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Abstract. We study first-passage percolation on random simple triangulations and their dual maps
with independent identically distributed link weights. Our main result shows that the first-passage
percolation distance concentrates in an op(n

1/4) window around a constant multiple of the graph
distance. Our approach follows the proof strategy by Curien and Le Gall (Ann. Sci. Éc. Norm.
Supér., 2019), but we have to overcome several obstacles specific to simple triangulations.

1. Introduction

The first-passage percolation distance dGfpp on a connected graph G assigns an independent copy
of a random link-weight ι > 0 to each edge of the graph. The weights on the edges are interpreted as
lengths, and the first-passage percolation distance between any two points is given by the minimal
sum of weights along joining paths.

Our main result studies the first-passage percolation metric on random simple triangulations.
That is, planar maps without multi-edge or loops, with all faces having degree 3.

Theorem 1.1. Let Tn denote the uniform simple triangulation with n+ 1 vertices. Suppose that ι
has finite exponential moments and that there exists a constant κ > 0 such that P(ι ≥ κ) = 1. Then
there exists a constant cTfpp > 0 such that

n−1/4 sup
x,y∈V(Tn)

∣∣∣dTnfpp(x, y)− cTfppdTn(x, y)
∣∣∣ p−→ 0

as n tends to infinity.

Here dTn(x, y) denotes the graph distance between points x and y of Tn. The constant cTfpp depends
on the distribution of ι, and determining an explicit expression appears to be a severely difficult
problem. However, if the distribution of ι is explicit, simulations of random simple triangulations
may be used to obtain estimates.1
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1The author’s program simtria provides a highly optimized and efficient sampler for random simple triangulations.

It supports multithreading and uses efficient memory management in order to facilitate large scale simulations. The
program is open source and available for free on the github: https://github.com/BenediktStufler/simtria.
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Similar results for bounded link-weights and for the Eden model (with an unbounded link-weight
corresponding to an exponential random variable) have been established in Curien and Le Gall
(2019) for triangulations with loops and multi-edges. In Lehéricy (2022) similar results were ob-
tained for quadrangulations and unrestricted planar maps. A key ingredient in the their proofs is
the skeleton decomposition of triangulations and quadrangulations developed in Krikun (2005b,a).
The present work is also an application of the skeleton decomposition method and follows closely the
proof strategy of Curien and Le Gall (2019), see below for more detailed comments on this. Concen-
tration results of this sort are also known for members of the universality class of the Brownian tree.
In particular, Stufler (2017) shows such a result for first-passage percolation distances on random
outerplanar maps, and Panagiotou et al. (2016, Thm. 7.1) for random graph from subcritical graph
classes like series-parallel-graphs and cacti graphs. Simple triangulations were also shown to admit
the Brownian sphere as Gromov–Hausdorff–Prokhorov scaling limit Addario-Berry and Albenque
(2017), after rescaling distances by roughly n−1/4.

We additionally prove a concentration result for first-passage percolation on random 3-connected
cubic planar graphs. Cubic planar graphs and related classes have received increasing attention in
probabilistic and combinatorial literature. The asymptotic number of connected and 2-connected
cubic planar graphs was determined in Bodirsky et al. (2007); Noy et al. (2020) via singularity
analysis methods and combinatorial decompositions. The shape of random cubic planar graphs
was studied in Requilé and Rué (2015), with a focus on the number of perfect matchings. The
work Stufler (2023) established a Uniform Infinite Cubic Planar Graph of as quenched local limit
of random cubic planar graphs.

A graph is called 3-connected, if it is connected, has at least 4 vertices, and removing any pair
of vertices does not disconnected the graph. In Noy et al. (2022) the typical number of triangles
in 3-connected cubic planar graphs was determined. Further research directions include 4-regular
planar graphs Noy et al. (2017), cubic graphs on general orientable surfaces Fang et al. (2018), and
cubic planar maps Drmota et al. (2023).

In particular, the work Ambjørn and Budd (2016) studies the asymptotic geometric shape of cubic
planar maps by determining the geodesic two- and three-point functions, after assigning independent
random lengths with an exponential distribution to each edge.

Our second main result is concerned with first-passage percolation distances on the model of
3-connected cubic planar graphs:

Theorem 1.2. Let Cn denote a uniformly selected 3-connected cubic planar graph with n labelled
vertices. Suppose that ι has finite exponential moments and that there exists a constant κ > 0 such
that P(ι ≥ κ) = 1. Then there exists a constant cC

fpp > 0 such that

n−1/4 sup
x,y∈V(C (n))

∣∣∣dCn
fpp(x, y)− cC

fppdCn(x, y)
∣∣∣ p−→ 0

as n ∈ 2N tends to infinity.

We emphasize that critical classes like cubic planar graphs or unrestricted planar graphs do not fall
into the setting of subcritical graph classes considered in Panagiotou et al. (2016). The main results
of the present work play a role in the proof of the main result in Stufler (2022b) which establishes
the Brownian sphere as scaling limit of random connected (and not necessarily 3-connected) cubic
planar graphs. Facilitating this application is also the reason why we go the extra mile and treat
unbounded light-tailed link weights. See also the independent proof Albenque et al. (2023) of the
scaling limit of cubic planar graphs with similar intermediate results on first-passage percolation
distances.

The proof of Theorem 1.2 makes use of Whitney’s theorem, which states that each 3-connected
planar graph has precisely two embeddings into the 2-sphere. Hence, uniform 3-connected cubic
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planar graphs are distributed like uniform 3-connected cubic planar maps. The dual map construc-
tion yields a bijection between this class of planar maps and 3-connected triangulations. We will
show that the first-passage percolation distance on the dual of a random simple triangulation con-
centrates around a constant multiple of the graph distance in the triangulation. If the link-weights
are constants equal to 1, then the dual distance is equal to the graph distance on the associated
3-connected cubic planar map. Hence applying this result twice yields Theorem 1.2.

Our proof strategy for simple triangulations follows closely the steps in Curien and Le Gall (2019)
that treats first-passage percolation on unrestricted triangulations (admitting loops and multi-edges)
and their duals. However, there are considerable obstacles that we need to overcome, and several
places where we take different paths.

The main challenge is that complicated constraints arise in the skeleton decomposition of simple
triangulations. We identify these constraints in Section 4.2 and deal with the resulting difficulties in
the asymptotic analysis of simple triangulations. In particular, in those places where summing over
all admissible configurations no longer yields tractable expressions, see for example Equation (4.22).
Our calculations also show that interestingly the same offspring law arises for the infinite models
(like the lower and upper infinite half-planer triangulations) as in the type I and type II regime, see
Remark 4.8.

Another difficulty is that we have to do without the bijection between type I triangulations and
type I triangulations of the 1-gon (see Curien and Le Gall (2019, Fig. 2)), since simple triangulations
may not contain loops. This requires us to argue differently in several places, see for example
Lemma 4.13. Some adaptions are also necessary to treat unbounded link-weights, in particular in
the results in Section 7.2.

We also take different paths in obtaining intermediate results on the global shape of simple
triangulations in Equation (8.8) and (8.9). In Curien and Le Gall (2019, Appendix A1) such results
were verified for unrestricted triangulations using the socalled white contour sequence, whereas here
we deduce them using properties of general Gromov–Hausdorff–Prokhorov convergent sequences
whose limit almost surely has full support.

Notation. We let N = {1, 2, . . .} denote the collection of positive integers. All unspecified limits are
taken as n becomes large, possibly taking only values in a subset of the natural numbers. We use
d−→ and p−→ to denote convergence in distribution and probability. Almost sure convergence is

denoted by a.s.−→ . Equality in distribution is denoted by d
= . An event holds with high probability,

if its probability tends to 1 as n → ∞. For any integer k ≥ 0 we let [xk]f(x) = ak denote the kth
coefficient of a power series f(x) =

∑
i∈Z aix

i.

2. Preliminaries

2.1. Planar maps. A planar map is an embedding of a connected multi-graph onto the 2-dimensional
sphere, so that edges of the multi-graph are represented by arcs that may only intersect at their
endpoints. The faces of the planar map are the connected components created when removing it
from the 2-sphere. All faces are required to be homeomorphic to open discs.

Planar maps are viewed up to orientation-preserving homeomorphism. This way, the number of
planar maps with a given number of edges is finite. In order to eliminate symmetries, we distinguish
and orient a root edge. All planar maps we consider in this work are rooted in this way. The origin
of the root edge is called the root vertex. A planar map is called simple, if it has no multi-edges or
loops. Using the stereographic projection, we may equivalently draw planar maps in the plane.

Any edge can be thought of as a pair of half-edges with opposing directions. The half-edges
delimiting a face are its boundary. We say the boundary is simple, if it is a simple graph-theoretic
cycle. This way, the degree of the face is equal to the length of the cycle. The number of half-edges
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on the boundary of a face is its degree. This way, any edge that has both sides incident to the same
face is counted twice.

Figure 2.1. A plane representation of a planar map.

For example, the planar map illustrated in Figure 2.1 has a marked face (filled in grey) with
degree 5 and a non-simple boundary (marked by thicker edges).

2.2. Triangulations. A triangulation is a planar map that only has faces of degree 3. A triangu-
lation without restrictions is called a type I triangulation. If it has no loops, it is called a type II
triangulation. For triangulations this is equivalent to being non-separable. Simple triangulations
with no loops and no multi-edges are also called type III triangulations. For triangulations with
at least four vertices, this is equivalent to being 3-connected. The reader should beware that this
terminology is not used uniformly throughout the literature. See for example the pioneering work by
Tutte Tutte (1962) who additionally requires a simple triangulation to have no separating 3-cycles.

A triangulation with a boundary is a planar map t where all faces have degree 3, except for the
face to the right of the root-edge, which is required to be simple and has no degree restrictions. The
boundary ∂t is the boundary of this face and is also called the bottom cycle. Letting p ≥ 1 denote
its length, we also say t is a triangulation of the p-gon. An inner vertex of t is a vertex that does
not lie on the bottom cycle. The height of a vertex v ∈ V(t) of t is the graph distance between v
and the bottom cycle. That is, the minimal length of a path that originates in v and ends at any
of the vertices of the bottom cycle.

Figure 2.2. A simple triangulation of the hexagon.

Figure 2.2 illustrates a simple triangulation of the 6-gon, or hexagon. The boundary is marked
by thicker edges.

2.3. The dual map construction. The dual map M † of a planar map M is the “red” planar map
constructed by placing a red vertex inside each face of M and then adding for each edge e of M a
red edge between the red vertices inside the two faces adjacent to e. These faces may be identical,
and in this case the corresponding red edge is a loop. The root edge of the dual map M † is the
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red edge corresponding to the root-edge of M , oriented in a canonical way. Figure 2.3 illustrates a
simple triangulation together with its cubic dual map. For any vertex v and face f of M we write
v ◁ f if v is adjacent to f .

Figure 2.3. A simple triangulation and its cubic dual.

Let ι > 0 denote a positive random variable. The ι-first-passage percolation metric dfpp on the
vertex set V(M) of a planar map M assigns a weight to each edge according to an independent
copy of ι. The distance between any two points is then given by the minimal sum of weights along
joining paths. We let d†fpp denote the ι-first-passage percolation distance on the dual map M †.

