
ALEA, Lat. Am. J. Probab. Math. Stat. 21, 95–120 (2024)
DOI: 10.30757/ALEA.v21-05

On the compensator of step processes in progressively en-
larged filtrations and related control problems

Elena Bandini, Fulvia Confortola and Paolo Di Tella*
Università di Bologna, Dipartimento di Matematica. Piazza di Porta San Donato 5, 40126 Bologna.
E-mail address: elena.bandini7@unibo.it

Politecnico di Milano, Dipartimento di Matematica. Via E. Bonardi 9, 20133 Milano.
E-mail address: fulvia.confortola@polimi.it

Inst. für Mathematische Stochastik, TU Dresden. Zellescher Weg 25, 01217 Dresden, Germany.
*Corresponding author
E-mail address: Paolo.Di_Tella@tu-dresden.de

Abstract. For a step process X with respect to its natural filtration F, we denote by G the smallest
right-continuous filtration containing F and such that another step process H is adapted. We investig-
ate some structural properties of the step process X in G. We show that Z = (X ,H) possesses the weak
representation property with respect to G. Moreover, in the case H = 1[τ,+∞), where τ is a random
time (but not an F-stopping time) satisfying Jacod’s absolute continuity hypothesis, we compute the
G-predictable compensator νG,X of the jump measure of X . Thanks to our theoretical results on νG,X ,
we can consider stochastic control problems related to model uncertainty on the intensity measure of
X , also in presence of an external risk source modeled by the random time τ .

1. Introduction

Let (X ,F) and (H,H) denote two step processes with respect to their natural filtration, respectively.
By G we denote the smallest right-continuous filtration containing F and H. If τ is a random time but
not an F-stopping time and H is the associated default process, i.e., H = 1[τ,+∞), then the filtration G
is called progressive enlargement of F by τ .

In the present paper we investigate some structural properties of the semimartingale (X ,F) in the
filtration G. For example, we show that the G-semimartingale Z = (X ,H) possesses the weak rep-
resentation property (from now on WRP) with respect to G, see Theorem 3.1. This extends the
results obtained in Di Tella and Jeanblanc (2021), in which X and H are simple point processes. The

Received by the editors January 18th, 2023; accepted December 14th, 2023.
2010 Mathematics Subject Classification. 93E20, 60G55, 60G57.
Key words and phrases. Progressive enlargement of filtration, compensators, stochastic optimal control, marked point pro-
cesses, BSDEs.
The authors thank an anonymous referee for valuable comments.

95

http://alea.impa.br/english/index_v21.htm
https://doi.org/10.30757/ALEA.v21-05


96 Elena Bandini, Fulvia Confortola and Paolo Di Tella

weak representation property for marked point processes has also been recently studied in the article
Calzolari and Torti (2022). However, the results of Calzolari and Torti (2022) are very general and go
beyond the semimartingale context, while here we give a concise independent proof of the WRP in
the special case of step processes.

Furthermore, in the special case of the progressive enlargement by τ , we compute the G-predictable
compensator νG,X of the jump measure µX of X under Jacod’s absolute continuity hypothesis, see
Section 4. These latter results extend those recently obtained by Gapeev, Jeanblanc and Wu in Gapeev
et al. (2021), where the stronger Jacod’s equivalence hypothesis is assumed. Thanks to our theor-
etical results, we can consider stochastic control problems under model uncertainty and in presence
of an external risk source. The additional risk source is modeled here by the occurrence time τ of
a completely external shock event, such as a default time or the death time of an agent, that cannot
be inferred using the information available in F. The model uncertainty affects the G-predictable
compensator νG,X ,u of µX , that is not a-priori fixed but it rather depends on the G-predictable control
processes u. To every G-predictable compensator νG,X ,u corresponds a different probability measure
Pu.

Denoting by Iu(X) = (Iu
t (X))t∈[0,T ] a G-measurable (that is, a defaultable) cost functional, where

T > 0 is a fixed maturity and u an admissible control, we address the problem of optimizing the
expected cost functional J(u) = Eu[Iu

T (X)], where Eu denotes the expectation under Pu. In our model
the class of the admissible G-predictable compensators of µX is dominated by νG,X and the optimizer
controls the G-predictable density of νG,X ,u. Notice that a special example of a G-measurable cost
functional is obtained if Iu(X) itself is F-measurable but the optimization problem is pursued only up
to τ , that is, the expected cost functional to optimize becomes Jτ(u) := Eu[Iu

T∧τ
(X)]. Hence, in this

article, we consider both the problems of optimizing the expected value of a defaultable cost functional
at maturity T > 0 as well as the problem of optimizing the expected value of a non-defaultable (i.e.,
F-measurable) cost functional up to the exogenous random time T ∧ τ . This latter problem has the
interpretation of the one of an agent who only disposes of the information available in the reference
filtration F but, for some reasons as her death (as it happens, for example, in life insurance) or the
default of part of the market (as it happens, for example, in credit risk), she has only access to the
market up to τ . We stress that our model for Iu(X) is very general and covers classical cases as
the exponential utility function. A possible frame of application of these control problems could be
the one of an insurance company who, given a risk model represented by X , a G-measurable (or F-
measurable) running and terminal costs, has to determine the best or worst case for the expected cost
up to maturity (or up to default), see Section 6.

To represent the value function associated to these class of control problems, we follow a dynamical
approach based on a class of BSDEs with a G-predictable Lipschitz-continuous generator of sub-
linear growth and driven by the jump measure µZ of the semimartingale Z = (X ,H). Existence and
uniqueness of the solution of the involved BSDEs relay on the theory developed in Confortola and
Fuhrman (2013). In Confortola and Fuhrman (2013) the authors assume that the driving marked
point process is quasi-left-continuous, i.e., its compensator is continuous. This assumption is crucial:
Indeed, it is shown in Confortola et al. (2016, Remark 10.1) that if the compensator is not continuous,
one cannot expect that the corresponding BSDE admits a solution, in general. On the other side, in
Di Tella and Jeanblanc (2021, Counterxample 4.7) the authors show that the F-quasi-left continuity of
the marked point process µX is not preserved in G, that is, in particular, νG,X need not be continuous.
Therefore, the theoretical results in Section 4, together with the martingale representation theorem
obtained in Theorem 3.1, are crucial to ensure that these BSDEs admit a unique solution also with
respect to the enlarged filtration G.
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We stress that the theory of BSDEs in progressively enlarged filtrations and the related dynamical
approach to optimal control problems has known important developments in the last decade. For
instance, in Pham (2010), Pham studied an optimal investment problem for an agent delivering the
defaultable claim at maturity T . Similar problems have been addressed in Lim and Quenez (2011),
Ankirchner et al. (2010) and Jiao and Pham (2011).

Further results concern expected utility optimization problems with random terminal time, where
the progressively enlarged filtration is used to handle the time τ of a shock that affects the market or
the agent. These problems can be solved by introducing a suitable BSDE over [0,T ∧τ]. In Kharroubi
and Lim (2014) and Kharroubi et al. (2013) the authors consider optimization problems on [0,T ∧ τ]
in a progressively enlarged Brownian filtration G reducing the study of the BSDEs on [0,T ∧τ] to the
one of an associated BSDEs with deterministic horizon T in the reference Brownian filtration F. This
method is often called in the literature reduction method. Following the approach of Kharroubi et al.
(2013), Jeanblanc et al. (2015) study an exponential utility maximization problem over [0,T ∧ τ] in a
progressively enlarged Brownian filtration. In both Kharroubi et al. (2013) and Jeanblanc et al. (2015)
the random time τ avoids stopping times and satisfies the immersion property. More general BSDEs
over [0,T ∧ τ] have been considered in the recent paper Aksamit et al. (2023) where τ is a random
time satisfying some mild conditions.

In the present paper, relying on the martingale representation theorem in G and following the
approach in Di Tella (2020), we show that the problem up to default (i.e., up to T ∧ τ) can be solved
as a problem with a G-measurable cost functional up to maturity (i.e., up to T ). Furthermore, we
prove that the value function of the problem up to default coincides with the one of the problem up to
maturity. Additionally, we establish an explicit relationship between the two optimal control processes
(see Theorem 5.17). We also notice that the control problems from the literature mentioned before are
different from those considered here. Indeed, the agent here controls the probability measure and the
G-predictable compensator of µX with the goal of determining the worst/best case for the expected
cost functional rather then the optimal strategy.

The present paper has the following structure: In Section 2 we recall same basic notions. In Section
3 we obtain a martingale representation theorem in the enlarged filtration of a step process. Section 4
is devoted to the study of the G-quasi-left continuity of the step process Z = (X ,H), if H = 1[τ,+∞),
and to the computation of νG,Z . The applications to different kinds of control problems both on [0,T ]
and [0,T ∧ τ] are presented in Section 5. In Section 6 we provide an example on optimization of the
expected exponential utility of the terminal wealth under the worst-case scenario. Finally, the proofs
of technical results of Sections 4 and 5 are postponed to the Appendices A and B, respectively.

2. Basic Notions

Let (Ω,F ,P) be a probability space. We denote by F = (Ft)t≥0 a right-continuous filtration of
subsets of F and by O(F) (resp. P(F)) the F-optional (resp. F-predictable) σ -algebra on Ω×R+.
We define F∞ :=

∨
t≥0 Ft .

Let X be a stochastic process. We sometimes use the notation (X ,F) to mean that X is F-adapted.
By FX we denote the smallest right-continuous filtration such that X is adapted. If X is càdlàg, we
denote by ∆X the jump process and use the convention ∆X0 = 0.

We say that an F-adapted càdlàg process X is F-quasi-left-continuous if ∆Xσ = 0 a.s. for every
finite-valued F-predictable stopping time σ .



98 Elena Bandini, Fulvia Confortola and Paolo Di Tella

Random measures. For a Borel subset E of Rd , we introduce Ω̃ := Ω×R+×E and the product
σ -algebra Õ(F) := O(F)⊗B(E) and P̃(F) := P(F)⊗B(E). If W is an Õ(F)-measurable (resp.
P̃(F)-measurable) mapping from Ω̃ into R, it is called an F-optional (resp. F-predictable) function.

Let µ be a random measure on R+×E (see Jacod and Shiryaev (2003, Definition II.1.3)).
For a nonnegative F-optional function W , we write W ∗ µ = (W ∗ µt)t≥0, where W ∗ µt(ω) :=∫

(0,t]×E W (ω,s,x)µ(ω,ds,dx) is the process defined by the (Lebesgue–Stieltjes) integral of W with
respect to µ (see Jacod and Shiryaev (2003, II.1.5) for details). If W ∗ µ is F-optional (resp. F-
predictable), for every optional (resp. F-predictable) function W , then µ is called F-optional (resp.
F-predictable).

