Vβ(z1)⟩
= E

[
ψβ(XtL/

√
tL, z1/

√
tL)(XtL + σuL)(A+ tL−1C + uL−1B)p⃗(XtL−1 ; tL−1)

]
= E

[
ψβ(XtL/

√
tL, z1/

√
tL)(XtL + σuL)(XtL−1 + σuL−1)p⃗(XtL−1 ; tL−1)

]
= E

[
ψβ(XtL/

√
tL, z1/

√
tL)(XtL + σuL)(XtL−1 + σuL−1)p⃗(XtL−2 ; tL−2)

]
,
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where in the last step we used the martingale property and tL−2 > tL−1. Proceeding recurrently,
we get

L∏
k−1

(A+ tkC + ukB)|Vβ(z1)⟩ = E

[
L∏

k=1

(Xtk + σuk)p⃗(Xt1 ; t1)ψβ(XtL/
√
tL, z1/

√
tL)

]
.

Since

⟨Wα(z0)|p⃗(Xτ0 ; τ0) =
∞∑
n=0

αnz
n
0 (τ0)

n/2pn(Xτ0/
√
τ0) = ϕα(Xτ0/

√
τ0, z0

√
τ0),

this ends the proof of (2.9). For the denominator in (2.10), it suffices to take t1 = · · · = tL = 1 and
z0 = z1 = 1. □

2.3. Formulae with constant step weights and geometric boundary weights. We have shown in Propo-
sition 2.3 how to represent the probability generating function in terms of expectations of certain
Markov processes. To make use of such a representation, we would like to work with Markov pro-
cesses with explicit formulae, and also the appropriate choice of boundary weights α,β so that the
introduced functions ϕα, ψβ has simple formulae.

From now on we restrict to constant step weights and geometric boundary weights. For conve-
nience we recall them here:

a = (1, 1, . . . ), b = (σ, σ, . . . ), c = (1, 1, . . . ), αn = ρn0 , βn = ρn1 , (2.11)

with σ > 0, ρ0, ρ1 > 0, ρ0ρ1 < 1. The corresponding orthogonal polynomials (depending on a, b, c
alone) are determined by

xpn(x) = pn+1(x) + pn−1(x),

we are now dealing directly with the Chebyshev polynomials of the second kind. It is well known
that the associated measure is the semi-circular law

ν(dx) =

√
4− x2

2π
1{|x|≤2}dx.

It is also well known that |pn(x)| ≤ n+ 1 on the support [−2, 2] of ν, that ∥pn∥22 = 1, and that the
generating function is

ϕ(x, z) :=

∞∑
n=0

znpn(x) =
1

1− xz + z2
, |z| < 1, x ∈ [−2, 2].

(The above formulas follow from Ismail (2009, (4.5.28), (4.5.20), (4.5.23)) by a change of variable x
to x/2.)

The Markov processes and orthogonal martingale polynomials in Assumption 2.1 in this case have
been studied. It is known (Bryc and Wesołowski, 2005, Remark 4.1) that the functions {pn(x; t)}t≥0

defined by (2.7) are then orthogonal martingale polynomials for a Markov process (Xt)t≥0 with
univariate distributions P (Xt ∈ dx) = pt(x)dx given by

pt(x) =

√
4t− x2

2πt
1{|x|≤2

√
t}, t > 0,

or pt = νt with νt determined by a dilation of ν, and with transition probabilities P (Xt ∈ dy | Xs =
x) = ps,t(x, y)dy for 0 ≤ s < t given by

ps,t(x, y) =
1

2π

(t− s)
√
4t− y2

tx2 + sy2 − (s+ t)xy + (t− s)2
for |x| ≤ 2

√
s, |y| ≤ 2

√
t.

With geometric weights (2.2), the functions ϕα, ψβ now can be expressed as,

ϕα(x, z) = ϕ(x, zρ0) and ψβ(x, z) = ϕ(x, zρ1),
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for z such that |zρ0| < 1 and |zρ1| < 1, respectively.
Combining the above with Proposition 2.3, we have arrived at the following. Note that EL, the

probability measure on M(L), depends now on σ, ρ0, ρ1. We let E also denote the expectation for
functionals of the associated Markov process {Xt}t≥0.

Proposition 2.4. Assume (2.11). If ρ0ρ1 < 1, t1 ≥ t2 ≥ · · · ≥ tL > 0 and z0, z1 are close enough
to 0 so that

ρ0|z0|
√
t1 < 1 and

ρ1|z1|√
tL

< 1, (2.12)

then

EL

[
zγ00

L∏
k=1

t
ε−k
k u

ε0k
k z

γL
1

]
=

1

CL
E

[ ∏L
k=1(σuk +Xtk)

(1− ρ0z0Xt1 + ρ20z
2
0t1)(1− ρ1z1XtL/tL + ρ21z

2
1/tL)

]
. (2.13)

Here CL is the normalization constant (2.1).