3. 3-connected cubic planar graphs and 3-connected triangulations

Restricting the dual map construction to 3-connected triangulations yields a bijection between
this class and 3-connected cubic planar maps. Furthermore, Whitney’s theorem ensures that each
3-connected cubic planar graph has precisely two embeddings into the 2-sphere. Hence, if Tn denotes
a uniform triangulation with n+1 vertices (and consequently 3(n−1) edges and 2(n−1) faces) then
the dual map T †

n is distributed like the uniform random 3-connected cubic planar graph C2(n−1).
In order to prove Theorem 1.2 it suffices to show:

Theorem 3.1. Suppose that ι has finite exponential moments and that there exists a constant κ > 0

with P(ι ≥ κ) = 1. Then there exists a constant c†fpp > 0 such that

n−1/4 sup
u,v∈Tn
u◁f,v◁g

∣∣∣c†fppdTn(u, v)− d†fpp(f, g)
∣∣∣ p−→ 0.

as n tends to infinity.

Indeed, Theorem 1.2 follows by applying Theorem 3.1 twice, once for ι and once for constant
link-weights.

4. The skeleton decomposition of simple triangulations

4.1. Enumerative properties. As shown by Tutte (1962), the set Tn of simple triangulations with
n+ 3 vertices and hence 2(n+ 1) faces and 3(n+ 1) edges has cardinality

#Tn =
2(4n+ 1)!

(n+ 1)!(3n+ 2)!
. (4.1)
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For any integer p ≥ 3, we let Tn,p denote the set of all simple (type III) triangulations of the p-gon
with n ≥ 0 inner vertices, and hence 3n + 2p − 3 edges. In particular, Tn = Tn,3. As determined
by Brown (1964),

#Tn,p =
2(2p− 3)!(4n+ 2p− 5)!

(p− 3)!(p− 1)!n!(3n+ 2p− 3)!
. (4.2)

In Angel and Schramm (2003, Sec. 2.1) the following asymptotics were determined. As n → ∞,

#Tn,p ∼ C(p)n−5/2(27/256)−n (4.3)

with

C(p) =
(2p− 3)!

3
√
6π(p− 3)!(p− 1)!

(16/9)p−2. (4.4)

As p → ∞,

C(p) ∼ 9
√
3

2048π
√
2
(9/64)−p√p. (4.5)

For p ≥ 3 we set

Z(p) =
∑
n≥0

(27/256)n#Tn,p. (4.6)

The sum converges by Equation (4.3). Its exact value was determined in Angel and Schramm (2003,
Prop. 2.4)

Z(p) =
81(2p− 4)!

128(p− 2)!p!
(16/9)p. (4.7)

We now define the simple Boltzmann triangulation with a given perimeter:

Definition 4.1 (Boltzmann triangulations with a given perimeter). For any integer p ≥ 3 the
simple Boltzmann triangulation with perimeter p is a random element of

⋃
n≥0 Tn,p that, for all

n ≥ 0, assumes a triangulation T ∈ Tn,p with probability (27/256)n/Z(p).

In other words, the simple Boltzmann triangulation has a random number of internal vertices
determined by the probability generating function Z(p)−1

∑
n≥0(27/256)

n#Tn,px
n, and conditional

on having size n it is uniformly distribution over #Tn,p.
It will be notationally convenient to additionally set

Z(2) = 1. (4.8)

By Equation (4.7) and standard arguments it follows that∑
p≥2

Z(p)xp =
1

512

(
(9− 64x)3/2 + 288x− 27

)
. (4.9)

The well-known asymptotic (
2n

n

)
∼ 4n√

πn

for the central binomial coefficient implies

Z(p) ∼ 2√
π
p−5/2(64/9)p−2 (4.10)

as p → ∞.
The following observation is a version of Curien and Le Gall (2019, Lem. 1) for simple triangula-

tions, which we obtain by carrying out the respective bounds and calculations in a similar fashion
for the numbers of simple triangulations.
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Lemma 4.2. There exists a constant c > 0 such that for all n ≥ 1 and p ≥ 3

#Tn,p ≤ cC(p)n−5/2(256/27)n.

Furthermore, for each α > 0 there is a constant c(α) > 0 with

#Tn,p ≥ c(α)C(p)n−5/2(256/27)n.

uniformly for all n ≥ 1 and p ≤ α
√
n.

Proof : We use Θ(1) to denote a term that is bounded away from zero and infinity uniformly in n
and p. Likewise, we let O(1) denote a term that is bounded from above uniformly in n and p. By
Equations (4.2), (4.4)

#Tn,p

C(p)n−5/2(256/27)n
=

Θ(1)

n−5/2(16/9)p(256/27)n
(4n+ 2p− 5)!

n!(3n+ 2p− 3)!
.

Stirling’s formula yields

(4n+ 2p− 5)!

n!(3n+ 2p− 3)!
= Θ(1)

(
n+ p/2

n(n+ 2p/3)

)1/2 (4n+ 2p− 5)4n+2p−5

nn(3n+ 2p− 3)3n+2p−3
.

We may write

(4n+ 2p− 5)4n+2p−5

nn(3n+ 2p− 3)3n+2p−3
=

(4n)4n+2p−5

nn(3n)3n+2p−3

(1 + p
2n − 5

4n)
4n+2p−5

(1 + 2p
3n − 1

n)
3n+2p−3

and
(4n)4n+2p−5

nn(3n)3n+2p−3
= Θ(1/n2)(256/27)n(16/9)p.

Combining these equations yields

#Tn,p

C(p)n−5/2(256/27)n
= Θ(1)

(
1 + p

2n

1 + 2p
3n

)1/2
(1 + p

2n − 5
4n)

4n+2p−5

(1 + 2p
3n − 1

n)
3n+2p−3

The function x 7→ (1+ x)/(1+ 2x/3) is bounded away from zero and infinity on the interval [0,∞[.
Hence (

1 + p
2n

1 + 2p
3n

)1/2

= Θ(1)

and
#Tn,p

C(p)n−5/2(256/27)n
= Θ(1)

(1 + p
2n − 5

4n)
4n+2p−5

(1 + 2p
3n − 1

n)
3n+2p−3

. (4.11)

It is elementary that uniformly for all n ≥ 1 and 3 ≤ p ≤ α
√
n this expression is bounded from

below by a constant that only depends on α. This verifies the claimed lower bound. In order to
show the upper bound, note that for all n ≥ 1 and p ≥ 3

(1 + p
2n − 5

4n)
4n+2p−5

(1 + 2p
3n − 1

n)
3n+2p−3

=

(
(1 + 2p−3

4n − 2
4n)

4+ 2p−3
n

− 2
n

(1 + 2p−3
3n )3+

2p−3
n

)n

≤

(
(1 + 2p−3

4n )4+
2p−3

n

(1 + 2p−3
3n )3+

2p−3
n

)n

.

Consider the function

f(x) =
(1 + x/4)4+x

(1 + x/3)3+x
.
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Note that f(0) = 1 and
d

dx
log(f(x)) = log

(
3(4 + x)

4(3 + x)

)
≤ 0.

Hence f(x) ≤ 1 for x ≥ 0. Consequently,
#Tn,p

C(p)n−5/2(256/27)n
= O(1)f

(
2p− 3

4n

)n

= O(1). (4.12)

□

4.2. The skeleton decomposition of simple triangulations of the cylinder. We adapt Krikun’s skeleton
decomposition of type II triangulations Krikun (2005b,a) to type III triangulations. In the parts
that do not depend on the type we follow closely the terminology from Curien and Le Gall (2019,
Sec. 2.2), where an adaption to type I triangulations was made.

Definition 4.3 (Simple triangulation of the cylinder). A simple triangulation of the cylinder ∆ of
height r ≥ 1 is a rooted simple planar map such that all faces have degree 3 except for a so-called
bottom face and a top face. We require the following conditions to be satisfied:

(1) The boundaries of these two distinguished faces are simple graph-theoretic cycles, and hence
have length at least 3.

(2) The root edge lies on the boundary of the bottom face, so that the bottom face lies to its
right.

(3) Every vertex on the boundary of the top face is at graph distance exactly r of the boundary
of the bottom face.

(4) Every edge on the top face is incident to a face of degree 3 with the third vertex at distance
r − 1 from the boundary of the bottom face.

We let ∂∆ denote the boundary of the bottom face, and ∂∗∆ the boundary of the top face. Let
p ≥ 3 and q ≥ 3 denote their lengths. For 1 ≤ j ≤ r let Bj(∆) denote the union of all faces of
∆ whose boundary contains a vertex at graph distance strictly less than j from the bottom cycle.
The hull B•

j (∆) is the union of Bj(∆) and all connected components of its complement, except the
one containing the top face. This way, B•

j (∆) is a triangulation of the cylinder of height j. We let
∂j∆ = ∂∗B•

j (∆) denote its top cycle. We also set ∂0∆ = ∂∆ and ∂r∆ = ∂∗∆. For ease of reference,
we always assume that ∆ is drawn in the plane such that the unbounded face is the top face. This
way, we may orient all cycles ∂j∆, 0 ≤ j ≤ r, in clock-wise direction.

For 1 ≤ j ≤ r, each edge of ∂j∆ is incident to exactly one face whose third vertex lies on ∂j−1∆.
These faces are called the downward triangles at height j. We let Ed(∆) denote the collection
of all edges of the cycles ∂0∆, . . . , ∂r∆. For 1 ≤ j ≤ r we may consider the vertices on ∂j−1∆
corresponding to downward triangles at height j. This way, for each edge e′ of ∂j−1∆ we may walk
along ∂j−1∆ in counter-clockwise starting from the “middle” of e′ until we encounter for the first
time a vertex corresponding to a downward triangle at height j. We say the unique edge e of ∂j∆ is
the parent of e′. The parent relation yields a forest structure on Ed(∆), with the q roots of the forest
corresponding to the edges on ∂r∆. We let τ1, . . . , τq denote the trees of the forest ordered according
to the clock-wise orientation of ∂r∆, starting with the unique tree that contains the root-edge of ∆.
This way, τ1 has height r and all other trees have height ≤ r. Furthermore, τ1 has a marked leaf at
height r, corresponding to the root edge of ∆. See Figure 4.4 for an illustration.

Note that since ∆ is simple, for all 1 ≤ j ≤ r it may never happen that only a single edge on ∂j∆
has offspring and the others don’t, because this would entail the presence of a multi-edge in ∆. See
Figure 4.5 for an example. Since the tree τ1 always has height r, this is equivalent to stating that
τ1 has no vertex of height less than r who is parent to all vertices of the next generation.

The forest (τ1, . . . , τq) encodes the configuration of downwards triangles. Informally speaking, if
we remove the downwards triangles from ∆, what remains are the bottom cycle, the top cycle, and
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Figure 4.4. Skeleton decomposition of a simple triangulation of the cylinder. White
faces represent downward triangles.

Figure 4.5. An example of a forbidden configuration of downward triangles that
creates a double edge.

a collection of slots. Specifically, given an edge e of ∂j∆ for 1 ≤ j ≤ r with ce ≥ 1 children, the
associated slot is bounded by the children of e (who belong to ∂j−1∆) and two vertical edges between
∂j∆ and ∂j−1∆. The slot has a canonical root-edge, given by the vertical edge on its boundary that
is incident to the downward triangle of e. We orient this root edge so that it points from ∂j−1∆ to
∂j∆. Thus, the slot corresponding to e is a simple triangulation of the (ce + 2)-gon. Note that the
boundary of the slot is always simple, since ∆ is simple. It will be notationally convenient to also
assign a “slot” to e in the case ce = 0, given by the edge of e’s downward triangle that is incident to
the origin of e, when orienting e in the same direction as ∂j∆.