Semimartingales. When we say that X is a semimartingale, we always assume that it is càdlàg. For
an Rd-valued F-semimartingale X , we denote by µX the jump measure of X , that is, µX(ω,dt,dx) =
∑s>0 1{∆Xs(ω )̸=0}δ(s,∆Xs(ω))(dt,dx), where, here and in the whole paper, δa denotes the Dirac measure at
point a. From Jacod and Shiryaev (2003, Theorem II.1.16), µX is an integer-valued random measure
on R+×Rd with respect to F, see Jacod and Shiryaev (2003, Definition II.1.13). Thus, µX is, in par-
ticular, an F-optional random measure. According to Jacod and Shiryaev (2003, Definition III.1.23),
µX is called an Rd-valued marked point process (with respect to F) if µX(ω; [0, t]×Rd) < +∞, for
every ω ∈ Ω and t ∈ R+. By νX we denote the F-predictable compensator of µX , see Jacod and
Shiryaev (2003, Definition II.2.6). We recall that νX is a predictable random measure characterized
by the following properties: For any F-predictable function W such that |W | ∗µX ∈ A +

loc(F), we have
|W | ∗ νX ∈ A +

loc(F) and W ∗ µX −W ∗ νX ∈ H 1
loc(F), H 1

loc(F) denoting the space of F-local martin-
gales and A +

loc(F) the space of F-adapted locally integrable càdlàg increasing processes starting at
zero. We recall that X is quasi-left continuous if and only if there exists a version of νX that satisfies
identically νX(ω,{t}×Rd) = 0, t ≥ 0, see Jacod and Shiryaev (2003, Corollary II.1.19).

If X = Y −Z with Y,Z ∈ A +
loc(F), we then write X ∈ Aloc(F). For X ∈ Aloc(F) we denote by X p,F

the F-dual predictable projection of X , that is the unique F-predictable process in Aloc(F) such that
X −X p,F ∈ H 1

loc(F).
An Rd-valued semimartingale X is a step process with respect to F if it can be represented in

the form X = ∑
∞
n=1 ξn1[τn,+∞), where (τn)n is a sequence of F-stopping times such that τn ↑ +∞,

τn < τn+1 on {τn < +∞} and (ξn)n≥1 is a sequence of Rd-valued random variables such that ξn is
Fτn-measurable and ξn ̸= 0 if and only if τn < +∞ (see He et al. (1992, Definition 11.48)). The
process NX = ∑

∞
n=1 1[τn,+∞) is called the point process associated to X . If X is a step process with

respect to F, we then obviously have τn = inf{t > τn−1 : Xt ̸= Xτn−1} (τ0 := 0), ξn = ∆Xτn1{τn<+∞} and

µ
X(dt,dx) =

∞

∑
n=1

1{τn<+∞}δ(τn,ξn)(dt,dx). (2.1)

We say that a semimartingale X is a sum of jumps with respect to F if X is F adapted, of finite
variation and X = ∑0≤s≤· ∆Xs. If X is a sum of jumps, then X = Id ∗ µX holds, where Id(x) := x.
Furthermore, it is evident, that µX is a marked step process if and only if X is a step process (see
Jacod and Shiryaev (2003, III.1.21 and Proposition II.1.14)), that is, if X has finitely many jumps over
compact time intervals.

3. Martingale Representation

For an Rd-valued step process (X ,FX) and a σ -field RX , called the initial σ -field, we denote by
F = (Ft)t≥0 the filtration FX initially enlarged by RX , thus Ft := RX ∨F X

t . It is well-known that
F is right-continuous and clearly, (X ,F) is a step process. We stress that non-trivial initial σ -field
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RX allows to include in the theory developed in the present paper, without any additional effort,
also step processes with F0-measurable semimartingale characteristics, that is, step-processes with
conditionally independent increments with respect to F given F0.

We now consider an Rℓ-valued step process H and introduce H = (Ht)t≥0 by Ht := RH ∨F H
t ,

t ≥ 0, where RH denotes a σ -field.
We denote by G= (Gt)t≥0 the progressive enlargement of F by H, where

Gt :=
⋂
s>t

Fs ∨Hs t ≥ 0.

It is evident that G is the smallest right-continuous filtration containing FX , FH , RX and RH (i.e., F
and H).

As a special example of H, one can take the default process associated with a random time τ , i.e.,
Ht(ω) := 1[τ,+∞)(ω, t), where τ is a (0,+∞]-valued random variable. In this case (H,H) is a point
process. If RH is trivial, G is called the progressive enlargement of F by τ and it is the smallest
right-continuous filtration containing F and such that τ is a G-stopping time.

We now introduce the Rd ×Rℓ-valued G-semimartingale Z = (X ,H)⊤. Clearly, Z is a sum of jumps
with respect to G, hence it is a G-semimartingale. The jump measure µZ of Z is an integer-valued
random measure on R+×Rd ×Rℓ and satisfies

µ
Z(ω,dt,dx1,dx2) = ∑

s>0
1{∆Zs(ω )̸=0}δ(s,∆Zs(ω))(dt,dx1,dx2).

Theorem 3.1. Let (X ,FX) and (H,FH) be step processes taking values in Rd and Rℓ respectively
and consider two initial σ -fields RX and RH . We define the filtrations F, H and G as above and set
Z := (X ,H)⊤. We then have:

(i) µZ is an Rd ×Rℓ-valued marked point process, that is (Z,G) is a step process.
(ii) G is the smallest right-continuous filtration containing R := RX ∨RH and such that µZ is

optional.
If furthermore F = G∞, then every Y ∈ H 1

loc(G) can be represented as

Y = Y0 +W ∗µ
Z −W ∗ν

Z (3.1)

where (ω, t,x1,x2) 7→ W (ω, t,x1,x2) is a P(G)⊗B(Rd)⊗B(Rℓ)-measurable function such that
|W | ∗µZ ∈ A +

loc(G) and νZ denotes the G-dual predictable projection of the jump measure µZ of Z.

Proof : We start proving (i). Since Z is a sum of jumps, it is sufficient to show that µZ is a marked
point process with respect to G. To this aim, we observe that µX and µH are an Rd-valued and an Rℓ-
valued marked point process with respect to G, respectively, (X ,G) and (H,G) being an Rd-valued
and an Rℓ-valued step processes, respectively. Therefore, we have

µ
Z((0, t]×Rd ×Rℓ) = ∑

0<s≤t
1{∆Zs ̸=0} = ∑

0<s≤t
1{∆Xs ̸=0}∪{∆Hs ̸=0}

≤ ∑
0<s≤t

(1{∆Xs ̸=0}+1{∆Hs ̸=0})

= µ
X((0, t]×Rd)+µ

H((0, t]×Rℓ)<+∞,

meaning that µZ is an Rd ×Rℓ-valued marked point process with respect to G. This concludes the
proof of (i).

We now come to (ii). Let us denote by G′ the smallest right continuous filtration such that µZ is
optional. We first show the identity G′ = FZ . Since Z is an FZ-semimartingale, µZ is an FZ-optional
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integer-valued random measure. So, G′ ⊆ FZ holds. We now show the converse inclusion G′ ⊇ FZ .
We denote g1(x1,x2) = x1 and g2(x1,x2) = x2. By definition of µZ we have

|g1| ∗µ
Z
t = ∑

0<s≤t
|∆Xs|1{∆Z ̸=0}

= ∑
0<s≤t

|∆Xs|
(
1{∆Xs ̸=0,∆Hs=0}+1{∆Xs=0,∆Hs ̸=0}+1{∆Xs ̸=0,∆Hs ̸=0}

)
= ∑

0<s≤t
|∆Xs|1{∆Xs ̸=0} ≤ Var(X)t <+∞,

where Var(X)t(ω) denotes the total variation of s 7→ Xs(ω) on [0, t]. Hence, the integral g1 ∗ µZ is
well defined and satisfies X = g1 ∗µZ . Analogously, H = g2 ∗µZ holds. This yields that X and H are
G′-optional processes. Since G′ is right-continuous, we get G′ ⊇ FZ . From Jacod (1979, Proposition
3.39 (a)) the filtration R ∨G′ is right-continuous. Therefore, R ∨G′ and G coincide: They are both
the smallest right continuous filtrations containing FX , FH , RX and RH . The proof of (ii) is complete.

We now come to (3.1). If we assume F = G∞, this is an immediate consequence of (i), (ii) and
Jacod and Shiryaev (2003, Theorem III.4.37). The proof is complete. □

As an application of Theorem 3.1, we can easily show by induction the following result.

Corollary 3.2. We consider the Rdi-valued step processes (X i,FX i
) and the initial σ -fields RX i

, i =
1, . . . ,n. We set Fi := FX i ∨RX i

and denote by G the smallest right-continuous filtration containing
{Fi, i = 1, . . . ,n}. Then the E := Rd1 ×·· ·×Rdn-valued semimartingale Z = (X1, . . . ,Xn)⊤ satisfies:

(i) µZ is an E-valued marked point process with respect to G, that is Z is an E-valued step process
with respect to G.

(ii) G is the smallest right continuous filtration containing R :=
∨n

i=1 RX i
and such that µZ is an

optional random measure.
If furthermore F = G∞, then every Y ∈ H 1

loc(G) can be represented as

Y = Y0 +W ∗µ
Z −W ∗ν

Z (3.2)

where (ω, t,x1, . . . ,xn) 7→W (ω, t,x1, . . . ,xn) is a P(G)⊗B(E)-measurable function such that |W | ∗
µZ ∈ A +

loc(G) and νZ denotes the G-dual predictable projection of the jump measure µZ of Z.

4. The dual predictable projection in the enlarged filtration

Consider an Rℓ-valued step process H and introduce H = (Ht)t≥0 by Ht := RH ∨F H
t , t ≥ 0,

where RH denotes a σ -field. We denote by G= (Gt)t≥0 the progressive enlargement of F by H.
The next result, which holds for general step processes, gives the structure of νG,Z if H and X have

no common jumps. Its proof, as well as all those one of other technical results from this section, is
postponed to the Appendix A.

Theorem 4.1. Let (X ,F) be an Rd-valued step-process and let (H,H) be an Rℓ-valued step-process.
If ∆X∆H = 0, then the following identities hold for the Rd ×Rℓ-valued G-step process Z = (X ,H).

(i) µZ(ω,dt,dx1,dx2) = µX(ω,dt,dx1)δ0(dx2)+µH(ω,dt,dx2)δ0(dx1).
(ii) νG,Z(ω,dt,dx1,dx2) = νG,X(ω,dt,dx1)δ0(dx2)+νG,H(ω,dt,dx2)δ0(dx1).

4.1. Progressive enlargement by a random time. We now denote by G the progressive enlargement
of F by a random time τ : Ω −→ (0,+∞]: G is the smallest right-continuous filtration containing F
and such that τ is a G-stopping time.
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For a given random time τ , we denote by H = 1[τ,+∞) the default process of τ and by A = o(1−
H) = o1[0,τ) the F-optional projection of (1−H) = 1[0,τ) (see Dellacherie (1972, Theorem V.14 and
V.15)). The process A is a càdlàg F-supermartingale, called Azéma supermartingale, satisfying At =
P[τ > t|Ft ] a.s., for every t ≥ 0. It is well-known that {A− > 0} ⊆ [0,τ] (see, e.g., Aksamit and
Jeanblanc (2017, Lemma 2.14)), so the process 1

A−
1[0,τ] is well defined.