Remark 2.5. If one is interested only in Theorem 1.1(i), then (2.13) can be simplified as follows.
With z0 and τ1 < τ2 < · · · < τL small enough we have

EL

[
zγ00

L∏
k=1

τ
γk−γk−1

k

]
=

1

CL
E

[ ∏L
k=1(σ + τkX1/τ2k

)

(1− ρ0z0X1/τ21
+ ρ20z

2
0/τ

2
1 )(1− ρ1τ2LX1/τ2L

+ ρ21τ
2
L)

]
. (2.14)

To see this, we use (2.13) with z0 = z0, z1 = 1, we take tk = 1/τ2k and uk = 1/τk. After multiplying

both sides by τ1 . . . τL, on the left hand side of (2.14) we get EL

[
zγ00
∏L

k=1 z
1−2ε−k −ε0k
k

]
. To complete

the derivation we note that 1− 2ε−k − ε0k = (ε+k + ε0k + ε−k )− 2ε−k − ε0k = ε+k − ε−k = γk − γk−1.

The integral formula for the normalization constant CL, however, will require additional effort as
we want to include the case where ρ1 can be larger than 1 in our asymptotic analysis. In particular
the following representation of CL will be useful.

Proposition 2.6. Assume ρ0 ∈ (0, 1), ρ0ρ1 ∈ (0, 1). Then,

CL =

∫
R

(x+ σ)L

1− xρ0 + ρ20
µρ1(dx), (2.15)

where the probability measure µρ1 of a possibly mixed type is given by

µρ(dx) =
1

2π

√
4− x2

1− xρ+ ρ2
1{|x|<2}dx+

(
1− 1

ρ2

)
+

δρ+ 1
ρ
(dx). (2.16)

(Here x+ := max{0, x}.)

We remark that measure (2.16) is a shifted Marchenko–Pastur law.

Proof : We first note that the result holds if both ρ0, ρ1 < 1. Indeed, in this case, we can apply
(2.13) with z0 = z1 = tk = uk = 1. Then the left hand side of (2.13) is 1, so the right hand side
gives the integral formula for CL that we want. We now fix ρ0 ∈ (0, 1). As a function of ρ1, this
explicit integral formula extends analytically to complex argument, defining a function

f(ρ) =
1

2π

∫ 2

−2

(σ + x)L

(1− xρ0 + ρ20)(1− xρ+ ρ2)

√
4− x2dx, (2.17)

which is analytic in the complex unit disk |ρ| < 1.
Next we note that since the edge-weights are bounded by max{σ, 1}, the function

C(ρ) =

∞∑
i,j=0

ρi0ρ
jW

(L)
i,j , (2.18)
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is analytic in the complex disk |ρ| < 1/ρ0 (see (2.1)). Since we deduced from (2.13) that f(ρ) = C(ρ)
for ρ ∈ (0, 1), expression (2.18) coincides with (2.17) for |ρ| < 1 and is its analytic extension to the
complex disk |ρ| < 1/ρ0.

Our goal is to extend the integral representation (2.17) to a larger domain by explicit analytic
continuation. We first re-write (2.17) as a complex integral. Substituting x = 2 cos θ, and then
z = eiθ, in (2.17) we get

1

2π

∫ 2

−2

(σ + x)L

(1− xρ0 + ρ20)(1− xρ+ ρ2)

√
4− x2dx

=
1

2π

∫ π

0

4 sin2 θ(σ + 2 cos θ)L

(1− 2ρ0 cos θ + ρ20)(1− 2ρ cos θ + ρ2)
dθ

=
1

4π

∫ π

−π

4 sin2 θ(σ + 2 cos θ)L

(1− 2ρ0 cos θ + ρ20)(1− 2ρ cos θ + ρ2)
dθ

=

(
−1

2

)
· 1

2πi

∮
|z|=1

(z2 − 1)2
(
σ + z + 1

z

)L
(1− ρ0z)(z − ρ0)(1− ρz)(z − ρ)

dz

z
, (2.19)

which is valid for all |ρ| < 1. Consider now |ρ| ∈ (ρ0, 1). In the last line above one can replace the
contour |z| = 1 by |z| = r, and this replacement is valid as long as the circle does not cross any pole
of the integrand, that is, for r ∈ (1, 1/|ρ|). Next, let the contour cross the pole at 1/ρ and (because
of the additional factor −1/2 in front of the integral) add half of the residue at z = 1/ρ. We arrive
at

f1(ρ) = − 1

4πi

∮
|z|=r

(z2 − 1)2
(
σ + z + 1

z

)L
(1− ρ0z)(z − ρ0)(1− ρz)(z − ρ)

dz

z
+

1

2

(
ρ2 − 1

) (
ρ+ 1

ρ + σ
)

L

ρ (ρ− ρ0) (1− ρ0ρ)
, (2.20)

which coincides with f(ρ) for |ρ| ∈ (ρ0, 1), by deformation of contour as explained above, and, with
r fixed, gives the analytic extension of f to all ρ such that 1/r < |ρ| < r. In particular, C(ρ) = f1(ρ)
for 1/r < |ρ| < r. Note that r can be taken arbitrarily close to 1/ρ0.