Definition 4.4 (Admissible forests). We say a forest F with a distinguished vertex to be (p, q, r)-
admissible for integers p, q ≥ 3 and r ≥ 1 if the following conditions are met:

(1) The forest is an ordered sequence (τ1, . . . , τq) of planted plane trees.
(2) Each generation of the forest has at least 3 vertices.
(3) All trees have height at most r.
(4) The forest has exactly p vertices with height r.
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(5) The distinguished vertex is a leaf of τ1 with height r.
(6) For all 1 ≤ j < r, no vertex of τ1 with height j is parent to all vertices of F with height

j + 1.
We write F ∗ for the set of vertices of F with height less than r.

For any vertex v ∈ F we let cv denote the number of children of v. Thus, a simple triangulation ∆
of the cylinder of height r with bottom and top cycle having lengths p and q corresponds bijectively
to a pair (F , (Mv)v∈F∗) of a (p, q, r)-admissible forest F and a family (Mv)v∈F∗ such that for
each v ∈ F ∗ we have that Mv is a simple triangulation of the (cv + 2)-gon if cv > 0, and a place-
holder value if cv = 0. Including the place-holder values for leaves with height less than r will
be notationally convenient. If a generation of the forest F has precisely two non-leaves, then the
corresponding layer has precisely two slots. The boundaries of these two slots share precisely two
vertices. In this case we additionally require that not both of the decorations that get inserted into
these slots have an edge between those two boundary vertices, as this would create a double edge.
This way, ∆ is simple if and only if F is (p, q, r)-admissible and if (Mv)v∈F∗ meets this constraint.

Remark 4.5. For type II triangulations, vertices as described in the sixth condition in Definition 4.4
are permitted, but the corresponding slot is subject to constraints in order to avoid loops Krikun
(2005b, Lem. 2). As argued above, for type III triangulations we have no such constraints, since any
such vertex would entail the presence of multi-edges and hence cannot exist in the forest associated
to a type III triangulation of the cylinder. However, as explained above, forbidding multi-edges
introduces constraints on the decorations when a generation of the forest has precisely two non-
leaves.

Definition 4.6 (Left-most geodesics). Let v be a vertex of ∂j∆ for some 1 ≤ j ≤ r. The left-most
geodesic from v to the bottom cycle ∂∆ is defined as follows. Consider the clock-wise ordering of
the edges incident to x, starting from the unique edge on ∂j∆ that starts at x and points in the
same direction as the clock-wise orientation of ∂j∆. The first edge of the left-most geodesic is the
last edge in this ordering that ends at a vertex from ∂j−1∆. From there we proceed inductively.

Let u, v be vertices on the top cycle ∂∗∆. Let F ′ denote the subforest of the skeleton F of ∆
consisting of all trees whose root corresponds to an edge of ∂∗∆ that lies on the path from u to v
in the clockwise direction of ∂∗∆. Let F ′′ denote the forest obtained by removing F ′ from F . It
is easy to see that for each integer 1 ≤ k ≤ r the left-most geodesics starting from u and v merge
before or at step k if and only if F ′ or F ′′ have height less than k.

4.3. Skeletons of random triangulations. For all integers j ≥ 1, we define the ball Bj(t) of a simple
triangulation t of the p-gon as the submap consisting of all faces of t that are incident to a vertex
at distance strictly less than j from the bottom cycle ∂t. Hence any vertex v of Bj(t) has distance
at most j from ∂t.

We say a pair t̄ = (t, o) of a triangulation t of the p-gon and a vertex o of t is a pointed triangulation
of the p-gon. Suppose that o has height (that is, distance from ∂t) strictly larger than j. We
construct the hull B•

j (t̄) by adding to Bj(t) all connected components of the complement of Bj(t),
except for the component containing the marked vertex o. Since we assume the marked vertex to
have height strictly larger than j, the hull B•

j (t̄) is a triangulation of the cylinder of height j. Note
that B•

j (B
•
r (t̄)) = B•

j (t̄) for 1 ≤ j < r.

For any integer p ≥ 3 we let T (p)
n be drawn uniformly at random from the set Tn,p of simple

triangulations of the p-gon with n inner vertices. We let T (p)
n denote the pointed simple triangulation

obtained by distinguishing a uniformly selected inner vertex of T (p)
n . The hull B•

r (T
(p)
n ) is well-

defined if the marked vertex has height at least r + 1. If this condition is not met, we set B•
r (T

(p)
n )

to some place-holder value.
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Let ∆ be a triangulation of the cylinder with height r ≥ 1, with p, q ≥ 3 denoting the lengths of
the bottom and top cycle. Let N denote the total number of vertices of ∆ and let F = (τ1, . . . , τq)
denote the (p, q, r)-admissible forest associated to ∆. Let (Mv)v∈F∗ denote the simple triangulations
with a boundary filling in the slots of ∆. For each v ∈ F ∗ we let Inn(Mv) denote the number of
inner vertices of Mv. In case cv = 0, we set Inn(Mv) = 0.

The following lemma is analogous to Curien and Le Gall (2019, Lem. 2). We crucially note
that inserting an arbitrary simple triangulation of the q-gon into the outer face of ∆ cannot create
multi-edges, which allows us to use analogous arguments as in the proof of Curien and Le Gall
(2019, Lem. 2).

Lemma 4.7. We have

lim
n→∞

P
(
B•

r (T
(p)
n ) = ∆

)
=

(64/9)−qC(q)

(64/9)−pC(p)

∏
v∈F∗

θ(cv)
(256/27)−Inn(Mv)

Z(cv + 2)

with cv denoting the outdegree of the vertex v in the forest F , and (θ(k))k≥0 the probability weights
of a probability distribution with mean ∑

k≥1

kθ(k) = 1

and probability generating function

gθ(x) =

∞∑
k=0

xkθ(k) = 1−
(
1 +

1

1− x

)−2

.

The probability weights satisfy the asymptotic

θ(k) ∼ 3

2
√
π
k−5/2

as k → ∞.

Proof : For ease of notation, we set
α = 64/9

and
ρ = 256/27.

The event B•
r (T

(p)
n ) = ∆ means that T (p)

n is equal to result of inserting an arbitrary simple trian-
gulation of the q-gon in the outer face (that is, the face whose boundary is the top cycle) of ∆,
and that the uniformly marked vertex of T (p)

n got drawn from the inner vertices of this q-gon. Note
that inserting a simple triangulation in the outer face of ∆ never creates double edges, since the
downward triangles in ∆ ensure that no two vertices of the top cycle ∆ are joined by an edge that
does not already lie on the top cycle. Thus, for sufficiently large n

P
(
B•

r (T
(p)
n ) = ∆

)
=

#Tn−(N−p),q

#Tn,p

(
1− N − p

n

)
. (4.13)

By (4.3), it follows that

lim
n→∞

P
(
B•

r (T
(p)
n ) = ∆

)
=

C(q)

C(p)
ρp−N . (4.14)

The number N of vertices of ∆ satisfies

N = #Ed(∆) +
∑
v∈F∗

Inn(Mv),
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with Ed(∆) denoting the combined collection of edges of the cycles ∂j∆ for 0 ≤ j ≤ r. Moreover,

#Ed(∆) =

q∑
i=1

#τi = q +
∑
v∈F∗

cv.

Thus,

lim
n→∞

P
(
B•

r (T
(p)
n ) = ∆

)
=

C(q)

C(p)
ρp−q

∏
v∈F∗

ρ−Inn(Mv)−cv . (4.15)

Furthermore, ∑
v∈F∗

(cv − 1) = p− q.

Hence, multiplying (4.15) with 1 = (α/ρ)p−q−
∑

v∈F∗ (cv−1) yields

lim
n→∞

P
(
B•

r (T
(p)
n ) = ∆

)
=

α−qC(q)

α−pC(p)

∏
v∈F∗

α−cv+1ρ−Inn(Mv)−1

=
α−qC(q)

α−pC(p)

∏
v∈F∗

θ(cv)
ρ−Inn(Mv)

Z(cv + 2)
,

where we set for all k ≥ 0

θ(k) =
1

ρ
α−k+1Z(k + 2). (4.16)

Using Equation (4.7), it follows by elementary calculations that

gθ(x) =
∞∑
k=0

xkθ(k) = 1−
(
1 +

1

1− x

)−2

. (4.17)

Furthermore,
gθ(1) = 1

and
g′θ(1) = 1.

Hence gθ is the density function of a probability distribution with mean 1. □

Remark 4.8. The distribution θ for the type III case considered here turns out to be identical to
the offspring distribution in the type II case Krikun (2005b) and the type I case Curien and Le Gall
(2019). However, we are faced with different constraints on the trees.

Recall that Tn denotes a uniform triangulation with n + 1 vertices. In the work Angel and
Schramm (2003) the type III Uniform Infinite Planar Triangulation (UIPT) T∞ was constructed
and shown to be the local limit of large uniform type III triangulations:

Proposition 4.9 (Angel and Schramm (2003)). In the local topology,

Tn
d−→T∞ (4.18)

as n → ∞.

The local topology describes how similar two planar maps are in the vicinity of their root edges.
We refer the reader to the elegant presentations by Curien (2018) for details on this notion.

Furthermore, Angel and Schramm (2003) showed that the UIPT is almost surely one-ended, that
is, deleting any finite number of vertices of T∞ may leave us with several connected components,
but exactly one of them is infinite.
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The degree d(T∞) of the origin of the root-edge of T∞ was determined in Angel and Schramm
(2003, Lem. 4.1) to satisfy

P(d(T∞) = p) =
2(2p− 3)!

(p− 3)!(p− 1)!

(
3

16

)p−1

(4.19)

for each p ≥ 3. Using the asymptotics for the central binomial coefficient, it follows that

P(d(T∞) = p) ∼ 1√
2π

√
p

(
3

4

)p−1

(4.20)

as p → ∞.
If we condition Tn on having root degree p, and then delete the origin of the root-edge, we obtain

a uniform simple triangulation of the p-gon with n vertices in total. The bottom cycle is oriented
in a clock-wise way. The root-edge is chosen canonically to be the one that originates from the
destination of the original root-edge of Tn and points in the direction of the bottom cycle.

Equation (4.19) ensures that root of the UIPT assumes any integer p ≥ 3 with positive probability.
Hence the same construction is possible for the UIPT:

Definition 4.10 (Type III Uniform Infinite Triangulation of the p-gon). For each integer p ≥ 3 we
let T (p)

∞ denote the result of conditioning the root vertex of the type III UIPT T∞ on having degree
p, and then deleting it.

The root-edge of T (p)
∞ is chosen canonically like in the case for finite triangulations. It follows

directly from Equation (4.18) that the map T (p)
∞ is the local limit of the uniform triangulation of

the p-gon:

Corollary 4.11. We have

T (p)
n

d−→T (p)
∞

in the local topology as n → ∞.