The G-dual predictable projection H p,G of H is denoted by ΛG and, by Aksamit and Jeanblanc
(2017, Proposition 2.15) it satisfies

Λ
G =

∫
τ∧·

0

1
As−

dH p,F
s , (4.1)

H p,F denoting the F-dual predictable projection of H.
Because of the special structure of the enlarged filtration, the following result holds.

Lemma 4.2. Let (ω, t,x) 7→W (ω, t,x) be a G-predictable function. Then, there exists an F-predictable
function (ω, t,x) 7→ W (ω, t,x) such that W (ω, t,x)1[0,τ](ω, t) = W (ω, t,x)1[0,τ](ω, t). If furthermore
W is bounded, then W is bounded too.

4.2. Quasi-left continuity in the enlarged filtration. From here on, X is an Rd-valued step process
and F = (Ft)t≥0 where Ft := F X

t . In particular, F0 is trivial, since X0 = 0, X being a step process.
Moreover, τ : Ω → (0,+∞] denotes a random time and H := 1[τ,+∞) the default process associated
with τ . Then we set Z := (X ,H). We indicate by G the progressive enlargement of F by τ . We also
use the notation νF,X (resp. νG,X ) for the F-dual (resp. G-dual) predictable projection of µX , while
νG,Z denotes the corresponding G-dual predictable projection of jump measure µZ of Z.

Assume that X ∈Aloc(F) is F-quasi-left-continuous. We are interested in the following question: Is
X G-quasi-left-continuous? In general, this is not true: Intuitively, the larger filtration G supports more
predictable stopping times than F. To see this we recall Di Tella and Jeanblanc (2021, Counterexample
4.8):

Counterexample 4.3. Let X be a homogeneous Poisson process with respect to FX and let (τn)n≥1 be
the sequence of the jump-times of FX . The process X is not quasi-left-continuous in the filtration G
obtained enlarging FX progressively by the random time τ = 1

2(τ1 + τ2). Indeed, the jump-time τ2 of
X is announced in G by (ϑn)n≥1, ϑn := 1

n τ +(1− 1
n)τ2, and ϑn > τ is a G-stopping time for every

n ≥ 1 by Dellacherie (1972, Theorem III.16). Hence, τ2 is a G-predictable jump-time of X .

Notice that the quasi-left continuity of X can get lost only over (τ,+∞], as the following result
shows.

Proposition 4.4. If X is F-quasi-left continuous, then the G-adapted stopped process Xτ (defined by
Xτ

t := Xt∧τ , t ≥ 0) is G-quasi-left-continuous.

We now state sufficient conditions for the G-quasi-left continuity of Z.
Avoidance of F-stopping times. The first property we are going to recall is the avoidance of F-stopping
times, from now on referred as assumption (A ).

(A ) The random time τ is such that P[τ = σ <+∞] = 0 for every F-stopping time σ .

The interpretation of assumption (A ) is the following: The random time τ carries an information
which is completely exogenous: Nothing about τ can be inferred from the information contained in
the reference filtration F.
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Proposition 4.5. Let τ satisfy (A ). We then have:
(i) H quasi-left continuous and τ is a G-totally inaccessible stopping time.
(ii) ∆X∆H = 0.
(iii) µZ(ω,dt,dx1,dx2) = µX(ω,dt,dx1)δ0(dx2)+dHt(ω)δ1(dx2)δ0(dx1), and

ν
G,Z(ω,dt,dx1,dx2) = ν

G,X(ω,dt,dx1)δ0(dx2)+dΛ
G
t (ω)δ1(dx2)δ0(dx1). (4.2)

Proof : Let τ satisfy (A ). To see (i), we observe that (A ) is equivalent to the continuity of the F-dual
optional projection Ho,F of H (see, e.g., Aksamit and Jeanblanc (2017, Lemma 1.48(a)) or Di Tella
and Engelbert (2022, Lemma 3.4)). Hence, the identity Ho,F = H p,F holds. Because of (4.1), this
yields the continuity of ΛG. We now show (ii). By the definition of [X ,H], we get

[X ,H]t = ∑
s≤t

∆Xs∆Hs = ∑
s≤t

∆Xs∆Hs1{∆Xs ̸=0}∩{∆Hs ̸=0}. (4.3)

Let now (σn)n≥1 denote a sequence of F-stopping times exhausting the thin set {∆X ̸= 0}. We ob-
viously have {∆X ̸= 0}∩{∆H ̸= 0}=

⋃
∞
n=1[σn]∩ [τ], where for a stopping time η we denote by [η ]

the graph of η . By (A ), the random set [σn]∩ [τ] is evanescent, for every n ≥ 1. Hence, (4.3) yields
[X ,H] = 0 and therefore ∆X∆H = ∆[X ,H] = 0. The statement (iii) follows by (ii) and by Theorem
4.1, using the special form of H. The proof is complete □

Immersion property. By Proposition 4.5 (i), if τ satisfies assumption (A ), then the process H is G-
quasi-left continuous. This however, does not imply that the joint process Z = (X ,H) is G-quasi-left
continuous. Indeed, the random time τ from Counterexample 4.3 avoids F-stopping times. However,
X is not G-quasi-left continuous. So, we need further assumptions to ensure the G-quasi-left con-
tinuity of Z. We now therefore recall the immersion property, from now on referred as assumption
(H ).

(H ) The random time τ is such that F-martingales remain G-martingales.

The following proposition is an immediate consequence of Jacod and Shiryaev (2003, Theorem
2.21).

Proposition 4.6. If τ satisfies assumption (H ), then νG,X = νF,X holds.

As a consequence of the above discussion, we deduce the following result, whose proof is omitted.

Theorem 4.7. Let τ be a random time satisfying both assumptions (A ) and (H ). Then

ν
G,Z(ω,dt,dx1,dx2) = ν

F,X(ω,dt,dx1)δ0(dx2)+δ1(dx2)δ0(dx1)dΛ
G
t (ω).

In particular, if X is F-quasi-left continuous, then Z is G-quasi-left continuous as well.

We stress that, although assumption (H ) is of technical nature, it is equivalent to require that
the σ -fields F∞ and Gt are conditionally independent given Ft (see Aksamit and Jeanblanc (2017,
Theorem 3.2)). Furthermore, because of the Cox construction (see Aksamit and Jeanblanc (2017,
§2.3.1)), it is easy to construct random times τ satisfying the assumptions (A ) and (H ), see Di Tella
and Engelbert (2022, Remark 3.8) for details.
Jacod’s absolute continuity condition. Let η denote the law of the random time τ , that is, η(B) :=
P(τ−1(B)), for every B ∈ B(R). We denote by Pt(ω,B) a regular version of the conditional distri-
bution P[τ ∈ B|Ft ], B ∈ B(R). We assume that τ satisfies Jacod’s absolute continuity condition,
i.e.,

η is a diffused probability measure. (4.4)

Pt(du) is absolutely continuous with respect to η(du). (4.5)
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We stress that random times satisfying Jacod’s absolute continuity condition can be constructed fol-
lowing the approach presented in Jeanblanc and Le Cam (2009, §5).

Definition 4.8. We say that τ fulfils hypothesis (J ) if it satisfies Jacod’s absolute continuity condi-
tion.

Remark 4.9. Let τ fulfill hypothesis (J ). Then:
(i) (A ) holds true, see El Karoui et al. (2010, Corollary 2.2).
(ii) There exists a nonnegative and O(F)⊗B([0,+∞])-measurable function (ω, t,u) 7→ pt(ω,u)

such that (pt(u))t≥0 is an F-martingale for every u ∈ [0,+∞] and

E[ f (τ)|Ft ] =
∫
R+

f (u)pt(u)η(du), t ≥ 0 (4.6)

for every bounded Borel function f , see Aksamit and Jeanblanc (2017, Proposition 4.17).

Notice that hypothesis (J ) for τ does not imply, in general, that τ satisfies assumption (H ). This
is true if and only if pt(u) = pu(u) η-a.s., if u < t, see Aksamit and Jeanblanc (2017, Proposition
5.28).

Remark 4.10. Let (ω, t,u) 7→ pt(ω,u) be the optional function from Remark 4.9 (ii). Since p·(u) is
an F-martingale for every u, we can represent it as p·(u) = W u ∗ µX −W u ∗νF,X . As in the proof of
Jacod (1985, Proposition 3.14 and Theorem 4.1), the function (ω, t,x,u) 7→W u(ω, t,x) can be chosen
P̃(F)⊗B([0,+∞])-measurable and such that the following two properties are satisfied:

(1) W u(ω, t,x)+ pt−(ω,u)≥ 0.
(2) If pt−(u) = 0, then W u(ω, t,x) = 0.
So, using the convention 0

0 := 0, one can define V u(ω, t,x) := W u(ω,t,x)
pt−(ω,u) which satisfies 1+V u ≥ 0.

Then

U(ω, t,x) =V τ(ω)(ω, t,x)1(τ,+∞)(ω, t) =
W τ(ω)(ω, t,x)
pt−(ω,τ(ω))

1(τ,+∞)(ω, t)

is a G-predictable function satisfying 1+U ≥ 0.

In the next result we give the form of the G-dual predictable projection of µX . To the best of our
knowledge, this result is new and of independent interest.

Theorem 4.11. Let X be an F-quasi-left continuous step process and let τ be a random time satisfying
hypothesis (J ). Then

ν
G,X(ω,dt,dx) =(

1[0,τ](ω, t)
(

1+
W ′(ω, t,x)

At−

)
+1(τ,+∞)(ω, t)(1+U(ω, t,x))

)
ν
F,X(ω,dt,dx),

(4.7)

where W ′ is an F-predictable function such that A−+W ′ ≥ 0 and U is the G-predictable function
given in Remark 4.10. In particular, X is a G-quasi-left continuous step process.

The following result is a direct application of (4.2), Theorem 4.11, and (4.1).
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Theorem 4.12. Let X be an F-quasi-left continuous step process and let τ satisfy hypothesis (J ).
Then the G-predictable compensator νG,Z of the jump measure µZ of Z = (X ,H) is given by

ν
G,Z(ω,dt,dx1,dx2)

=
(

1[0,τ](ω, t)
(

1+
W ′(ω, t,x1)

At−(ω)

)
+1(τ,+∞)(ω, t)(1+U(ω, t,x1))

)
ν
F,X(ω,dt,dx1)δ0(dx2)

+1[0,τ](ω, t)dΛ
G
t (ω)δ0(dx1)δ1(dx2),

where W ′ is an F-predictable function such that A−+W ′ ≥ 0 and U is the G-predictable function
given in Remark 4.10.

We remark that, if τ fulfils condition (J ), then, by Remark 4.9 (i) it satisfies (A ), therefore
ΛG is continuous, see Proposition 4.5 (i). Therefore, under the assumptions of Theorem 4.12, Z is
G-quasi-left continuous.