Next, consider the expression (2.20) for r ∈ (1, 1/ρ0) and ρ such that |ρ| ∈ (1, r), and deform the
contour of integration back to |z| = 1. This subtracts half of the residue of the integrand at z = ρ.
Since r can be taken arbitrarily close to 1/ρ0, f1(ρ) is equal to

f2(ρ) = − 1

4πi

∮
|z|=1

(z2 − 1)2
(
σ + z + 1

z

)L
(1− ρ0z)(z − ρ0)(1− ρz)(z − ρ)

dz

z
+

(
ρ2 − 1

) (
ρ+ 1

ρ + σ
)

L

ρ (ρ− ρ0) (1− ρ0ρ)
(2.21)

for all ρ such that |ρ| ∈ (1, 1/ρ0). In particular, C(ρ) = f2(ρ) for |ρ| ∈ (1, 1/ρ0). Returning back
to the real arguments, we see that (2.17), (2.19) and (2.21) can be combined together into a single
formula which gives

C(ρ) =
1

2π

∫ 2

−2

(σ + x)L

(1− xρ0 + ρ20)(1− xρ+ ρ2)

√
4− x2dx

+

(
1− 1

ρ2

)
+
ρ
(
ρ+ 1

ρ + σ
)L

(ρ− ρ0) (1− ρ0ρ)
, ρ ∈ (0, 1/ρ0), ρ ̸= 1.

This formula extends to ρ = 1 by continuity, establishing (2.16) for ρ1 ≤ 1. To prove (2.16) for
ρ1 ∈ (1, 1/ρ0), we note that by an elementary calculation the contribution of the atom of µρ1
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matches the additional term arising from the residua in (2.21):∫
R

(x+ σ)L

1− xρ0 + ρ20

(
1− 1

ρ2

)
δρ+1/ρ(dx) =

(
1− 1

ρ2

)
(σ + x)L

1− xρ0 + ρ20

∣∣∣
x=ρ+1/ρ

=

(
1− 1

ρ2

) ρ
(
ρ+ 1

ρ + σ
)L

(ρ− ρ0) (1− ρρ0)
.

□

3. Proof of Theorem 1.1

We first note that since UL(x) +HL(x) +DL(x) = ⌊Lx⌋, it is enough to prove joint convergence
of two of the three processes. We will show that

1√
L

{(
γ⌊Lx⌋, HL(x)−

σ

2 + σ
⌊Lx⌋

)}
x∈[0,1]

f.d.d.−−−→

{( √
2√

2 + σ
η̃(a

′,c′)
x ,

√
2σ

2 + σ
Bx

)}
x∈[0,1]

, (3.1)

where η̃(a′,c′), B are independent and a′, c′ are given by (1.10). The above implies the desired joint
convergence of UL(x), HL(x), DL(x), as

UL(x) +DL(x) = ⌊Lx⌋ −HL(x),

UL(x)−DL(x) = γ⌊Lx⌋ − γ0.

To prove (3.1), we fix d ∈ N, and x = (x1, . . . , xd) with x0 := 0 < x1 < · · · < xd = 1. Denoting

hk = HL(xk)−
σ

2 + σ
⌊Lxk⌋ ,

we introduce the Laplace transform ΦL by the formula

ΦL(c,θ) := EL

[
exp

(
−

d∑
k=0

ckγ⌊Lxk⌋ +

d∑
k=1

θkhk

)]
. (3.2)

In this section, recall that EL is the expected value with respect to probability measure PL on M(L)

defined by formula (1.5) with parameters (1.4). Since x is fixed throughout this proof, we suppress
dependence of ΦL on x = (x0, . . . , xd) in our notation.

Our goal is to compute ΦL(L
−1/2c, L−1/2θ) and identify the limit. The main step in the proof is

to show that the expression for the limiting Laplace transform factors and takes the following form.

Proposition 3.1. If θ1, θ2, . . . , θd ∈ R and c0, c1, . . . , cd > 0 are such that

c+ c0 > 0 and cd + a > 0, (3.3)

then

lim
L→∞

ΦL

(
c√
L
,

θ√
L

)
= Ψ(c) · exp

(
σ

(2 + σ)2

d∑
k=1

(xk − xk−1)s̃
2
k

)
, (3.4)

with s̃k =
∑d

j=k θj , k = 1, . . . , d, and

Ψ(c) =

√
2 + σ√
2πCa′,c′

∫
Rd

+

e−
1

2+σ

∑d
k=1(xk−xk−1)ukf(u1)g(ud)

d−1∏
k=1

pck(uk, uk+1) du, (3.5)

with

f(u1) =

√
u1

(c+ c0)2 + u1
, g(ud) =

1

(a+ cd)2 + ud
,
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and
pt(x, y) =

2

π
·

t
√
y

t4 + (y − x)2 + 2(y + x)t2
. (3.6)

The proof of this proposition is postponed to Section 3.1. The transition probability density (3.6)
appeared as the tangent process in Bryc and Wang (2016), and later as the square of the radial part
of a 3-dimensional Cauchy process in Kyprianou and O’Connell (2021, Corollary 1).