Since the UIPT is almost surely one-ended, it immediately follows that T (p)
∞ is almost surely

one-ended as well.
All neighbourhoods of the root-edge of T (p)

∞ are finite, hence all neighbourhood of the bottom
cycle of T (p)

∞ are finite as well. It follows that all connected components of the complement of T (p)
∞

have a finite boundary. Since T (p)
∞ is almost surely one-ended, it follows that exactly one of them is

infinite.
This allows us to construct for all integers r ≥ 1 the hull B•

r (T
(p)
∞ ) by adding to Br(T (p)

∞ ) all
connected components of its complement, except the unique infinite component. By construction,
the hull B•

r (T
(p)
∞ ) is finite.

By Lemma 4.7, it follows that

P
(
B•

r (T (p)
∞ ) = ∆

)
=

(64/9)−qC(q)

(64/9)−pC(p)

∏
v∈F∗

θ(cv)
(256/27)−Inn(Mv)

Z(cv + 2)
. (4.21)

Summing over the countably many possible configurations (Mv)v∈F∗ we obtain:

Corollary 4.12. For all F ∈ Fp,q,r we have

P
(
F is associated to B•

r (T (p)
∞ )

)
≤ (64/9)−qC(q)

(64/9)−pC(p)

∏
v∈F∗

θ(cv),

with equality holding if no generation of F has precisely two non-leaves.
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We let Pp,r denote the law of B•
r (T

(p)
∞ ) on the collection Cp,r of all triangulations of the cylinder

of height r with a bottom cycle of length p. We let Pp,r denote the law of the associated forest from
the collection

Fp,r :=

∞⋃
q=1

Fp,q,r.

By construction, Pp,r is a probability measure, and hence by Corollary 4.12:
∞∑
q=3

∑
F∈Fp,q,r

(64/9)−qC(q)

(64/9)−pC(p)

∏
v∈F∗

θ(cv) ≥ 1. (4.22)

Compare with Curien and Le Gall (2019, Lem. 3), where a similar statement with equality instead
of inequality was verified for type I triangulation via a direct calculation. The reason we only deduce
an inequality is due to the constraints on the decorations for specific forests.

4.4. A comparison principle. Let 1 ≤ r < s and p ≥ 3 be integers, and let ∆ ∈ Cp,s. Let q denote
the length of the cycle ∂r∆. We may view ∆ as the result of gluing a triangulation ∆′′ ∈ Cq,s−r at
the top cycle of a triangulation ∆′ ∈ Cp,r. From Corollary 4.12 it follows that

Pp,s(∆) = Pp,r(∆
′)Pq,s−r(∆

′′).

We let L
(p)
r denote the length of the top cycle of B•

r (T
(p)
∞ ).

If we delete the origin o of the root-edge of T∞, we obtain a simple triangulation of the polygon
whose length equals the degree of o in T∞. We described this degree d(T∞) in Equation (4.19).
The bottom cycle is oriented in a clock-wise way. The new root-edge of the bottom-cycle is chosen
canonically to be the one that originates from the destination of the original root-edge of T∞ and
points in the direction of the bottom cycle.

It will be notationally convenient to set T (0)
∞ = T∞ and interpret B•

r (T
(0)
∞ ) as a “triangulation

of the cylinder with a bottom cycle of length 0.” Its associated forest is defined to be the one
corresponding to B•

r (T
(0)
∞ ) \ {o}, with the ordering of the trees determined by the root-edge on the

bottom cycle. We let Lr denote the length of its top cycle. Hence Lr is distributed like the length
of the top cycle of B•

r−1(T
(D)
∞ ) for a random independent integer D that is distributed like the root

degree d(T∞) described in Equation (4.19). Here, we set L1 = D to cover the case r = 1.
By a slight abuse of notation, we let B•

s (T
(p)
∞ ) \B•

r (T
(p)
∞ ) denote the triangulation of the cylinder

of height s − r that contains all faces from B•
s (T

(p)
∞ ), except those that also lie in B•

r (T
(p)
∞ ). We

view B•
s (T

(p)
∞ ) \B•

r (T
(p)
∞ ) as rooted at the edge of the bottom cycle that corresponds to the root of

the first tree in the skeleton of B•
r (T

(p)
∞ ). Thus, conditional on L

(p)
r = q (with p = 0 or p ≥ 3), the

triangulation of the cylinder B•
s (T

(p)
∞ )\B•

r (T
(p)
∞ ) is distributed according to Pq,s−r and is independent

from B•
r (T

(p)
∞ ).

We let Y = (Yr)r≥0 denote a Bienaymé–Galton–Watson process with offspring distribution θ
(from Lemma 4.7) that starts with k individuals under the probability measure Pk. Thus, the
probability generating function of Yr under P1 is the rth iterate g

(r)
θ of gθ. By induction, it follows

as in Curien and Le Gall (2019, Eq. (16)) that

E1[x
Yr ] = g

(r)
θ (x) = 1−

(
r +

1√
1− x

)−2

. (4.23)

Using singularity analysis Flajolet and Sedgewick (2009), it follows that

P1(Yr = k) ∼ 3r

2
√
π
k−5/2 (4.24)
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as k → ∞. Furthermore,

Pq(Yr = p) = [xp]
(
g
(r)
θ (x)

)q
, (4.25)

and in particular

Pq(Yr = 0) =
(
g
(r)
θ (0)

)q
=

(
1− 1

(r + 1)2

)q

. (4.26)

We let Fp,q,r denote the collection of all (p, q, r)-admissible forests. We define set F′
p,q,r of all

pointed forests satisfying

i) The forest is an ordered sequence (τ1, . . . , τq) of planted plane trees.
ii) Each generation of the forest has at least 3 vertices.
iii) All trees have height at most r.
iv) The forest has exactly p vertices with height r.
v) The distinguished vertex is a leaf with height r.
vi) For all 1 ≤ j < r, no vertex of height j is parent to all vertices of F with height j + 1.

We let F′′
p,q,r denote the collection of all unmarked forests satisfying all requirements except v).

Naturally, there is a 1 to q correspondence between Fp,q,r and F′
p,q,r, with any forest from Fp,q,r

corresponding to its q cyclically permuted versions. Furthermore, there is a p to 1 correspondence
between F′

p,q,r and F′′
p,q,r, with any forest from F′′

p,q,r corresponding to its p versions with a marked
leaf at height r.

Let a ∈]0, 1[ and let N
(a)
r be uniformly distributed over {⌊ar2⌋ + 1, . . . , ⌊a−1r2⌋}. Let τ1, τ2, . . .

denote independent copies of a θ-Bienaymé–Galton–Watson tree. For each j ≥ 0 and any tree τ
we let [τ ]j denote the tree truncated at height j. That is, we delete all vertices with height strictly
larger than j.

For all 1 ≤ r < s we let F
(0)
r,s denote the skeleton of Bs(T (0)

∞ ) \ Br(T (0)
∞ ). We also write F̃

(0)
r,s

for the unmarked forest obtained by forgetting the marked vertex of F
(0)
r,s and applying a uniform

random cyclic permutation to the Ls trees of F
(0)
r,s . Thus, conditional on Lr = p and Ls = q, F̃

(0)
r,s

is uniformly distributed over F′′
p,q,s−r.

The following result is similar to the corresponding bound for type III triangulations Curien
and Le Gall (2019, Lem. 4). However, the proof is more complicated since, contrarily to type I
triangulations, for type III triangulations we do not have a bijection between arbitrary triangulations
and triangulations of the 1-gon, forcing us to obtain the upper bounds using contour integration.

Lemma 4.13. There exists C0 > 0 such that for all α ≥ 0 and integers r ≥ 1 and q ≥ 3

P(Lr = q) ≤ C0/r
2 (4.27)

and

P(Lr > αr2) ≤ C0 exp(−α/5). (4.28)
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Proof : Let us first treat the case r ≥ 2. Using Corollary 4.12 and the discussed correspondences
between Fp,q,r−1, F′

p,q,r−1, and F′′
p,q,r−1, it follows that

P(Lr = q) =
∑
p≥3

P(d(T∞) = p)P(L(p)
r−1 = q) (4.29)

≤
∑
p≥3

P(d(T∞) = p)
∑

F∈Fp,q,r−1

(64/9)−qC(q)

(64/9)−pC(p)

∏
v∈F∗

θ(cv)

=
∑
p≥3

P(d(T∞) = p)
q−1(64/9)−qC(q)

p−1(64/9)−pC(p)

∑
F∈F′′

p,q,r−1

∏
v∈F∗

θ(cv)

≤
∑
p≥3

P(d(T∞) = p)
q−1(64/9)−qC(q)

p−1(64/9)−pC(p)
Pq(Yr−1 = p).

The inequality sign in the last line is due to the restrictions on the forests from F′′
p,q,r−1. By

Equation (4.5),

q−1(64/9)−qC(q) ∼ 9
√
3

2048π
√
2

1
√
q

(4.30)

as q → ∞. Moreover,
Pq(Yr−1 = p) = [xp](g

(r−1)
θ (x))q.

By Equations (4.4), (4.19) and standard calculations

f(x) :=
∑
p≥3

P(d(T∞) = p)

p−1(64/9)−pC(p)
xp

=
1024

√
6π(2− x)x3

(3x− 4)2
.

Note that f is analytic on {z ∈ C | |z| < 4/3}, and the probability generating function gqθ is analytic
at least on {z ∈ C | |z| < 1}. Hence∑

p≥3

P(d(T∞) = p)

p−1(64/9)−pC(p)
Pq(Yr−1 = p) =

1

2πi

∫
γ

gqθ(z)h(1/z)

z
dz (4.31)

for γ : [0, 1] → C, t 7→ R exp(2πit) for arbitrary 3/4 < R < 1. Note that in the domain {z ∈ C |
|z| < 1} the function f(1/z) has poles exactly in 0 and 3/4. Hence, by the residue theorem and
standard calculations

1

2πi

∫
γ

gqθ(z)h(1/z)

z
dz = Res0

(
gqθ(z)h(1/z)

z

)
+Res3/4

(
gqθ(z)h(1/z)

z

)
.

Equation (4.23) and standard calculations yield

Res0

(
gqθ(z)h(1/z)

z

)

= −
256
√

2π
3 q
(
6q + 17(r − 1)3 + 42(r − 1)2 + 16(r − 1)− 6

) (
1− 1

r2

)q
9(r − 1)2r2(r + 1)2

and

Res3/4 =
16384

√
2π
3 q
(
1− 1

(1+r)2

)q−1

9(r + 1)3
.



First-passage percolation on random simple triangulations 145

Note that

Res0

(
gqθ(z)h(1/z)

z

)
< 0.

Hence, using Inequality (4.29) and Equation (4.30) it follows that

P(Lr = q) ≤ C ′√qr−3

(
1− 1

(1 + r)2

)q−1

(4.32)

≤ C ′′ 1

r2

√
q

r2
exp

(
− q

4r2

)
.

for constants C ′, C ′′ > 0 that do not depend on r or q. This readily verifies the existence of a
constant C0 such that Inequality (4.27) holds for all q ≥ 3 and r ≥ 2. We may without loss of
generality assume that C0 > 1, hence (4.27) also holds for r = 1.