5. Applications to stochastic control theory

Let T > 0 be a fixed maturity and let X be a marked point processes with respect to F= FX . In this
section we consider the problem of optimizing the value at T of an expected cost functional related
to X under model uncertainty and in presence of an additional exogenous risk source that cannot be
inferred from the information available in F. The occurrence time of the additional risk source is
modeled by an external random time τ . The uncertainty affects the model because, to each probability
measure Pu, under which the expectation of the cost functional is taken, corresponds a different G-
compensator νG,Z,u of µZ . The compensator νG,Z,u is absolutely continuous with respect to νG,Z and
its density is controlled.

We shall represent the value function associated to these control problems by means of suitable
BSDEs and relying on the theory developed in Confortola and Fuhrman (2013). In order to apply it
to the present context, the fundamental tools are our results about the G-compensator of µX and the
G-WRP for Z, provided respectively in Theorem 4.7, Theorem 4.12 and Theorem 3.1.

Notice that, according to Jacod and Shiryaev (2003, Theorem II.1.8), one can always consider the
decomposition

ν
F,X(dt, dx1) = φ

F,X
t (dx1)dCF,X

t ,

where φF,X is a transition probability from (Ω× [0,T ],P(F)) into (Rd ,B(Rd)), and CF,X ∈ A +
loc(F)

is a predictable process. Analogously,

ν
G,X(dt, dx1) = φ

G,X
t (dx1)dCG,X

t ,

where φG,X is a transition probability from (Ω× [0,T ],P(G)) into (Rd ,B(Rd)) and CG,X ∈A +
loc(G)

is G-predictable.
We state the following assumptions.

Assumption 5.1. The process X is F-quasi-left continuous.

Assumption 5.2. τ satisfies (A ) and (H ).

Assumption 5.3. τ satisfies (J ) (hence (A ), see Remark 4.9 (i)).

In the present section we always assume Assumption 5.1 together with Assumption 5.2 or altern-
atively together with Assumption 5.3. This, in particular, implies that (A ) is always assumed.
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Proposition 5.4. Under Assumption 5.1 together with Assumption 5.2 or Assumption 5.3, Z is a G-
quasi-left continuous step process with

ν
G,Z(ω,dt,dx1,dx2) = δ0(dx2)φ

G,X
t (ω,dx1)dCG,X

t (ω)+δ0(dx1)δ1(dx2)dΛ
G
t (ω). (5.1)

In particular, under Assumptions 5.1-5.2,

φ
G,X
t (ω,dx1) = φ

F,X
t (ω,dx1), dCG,X

t (ω) = dCF,X
t (ω),

while under Assumptions 5.1-5.3,

φ
G,X
t (ω,dx1) =

D(ω, t,x1)∫
Rd D(ω, t,x1)φ

F,X
t (ω,dx1)

φ
F,X
t (ω,dx1),

dCG,X
t (ω) =

∫
Rd

D(ω, t,x1)φ
F,X
t (ω,dx1)dCF,X

t (ω),

where

D(ω, t,x1) := 1[0,τ](ω, t)
(

1+
W ′(ω, t,x1)

At−(ω)

)
+1(τ,+∞)(ω, t)(1+U(ω, t,x1)

)
is the density function appearing in Theorem 4.11.

Proof : By Assumption 5.1, CF,X is a continuous process. On the other hand, thanks to condition (A ),
by Proposition 4.5-2 we have (5.1), where ΛG

t is continuous by Proposition 4.5-1. Finally, thanks to
Assumption 5.1 together with Assumption 5.2 or Assumption 5.3, CG,X is a continuous process by
Proposition 4.6 or Theorem 4.11, that also specify the forms of φG,X and CG,X . □

We notice that, according to Jacod and Shiryaev (2003, Theorem II.1.8), (5.1) can be rewritten as

ν
G,Z(ω,dt,dx1,dx2) = φ

G,Z
t (ω,dx1,dx2)dCG,Z

t (ω) (5.2)

with

CG,Z
t (ω) :=CG,X

t (ω)+Λ
G
t (ω), (5.3)

φ
G,Z
t (ω,dx1,dx2) := d1(ω, t)δ0(dx2)φ

G,X
t (ω,dx1)+d2(ω, t)δ0(dx1)δ1(dx2), (5.4)

where d1,d2 are non negative processes such that d1 +d2 = 1, and

d1(ω, t)dCG,Z
t (ω) = dCG,X

t (ω), (5.5)

d2(ω, t)dCG,Z
t (ω) = dΛ

G
t . (5.6)

5.1. The control problem up to maturity. The data specifying the optimal control problem are an
action space U , a running cost function l, a terminal cost function g, and another function r specifying
the effect of the control process. They are assumed to satisfy the following conditions.

Assumption 5.5. (U,U ) is a measurable space.

Assumption 5.6. The functions r, l : Ω× [0,T ]×Rd ×U → R are P(G)⊗B(Rd)⊗U -measurable
and there exist constants Mr > 1, Ml > 0 such that, P-a.s.,

0 ≤ rt(x1,u)≤ Mr, |lt(x1,u)| ≤ Ml, t ∈ [0,T ], x1 ∈ Rd , u ∈U. (5.7)
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Assumption 5.7. The function g : Ω×Rd → R is GT ⊗B(Rd)-measurable. Furthermore, there exists
a constant β such that β > sup |r−1|2 and the following estimates hold:

E[eβCG,Z
T ]<+∞, (5.8)

E[|g(XT )|2eβCG,Z
T ]<+∞. (5.9)

With every admissible control process u ∈ C we associate the cost functional

J(u) = Eu

[∫ T

0
lt(Xt ,ut)dCG,X

t +g(XT )

]
, (5.10)

where Eu denotes the expectation under a probability measure Pu that is absolutely continuous with
respect to P and will be specified below.

The control problem consists in minimizing J over all admissible controls. Because of the structure
of the control problem, it is evident that in general it cannot be directly solved in the filtration F.
Therefore, we have to allow G-predictable strategies: The set of admissible control processes, denoted
C , consists of all U-valued and G-predictable processes u(·) = (ut)t∈[0,T ].

Remark 5.8. In (5.10) one can consider for example a defaultable terminal cost g : Ω×Rd →R of the
form g(ω,x1) = g1(x1)1{T<τ(ω)}+g2(x1)1{T≥τ(ω)}. In this case, g1 is the terminal cost if the default
does not occur before the maturity T while g2 is the cost to pay in case of default up to maturity.
Similarly, one can allow a defaultable running cost l. We can also regard the minimization problem
associated to (5.10) as the problem of an insider who disposes of private information about τ and
whose strategies are U-valued and G-predictable.

With every control u ∈ C , we associate the predictable random measure

ν
G,Z,u(ω,dt,dx1,dx2) = rt(ω,x1,ut(ω))δ0(dx2)φ

G,X
t (ω,dx1)dCG,X

t (ω)+δ1(dx2)δ0(dx1)dΛ
G
t (ω)

= Rt(ω,x1,x2,ut(ω))νG,Z(ω,dt,dx1,dx2), (5.11)

where

Rt(ω,x1,x2,u) := rt(ω,x1,u)1{x2=0}+ 1{x2 ̸=0}, ω ∈ Ω, x1 ∈ Rd , x2 ∈ {0,1}, u ∈U. (5.12)

We denote by (Tn)n≥1 the sequence of jump times of Z and, for any u ∈ C , we consider the process

κ
u
t = exp

(∫ t

0

∫
Rd+1

(1−Rs(x1,x2,us))ν
G,Z(ds,dx1,dx2)

)
∏

n≥1:Tn≤t
RTn(XTn ,HTn ,uTn), (5.13)

with the convention that the last product equals 1 if there are no indices n ≥ 1 satisfying Tn ≤ t. We
notice that κu is a Doléans-Dade stochastic exponential and it is the solution to

κ
u
t = 1+

∫ t

0

∫
Rd+1

κ
u
s−(Rs(x1,x2,us)−1)(µZ −ν

Z)(ds,dx1,dx2).

Hence, κu is a G-local martingale, for every u ∈ C . Furthermore, κu is nonnegative, see Jacod (1975,
Proposition 4.3) for details. Thus κu is a nonnegative G-supermartingale. Taking into account (5.12),
we remark that∫ t

0

∫
Rd+1

(1−Rs(x1,x2,us))ν
G,Z(ds,dx1,dx2) =

∫ t

0

∫
Rd

∫
R
(1− (rs(x1,us))δ0(dx2)φ

G,X
s (dx1)dCG,X

s

so that (5.13) reads

κ
u
t = exp

(∫ t

0

∫
Rd
(1− rs(x1,us))φ

G,X
s (dx1)dCG,X

s

)
∏

n≥1:Tn≤t
(rTn(XTn ,uTn)1{HTn=0}+ 1{HTn ̸=0}).

(5.14)
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The result below follows from Confortola and Fuhrman (2013, Lemma 4.2) with γ = 2.

Lemma 5.9. Assume that
E[e(3+M4

r )CT ]<+∞. (5.15)
Then, for every u ∈ C , supt∈[0,T ]E[|κu

t |2]< ∞ and E[κu
T ] = 1. In particular, κu is a square integrable

G-martingale for every u ∈ C .

By Lemma 5.9 we can define an absolutely continuous probability measure Pu by setting

dPu(ω) = κ
u
T (ω)dP(ω).

It can then be proven (see e.g. Jacod (1975, Theorem 4.5)) that the G-compensator νZ,u of µZ under
Pu is given by (5.11). We consider the control problem

inf
u∈C

J(u) = inf
u∈C

Eu

[∫ T

0
lt(Xt ,ut)dCG,X

t +g(XT )

]
. (5.16)

Notice that in the optimal control problem (5.16) the action under Pu consists in multiplying by
rt(x1,ut) the density with respect to CG,X of the G-predictable compensator of µX . At the same
time, the G-predictable compensator of H under Pu remains unchanged, see (5.11).

Remark 5.10. The cost functional J in (5.10) is finite for every admissible control. Indeed, we have

Eu[|g(XT )|] = E[|κu
T g(XT )|]≤ (E[|κu

T |2])1/2(E[|g(XT )|2])1/2 < ∞, (5.17)

where the latter estimate follows from (5.9) in Assumptions 5.7. This shows that g(XT ) is Pu-
integrable. Moreover, under Assumption 5.6, by (5.5) and (5.7), we get

Eu

[∫ T

0
lt(Xt ,ut)dCG,X

t

]
= Eu

[∫ T

0
lt(Xt ,ut)d1(t)dCG,Z

t

]
≤ Ml Eu[CT ]< ∞.