The second step in the proof of Theorem 1.1 is to use the following re-write of Bryc et al. (2023b,
Proposition 4.10) which uses change of variables and self-similarity pat(a

2x, a2y) = pt(x, y)/a
2,

qa2x(az, az
′) = qx(z, z

′)/a, a > 0, of kernels (3.6) and (1.6) to insert an auxiliary parameter τ > 0
into the formula.

Proposition 3.2. Let f, g be two measurable functions on R+. With τ, c1, · · · , cd−1 > 0 and
0 = x0 < x1 < · · · < xd ≤ 1, we have

∫
Rd
+

e−τ
∑d

k=1(xk−xk−1)ukf(u1)

(
d−1∏
k=1

pck(uk, uk+1)

)
g(ud)du

=
4

π

∫
Rd−1
+

e
−

d−1∑
k=1

ckzk
f̂(z1)

(
d−1∏
k=2

q2τ(xk−xk−1)(zk−1, zk)

)
ĝ(zd−1)dz, (3.7)

where

f̂(z) :=

∫
R+

f(u2) sin(uz)e−τx1u2
du, (3.8)

ĝ(z) :=

∫
R+

g(u2)u sin(uz)e−τ(xd−xd−1)u
2
du, (3.9)

provided that the functions under the multiple integrals in (3.7) are absolutely integrable.

We apply Proposition 3.2 to (3.5), using an auxiliary Markov processes ζ with transition proba-
bilities P(ζt ∈ dy|ζs = x) = pt−s(x, y)dy for s < t with density (3.6).

Proposition 3.3.
√
2 + σ√
2

1

πCa′,c′

∫ ∞

0
E

[
e−

1
2+σ

∑d
k=1(xk−xk−1)ζsk

ζs1 + (c+ c0)2

∣∣∣∣∣ζsd = u

] √
u du

(a+ cd)2 + u

= E

[
e

1
2+σ

∑d
k=0 ckη̃

(a′,c′)
xk

]
. (3.10)

Proof : We use Proposition 3.2 with τ = 1/(2 + σ), f(u) =
√
u/((c+ c0)

2 + u) and g(u) = 1/((a+
cd)

2 + u). Since
∫∞
0 e−sz sin(uz)dz = u

s2+u2 , we have

f(u2) =
u

(c+ c0)2 + u2
=

∫ ∞

0
e−(c+c0)z0 sin(z0u)dz0,

ug(u2) =
u

(a+ cd)2 + u2
=

∫ ∞

0
e−(a+cd)zd sin(zdu)dzd.

Formulas (3.8) and (3.9) become

f̂(z1) =

∫
R+

f(u2) sin(uz1)e
−τx1u2

du =

∫ ∞

0
e−(c+c0)z0

∫
R+

e−τx1u2
sin(uz1) sin(z0u)dudz0

=
π

2

∫
R+

e−(c+c0)z0q2τx1(z0, z1)dz0,
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and

ĝ(zd−1) =

∫
R+

ug(u2) sin(uzd)e
−τ(xd−xd−1)u

2
du

=

∫
R+

(∫ ∞

0
e−(a+cd)zd sin(zdu)dzd

)
sin(uzd)e

−τ(xd−xd−1)u
2
du

=

∫
R+

e−τ(xd−xd−1)u
2
sin(zdu) sin(uzd)dudzd

=
π

2

∫
R+

e−(a+cd)zdq2τ(xd−xd−1)(zd−1, zd)dzd.

Thus by (3.7), the left hand side of (3.10) becomes
√
2 + σ√
2

1

Ca′,c′

∫
Rd+1
+

e
−

d∑
k=0

ckzk
e−cz0

(
d∏

k=1

q2τ(xk−xk−1)(zk−1, zk)

)
e−azddz

=

√
2 + σ√
2

1

Ca′,c′

∫
Rd+1
+

e
−

d∑
k=0

ckzk
e−cz0

(
d∏

k=1

q2τ(xk−xk−1)(zk−1, zk)

)
e−azddz

=

√
2 + σ√
2

1

Ca′,c′
(2τ)−d/2

∫
Rd+1
+

e
−

d∑
k=0

ckzk
e−cz0

(
d∏

k=1

qxk−xk−1
(zk−1/

√
2τ , zk/

√
2τ)

)
e−azddz,

where we used scaling q2τx(z, z
′) = 1√

2τ
qx(z/

√
2τ , z′/

√
2τ). Substituting z′k = zk/

√
2τ into the

integral and dropping the primes on z′k, we get

1

Ca′,c′

∫
Rd+1
+

e
−

d∑
k=0

ckzk
√
2τ
e−c

√
2τz0

(
d∏

k=1

qxk−xk−1
(zk−1, zk)

)
e−a

√
2τzddz,

which we recognize as the desired right-hand side of (3.10). □

Proof of Theorem 1.1: By Proposition 3.1, the limiting Laplace transform factors. Proposition 3.3
identifies the first factor in (3.4) as the Laplace transform of the first component of the process in
(3.1). We recognize the second factor in (3.4) as the Laplace transform of the second component of
the process in (3.1). To see this, we write it as

E

[
e

√
2σ

2+σ

∑d
k=1 s̃k(Bxk

−Bxk−1
)

]
= E

[
e

√
2σ

2+σ

∑d
k=1 θkBxk

]
.