As for Inequality (4.28), we obtain for r ≥ 2

P(Lr > αr2) ≤ C ′′
∑

q>αr2

1

r2

√
q

r2
exp

(
− q

4r2

)
≤ C ′′ 1

r2

∫ ∞

αr2

√
x

r2
exp

(
− x

4r2

)
dx

≤ C ′′′ exp(−α/5),

for some constant C ′′′ > 0 that does not depend on α. As for r = 1, since

L1
d
= d(T∞),

we get from (4.20) that

P(L1 > α) = O(
√
α(3/4)α) = O(exp(−α/5))

since log(3/4) ≈ −0.287 < −1/5. This completes the proof. □

We prove the following bound using analogous arguments as for Curien and Le Gall (2019, Prop.
5), with the difference that due to Corollary 4.12 we obtain Inequalities instead of Equalities in
several places where fortunately only Inequalities are required.

Proposition 4.14. For each a ∈]0, 1[ there exists C1 > 0 such that for all large enough integers r,
all integers s > r, all integers p, q ∈ {⌊ar2⌋+ 1, . . . , ⌊a−1r2⌋}, and all forests F ∈ F′′

p,q,s−r we have

P
(
F̃ (0)

r,s = F
)
≤ C1P

(
([τ1]s−r, . . . , [τN(a)

r
]s−r) = F

)
.

Proof : We have

P
(
([τ1]s−r, . . . , [τN(a)

r
]s−r) = F

)
= P(N (a)

r = p)P (([τ1]s−r, . . . , [τp]s−r) = F ) (4.33)

=
1

⌊a−1r2⌋ − ⌊ar2⌋
∏

v∈F∗

θ(cv),

with F ∗ denoting the collection of vertices of F with height strictly less than s−r. Let F ◦ ∈ Fp,q,s−r

be any element corresponding to F up to cyclic permutation and forgetting about the marked vertex.
By Corollary 4.12

P(F (0)
r,s = F ◦ | Lr = p) = Pp,s−r(F

◦)

≤ (64/9)−qC(q)

(64/9)−pC(p)

∏
v∈F∗

θ(cv).
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As discussed before, there is a 1 to q correspondence between Fp,q,r and F′
p,q,r, with any forest from

Fp,q,r corresponding to its q cyclically permuted versions, and a p to 1 correspondence between F′
p,q,r

and F′′
p,q,r. Hence

P(F̃ (0)
r,s = F | Lr = p) ≤ q−1(64/9)−qC(q)

p−1(64/9)−pC(p)

∏
v∈F∗

θ(cv). (4.34)

It follows from Equation (4.5) and the assumptions on p and q that

q−1(64/9)−qC(q)

p−1(64/9)−pC(p)
= O(

√
p/q) ≤ C2 (4.35)

for a constant C2 > 0 that only depends on a. By Lemma 4.13, it follows that

P(F̃ (0)
r,s = F ) ≤ C0C2

r2

∏
v∈F∗

θ(cv).

By Equation (4.33), it follows that

P
(
F̃ (0)

r,s = F
)
≤ C1P

(
([τ1]s−r, . . . , [τN(a)

r
]s−r) = F

)
for a constant C1 > 0 that only depends on a. □

Corollary 4.15. Let u
(n)
0 denote a uniform random vertex of the top cycle ∂∗B•

n(T
(0)
∞ ). We may

enumerate the vertices of ∂∗B•
n(T

(0)
∞ ) in clockwise order starting at u

(n)
0 as u

(n)
0 , . . . , u

(n)
Ln−1. Let

δ > 0 and 0 < a < 1. For sufficiently small 0 < η < 1/2 and sufficiently large n it holds with
probability at most δ that simultaneously

an2 ≤ Ln ≤ a−1n2 (4.36)

and

an2 ≤ Ln−⌊ηn⌋ ≤ a−1n2 (4.37)

and that the left-most geodesics from u
(n)
0 and u

(n)
⌊an2/2⌋ coalesce before hitting ∂∗B•

n−⌊ηn⌋(T
(0)
∞ ).

Proof : By the discussion at the end of Section 4.2 it suffices to bound the probability of In-
equalities (4.36) and (4.37) holding simultaneously with the event that the subforest consisting
of the first ⌊an2/2⌋ trees of F̃

(0)
n−⌊ηn⌋,n (starting this time from a uniformly selected location with

a cyclic ordering of the trees) has height strictly smaller than ⌊ηn⌋, or that the same holds for the
Ln − 1−⌊an2/2⌋ ≥ an2/2− 2 trees in the complementary subforest. Applying Proposition 4.14 for
r = n− ⌊ηn⌋ ∈ [n/2, n], this probability is bounded by

P
(

max
1≤i≤an2/4

H(τi) < ⌊ηn⌋
)
,

up to a multiplicative constant that only depends on a. Here (τi)i≥1 denote independent θ-
Bienaymé–Galton–Watson trees and H(·) their height. By Equation (4.26) it follows that for n
large enough (depending on η)

P
(

max
1≤i≤an2/2

H(τi) < ⌊ηn⌋
)

= P⌊an2/2⌋(Y⌊ηn⌋ = 0)

=

(
1− 1

(⌊ηn⌋+ 1)2

)⌊an2/2⌋

≤ exp
(
−a/(4η2)

)
.

Taking η large enough, the total bound is hence smaller than δ for sufficiently large n. □
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Figure 5.6. The type III upper half-plane triangulation.

5. Simple half-plane triangulations

5.1. The type III Upper Half-Plane Triangulation. Adapting the arguments from Curien and Le Gall
(2019, Sec. 3.1), we construct a triangulation of the upper half-plane R× R≥0.

We let θ̄ with θ̄(k) = kθ(k) for k ≥ 1 denote the size-biased version of θ. We embed a modified
version of Kesten’s tree with a backwards growing spine into the half-plane. It’s vertex set will be
precisely the collection of points (1/2 + i, j) for integers i ∈ Z and j ∈ Z≥0.

The backwards growing spine of the tree consists of the points (1/2, j), j ≥ 0. For each j ≥ 1
the spine vertex at (1/2, j) receives an independent number mj of children following the size biased
distribution θ̄. The coordinates of the children are chosen to be (1/2+k, j−1) for ℓj−mj ≤ k ≤ ℓj−1
with ℓj uniform over {1, . . . ,mj}. This way, the unique spine child (1/2, j − 1) has uniform rank.
All non-spine vertices of the tree with positive y-coordinates created in this way become roots of
independent copies of θ-Bienaymé–Galton–Watson trees that we truncate when they hit the x-axis.

Note that by Equation (4.23) a θ-Bienaymé–Galton–Watson tree has height at least r with prob-
ability 1

(1+r)2
. It follows that on both sides of the spine there are infinitely branches that hit the

x-axis. Hence we may assign the coordinates of the vertices of all branches in a way so that the
vertex set of the entire modified Kesten tree is precisely {(1/2 + i, j) | i, j ∈ Z, j ≥ 0}, and so that
its edges may be drawn as straight lines that only intersect at their endpoints.

We now construct the upper half-plane simple triangulation. For all (i, j) with i ∈ Z and j ∈ Z≥0

we draw a horizontal edge from (i, j) to (i + 1, j). If j ≥ 1 we construct a downward triangle
containing this edge such that the third vertex (k, j − 1) is determined by letting k be the minimal
integer such that (1/2+k, j−1) is a child of (1/2+ i′, j) for some i′ > i. We merge each double-edge
created in this way into a single-edge. This way, edges are straight line-segments that do not cross.

This way, the modified Kesten tree uniquely determines the configuration of downward triangles.
As before, we fill all slots by gluing independent copies of simple Boltzmann triangulations with
the corresponding perimeters to their boundary. We call the resulting simple triangulation U the
type III UHPT for Upper Half-Plane Triangulation. We declare the edge from (0, 0) to (1, 0) as its
oriented root-edge, and let ∂U denote its (bottom) boundary. See Figure 5.6 for an illustration.

We verify the following local convergence by adapting the proof of a similar convergence Curien
and Le Gall (2019, Prop. 6) for type I triangulations. We crucially observe that in the infinite setting
the constraints in the skeleton decomposition are automatically satisfied, so that we always obtain
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equality when applying Corollary 4.12. This allows us to argue similarly as in the type I setting.
See also Angel (2005) for a prior construction and similar convergence for type II triangulations.

Proposition 5.1. As p → ∞,
T (p)
∞

d−→U

in the local topology.

Proof : We have

L(p)
r

p−→∞ (5.1)

as p → ∞, since for each fixed q ≥ 3 and r ≥ 1 we have similarly as in Inequality (4.29) and
using (4.24) and (4.30) that

P(L(p)
r = q) ≤ q−1(64/9)−qC(q)

p−1(64/9)−pC(p)
Pq(Yr = p)

= O(
√
p)[xp](g

(r)
θ (x))q

= O(
√
p)[xp](g

(r)
θ (x))

= O(1/p2).

Here we have used that as p → ∞

[xp](g
(r)
θ (x))q ∼ q[xp]g

(r)
θ (x),

since q is constant and Yr follows the power law in (4.24).
Let Br(T (p)

∞ ) and Br(U ) denote the planar maps consisting of all faces that are incident to a
vertex with graph distance strictly less than r from the root-vertex. In order to prove T (p)

∞
d−→U

as p → ∞ it suffices to show that for all r ≥ 1

Br(T (p)
∞ )

d−→Br(U ) (5.2)

as random finite planar maps.
To this end, for each r ≥ 1 we write

F
(p)
0,r = (T

(p)
0 , . . . ,T

(p)

L
(p)
r −1

)

for the skeleton of B•
r (T

(p)
∞ ). Let (t−k, . . . , tk) be a sequence sequence of finite plane trees satisfying

the following conditions:
a) Their height is at most r.
b) The tree t0 carries a marked leaf at height r that belongs to t0.
c) Each generation of the forest has at least 3 individuals.
d) No generation consists entirely of children of the same parent.
e) No generation has precisely two non-leaves.

We are going to show that

P
(
L(p)
r ≥ 4k,T

(p)

L
(p)
r −k

= t−k, . . . ,T
(p)

L
(p)
r −1

= t−1,T
(p)
0 = t0, . . . ,T

(p)

L
(p)
r +k

= tk

)
→ P

(
Γ(−k,r) = t−k, . . . ,Γ(k,r) = tk

)
(5.3)

as p → ∞. Here Γi,j denotes the fringe subtree at (1/2+i, j) in the modified Kesten tree, interpreted
as planted plane tree.

In order to see that this implies (5.2), note that for each r ≥ 1 and ϵ > 0 we may choose k ≥ 1
sufficiently large such that there is a collection Fk of forests of the form (t−k, . . . , tk) satisfying con-
ditions a), . . . , d) with P((Γ(−k,r), . . . ,Γ(k,r)) ∈ Fk) > 1−ϵ and the following properties: Conditional
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on this event the ball Br(U ) is determined by (Γ(−k,r), . . . ,Γ(k,r)) and the simple triangulations
with a boundary inserted at the slots associated to the vertices of these trees. Likewise, conditional
on the event that L

(p)
r ≥ 4k and (T

(p)

L
(p)
r −k

, . . . ,T
(p)

L
(p)
r −1

,T
(p)
0 , . . . ,T

(p)

L
(p)
r +k

) ∈ Fk, the ball Br(T (p)
∞ )

is also fully determined by these trees and the simple triangulations of polygons inserted in the
corresponding slots. Thus, (5.2) follows from (5.3).