The associated BSDE. We next proceed to the solution of the optimal control problem formulated
above. A fundamental role is played by the following BSDE

Yt +
∫ T

t

∫
Rd+1

Θs(x1,x2)(µ
Z −ν

G,Z)(ds,dx1,dx2) = g(XT )+
∫ T

t
f (s,Xs,Θs(·))dCG,X

s (5.18)

whose generator is the Hamiltonian function

f (ω, t,y1,θ(·)) := inf
u∈U

{
lt(ω,y1,u)+

∫
Rd

θ(x1,0)(rt(ω,x1,u)−1)φ
G,X
t (ω,dx1)

}
, (5.19)

for every ω ∈ Ω, t ∈ [0,T ], y1 ∈ Rd , y2 ∈ R and θ ∈ L 1(Rd+1,B(Rd+1),φG,Z
t (ω,dx1,dx2)), where

L1 denotes the usual space of integrable functions.

For β > 0, we look for a solution (Y,Θ(·)) to (5.18) in the space L2,β
Prog(Ω× [0, T ],G)×L2,β (µZ,G),

where L2,β
Prog(Ω× [0, T ],G) denotes the set of real-valued G-progressively measurable processes Y such

that E[
∫ T

0 eβCG,Z
t |Yt |2dCG,Z

t ] < ∞, and L2,β (µZ,G) the set of P(G)⊗B(Rd+1)-measurable functions
Θ such that E[

∫ T
0
∫
Rd eβCG,Z

t |Θt(x1,0)|2φ
G,X
t (dx1)dCG,X

t ]+E[
∫ T

0 eβCG,Z
t |Θt(0,1)|2dΛG

t ]< ∞.
The set of P(G)⊗B(Rd+1)-measurable functions Θ satisfying

E
[∫ T

0

∫
Rd

|Θt(x1,0)|φG,X
t (dx1)dCG,X

t

]
+E

[∫ T

0
|Θt(0,1)|dΛ

G
t

]
< ∞

is denoted by L1,0(µZ,G). Notice that the inclusion L2,β (µZ) ⊆ L1,0(µZ) holds, for all β > 0, see
Confortola and Fuhrman (2013, Remark 3.2-2).
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To ensure the existence of the optimal control, we are going to work under the following additional
assumption:

Assumption 5.11. For every Θ ∈ L1,0(µZ,G) there exists a G-predictable U-valued process (i.e., an
admissible control) uΘ : Ω× [0,T ]→U , such that, for d1(ω, t)dCG,Z

t (ω)P(dω)-almost all (ω, t), we
have

f (ω, t,Xt−(ω),Θt(ω, ·)) = lt(ω,Xt−(ω),uΘ(ω, t)) (5.20)

+
∫
Rd

Θt(ω,x1,0)(rt(ω,x1,uΘ(ω, t))−1)φG,X
t (ω,dx1).

Remark 5.12. Using appropriate measurable selection theorems, it is possible to state general suffi-
cient conditions ensuring Assumption 5.11. For example, this is the case if U is a compact metric
space and lt(ω,x, ·),rt(ω,x, ·) : U → R are continuous functions, see Confortola and Fuhrman (2013,
Proposition 4.8)).

From here on we will denote

L := esssup
ω

(
sup{|rt(ω,x1,u)−1| : t ∈ [0,T ], x1 ∈ Rd , u ∈U}

)
(5.21)

Thanks to the WRP for Z with respect to G provided in Theorem 3.1, one can show the existence and
the uniqueness of the solution of BSDE (5.18). The proof of the proposition below is postponed to
Appendix B.

Proposition 5.13. Let Assumptions 5.1, 5.5, 5.6 and 5.11 hold true. Assume that Assumption 5.2 or
5.3 holds true. Let Assumption 5.7 hold true with β > L2. Then BSDE (5.18) admits a unique solution
(Y,Θ(·)) ∈ L2,β

Prog(Ω× [0, T ],G)×L2,β (µZ,G).

Solution to the optimal control problem. At this point we can give the main result of the section.

Theorem 5.14. Let Assumptions 5.1, 5.5, 5.6 and 5.11 hold true. Assume also that Assumption 5.7
holds true with β > L2, and that condition (5.15) holds true. Let Assumption 5.2 or 5.3 holds true,
and let (Y,Θ(·))∈ L2,β

Prog(Ω× [0, T ],G)×L2,β (µZ,G) denote the unique solution to BSDE (5.18), with
corresponding admissible control uΘ ∈ C satisfying (5.20). Then uΘ is optimal and Y0 is the optimal
cost, i.e.

Y0 = J(uΘ) = inf
u∈C

J(u).

Proof : The proof consists in proving the so-called fundamental relation. We first recall that, by
Lemma 5.9, for every u ∈ C we have supt∈[0,T ]E[|κu

t |2]< ∞. Moreover, by (5.17), Eu[|g(XT )|]<+∞.
Let u ∈ C be fixed. Then, Hölder’s inequality and Assumption 5.6 yield Θ(·) ∈ L1,0(µZ,G) under

Pu. Setting t = 0 and taking the expectation Eu[·] in BSDE (5.18), we get

Y0 +Eu

[∫ T

0

∫
Rd

Θ(x1,0)(rs(x1,u)−1)φ
G,X
s (dx1)dCG,X

s

]
=

Eu[g(XT )]+Eu

[∫ T

0
f (s,Xs,Θs(·))dCG,X

s

]
.

Then, adding and subtracting Eu
[∫ T

0 ls(Xs,u)dCX ,G
s

]
, we obtain

Y0 = J(u)

+Eu

[∫ T

0

[
f (s,Xs,Θs(·))− ls(Xs,u)−

∫
Rd

Θs(x1,0)(rs(x1,u)−1)φ
G,X
s (dx1)

]
dCG,X

s

]
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where we have also used the continuity of C. The conclusion follows from the definition of f in (5.19),
noticing that the term in the square brackets is non positive, and it equals 0 if u(·) = uΘ(·). □

5.2. The control problem up to default. We now consider the problem of an agent for whom the
available information is exclusively given by F (that is, she pursues F-predictable strategies) but, for
some reasons, she has only access to the market up to the occurrence of the exogenous shock event,
whose occurrence time is modeled by τ . For example, the problem over [0,T ∧ τ] can be regarded as
the optimization problem of an agent who minimizes running costs not up to the maturity T > 0, but
only up to T ∧ τ .

We still consider a measurable space (U,U ) satisfying Assumption 5.5. The other data specifying
the optimal control problem are a running cost function l̄ and function r̄ that are P(F)⊗B(Rd)⊗U -
measurable, and a terminal cost ḡ that is GT∧τ ⊗B(Rd)-measurable. We assume that l̄ and r̄ verify
(5.7) and that r̄ and ḡ verify (5.8)-(5.9) with β > L2, with L the constant in (5.21) where r = r̄.

Let C be the set of admissible strategies for the optimization problem introduced in Section 5.1.
For any u ∈ C , we define û := 1[0,T∧τ]u. Clearly û ∈ C . We then introduce the new set of admissible
strategies as

Ĉ := {u ∈ C : 1[T∧τ,T ]u = 0} ⊆ C . (5.22)

Since F-predictable and G-predictable processes coincide on [0,τ] (see Jeulin (1980, Lemma 4.4. b))),
the set Ĉ given in (5.22) consists of strategies which are morally F-predictable.

For any û ∈ Ĉ , we consider then the Doléans-Dade exponential martingale κ û defined as in (5.14)
with r replaced by r̄, and we introduce the absolutely continuous probability measure Pû defined as
dPû(ω) = κ û

T (ω)dP(ω). We then take a cost functional of the form

J̄(û) = Eû

[∫ T∧τ

0
l̄t(Xt , ût)dCF,X

t + ḡ(XT∧τ)

]
, û ∈ Ĉ , (5.23)

where Eû denotes the expectation under Pû. The control problem is now

inf
û∈Ĉ

J̄(û) = inf
û∈Ĉ

Eû

[∫ T∧τ

0
l̄t(Xt , ût)dCF,X

t + ḡ(XT∧τ)

]
. (5.24)

Remark 5.15. For simplicity, in the present section we consider only the case where Assumptions
5.1-5.2 are satisfied, so that, according to Proposition 5.4, dCF,X = dCG,X and φF,X(dx1) = φG,X(dx1).
This seems to be a natural assumption here. Indeed, let Jacod’s assumption hold for τ . Then, by
Jeanblanc and Le Cam (2009, Corollary 3.1), τ satisfies (H ) if and only if p·(u) is constant after u,
that is, pt(u) = pt(t), t ≥ u, a.s. As observed in El Karoui et al. (2010, p.1016), this is substantially
equivalent to say that the “information contained in the reference filtration after the default time gives
no new information on the conditional distribution of the default”. But, since we restrict our attention
to [0,T ∧ τ], that is, before the default, we are neglecting all information after default.

Remark 5.16. The control problem in (5.24) can be interpreted as the one of an agent who only
controls X using F-predictable strategies but only up to the occurrence τ of an external risky event.
Hence, because of the exogenous risk source, this control problem cannot be solved in F.

The functional cost in optimal control problem in (5.24) can be equivalently rewritten in the form

Eû

[∫ T

0
lt(Xt , ût)1[0,T∧τ](t)dCF,X

t +g
]
, û ∈ Ĉ ,
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with

lt(ω,x1,u) := l̄t(ω,x1,u)1[0,T∧τ(ω)](t), (5.25)

g(ω) = g(ω,x1) := ḡ(ω,XT∧τ(ω)). (5.26)

Clearly l in (5.25) is P(G)⊗B(Rd)⊗U -measurable and g in (5.26) is GT -measurable, so that the
control problem in (5.24) can be seen as one of the type studied in Section 5.1 (where the subclass Ĉ
of admissible controls is considered).

Let us now consider the enlarged optimal control problem obtained from (5.24) by taking the
infimum over all the G-predictable processes u(·):

inf
u∈C

J̄(u) = Eu

[∫ T

0
lt(Xt ,ut)dCF,X

t +g
]
. (5.27)

According to Section 5.1, one can solve optimal control problem (5.27) by considering the following
BSDE: P-a.s., for all t ∈ [0,T ],

Yt +
∫ T

t

∫
Rd+1

Θs(x1,x2)(µ
Z −ν

G,Z)(ds,dx1,dx2) = g+
∫ T

t
f (s,Xs,Θs(·))dCF,X

t , (5.28)

with f in (5.19) with r = r̄ and φG,X = φF,X . Notice that l in (5.25) and g in (5.26) satisfy respectively
Assumptions 5.6 and 5.7 with β > L. Then, under Assumption 5.11, there exists by Proposition 5.13
a unique solution (Y,Θ(·)) ∈ L2,β

Prog(Ω× [0, T ],G)×L2,β (µZ,G) of BSDE (5.28) with corresponding
admissible control uΘ ∈ C . Moreover, under (5.15), by Theorem 5.14

Y0 = J̄(uΘ) = inf
u∈C

J̄(u).

Let us now go back to optimal control problem (5.24): we aim at finding an admissible process
û ∈ Ĉ such that

J̄(û) = inf
û∈Ĉ

J̄(û).

We show below that such an optimal control process exists and is provided by

ûΘ := uΘ1[0,T∧τ] ∈ Ĉ , (5.29)

and that the value functions of the optimal control problems (5.24) and (5.27) coincide (the corres-
ponding prof is provided in Appendix B).