This identifies the limit of the Laplace transforms (3.4) as a Laplace transform of a probability
measure. To conclude the proof we invoke Bryc and Wang (2019b, Theorem A.1), which asserts
that convergence of Laplace transforms on an open set to a Laplace transform of a probability
measure implies convergence in distribution. □

3.1. Proof of Proposition 3.1. By symmetry, we assume c > 0. We start by rewriting the expression
(3.2) solely in terms of ε−k and ε0k. The first step is to write (recall that h0 = 0)

ΦL(c,θ) = EL

e−γ0
∑d

j=0 cj exp

−
d∑

k=1

(γLk
− γLk−1

)

d∑
j=k

cj +

d∑
k=1

(hk − hk−1)

d∑
j=k

θj


= EL

e−s0γ0 exp

−
d∑

k=1

sk

Lk∑
j=Lk−1+1

(ε+j − ε−j ) +

d∑
k=1

s̃k

Lk∑
j=Lk−1+1

(
ε0j −

σ

2 + σ

) ,
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with

sk =
d∑

j=k

cj , k = 0, . . . , d, s̃k =
d∑

j=k

θj , k = 1, . . . , d.

Since ε+k − ε−k = 1− ε0k − 2ε−k , we get

ΦL(c,θ) = e−
∑d

k=1(Lk−Lk−1)(sk+σs̃k/(2+σ))

× EL

e−s0γ0 exp

2
d∑

k=1

sk

Lk∑
j=Lk−1+1

ε−j +
d∑

k=1

(s̃k + sk)

Lk∑
j=Lk−1+1

ε0j

 .
We therefore get

ΦL

(
c√
L
,

θ√
L

)
=

d∏
k=1

t
−(Lk−Lk−1)/2
L,k

d∏
k=1

v
−(Lk−Lk−1)

σ
2+σ

L,k EL

[
zγ0L,0

(
d∏

k=1

t

∑Lk
j=Lk−1+1 ε

−
j

L,k u

∑Lk
j=Lk−1+1 ε

0
j

L,k

)]
,

with
zL,0 = e−s0/

√
L, tL,k = e2sk/

√
L, vL,k = es̃k/

√
L, uL,k =

√
tL,kvL,k.

Next, we apply the Markov representation (2.13), but before that we verify that (2.12) holds. We
note that tL,1 ≥ tL,2 ≥ · · · ≥ tL,d and that our assumptions on the coefficients c0, . . . , cd in (3.3)
guarantee that

ρL,0 |zL,0|
√
tL,1 =

(
1− c√

L

)
e−c0/

√
L < 1 and

ρL,1√
tL,d

=

(
1− a√

L

)
e−cd/

√
L < 1

for L large enough. We assume implicitly L large enough so the above holds from now on. Thus
after some rewriting we have

ΦL

(
c√
L
,

θ√
L

)
=

∏d
k=1 v

−σ(Lk−Lk−1)/(2+σ)
L,k

CL

× E

[ ∏d
k=1(σvL,k +XtL,k

/
√
tL,k)

Lk−Lk−1

(1− ρL,0zL,0XtL,1 + ρ2L,0z
2
L,0tL,1)(1− ρL,1XtL,d

/tL,d + ρ2L,1/tL,d)

]
.

Lemma 3.4. The normalizing constant satisfies:

CL ∼ (2 + σ)LL1/2 ·
√
2√

2 + σ
· Ca′,c′ as L→ ∞, (3.11)

where Ca,c is given by (A.1) and a′, c′ are from (1.10).

Proof : We use the explicit form of expression (2.15):

CL =
1

2π

∫ 2

−2

(σ + x)L
√
4− x2

(1− ρL,0x+ ρ2L,0)(1− ρL,1x+ ρ2L,1)
dx+

(
ρL,1 −

1

ρL,1

)
+

(
ρL,1 +

1
ρL,1

+ σ
)L

(ρL,1 − ρL,0)(1− ρL,0ρL,1)

=: IL +DL. (3.12)

The dominant term in the integral IL comes from the integral over [0, 2]. This is easy to see as
|x+ σ|L ≤ (max{2− σ, σ})L = o((2 + σ)L) for −2 ≤ x ≤ 0 when σ > 0.
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The argument for the asymptotics of the integral over [0, 2] relies on the substitution x = 2−u2/L
that appeared in similar context in paper Bryc and Wang (2016) and later in Bryc and Wang (2019b),
Bryc et al. (2023b).