Now, in order to show (5.3), let (t−k, . . . , tk) be a sequence of finite plane trees satisfying condi-
tions a), . . . , d). Letting V∗(ti) denote the collection of vertices with height strictly less than r, we
have

P
(
Γ(−k,r) = t−k, . . . ,Γ(k,r) = tk

)
=

k∏
i=−k

∏
v∈V∗(ti)

θ(cv). (5.4)

Here cv denotes the number of children of a vertex v. For ease of notation, we set F(k) = (t−k, . . . , tk)
and write ϕk(F ) = (σℓ−k, . . . , σℓ−1, σ0, . . . , σk) for all F = (σ0, . . . , σℓ) ∈ Fp,ℓ,r with ℓ ≥ 2k + 1.
Let mk denote the number of vertices at height r in F(k). By Corollary 4.12, it follows that for
p ≥ mk the left-hand side of (5.3) is given by

∞∑
ℓ=2k+1

∑
F∈Fp,ℓ,r

ϕk(F )=F(k)

(64/9)−ℓC(ℓ)

(64/9)−pC(p)

∏
v∈F∗

θ(cv).

Here we have used that ϕk(F ) = F(k) already ensures that no generation consists entirely of
children of the same parent, and that each generation has at least 3 individuals, and that no
generation consists of precisely two non-leaves. Hence we may rewrite this expression as k∏

i=−k

∏
v∈V∗(ti)

θ(cv)

 ∞∑
ℓ=4k

(64/9)−ℓC(ℓ)

(64/9)−pC(p)

∑
σk+1,...,σℓ−k−1

ℓ−k−1∏
i=k+1

∏
v∈V∗(σi)

θ(cv)

 ,

with the sum indices σk+1, . . . , σℓ−k+1 ranging over forests of plane trees of height at most r with
a total number of vertices at height r equal to p − mk. In order to shorten notation, we set
φ(ℓ) = (64/9)−ℓC(ℓ) and

Ap :=
∞∑

ℓ=4k

φ(ℓ)

φ(p)

∑
σk+1,...,σℓ−k−1

ℓ−k−1∏
i=k+1

∏
v∈V∗(σi)

θ(cv)


=

∞∑
ℓ=4k

φ(ℓ)

φ(p)
Pℓ−(4k)(Yr = p−mk)

=

∞∑
ℓ=0

φ(ℓ+ 4k)

φ(p)
Pℓ(Yr = p−mk)

≥
∞∑
ℓ=3

φ(ℓ)

φ(p)
Pℓ(Yr = p−mk).

Here we have used that, by Equation (4.4), φ is monotonically increasing. Writing

h̃(ℓ) := φ(ℓ)ℓ−1, (5.5)

it follows trivially that for 0 < ϵ < 1/4

Ap ≥ (1− ϵ)

∞∑
ℓ=⌊(1−ϵ)p⌋+1

h̃(ℓ)

h̃(p)
Pℓ(Yr = p−mk). (5.6)



150 Benedikt Stufler

By (4.5) we know that

h̃(ℓ) ∼ 9
√
3

2048π
√
2

1√
ℓ
. (5.7)

We define for all ℓ ≥ 1

h(ℓ) = 4−ℓ

(
2ℓ

ℓ

)
∼ 1√

πℓ
. (5.8)

Thus, for p large enough, it follows that

Ap ≥ (1− 2ϵ)

∞∑
ℓ=⌊(1−ϵ)p⌋+1

h(ℓ)

h(p)
Pℓ(Yr = p−mk). (5.9)

Next, we will show that

lim
p→∞

⌊(1−ϵ)p⌋∑
ℓ=1

h(ℓ)

h(p)
Pℓ(Yr = p−mk) = 0. (5.10)

Recall that by Lemma 4.7 the offspring distribution θ is critical. Hence Yr − ℓ under Pℓ is the sum
of ℓ i.i.d. centred random variables that asymptotically follow the power law in (4.24). Hence, for
ℓ ≤ (1 − ϵ)p, we have that Pℓ(Yr − ℓ = p − ℓ −mk) is the probability for this centred sum with ℓ
summands to assume a value

p− ℓ−mk ≥ ℓ(ϵ/(1− ϵ))−mk.

Using results for the big-jump domain of random walks Denisov et al. (2008, Cor. 2.1), it follows that
there exists ℓ0 > 0 and Cϵ > 0 such that uniformly for all sufficiently large p and all ℓ0 ≤ ℓ ≤ (1−ϵ)p

Pℓ(Yr − ℓ = p− ℓ−mk) ≤ CϵℓP1(Yr − 1 = p− ℓ−mk). (5.11)

Furthermore, it is clear that uniformly for all 3 ≤ ℓ ≤ ℓ0

Pℓ(Yr = p−mk) ∼ ℓP1(Yr = p−mk). (5.12)

as p → ∞. Combining (5.11) with (5.12) and using (4.24) it follows that there exists a constant
C ′
ϵ > 0 such that uniformly for all sufficiently large p and all integers 1 ≤ ℓ ≤ (1− ϵ)p

Pℓ(Yr = p−mk) ≤ C ′
ϵℓp

−5/2. (5.13)

Using Equation (5.8) it follows that
⌊(1−ϵ)p⌋∑

ℓ=1

h(ℓ)

h(p)
Pℓ(Yr = p−mk) = O(p−2)

⌊(1−ϵ)p⌋∑
ℓ=1

ℓ1/2 → 0

as p → ∞. This verifies (5.10).
Combining (5.10) and (5.9), it follows that

lim inf
p→∞

Ap ≥ (1− 2ϵ) lim inf
p→∞

∞∑
ℓ=1

h(ℓ)

h(p)
Pℓ(Yr = p−mk). (5.14)

The reason for making the switch from h̃ to h is that

Π(x) :=
∑
ℓ≥1

h̃(x) =
1√
1− x

− 1

satisfies, by standard calculations,

Π(g
(r)
θ (x))−Π(g

(r)
θ (0)) = Π(x). (5.15)
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Hence, for all q ≥ 1

∞∑
ℓ=1

h(ℓ)Pℓ(Yr = q) = h(q). (5.16)

Hence Inequality (5.14) simplifies to

lim inf
p→∞

Ap ≥ (1− 2ϵ) lim inf
p→∞

h(p−mk)

h(p)

= 1− 2ϵ.

Since ϵ was arbitrary, it follows that

lim inf
p→∞

Ap ≥ 1. (5.17)

Thus, we have verified

lim inf
p→∞

P
(
L(p)
r ≥ 4k,T

(p)

L
(p)
r −k

= t−k, . . . ,T
(p)

L
(p)
r −1

= t−1,T
(p)
0 = t0, . . . ,T

(p)

L
(p)
r +k

= tk

)
≥ P

(
Γ(−k,r) = t−k, . . . ,Γ(k,r) = tk

)
.

The sum of the quantities on the right-hand side over possible choice of forests (t−k, . . . , tk) equals
1. Hence this implies (5.3) and completes the proof. □

Remark 5.2. The difference between the type III and type I UHPT is less pronounced than the
differences between the types of Tn, T (p)

n , and T (p)
∞ . This is because the skeleton of the type I

UHPT almost surely satisfies the additional constraints on the skeletons in the type III case, and
because we recovered the same offspring distribution θ in the type III case. Hence the type III UHPT
may be constructed from the skeleton of the type I UHPT by contracting each degree 2 slot into
a single edge and by gluing independent simple Boltzmann triangulations with the corresponding
perimeters into the remaining slots.

5.2. The type III Lower Half-Plane Triangulation. We construct the type III lower half-plane trian-
gulation in a similar way as the upper half-plane triangulation. It’s skeleton has vertex set Z×Z≤0

and instead of a modified Kesten tree we use a doubly infinite sequence (T )i∈Z of θ-Bienaymé–
Galton–Watson trees. These trees are embedded so that the root of Ti is (1/2 + i, 0) for all i ∈ Z,
and the vertex set of this infinite forest is precisely (1/2 + Z)× Z≤0. The vertex set of the trees Ti

for i ≥ 0 is precisely (1/2 + Z≥0)× Z≤0.
The downward triangles are constructed in the same way as for the UHPT. That is, for all

integers i ∈ Z and j ∈ Z≤0 we draw a horizontal edge from (i, j) to (i + 1, j) and construct a
downward triangle whose third vertex has coordinates (k, j − 1) with k the smallest integer such
that (1/2 + k, j − 1) is a child of (1/2 + i′, j) for some i′ > i. Each resulting pair of double edges is
merged into a single edge. We glue independent Boltzmann triangulations with the corresponding
perimeter into all remaining slots. We consider the resulting type III lower half-plane triangulation
(LHPT) L as rooted at the oriented edge from (0, 0) to (1, 0).

Remark 5.3. Similar as mentioned in Remark 5.2 for the UHPT, the type III lower half-plane
triangulation may be constructed from the skeleton of the type I LHPT by contracting each slot of
degree 2 to a single edge, and by gluing independent simple triangulations with the corresponding
perimeters into the remaining slots.

In order to illustrate the relation between the LHPT and the model T (p)
∞ we mention the following

property:
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Proposition 5.4. Given integers p ≥ 3 and r ≥ 1, let B̃•
r (T

(p)
∞ ) be obtained from the hull B•

r (T
(p)
∞ )

by re-rooting at a uniformly selected edge of the top cycle, oriented so that the top face lies to its
left. Then

B̃•
r (T (p)

∞ )
d−→L

in the local topology.

The proof is by analogous arguments as for Proposition 5.1. We omit the details, since we are
not going to make use of Proposition 5.4 in what follows. The type III LHPT and UHPT satisfy a
specific contiguity relation that we are going to describe now.

For each integer r ≥ 1 we let U[0,r] denote the infinite rooted planar map consisting of the first
r layers of U . That is, we only keep those vertices and edges that lie in the strip R× [0, r]. Hence
U[0,r] is the hull of radius r, corresponding to distances from the bottom boundary. Likewise, we
let L[0,r] denote the rooted planar map consisting of the first r layers of L . That is, we only keep
those vertices and edges that lie in the strip R × [−r, 0]. Moreover, we set Ur = Z × {r} and
Lr = Z× {−r}.

Recall that Γi,r denotes the subtree of descendants of (1/2+i, r) in the modified Kesten tree in the
construction of U . Thus, (Γi,r)i∈Z\{0} are independent Bienaymé–Galton–Watson trees truncated
at height r. For all i ∈ Z we let Γ(i,r)(r) denote the collection of vertices of Γi,r with height r. We
also let Kr ≥ 1 be the first index i ≥ 1 such that Γ(i,r)(r) ̸= ∅.

Let ir < 0 denote the largest integer i < 0 such that the tree Ti has height at least r. We let
Tir(r) denote the collection of vertices of Tir at height r.

Proposition 5.5. Let Ũ[0,r] be obtained by re-rooting U[0,r] so that the root-edge is the horizontal
edge from (Jr, r) to (Jr + 1, r), with an index Jr selected uniformly at random from {1, . . . ,Kr}.
For any non-negative measurable function f on the collection of rooted planar maps we have

E[Krf(Ũ[0,r])] = E[#Tir(r)f(L[0,r])]

The proof is by identical arguments as for the corresponding result Curien and Le Gall (2019,
Prop. 8) for the type I case. No adaptions are necessary. The reason for this is the following:
In order to prove Proposition 5.5, it suffices to show that the distribution of the configuration of
downward triangles is the same for Ũ[0,r], under the measure having density Kr with respect to P,
and for L[0,r], under the measure having density #Tir(r) with respect to P. This result on the
skeletons is exactly what was verified in Curien and Le Gall (2019, Prop. 8) in the type I case. By
Remark 5.2 and Remark 5.3 we know that the skeletons of the UHPT and LHPT in the type III
case are, respectively, the same as the skeletons of the UHPT and LHPT in the type I case. Hence,
in order to verify Proposition 5.5 we may copy the arguments for Curien and Le Gall (2019, Prop.
8) word by word, adjusting only the references to the corresponding intermediate results derived so
far for type III triangulations.