Theorem 5.17. Let Assumption 5.11 hold true and assume the validity of condition (5.15). Then

Y0 = J̄(ûΘ) = inf
û∈Ĉ

J̄(û) = inf
u∈C

J̄(u). (5.30)

6. An Example

In this section we give an example on the optimization of the expected exponential utility of the
terminal wealth under the worst-case scenario. To this aim, we assume that X is a compound Pois-
son process, F = FX , and the random time τ satisfies assumptions (A )-(H ). The G-predictable
compensator ΛG is of the form

Λ
G
t (ω) =

∫ t∧τ(ω)

0
λs(ω)ds,

where λ is a bounded and F-predictable process. Denoting by ρ the Lévy measure of X , we have
φF,X(dx1) = ρ(dx1)ρ

−1(R) and dCF,X
t = ρ(R)dt. So, by Theorem 4.7, the G-dual predictable projec-

tion of µZ is
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ν
G,Z(ω,dt,dx1,dx2) = ρ(dx1)δ0(dx2)dt +δ1(dx2)δ0(dx1)dΛ

G
t (ω).

Finally, by Proposition 4.6, we have CG,X
t =CF,X

t . Therefore,

CG,Z
t (ω) = ρ(R)t +

∫ t∧τ(ω)

0
λs(ω)ds.

Notice that, because of the boundedness of λ , CG
T obviously satisfies (5.8) for every β .

We now follow Becherer et al. (2019, §5.1.2) and consider a stock price of the form S = S0E (L)
(E (·) denoting the stochastic exponential), where, for an F-predictable bounded process b and an
F-predictable bounded function G, we set

Lt :=
∫ t

0
bsds+G∗ (µX −ν

F,X)t

We also assume G > −1, so that S > 0 holds. Let us consider an agent who maximizes the expected
exponential utility of the terminal wealth under the worst-case scenario in presence of a bounded and
defaultable (that is GT -measurable) claim ξ which may represent a liability ξ > 0 or an asset ξ < 0.

An admissible trading strategy π is a G-predictable process taking values in a compact set D ⊆ R.
We denote by D the set of admissible strategies. The wealth process associated to π ∈ D , and with
the initial endowment w > 0, is defined by W w,π := w+

∫ ·
0 πsdLs. The optimization problem becomes

sup
π∈D

inf
u∈C

Eu

[
− exp

(
−α(W w,π

T −ξ )
)]
, α > 0, (6.1)

meaning that the agent first selects the worst-case model and then she optimizes over the trading
strategies. The inner problem

inf
u∈C

Eu

[
− exp

(
−α(W w,π

T −ξ )
)]
, α > 0, (6.2)

corresponds to (5.10) with l ≡ 0 and g(ω,x) = g(ω) =−exp
(
−α(W w,π

T (ω)−ξ (ω))
)
.

Observe that g satisfies (5.9). Indeed, for every β > 0, since 0 ≤ λt(ω)≤ c, for a certain c > 0, we
have

E[g2eβCG,Z
T ]≤ E

[
exp

(
−2α(W w,π

T −ξ )
)]

eβ (ρ(R)+c)T <+∞,

where, in the last estimate, we have used Morlais (2010, Lemma 2) because D is compact, ξ is
bounded and µX −νF,X is a compensated Poisson random measure under the reference probability P.

To ensure the existence of an optimal control uΘ satisfying (5.20), we require that U is a compact
subset of R (see Assumption 5.5), and hence we assume U = B(U). Furthermore, the G-predictable
function rt(x1,u) that rules the model uncertainty on the compensator of µX under Pu (see (5.11)), is
assumed to be bounded (see (5.7)), and continuous in u, see Remark 5.12.

According to Theorem 5.14, we can then represent the value function of (6.2) as

Y π
0 = EuΘ

[
− exp

(
−α(W w,π

T −ξ )
)]
,

where Y π is the first component of the solution of BSDE (5.18) with the generator given in (5.20) with
l ≡ 0 and φG,X = φF,X . Therefore, to solve (6.1), it is now sufficient to solve

sup
π∈D

EuΘ

[
− exp

(
−α(W w,π

T −ξ )
)]
. (6.3)
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To this aim, we observe that, since PuΘ ≪ P, the step process Z = (X ,H) has the WRP with respect
to G also under PuΘ , see Jacod and Shiryaev (2003, Theorem III.5.24). Furthermore, under PuΘ the
G-dual predictable projection νG,Z,uΘ

of µZ is given by (5.11) and, from Theorem 4.7, we get

ν
G,Z,uΘ

(ω,dt,dx1,dx2) = ζ
G,uΘ

t (ω,x1,x2)η(dx1,dx2)dt,

where

ζ
G,uΘ

t (ω,x1,x2) = rt(ω,x1,uΘ)1{x1 ̸=0,x2=0}+λt(ω)1[0,τ](ω, t)1{x1=0,x2 ̸=0},

η(dx1,dx2) = ρ(dx1)δ0(dx2)+δ0(dx1)δ1(δx2).

To represent the value function of (6.3), we aim at constructing a family {Rπ ,π ∈ D} of processes
satisfying the martingale optimality principle, that is, such that: (1) Rπ is a supermartingale whose
initial value Rπ

0 does not depend on π and (2) there exists π∗ ∈ D for which Rπ∗
is a true martingale.

In this way, one can show that π∗ is optimal and the value function in (6.3) equals Rπ∗
0 .

To this end, we set
Rπ

t :=−exp
(
−α(W w,π

t −Yt)
)
,

where Y is the first component of the solution of the BSDE

Yt = ξ +
∫ t

t
f (s,Vs(·))ds+

∫ T

t

∫
R×R

Vs(x1,x2)(µ
Z −ν

G,Z,uΘ

)(ds,dx1,dx2) (6.4)

with generator

f (ω, t,v(·)) := inf
π∈D

(
−πbt(ω)+

∫
R×R

gα

(
v(x1,x2)−πG̃t(ω,x1,x2)

)
ζ
G,uΘ

t (ω,x1,x2)η(dx1,dx2)
)
,

(6.5)
where

gα(x) :=
(eαx −αx−1)

α
, G̃t(ω,x1,x2) := Gt(ω,x1)1{x2=0}.

Thanks to Becherer (2006, Theorem 3.5), BSDE (6.4) admits a unique bounded solution (Y,V (·)).
By a standard computation relaying on Jacod and Shiryaev (2003, Theorem II.8.10), we obtain the
representation

Rπ
t = Mπ

t Aπ
t exp(−α(w−Y0)),

with

Mπ
t := E

(∫ t

0

∫
R×R

(
exp

(
α(Vs(x1,x2)−πsG̃s(x1,x2))

)
−1

)
(µZ −ν

G,Z,uΘ

)(dx1,dx2)

)
,

Aπ
t :=−exp

[
α

∫ t

0

(
− f (s,Vs(·))−πsbs +

∫
R×R

gα

(
Vs(x1,x2)−πsG̃s(x1,x2)

)
ζ
G,uΘ

s (x1,x2)η(dx1,dx2)
)

ds
]
.

So, Mπ is a uniformly integrable martingale by Izumisawa et al. (1979, Theorem 2)1 and Aπ is decreas-
ing. Therefore, Rπ is a supermartingale for every π ∈ D . By dominated convergence the mapping

π 7→ −πbt(ω)+
∫
R

gα

(
Vt(ω,x1,x2)−πG̃t(ω,x1,x2)

)
ζ
G,uΘ

t (ω,x1,x2)η(dx1,dx2)

1Indeed, by the boundedness of α(V −πG̃)
)
, η being a finite measure, we get that exp(α(V −πG̃))−1)∗ (µZ −νG,Z,uΘ

)
is a true martingale in BMO(G) over [0,T ] under PuΘ , and its jumps are bounded away from −1.
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is continuous, for every (t,ω). Hence, by optimal selection (see e.g. Bertsekas and Shreve (1996,
Proposition 7.33)), we find a G-predictable process π∗ ∈ D such that Rπ∗

t =−Mπ∗
t exp(−α(w−Y0)).

Therefore, {Rπ ,π ∈ D} satisfies the martingale optimality principle under PuΘ , and we finally get

sup
π∈D

inf
u∈C

Eu

[
− exp

(
−α(W w,π

T −ξ )
)]

= EuΘ

[
− exp

(
−α(W w,π∗

T −ξ )
)]

=−exp
(
−α(w−Y0)

)
.

We stress that, if we introduce D̂ = {1[0,T∧τ]π,π ∈ D}, we can solve the problem

sup
π̂∈D̂

inf
û∈Ĉ

Eû

[
− exp

(
−α(W w,π

T∧τ
−ξ )

)]
, α > 0, ξ bounded and GT∧τ measurable

exactly in the same way. The main difference is that now (6.4) has to be considered over the random
time interval [0,T ∧ τ] and the generator f in (6.5) must be replaced by 1[0,T∧τ] f .

Appendix.

A. Proofs of technical results of Section 4.

Proof of Theorem 4.1: Let us start by proving (i). We have

µ
Z(ω,dt,dx1,dx2) = ∑

s>0
1{∆Zs(ω )̸=0}δ(s,∆Zs(ω))(dt,dx1,dx2)

= ∑
s>0

1{∆Xs(ω )̸=0,∆Hs(ω )̸=0}δ(s,(∆Xs(ω),∆Hs(ω)))(dt,dx1,dx2)

+ ∑
s>0

1{∆Xs(ω )̸=0,∆Hs(ω)=0}δ(s,(∆Xs(ω),0))(dt,dx1,dx2)

+ ∑
s>0

1{∆Xs(ω)=0,∆Hs(ω )̸=0}δ(s,(0,∆Hs(ω)))(dt,dx1,dx2).

Now we notice that, since by assumption ∆X∆H = 0, we have {∆X ̸= 0}∩{∆H ̸= 0}= /0. Therefore,
noticing that moreover {∆X ̸= 0} ⊆ {∆H = 0} and {∆H ̸= 0} ⊆ {∆X = 0}, previous expression reads

µ
Z(ω,dt,dx1,dx2) = ∑

s>0
1{∆Xs(ω )̸=0}δ(s,∆Xs(ω))(dt,dx1)δ0(dx2)

+ ∑
s>0

1{∆Hs(ω )̸=0}δ(s,∆Hs(ω))(dt,dx2)δ0(dx2)

= µ
X(ω,dt,dx1)δ0(dx2)+µ

H(ω,dt,dx2)δ0(dx1).

Let us now prove (ii). Set

ν
G,Z(ω,dt,dx1,dx2) := ν

G,X(ω,dt,dx1)δ0(dx2)+ν
G,H(ω,dt,dx2)δ0(dx1).