IL ∼ 1

2π

∫ 2

0

(σ + x)L
√
4− x2

(1− ρL,0x+ ρ2L,0)(1− ρL,1x+ ρ2L,1)
dx

∼ (2 + σ)L

2π

∫ √
2L

0

(
1− u2

(2+σ)L

)L(
( c√

L
)2 + (1− c√

L
)u

2

L

)(
( a√

L
)2 + (1− a√

L
)u

2

L

)√4− u2

L

2√
L
u2
du

L

∼ 2

π
(2 + σ)LL1/2

∫ √
2L

0

(
1− u2

(2+σ)L

)L
(c2 + u2) (a2 + u2)

u2du ∼ (2 + σ)LL1/2 2

π

∫ ∞

0

u2e−
u2

2+σ du

(c2 + u2) (a2 + u2)
.

The integral is an explicit expression (A.2), compare Bryc et al. (2023b, (4.38) and Lemma A.2).
For a ̸= c we get

IL ∼ (2 + σ)L
√
L · 2√

2 + σ

|c′|H(|c′|/2)− |a′|H(|a′|/2)
c′2 − a′2

= (2 + σ)L
√
L ·

√
2√

2 + σ
C|a′|,|c′|. (3.13)

This proves (3.11) for a ̸= c. For a = c we get

IL ∼ (2 + σ)L
√
L ·

√
π
(
a′2 + 2

)
H
(
a′

2

)
− 2a′

2
√
πa′

√
σ + 2

= (2 + σ)L
√
L ·

√
2√

2 + σ
Ca′,a′ .

Thus (3.11) holds also for a = c > 0.
When a < 0, c > 0 (but a+ c > 0) we need to include the contribution of the discrete part. It is

easy to see that with ρL,1 = 1− a/
√
L > 1 the discrete part in (3.12) is

DL =

aL
(
2
√
L− a

)(
− a√

L
+ 1

1− a√
L

+ σ + 1

)L

(a− c)
(√

L− a
)(√

L(a+ c)− ac
) ∼

√
L(2 + σ)L ·

2a
(
1 + a2

L(σ+2)

)L
a2 − c2

∼
√
L(2 + σ)L · 2ae

a2

σ+2

a2 − c2
=

√
L(2 + σ)L ·

√
2√

2 + σ
· 2

√
2a′e

a′2
4

a′2 − c′2
.

Combining this with (3.13) we see that for a < 0, we have

CL ∼
√
L(2 + σ)L ·

√
2√

2 + σ

C−a′,c′ +
2
√
2 a′e

a′2
4

a′2 − c′2

 .

We now use the identity erfc(x) + erfc(−x) = 2 to verify that

C−a′,c′ +
2
√
2 a′e

a′2
2

a′2 − c′2
= Ca′,c′ .

This completes the proof. □

It turns out that it suffices to restrict the expectation to the event {Xtk ≥ 0}, as shown below.
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Lemma 3.5. If σ > 0 then

ΦL

(
c√
L
,

θ√
L

)
∼
∏d

k=1 v
−σ(Lk−Lk−1)/(2+σ)
L,k

CL

× E


∏d

k=1((σvL,k +XtL,k
/
√
tL,k)

Lk−Lk−11{
XtL,k

≥0
})

(1− ρL,0zL,0Xt1 + ρ2L,0z
2
L,0tL,1)(1− ρL,1XtL,d

/tL,d + ρ2L,1/tL,d)

 . (3.14)

Proof : Since −2
√
t ≤ Xt ≤ 2

√
t for t > 0, xj − xj−1 > 0 and tL,d ≥ 1, the expected value over the

set XtL,j < 0 is bounded by a factor

(max{σ, 2− σ})Lj−Lj−1(2 + σ)L−(Lj−Lj−1)

(1− ρL,0zL,0
√
tL,1)2(1− ρL,1/

√
tL,d)2

∼ C(2 + σ)LL2

(
max{σ, 2− σ}

2 + σ

)L(xj−xj−1)

= o
(
(2 + σ)L

√
L
)

as L→ ∞

By (3.11) this proves (3.14). □

To determine the asymptotics of the expectation, introduce

Us := e−sXe2s , s ∈ R.

This is a stationary [−2, 2]-valued Markov process with univariate probabilities

P(Us = dy) =

√
4− y2

2π
1{|y|≤2}dy (3.15)

and transition probabilities

P(Us = dy|Us′ = y′)

=

√
4− y2

2π

e2(s−s′) − 1

−2yy′ cosh(s− s′) + 2 cosh(2(s− s′)) + y2 + y′2 − 2
dy, s′ < s, y, y′ ∈ [−2, 2].

(3.16)

So we arrive at

ΦL

(
c√
L
,

θ√
L

)
∼
∏d

k=1 v
−σ(Lk−Lk−1)/(2+σ)
L,k

CL

× E

 ∏d
k=1((σvL,k + Usk/

√
L)

Lk−Lk−11Usk/
√
L>0)

(1− ρL,0zL,0
√
tL,1Us1/

√
L + ρ2L,0z

2
L,0tL,1)(1− ρL,1Usd/

√
tL,d + ρ2L,1/tL,d)

 . (3.17)

Introduce
YL(s) := L

(
2− Us/

√
L

)
.