Having Proposition 5.5 at hand, the following result may likewise be verified by identical ar-
guments (without any adaption) as for the corresponding result Curien and Le Gall (2019, Cor.
9):

Corollary 5.6. For each ϵ > 0 we may choose δ > 0 small enough so that for each integer r ≥ 1

and every measurable set A the property P(Ũ[0,r] ∈ A) ≤ δ implies P(L[0,r] ∈ A) ≤ ϵ.

6. Estimates for distances along the boundary

The present section adapts results on distances along the boundaries of the UHPT and LHPT
presented in Curien and Le Gall (2019, Sec. 4) for type I triangulations. As discussed in Remark 5.2
and Remark 5.3, the configuration of downward triangles (that is, the skeletons) of the type III
UHPT and LHPT are identical to the type I case. The only difference between type I and III for
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these infinite triangulations is that in the type III case we merge each slot of degree 2 into a single
edge, and fill the remaining slots with independent simple (as opposed to unrestricted) Boltzmann
triangulations (see Definition 4.1) with the corresponding perimeter. For this reason, many of the
proofs in Curien and Le Gall (2019, Sec. 4) require little to no adaption to treat the type III case.
Hence we are going to provide proofs for results where small adaptions are needed, and refer the
reader to the corresponding parts of Curien and Le Gall (2019, Sec. 4) for detailed justifications of
results whose proof of the type I case could practically be copied word by word to treat the type
III case.

6.1. Layers of balls in the type III UHPT. Let r ≥ 1 be an integer. As before, we let Br(U ) denote
the planar map consisting of all faces that are incident to a vertex with graph distance strictly less
than r from the root-vertex of U . We define the hull B•

r (U ) as the complement of the unique
infinite component of Br(U )c. Thus B•

r (U ) is a triangulation with a simple boundary, consisting
of a finite path on the boundary of U that includes the root-edge of U , and a path of non-boundary
edges that joins the two extremes of Br(U ) lying on the boundary of U . We may view Br(U ) as
marked at these two boundary vertices. The proof of the following observation is analogous to the
result Curien and Le Gall (2019, Lem. 10) for the type I case, as the calculations for the numbers
of simple triangulations work out in the same way.

Lemma 6.1. Let A be simple triangulation with a boundary that is marked at two distinct vertices
at the boundary that differ from the root vertex. Let ∂̃A denote the part of ∂A given by the path
between the two distinguished vertices that contain the root edge. Suppose that P(B•

r (U ) = A) > 0.
Let m ≥ 2 denote the number of edges of ∂̃A. Let q ≥ 1 be the number of edges of ∂A \ ∂̃A. Also
let N ≥ 0 be the number of vertices of A that do not lie on ∂̃A. Then

P(B•
r (U ) = A) = (64/9)q−m(256/27)−n.

Proof : Given another triangulation A′ with a boundary, we write A ⊏ A′ to denote that A may be
obtained as a subtriangulation of A′, with root edges coinciding such that ∂̃A is part of ∂A′ and no
other edge of A is on ∂A′. By Proposition 5.1, it follows that if P(B•

r (U ) = A) > 0 then

P(B•
r (U ) = A) = lim

p→∞
P(A ⊏ T (p)

∞ ). (6.1)

Moreover, by Corollary 4.11 it follows that

P(A ⊏ T (p)
∞ ) = lim

n→∞
P(A ⊏ T (p)

n ). (6.2)

Let p > m. We have A ⊏ T (p)
n holds if and only if T (p)

n may be obtained by gluing a simple
triangulation T with a boundary of length q + (p − m) to A, such that a part of length q of the
boundary of T gets identified with ∂A \ ∂̃A. Hence, for n large enough,

P(A ⊏ T (p)
∞ ) =

#Tn−N,p+q−m

#Tn,p
.

Thus, by Equation (6.2) and (4.3), it follows that

P(A ⊏ T (p)
∞ ) =

C(p+ q −m)

C(p)

(
256

27

)−N

.

By Equation (6.1) and (4.5) it follows that

P(B•
r (U ) = A) =

(
64

9

)q−m(256

27

)−N

.

□
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We say an edge of ∂B•
r (U ) is internal if it does not belong to ∂U = U0. Let E1, . . . , EQ, with

Q ≥ 1, denote the internal edges of ∂B•
r+1(U ) in clockwise order. Let (−L′, 0) denote the left-most

vertex of ∂B•
r (U ) ∩ ∂U and (R′, 0) the right-most vertex of ∂B•

r (U ) ∩ ∂U . Let L′′ and R′′ be
defined analogously for r + 1 instead of r.

For all 1 ≤ i ≤ Q the internal edge Ei of ∂B•
r+1(U ) ∩ ∂U links two vertices at distance r + 1

from the root vertex of U and is incident to a “downward” triangle whose third vertex Vi belongs
to ∂B•

r (U ) ∩ ∂U . We set V0 to be the vertex (−L′, 0), and VQ+1 to be the vertex (R′, 0). For
1 ≤ j ≤ Q + 1 let Sj ≥ 0 denote the number of edges of ∂B•

r (U ) that lie between Vj−1 and Vj .
This way, S1 + . . .+ SQ+1 = Pr is the number of internal edges of ∂B•

r (U ).
We prove the next observation by following closely the arguments of the corresponding statement

for type I triangulations Curien and Le Gall (2019, Prop. 11).

Proposition 6.2. For all integers q ≥ 1, k1, k2 ≥ 0, and s1, . . . , sq ≥ 0 we have

P
(
Q = q, S1 = s1, . . . , Sq+1 = sq+1, L

′′ − L′ = k1 + 1, R′′ −R′ = k2 + 1 | B•
r (U )

)
=

1

4
1s1+...+sq+1=Prθ(s1 + k1)θ(s2) · · · θ(sq)θ(sq+1 + k2).

Proof : For ease of notation, we set

α = 64/9 and ρ = 256/27.

Let A denote a simple triangulation with a boundary, with two distinct vertices marked on the
boundary that also differ from the root vertex of A. Suppose that P(B•

r (U ) = A). We let p denote
the number of internal edges of ∂A. We have to show that the conditional probability

P
(
Q = q, S1 = s1, . . . , Sq+1 = sq+1, L

′′ − L′ = k1 + 1, R′′ −R′ = k2 + 1 | B•
r (U ) = A

)
(6.3)

for non-negative integers s1, . . . , sq+1 ≥ 0 and k1, k2 ≥ 0 such that s1 + . . .+ sq+1 = p, is given by
1

4
θ(s1 + k1)θ(s2) · · · θ(sq)θ(sq+1 + k2).

Recall the notation ⊏ from Lemma 6.1. The probability in (6.3) equals∑
A′

P
(
B•

r+1(U ) = A′ | B•
r (U ) = A

)
, (6.4)

with the sum index A′ ranging over all simple triangulations with a boundary and two marked
vertices on the boundary (distinct from each other, and distinct from the root vertex of A′), with
the following properties:

i) A ⊏ A′.
ii) ∂̃A ⊂ ∂̃A′.
iii) There are k1 + 1 boundary edges between the left-most vertex of ∂̃A and the left-most

vertex of ∂̃A′.
iv) There are k2 + 1 boundary edges between the right-most vertex of ∂̃A and the right-most

vertex of ∂̃A′.
v) ∂A′\ ∂̃A′ has q edges. Each of these is incident to a “downward” triangle with the third ver-

tex on ∂A\∂̃A, and the configuration of downward triangles is characterized by s1, . . . , sq+1.
Given such a triangulation A′, let N denote the number of vertices in A′ that are not vertices of A
or ∂U . It follows by Lemma 6.1 that

P(B•
r+1(U ) = A′ | B•

r (U ) = A) =
P(B•

r+1(U ) = A′)

P(B•
r (U ) = A)

= αq−pα−(k1+k2+2)ρ−N .



First-passage percolation on random simple triangulations 155

The triangulation A′ is determined by A, the preceding properties, and simple triangulations
glued into the q + 1 slots left by the downward triangles. Here we include the slots of degree 2,
which are always merged into a single edge. For 2 ≤ i ≤ q, the ith slot in clockwise direction has
degree si+2. For i = 1, the slot has degree s1+k1+2, and for i = q+1 it has degree sq+1+k2+2.
Let Mi denote the triangulation with a boundary that we glue into the ith slot, with Mi set to a
single edge if the slot has degree 2. Let Inn(Mi) ≥ 0 denote the number of inner vertices. Then

N = q − 1 +

q+1∑
i=1

Inn(Mi).

Let s̃i = si for 2 ≤ i ≤ q, and s̃1 = s1 + k1, and s̃q+1 = sq+1 + k2. Note that
∑q+1

i=1 (s̃i − 1) =

p − (q + 1) + k1 + k2. By Equation (4.16), θ(k) = 1
ρα

−k+1Z(k + 2), with Z(2) = 1 by convention.
Hence

αq−pα−(k1+k2+2)ρ−N = α−3ρ2
q+1∏
i=1

(
1

ρ
α−(s̃i−1)ρ−Inn(Mi)

)

=
1

4

q+1∏
i=1

(
θ(s̃i)

ρ−Inn(Mi)

Z(s̃i + 2)

)
.

Summing over all possible choices of A′ is equivalent to summing over all possible choices of trian-
gulations M1, . . . ,Mq+1 with the corresponding boundary lengths. Hence, by Equation (4.6) and
the convention Z(2) = 1, the expression in (6.4) simplifies to∑

A′

P(B•
r+1(U ) = A′ | B•

r (U ) = A) =
1

4

q+1∏
i=1

θ(s̃i).

This completes the proof. □

As in Equation (5.8), we set

h(j) = 4−j

(
2j

j

)
for all integers j ≥ 0.

With Proposition 6.2 at hand, the proof of the following corollary is identical to the proof of
the corresponding result Curien and Le Gall (2019, Cor. 12) for the type I case. No adaptions are
necessary.

Corollary 6.3. For all integers c, k ≥ 0,

P
(
SQ+1 = c,R′′ −R′ = k + 1 | B•

r (U )
)
= 1c≤Pr

1

2
(1 + h(Pr − c)) θ(c+ k).

In particular,

P
(
R′′ −R′ = k + 1 | B•

r (U )
)
≤ θ([k,∞[).

6.2. Distances along the boundary of the type III UHPT. For each integer r ≥ 1 let (−LU
r , 0) and

(0, RU
r ) denote the left-most and right-most vertex in ∂B•

r (U ) ∩ ∂U .

Proposition 6.4. For each ϵ > 0 there exists K > 0 such that

sup
r≥1

P(LU
r ≥ Kr2) ≤ ϵ

and
sup
r≥1

P(RU
r ≥ Kr2) ≤ ϵ.
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For each integer m ≥ 1 let Tm := min{r ≥ 1 | RU
r > m}. There exists K ′ > 0 such that for all

m, j ≥ 1

P(RU
Tm

−m > j) ≤ K ′
√

m

m+ j
.