We have to prove that νG,Z is the G-dual predictable projection of µZ . To this end it is sufficient to
show that, for every G-predictable function W satisfying W ≥ 0 and W ∗ µZ ∈ A +

loc(G), the process
W ∗µZ −W ∗νG,Z ∈ H 1

loc(G). So, let us consider such a G-predictable function W . We then have

W ∗µ
Z
t =

∫ t

0

∫
Rd

W (ω,s,x1,0)µX(ω,ds,dx1)+
∫ t

0

∫
Rℓ

W (ω,s,0,x2)µ
H(ω,ds,dx2)

and

W ∗ν
G,Z
t =

∫ t

0

∫
Rd

W (ω,s,x1,0)νG,X(ω,ds,dx1)+
∫ t

0

∫
Rℓ

W (ω,s,0,x2)ν
G,H(ω,ds,dx2).
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Since W ∗µZ ∈ A +
loc(G) and W ≥ 0, we get∫ ·

0

∫
Rd

W (s,x1,0)µX(ds,dx1),
∫ ·

0

∫
Rℓ

W (s,0,x2)µ
H(ds,dx2) ∈ A +

loc(G)

and therefore ∫ ·

0

∫
Rd

W (s,x1,0)νG,X(ds,dx1),
∫ ·

0

∫
Rℓ

W (s,0,x2)ν
G,H(ds,dx2) ∈ A +

loc(G)

that yields W ∗νG,Z ∈ A +
loc(G). It remains to show that W ∗µZ −W ∗νG,Z ∈ H 1

loc(G). By definition
of νG,Z we have

W ∗µ
Z −W ∗ν

G,Z =
∫ ·

0

∫
Rd

W (ω,s,x1,0)µX(ω,ds,dx1)−
∫ ·

0

∫
Rd

W (ω,s,x1,0)νG,X(ω,ds,dx1)

+
∫ ·

0

∫
Rℓ

W (ω,s,0,x2)µ
H(ω,ds,dx2)−

∫ ·

0

∫
Rℓ

W (ω,s,0,x2)ν
G,H(ω,ds,dx2).

By linearity, it follows that W ∗ µZ −W ∗νG,Z ∈ H 1
loc(G), νG,X and νG,H being the G-compensator

of µX and µH , respectively. Let now W be an arbitrary G-predictable function such that |W | ∗ µZ ∈
A +

loc(G). Applying the previous step to W+ and W− we get that |W | ∗ νG ∈ A +
loc(G) and W ∗ µZ −

W ∗νG,Z ∈ M+
loc(G). □

Proof of Lemma 4.2: Let W be a G-predictable bounded function of the form W (ω, t,x)= f (x)Jt(ω),
where f is a bounded B(Rd)-measurable function and J is a bounded G-predictable process. Then,
by Jeulin (1980, Lemma 4.4 (b)) we have W (ω, t,x)1[0,τ](ω, t) = f (x)Jt(ω)1[0,τ](ω, t), where J is
an F-predictable bounded process. By a monotone class argument we get the statement for arbitrary
bounded G-predictable functions. Then, by approximation, we get the statement for arbitrary G-
predictable functions. □

Let m be the martingale defined by

mt = E[Ho,F
∞ +1{τ=+∞}|Ft ] a.s., t ≥ 0, (A.1)

where Ho,F denotes the F-dual optional projection of H. For every F-local martingale Y , the pro-
cess [Y,m] belongs to Aloc(F). Therefore, the F-dual predictable projection [Y,m]p,F of [Y,m] is well
defined and we set ⟨Y,m⟩F := [Y,m]p,F.

Proof of Proposition 4.4: Because of the F-quasi-left continuity of X , X p,F is an F-adapted continu-
ous process, see He et al. (1992, Corollary 5.28 (3)). Furthermore, by Aksamit and Jeanblanc (2017,
Theorem 5.1), the process

Xτ − (X p,F)τ −
∫

τ∧·

0

1
As−

d⟨X −X p,F,m⟩Fs

is a G-local martingale, where m is the martingale defined in (A.1). This means that (X p,F)τ +∫
τ∧·
0

1
As−

d⟨X −X p,F,m⟩Fs is the G-dual predictable projection of X . We denote this process by (X p,G)τ .
Since X is F-quasi-left continuous, ⟨X −X p,F,m⟩F is a continuous process. Indeed, be the property of
the dual predictable projection, for every F-predictable finite valued stopping time σ we have

∆⟨X −X p,F,m⟩Fσ = E[∆[X −X p,F,m]σ |Fσ−] = E[∆Xσ ∆mσ |Fσ−] = 0.

Hence, by the predictable section theorem, ⟨X −X p,F,m⟩F being F-predictable, ∆⟨X −X p,F,m⟩F = 0
up to an evanescent set. Therefore, (X p,F)τ being continuous, we deduce that (X p,G)τ is continuous
as well. Hence, by He et al. (1992, Corollary 5.28 (3)), Xτ is G-quasi-left continuous. □
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Proof of Theorem 4.11: Let (ω, t,x) 7→W (ω, t,x) be a G-predictable bounded and nonnegative func-
tion. We then have that that W ∗µX is locally bounded, and hence belongs to A +

loc(G), because of the
estimate W ∗µX ≤ cNX , where c > 0 is such that W (ω, t,x)≤ c and NX is the point process associated
to X . Because of Lemma 4.2 there exists a bounded F-predictable function W such that

W =W1[0,τ]+W1(τ,+∞).

We now analyse separately the two integrals W1[0,τ] ∗µX and W1(τ,+∞) ∗µX .
We start with W1[0,τ] ∗ µX . We observe that W ∗ µX is locally bounded and hence it belongs to

A +
loc(F), W being an F-predictable bounded function. Hence, (W ∗ µX)p,F exists and is equal to

W ∗νF,X . So, the process W ∗µX −W ∗νF,X is an F-local martingale and, by Aksamit and Jeanblanc
(2017, Theorem 5.1),

W1[0,τ] ∗µ
X −W1[0,τ] ∗ν

F,X −
∫

τ∧·

0

1
As−

d⟨W ∗µ
X −W ∗ν

F,X ,m⟩F

is a G-local martingale. Let m be the martingale defined in (A.1). Since m is an F-martingale, we
find an F-predictable function W m such that m = m0+W m ∗µX −W m ∗νF,X . Furthermore, m is in the
class BMO. So, the F-predictable covariation ⟨W ∗ µX −W ∗ νF,X ,m⟩F is well defined and satisfies
⟨W ∗µX −W ∗νF,X ,m⟩F =WW m ∗νF,X , where we used Jacod and Shiryaev (2003, Theorem II.1.13)
and that νF,X is non-atomic in t, X being F-quasi-left continuous, see Jacod and Shiryaev (2003,
Proposition II.2.9). So, by linearity we deduce that

W1[0,τ] ∗µ
X −W

(
1+

W m

A−

)
1[0,τ] ∗ν

F,X

is a G-local martingale. We also have that ∆m =W m(·, ·,∆X)1{∆X ̸=0} = ∆A. Therefore, we obtain

A−+W m(·, ·,∆X)1{∆X ̸=0} = A−+∆A = A ≥ 0.

We now introduce the P̃(F)-measurable set D := {(ω, t,x) ∈ Ω̃ : At−(ω)+W m(ω, t,x)< 0}. We
denote by MµX the Doléans measure induced by µX , that is, MµX (B) = E[1B ∗µX

∞ ], for every B ∈F ⊗
B(R+)⊗B(Rd). We then have MµX (D) = 0. Therefore, we can define the F-predictable function
W ′(ω, t,x) := W m(ω, t,x)1Dc(ω, t,x) which again satisfies m = W ′ ∗ µX −W ′ ∗ νF,X and moreover
At−(ω)+W ′(ω, t,x)≥ 0 identically. We now define the G-predictable measure

ν
G,≤τ(ω,dt,dx) = 1[0,τ]

(
1+

W ′(ω, t,x)
At−(ω)

)
ν
F,X(ω,dt,dx).

We then clearly have that W1[0,τ] ∗µX −W ∗νG,≤τ is a G-local martingale.
We now come to the integral W1(τ,+∞)∗µX . To begin with, we introduce the filtration Gτ =(G τ

t )t≥0
by G τ

t :=
⋂

ε>0 Ft+ε ∨σ(τ), that is, Gτ is the initial enlargement of F by τ . It is clear that G ⊆ Gτ

and that G=Gτ over the stochastic interval (τ,+∞]. Following the proof of Jacod (1985, Proposition
3.14 and Theorem 4.1) we can show that there exists a Gτ -predictable function U such that 1+U ≥ 0
and

ν̃(ω,dt,dx) = (1+U(ω, t,x))νF,X(ω,dt,dx)

is the Gτ -dual predictable projection of µX . In particular, W1(τ,+∞) ∗µX being Gτ -adapted and locally
bounded, we deduce that W1(τ,+∞) ∗µX −W1(τ,+∞) ∗ ν̃ is a Gτ local martingale. We now observe that
the function 1(τ,+∞)(1+U) is indeed G-predictable, since G and Gτ coincides over (τ,+∞]. This im-
plies that the Gτ - local martingale W1(τ,+∞) ∗µX −W1(τ,+∞) ∗ ν̃ is actually G-adapted. Furthermore,
this is a martingale with bounded jumps, the process W1(τ,+∞) ∗ ν̃ being continuous and W1(τ,+∞)
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being bounded. We can therefore apply Jacod (1979, Proposition 9.18 (iii) and the subsequent com-
ment) to obtain that W1(τ,+∞) ∗µX −W1(τ,+∞) ∗ ν̃ is indeed a G-local martingale. We now define the
G-predictable random measures νG,>τ(ω,dt,dx) := 1(τ,+∞)(ω, t)(1+U(ω, t,x))νF,X(ω,dt,dx) and

ν
G(ω,dt,dx) = ν

G,≤τ(ω,dt,dx)+ν
G,>τ(ω,dt,dx)

=

(
1[0,τ](ω, t)

(
1+

W ′(ω, t,x)
At−(ω)

)
+1(τ,+∞)(ω, t)(1+U(ω, t,x))

)
ν
F,X(ω,dt,dx).

Putting together the two previous steps, we get that the process W ∗µX −W ∗νG is a G-local martin-
gale, for every bounded nonnegative G-predictable function W .

Let now W be a nonnegative G-predictable function and define W n(ω, t,x) := W (ω, t,x)∧ n. Be-
cause of the previous step, the process W n ∗ µX −W n ∗ νG is a G-local martingale. Let (σn)n be a
localizing sequence. For every n≥ 0 we get E[W n1[0,σn]∗µX

∞ ] =E[W n1[0,σn]∗νG
∞ ]. Since W n1[0,σn] con-

verges monotonically to W , by monotone convergence we obtain the identity E[W ∗µX
∞ ] = E[W ∗νG

∞ ],
for every nonnegative G-predictable function W . By Jacod and Shiryaev (2003, Theorem II.1.18
(i)) we deduce the identity νG = νG,X . In particular, since νF,X({t}×Rd) = 0 for every t, X be-
ing F-quasi-left continuous, we deduce that νG,X({t}×Rd) = 0 for every t, meaning that X is also
G-quasi-left continuous.