This is a well-studied Markov process, and we shall explain it later. Now, we re-write the expectation
on the right-hand side of (3.17) as

d∏
k=1

(2 + σvL,k)
Lk−Lk−1

× E

 ∏d
k=1(1−

YL(sk)
(2+σvL,k)L

)Lk−Lk−11{YL(sk)<2L}

((1− ρL,0zL,0
√
tL,1)2 + ρL,0zL,0YL(s1)/L)× ((1− ρL,1/

√
tL,d)2 +

ρL,1YL(cd)√
tL,dL

)

 .
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Grouping the first product above with the first product on the right-hand side of (3.17), we arrive
at

ΦL

(
c√
L
,

θ√
L

)
∼ ψ̃L

(
θ

L1/2

)
ψL

(
c

L1/2
,

θ

L1/2

)
, (3.18)

where

ψ̃L

(
θ

L1/2

)
=

d∏
k=1

(
σ

2 + σ
v
2/(2+σ)
L,k +

2

2 + σ
v
−σ/(2+σ)
L,k

)Lk−Lk−1

,

ψL

(
c

L1/2
,

θ

L1/2

)
=
L2(2 + σ)L

CL
E [GL (YL(s1), . . . , YL(sd))] , (3.19)

with

GL(y1, . . . , yd) :=

∏d
j=1((1−

yj
(2+σvL,j)L

)Lj−Lj−11{|yj |≤2L})(
L(1− ρL,0z0

√
tL,1)2 + ρL,0zL,0y1

) (
L(1− ρL,1/

√
tL,d)2 + ρL,1yd/

√
tL,d
) .

It is clear that

lim
L→∞

ψ̃L

(
θ

L1/2

)
= e

σ
(2+σ)2

∑d
k=1(xk−xk−1)s̃

2
k . (3.20)

This determines the second factor on the right hand side of (3.4). For (3.19), since vL,k = 1 +

s̃k/
√
L+O(L−1),

(L(1− ρL,0zL,0
√
t1)

2 + ρL,0zL,0y1) =
(
(c+ c0)

2 + y1
)
+O(L−1/2),

L(1− ρL,1/
√
tL,d)

2 + ρL,1yd/
√
tL,d =

(
(a+ cd)

2 + yd
)
+O(L−1/2),

we have

lim
L→∞

GL(y1, . . . , yd) = G(y1, . . . , yd) :=
exp(−

∑d
j=1

xj−xj−1

2+σ yj)

((c+ c0)2 + y1) ((a+ cd)2 + yd)
.

Let also πL(u) denote the marginal density of YL(cd). We have

ψL

(
c

L1/2
,

θ

L1/2

)
=
L2(2 + σ)L

CL
E [GL (YL(s1), . . . , YL(sd))]

∼ L3/2
√
2 + σ√

2Ca′,c′
E [GL (YL(s1), . . . , YL(sd))]

=

√
2 + σ√
2Ca′,c′

∫ 2L

0
E [GL(Yn(s1), . . . , Yn(sd−1), u)|YL(cd) = u] L3/2πL(u) du.

Now we take a closer look at the process {YL(s)}s>0. This is a Markov process with the univariate
law that can be computed from (3.15) such that

P(YL(s) = dv) = πL(v)dv =

√
v(4L− v)

2πL2
dv,

compare Bryc and Wang (2019b, Lemma 4.2), and transition probabilities for sk > sk+1 that can
be computed from (3.16). Moreover, it is known (Bryc and Wang, 2016) that as L→ ∞,

L
(
(YL(s))s≥cd

∣∣∣ YL(cd) = u
)

f.d.d.−−−→ L
(
(ζs)s≥cd

∣∣∣ ζcd = u
)

where we let ζ denote the Markov process with transition probabilities P(ζt ∈ dy|ζs = x) =
pt−s(x, y)dy given in (3.6). In the above, L(· | ·) is understood as the law induced by the conditional
law of the corresponding Markov process starting at fixed time from a fixed point u.
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In view of the bound (1− y/((2 + σ)L))xL ≤ exp(−xy/(2 + σ)) which is valid for 0 ≤ y ≤ 2L,
we see that

GL(y1, . . . , yd) ≤
C

(c+ c0)2(a+ cd)2
exp

(
−

d∑
k=1

(xk − xk−1)yk/(2 + σ)

)
for some C and large L. (More precisely, there is L0 and C such that this bound holds for all L ≥ L0

and all 0 ≤ yk ≤ 2L, but the bound extends to all 0 ≤ yk <∞ as GL(y) = 0 when some yk > 2L.)
So either invoking Billingsley (1999, Exercise 6.6) or the dominated convergence theorem, we see
that

lim
L→∞

ψL

(
c

L1/2
,

θ

L1/2

)
=

√
2 + σ√
2πCa′,c′

∫ ∞

0
E [G(ζs1 , . . . , ζsd)|ζsd = u]

√
u du = ψ(c).

Combined with (3.18) and (3.20), this completes the proof of (3.4).