B. Proofs of technical results of Section 5.

Proof of Proposition 5.13: To show the result we apply Confortola and Fuhrman (2013, Theorem
3.4) to the present framework. Let us then check that all the hypotheses of the above-mentioned
theorem are satisfied. More precisely, setting

F(ω, t,Xt(ω),Θt(ω)) = d1(ω, t) f (ω, t,Xt(ω),Θt(ω)),

with d1 the function appearing in (5.5), we have to verify that:
(1) The terminal cost g(XT ) is GT -measurable and there exists β > 0 such that

E[eβCG,Z
T |g(XT )|2]< ∞ and E

[∫ T

0
eβCG,Z

t |F(t,Xt ,0)|2dCG,Z
t

]
< ∞.

(2) For every ω ∈Ω, t ∈ [0,T ], Θ(·)∈ L2,β (µZ,G), the mapping (t,ω) 7→ F(ω, t,Xt(ω),Θt(ω, ·))
is G-progressively measurable.

(3) For every ω ∈ Ω, t ∈ [0,T ], and ζ ,ζ ′ ∈ L 2(Rd+1,B(Rd+1),φt(ω,dx1,dx2)), there exists a
constant LF > 0 such that

|F(t,ω,Xt(ω),ζ )−F(t,ω,Xt(ω),ζ ′)| ≤ LF

(∫
Rd+1

|ζ (x1,x2)−ζ
′(x1,x2)|φG,Z

t (ω,dx1,dx2)
)1/2

.

(B.1)

Point (1) follows from Assumption 5.7 with β > L2, being

E
[∫ T

0
eβCG,Z

t |F(t,Xt ,0)|2dCG,Z
t

]
≤ E

[∫ T

0
eβCG,Z

t | inf
u∈U

lt(Xt ,u)|2dCG,Z
t

]
≤ M2

l β
−1E[eβCG,Z

T ]<+∞.

Concerning (3), by the boundedness conditions (5.7) in Assumption 5.6, it is easy to check that es-
timate (B.1) holds with LF = L. Finally, the measurability requirements in (2) for the Hamiltonian
f hold thanks to Assumption 5.11. By (5.20), for every Θ(·) ∈ L2,β (µZ,G) (recalling the inclusion
L2,β (µZ) ⊆ L1,0(µZ) for all β > 0), the map (t,ω) 7→ f (ω, t,Xt−(ω),Θt(ω, ·)) is G-progressively
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measurable; since by Proposition 5.4 the process CG,Z is continuous and X has piecewise constant
paths, the same holds (after modification on a set of measure zero) for (ω, t) 7→F(ω, t,Xt(ω),Θt(ω, ·)).

Proof of Theorem 5.17: We divise the proof into two steps.
Step 1. The BSDE

Ȳt +
∫ T

t

∫
Rd+1

Θ̄s(x1,x2)(µ
Z −ν

G,Z)(ds,dx1,dx2) = ḡ(XT∧τ)+
∫ T

t
f̄ (s,Xs,Θ̄s(·))1[0,T∧τ](s)dCF,X

s

(B.2)

with
f̄ (ω, t,y1,θ(·)) = inf

u∈U

{
l̄t(ω,y1,u)+

∫
Rd

θ(x1,0)(r̄t(ω,x1,u)−1)φ
F,X
t (ω,dx1)

}
admits a unique solution (Ȳ ,Θ̄(·)) ∈ L2,β

Prog(Ω× [0, T ],G)×L2,β (µZ,G) for β > L2. Moreover, Ȳ =

Ȳ·∧τ , P(dω)-a.e. and Θ̄ = Θ̄1[0,T∧τ], φ
G,Z
t (ω,dx1,dx2)dCG,Z

t (ω)P(dω)-a.e.

Step 2. (Y,Θ(·)) coincides with (Ȳ ,Θ̄(·)).

Step 3. Identity (5.30) holds true.

Proof of Step 1. The well-posedness of BSDE (B.2) follows from Confortola and Fuhrman (2013,
Theorem 3.4), recalling the assumptions on l̄, r̄ and ḡ, and noting that the map

F̄(ω, t,Xt(ω),Θt(ω)) = d1(ω, t) f̄ (ω, t,Xt(ω),Θt(ω))1[0,T∧τ(ω)](t)

is G-progressively measurable, E
[∫ T

0 eβCG,Z
t |F̄(t,Xt ,0)|2 dCG,Z

t

]
is finite for every β > L2, and

|F̄(t,ω,Xt(ω),ζ )− F̄(t,ω,Xt(ω),ζ ′)| ≤ L
(∫

Rd+1
|ζ (x1,x2)−ζ

′(x1,x2)|φG,Z
t (ω,dx1,dx2)

)1/2
.

Let us now prove that Ȳ = Ȳ·∧τ , and Θ̄ = Θ̄1[0,T∧τ]. The process Ȳ is defined as

Ȳt = E
[
ḡ(XT∧τ)+

∫ T

0
f̄ (s,Xs,Θ̄s(·))1[0,T∧τ](s)dCF,X

s

∣∣∣Gt

]
−

∫ t

0
f̄ (s,Xs,Θ̄s(·))1[0,T∧τ](s)dCF,X

s (B.3)

and moreover

ḡ(XT∧τ)+
∫ T

0
f̄ (s,Xs,Θ̄s(·))1[0,T∧τ](s)dCF,X

s

= E
[
ḡ(XT∧τ)+

∫ T

0
f̄ (s,Xs,Θ̄s(·))1[0,T∧τ](s)dCF,X

s

]
+

∫ T

0

∫
Rd+1

Θ̄s(x1,x2)(µ
Z −ν

G,Z)(ds,dx1,dx2),

where the last integral is a martingale. Consequently, for all t ∈ [0,T ],

Ȳt = E
[
ḡ(XT∧τ)+

∫ T

0
f̄ (s,Xs,Θ̄s(·))1[0,T∧τ](s)dCF,X

s

]
+

∫ t

0

∫
Rd+1

Θ̄s(x1,x2)(µ
Z −ν

G,Z)(ds,dx1,dx2)−
∫ t

0
f̄ (s,Xs,Θ̄s(·))1[0,T∧τ](s)dCF,X

s .

By Doob’s stopping theorem and (B.2), previous expression gives

Ȳt∧τ = E
[
ḡ(XT∧τ)+

∫ T∧τ

0
f̄ (s,Xs,Θ̄s(·))dCF,X

s

]
(B.4)

+
∫ t∧τ

0

∫
Rd+1

Θ̄s(x1,x2)(µ
Z −ν

G,Z)(ds,dx1,dx2)−
∫ t∧τ

0
f̄ (s,Xs,Θ̄s(·))dCF,X

s .
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Now we notice that for t = 0 and t = T ∧ τ in (B.3) we obtain respectively

Ȳ0 = E
[
ḡ(XT∧τ)+

∫ T∧τ

0
f̄ (s,Xs,Θ̄s(·))dCF,X

s

]
, ȲT∧τ = ḡ(XT∧τ).

Then,

Ȳt∧τ +
∫ T∧τ

t∧τ

∫
Rd+1

Θ̄s(x1,x2)1[0,T∧τ](s)(µ
Z −ν

G,Z)(ds,dx1,dx2)

= ḡ(XT∧τ)+
∫ T∧τ

t∧τ

f̄ (s,Xs,Θ̄s(·)1[0,T∧τ](s))dCF,X
s , t ∈ [0, T ],

or, equivalently,

Ȳt∧τ +
∫ T

t

∫
Rd+1

Θ̄s(x1,x2)1[0,T∧τ](s)(µ
Z −ν

G,Z)(ds,dx1,dx2)

= ḡ(XT∧τ)+
∫ T

t
f̄ (s,Xs,Θ̄s(·)1[0,T∧τ](s))1[0,T∧τ](s)dCF,X

s , t ∈ [0, T ].

Proof of Step 2. It is enough to show the identity

f̄ (ω,s,Xs(ω),Θ̄s(ω, ·))1[0,T∧τ(ω)](s) = f (ω,s,Xs(ω),Θ̄s(ω, ·)), d1(ω,s)dCG,Z
s (ω)P(dω)-a.e.

(B.5)

As a matter of fact, plugging (B.5) in BSDE (B.2) we would get BSDE (5.28). Then, by the uniqueness
of the solution, (Y,Θ(·)) would coincide with (Ȳ ,Θ̄(·)) and, by Step 1., Y = Y·∧τ , P(dω)-a.e. and
Θ = Θ1[0,T∧τ], φ

G,Z
t (ω,dx1,dx2)dCG,Z

t (ω)P(dω)-a.e.
Let us thus prove (B.5). By Step 1,

f
(

ω,s,Xs(ω),Θ̄s(ω, ·)1[0,T∧τ(ω)](s)
)
= f (ω,s,Xs(ω),Θ̄s(ω, ·)). (B.6)

On the other hand, recalling (5.19), we have that, d1(ω,s)dCG,Z
s (ω)P(dω)-almost surely on Ω×[0, T ],

f
(

ω,s,Xs(ω),Θ̄s(ω, ·)1[0,T∧τ(ω)](s)
)

= inf
u∈U

{
l̄s(ω,Xs(ω),u)1[0,T∧τ(ω)](s)+

∫
Rd

Θ̄(x1,0)1[0,T∧τ(ω)](s)(r̄s(ω,x1,u)−1)φ
F,X
s (ω,dx1)

}
= 1[0,T∧τ(ω)](t) inf

u∈U

{
l̄s(ω,Xs(ω),u)+

∫
Rd

Θ̄(x1,0)(r̄s(ω,x1,u)−1)φ
F,X
s (ω,dx1)

}
= f̄ (ω,s,Xs(ω),Θ̄s(ω, ·))1[0,T∧τ(ω)](s). (B.7)

Collecting (B.6) and (B.7), we get (B.5).

Proof of Step 3. Recalling the proof of Theorem 5.14, it is enough to show that, for almost all (ω, t)
such that t ≤ T ∧ τ(ω) with respect to the measure d1(ω, t)dCG,Z

t (ω)P(dω),

f̄ (ω, t,Xt−(ω),Θt(ω, ·)) = l̄t(ω,Xt−(ω),uΘ(ω, t)) (B.8)

+
∫
Rd

Θt(ω,x1,0)(r̄t(ω,x1,uΘ(ω, t))−1)φ
F,X
t (ω,dx1).
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Identities (B.5) and (5.20), together with Step 1, yield

f̄ (ω, t,Xt(ω),Θt(ω, ·))1[0,T∧τ(ω)](t) = f (ω, t,Xt(ω),Θt(ω, ·))
= 1[0,T∧τ(ω)](t)l̄t(ω,Xt−(ω),uΘ(ω, t))

+
∫
Rd

Θt(ω,x1,0)1[0,T∧τ(ω)](t)(r̄t(ω,x1,uΘ(ω, t))−1)φ
F,X
t (ω,dx1)

= 1[0,T∧τ(ω)](t)
{

l̄t(ω,Xt−(ω),uΘ(ω, t))+
∫
Rd

Θt(ω,x1,0)(r̄t(ω,x1,uΘ(ω, t))−1)φ
F,X
t (ω,dx1)

}
.

□
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