4. Proof of Proposition 1.3

To avoid cumbersome notation and additional technicalities, we prove Proposition 1.3 for

ρL,0 = e−c/
√
L, ρL,1 = e−a/

√
L (4.1)

instead of the asymptotically equivalent expression (1.4).
First, it is known, see Barraquand and Le Doussal (2022), that the law Pη(a,c)/

√
2 on C[0, 1] of

process η(a,c)/
√
2 is absolutely continuous with respect to the law PB of the Brownian motion of

variance 1/2 with the Radon-Nikodym derivative
dPη(a,c)/

√
2

dPB
=

2

(a+ c)Ca,c
e(a+c)minx∈[0,1] Bx−aB1 , (4.2)

where Ca,c is the normalizing constant (1.8).
Next, denote by S = {S1, S2, . . . , SL} a random walk starting at 0 with i.i.d increments taking

values in {±1, 0} with probabilities 1/(2 + σ) and σ/(2 + σ) respectively. Introduce its partial-sum
process

ζL(t) := S⌊Lt⌋, t ∈ [0, 1]. (4.3)
The law of ξL is absolutely continuous with respect to the law of ζL onD[0, 1], denoted by PξL ,PζL

respectively. To see this, it suffices to compare the laws of the vectors γ◦
L = {γk − γ0}k=1,...,L and

SL = (S1, . . . , SL) on ZL, denoted by Pγ◦
L
,PSL

respectively. By summing over the values of
γ0 ∈ Z≥0 such that min0≤k≤L{γk} ≥ 0, for s = {s1, . . . , sL} in the support of SL, the Radon-
Nikodym derivative is

dPγ◦
L

dPSL

(s) =
1

CL
(ρL,0ρL,1)

−mink=0,...,L skρsLL,1,

where CL is the normalizing constant and s0 = 0. It then follows that with ω = {ωt}t∈[0,1] ∈ D[0, 1]
we have

dPξL

dPζL

(ω) =
1

CL
(ρL,0ρL,1)

−minx∈[0,1] ωxρω1
L,1 =

1

CL
E(ω/

√
L), (4.4)

where we used (4.1) and denoted E(ω) := exp
(
(a+ c) infx∈[0,1] ωx − aω1

)
. Formula (4.4) implies

that for any bounded continuous function Φ : D[0, 1] → R we have

E

[
Φ

(
ξL√
L

)]
=

1

CL
E

[
Φ

(
ζL√
L

)
E
(
ζL√
L

)]
, (4.5)

Since the increments of S have mean zero and variance 2/(2 + σ), by Donsker’s theorem
1√
L
{ζL(x)}x∈[0,1] ⇒

2√
2 + σ

{Bx}x∈[0,1]
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in D[0, 1]. Since supL=1,2,...E

[
E
(

ζL√
L

)2]
< ∞ and Φ is bounded, the real random variables

Φ
(

ζL√
L

)
E
(

ζL√
L

)
, L = 1, 2 . . . are uniformly integrable. Uniform integrability and weak conver-

gence imply convergence of expectations (Billingsley (1999, Theorem 3.5)), so it follows that

lim
L→∞

E

[
Φ

(
ζL√
L

)
EL
(
ζL√
L

)]
= E

[
Φ

(
2√
2 + σ

B

)
E
(

2√
2 + σ

B

)]
= E

[
Φ

(
2√
2 + σ

B

)
e
(a+c) inft∈[0,1]

2√
2+σ

Bx−a 2√
2+σ

B1

]
= E

[
Φ

(
2√
2 + σ

B

)
e(a

′+c′)min0≤x≤1 Bx−a′B1

]
. (4.6)

In particular, (4.6) with Φ ≡ 1 implies that the normalizing constants converge, CL → (a′ +
c′)Ca′,c′/2. Dividing (4.6) by these normalizing constantsand using formulas (4.5) and (4.2) we get

lim
L→∞

E

[
Φ

(
ξL√
L

)]
= E

[
Φ

(√
2

2 + σ
η(a

′,c′)

)]
,

for all continuous and bounded functions Φ from D[0, 1] to R. This completes the proof of (1.13)
under assumption (4.1). We omit the proof of (1.13) under assumption (1.4), as it requires cum-
bersome notation and additional steps.
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Appendix A. Auxiliary formulas

The following integral is known, for a derivation, see for example Bryc et al. (2023b, Lemma A.2).

Lemma A.1. The normalizing constant

Ca,c =

∫
R2

+

e−(cx+ay)/
√
2q1(x, y)dxdy

is given by the expression

Ca,c =


√
2 · aH(a/2)− cH(c/2)

a2 − c2
, if a ̸= c, a+ c > 0,

2 + a2

2
√
2a

·H(a/2)− 1√
2π
, if a = c > 0,

(A.1)

where for x ∈ R,

H(x) = ex
2
erfc(x) with erfc(x) =

2√
π

∫ ∞

x
e−t2dt.

The following is a minor re-write of known integrals, see Bryc and Kuznetsov (2022, Lemma 4.5)
or Bryc et al. (2023b, formula after (4.38)).

Lemma A.2. For a+ c > 0 and τ > 0, we have
1

2π

∫ ∞

0
e−τv2/2 4v2

(a2 + v2)(c2 + v2)
dv =

√
τC|a|

√
2τ ,|c|

√
2τ . (A.2)
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