Having the results of Section 6.1 at hand, the proof of Proposition 6.4 is identical to the proof of
the corresponding result Curien and Le Gall (2019, Prop. 13) for type I triangulations. The same
goes for the following result, which is the type III version of Curien and Le Gall (2019, Prop. 14):

Proposition 6.5. Let ϵ > 0 and A > 0 be given. There exists an integer K > 0 such that for each
r ≥ 1

P

 min
0≤i≤Ar2

j≥Kr2

dU ((i, 0), (j, 0)) ≤ r

 ≤ ϵ.

Here dU denotes the graph distance on the vertex set of the type III UHPT U .

6.3. Distances along the boundary of the type III LHPT. For each i ∈ Z and each integer r ≥ 1 we
define the left-most geodesic from (i, 0) in L as the infinite geodesic path ω in L starting from
ω(0) = (i, 0) as follows: at each step n ≥ 0, the path walks from the vertex ω(n) ∈ Ln to Ln+1

along the left-most edge that links ω(n) to Ln+1. Thus, the first r edges on this path form a
geodesic from ω(0) to Lr.

We define the left-most geodesic in U from (i, r) to ∂U in the same way. This way, for 1 ≤ i < j,
the left-most geodesics from (i, r) to ∂U and from (j, r) to ∂U coalesce before or when hitting ∂U ,
if and only if none of the trees Γ(i,r), . . . ,Γ(j−1,r) has height r.

Proposition 6.6. For each ϵ > 0 there exists an integer K ≥ 1 such that for each integer r ≥ 1

P
(

min
|j|≥Kr2

dL ((0, 0), (j, 0)) ≥ r

)
≥ 1− ϵ.

In particular, with K ′ = 4K we have for all r ≥ 1

P
(

min
|j|≥2K′r2

min
−K′r2≤i≤K′r2

dL ((i, 0), (j, 0)) ≥ r

)
≥ 1− 2ϵ.

Here dL denotes the graph distances in the type III LHPT L . With the results of the preceding
subsections at hand, the proof of Proposition 6.6 is identical to the proof of the corresponding
result Curien and Le Gall (2019, Prop. 15) in the type I case. The same goes for the next proposition,
whose proof in the type I case Curien and Le Gall (2019, Prop. 16) requires no adaption.

Proposition 6.7. Let δ, γ > 0. There exists an integer A ≥ 1 such that for all sufficiently large n
the following statements hold with probability at least 1− δ:

(1) For all i ∈ {−n + 1, . . . , n}, the left-most geodesic starting from (i, 0) coalesces with the
left-most geodesic starting from (−n + ⌊2ℓn/A⌋, 0), for some 0 ≤ ℓ ≤ A, before hitting
L⌊γ

√
n⌋.

(2) For all i, j ∈ {−n + 1, . . . , n}, with i < j, there exists a path from (i, 0) to (j, 0) that stays
in L[0,⌊γ

√
n⌋] and has length smaller than(

⌊A(j − i)

2n
⌋+ 2

)
(1 + 2γ

√
n).

Recall that Ln denotes the length of the top cycle of B•
n(T

(0)
∞ ). We let u(n)0 denote a uniformly at

random chosen vertex from the top cycle ∂∗B•
n(T

(0)
∞ ). We let u

(n)
1 , . . . , u

(n)
Ln−1 denote the remaining
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vertices of ∂∗B•
n(T

(0)
∞ ), listed in clock-wise order starting from u

(n)
0 . It will be notationally convenient

to treat the indices modulo Ln, so that u
(n)
i+Ln

= ui for all i ∈ Z.
We prove the next statement by following closely the arguments of the corresponding result Curien

and Le Gall (2019, Prop. 17) for type I triangulations.

Proposition 6.8. Let γ ∈]0, 1/2[ and δ > 0 be given. For all integers A ≥ 1 let Hn,A denote the
event that each left-most geodesic from some vertex in ∂∗B•

n(T
(0)
∞ ) to the root coalesces before time

⌊γn⌋ with one of the left-most geodesics to the root starting from u
(n)
⌊kn2/A⌋ for an integer k satisfying

0 ≤ k ≤ ⌊n−2LnA⌋. Then there exists a constant A ≥ 1 such that for all large enough n

P(Hn,A) ≥ 1− δ.

Proof : We use the notation from Section 4.4. Without loss of generality we may assume that the
first tree in F̃

(0)
n−⌊γn⌋,n is the one whose root vertex corresponds to the edge from u

(n)
0 to u

(n)
1 . We

write F̃
(0)
n−⌊γn⌋,n = (τ

(n)
1 , . . . , τ

(n)
Ln

). By the discussion on coalescence of geodesics at the end of
Section 4.2, it follows that for 1 ≤ i < j ≤ n the left-most geodesics to the root from the vertex
u
(n)
i and from the vertex u

(n)
j coalesce before or at time ⌊γn⌋ if the trees τ

(n)
i+1, . . . , τ

(n)
j have height

strictly smaller than ⌊γn⌋. Thus, in order for Hn,A to hold it is sufficient that for any integer i
with 1 ≤ i ≤ Ln there exists an integer k with 0 ≤ k ≤ ⌊n−2LnA⌋ such that for all integers j with
min(i, ⌊kn2/A⌋) < j ≤ max(i, ⌊kn2/A⌋) the tree τ

(n)
j has height strictly smaller than ⌊γn⌋. We let

H ′
n,A denote this event. By Lemma 4.13, there exists a > 0 such that

an2 ≤ Ln ≤ a−1n2 (6.5)

and

an2 ≤ Ln−⌊γn⌋ ≤ a−1n2 (6.6)

hold simultaneously with probability at least 1 − δ/2 for all large enough n. Hence, in order to
verify (for a suitable choice of A) that P(Hn,A) ≥ 1− δ, it suffices to show that (6.5), (6.6), and the
complement of H ′

n,A hold with probability at most δ/2.
By Proposition 4.14 we know that for each a′ ∈]0, 1[ there exists C1 > 0 such that for all large

enough integers r, all integers s > r, all integers p, q ∈ {⌊a′r2⌋ + 1, . . . , ⌊a′−1r2⌋}, and all forests
F ∈ F′′

p,q,s−r we have

P
(
F̃ (0)

r,s = F
)
≤ C1P

(
([τ1]s−r, . . . , [τN(a′)

r
]s−r) = F

)
,

with N
(a′)
r uniformly distributed over {⌊a′r2⌋ + 1, . . . , ⌊a′−1r2⌋}, and (τi)i≥1 denoting i.i.d. θ-

Bienaymé–Galton–Watson trees, and [·]s−r denoting truncation at height s− r.
Using r = n − ⌊γn⌋, s = n, a′ = a(1 − γ)2, we obtain the following: In order to show that (for

suitable A) (6.5), (6.6), and the complement of the event H ′
n,A hold simultaneously with probability

at most δ/2, it suffices to show that uniformly for all integers ℓ with an2 ≤ ℓ ≤ a−1n2 it holds
with probability at least 1 − δ/(2C1) that the forest (τ1, . . . , τℓ) is “n-good” in the sense that for
all 1 ≤ i ≤ m there exists an integer k with 0 ≤ k ≤ ⌊n−2ℓA⌋ such that for all integers j with
min(i, ⌊kn2/A⌋) < j ≤ max(i, ⌊kn2/A⌋) the tree τj has height strictly less than ⌊γn⌋.

To this end, let U1 < . . . < Um denote the indices U in {1, . . . , ℓ} such that the height of τU is at
least ⌊γn⌋. Note that by Equation (4.26), the probability for a θ-Bienaymé–Galton–Watson tree to
have height at least ⌊γn⌋ is equal to 1

(⌊γn⌋+1)2
.

Suppose that for infinitely many n there exists an integer ℓn satisfying an2 ≤ ℓn ≤ a−1n2 such
that the forest (τ1, . . . , τℓn) is n-good with probability strictly less than 1−δ/(2C1). By restricting to
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subsequences, we may without loss of generality assume that ℓn ∼ cn2 for some constant c satisfying
a ≤ c ≤ a−1. For all t ≥ 0 we set

Nt := #{1 ≤ i ≤ m | Ui ≤ t}.
Then (N⌊tℓn/c⌋)0≤t≤c converges in distribution in the Skorokhod sense to a Poisson process with
parameter γ−2. Setting U0 = 0 and Um+1 = ℓn, it follows that we may choose a constant η > 0 that
only depends on δ/(2C1) and a (since c satisfies a ≤ c ≤ a−1) such that for all sufficiently large n

Ui+1 − Ui > ηn2, for all 0 ≤ i ≤ m

holds with probability at least 1− δ/(2C1). But this is only possible if 2/A > η.
Thus, we may choose A sufficiently large such that uniformly for all integers ℓ with an2 ≤ ℓ ≤

a−1n2 it holds with probability at least 1 − δ/(2C1) that the forest (τ1, . . . , τℓ) is “n-good”. This
completes the proof. □

7. First passage percolation on the type III UIPT

Throughout this section we let ι denote a random variable with finite exponential moments and
that there exists a constant κ > 0 such that P(ι ≥ κ) = 1. Dividing ι (and the lower bound κ) by
2E[ι], we may without loss of generality assume that

E[ι] = 1/2. (7.1)

This is done purely for notational convenience. The following deviation bound for one-dimensional
random walk may be found in most textbooks on the subject.

Proposition 7.1. Let ι1, . . . , ιn denote independent copies of ι. There exists a constant c > 0 such
that for all sufficiently small λ > 0 and all n ≥ 1 and all x ≥ n/2

P(ι1 + . . .+ ιn ≥ x) ≤ exp
(
cnλ2 − λ(x− n/2)

)
. (7.2)

7.1. Subadditivity in the type III LHPT. We let dL
fpp denote the ι-first-passage percolation distance

on the type III LHPT L . Recall that Lr = Z × {−r} for all integers r ≥ 0. We let ρ = (0, 0)
denote the root-vertex of L .

We prove the following result analogously to Curien and Le Gall (2019, Prop. 18) and use
Equation (7.2) to deal with unbounded weights.

Proposition 7.2. There exists a constant cTfpp ∈ [κ, 1] such that

r−1dL
fpp(ρ,Lr)

a.s.−→ cTfpp

as r → ∞.

Proof : For all integers 0 ≤ m < n let L[m,n] denote the submap of L that lies in the strip

R × [−n,−m]. We let d
L[m,n]

fpp denote the first-passage percolation distance on the vertex set of
L[m,n]. That is, the length between points is the minimal sum of weights along joining paths that
stay within L[m,n]. This way,

dL
fpp(u, v) ≤ d

L[m,n]

fpp (u, v)

for all vertices u, v of L[m,n].
Given integers n,m ≥ 1, we let xm denote the left-most vertex of Lm that satisfies

dL
fpp(ρ,Lm) = dL

fpp(ρ, xm).

(Note that since ι ≥ κ > 0 and since L is locally finite, there actually exists a left-most vertex with
that property. Otherwise, there would be an infinite number of vertices at dL

fpp-distance at most m

from the root. This would entail that the (m/κ)-graph-distance neighbourhood of the root would
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be infinite. But locally finite graphs have the property, that any ball with finite radius has a finite
number of vertices.) Then

dL
fpp(ρ,Lm+n) ≤ dL

fpp(ρ, xm) + dL
fpp(xm,Lm+n)

≤ dL
fpp(ρ,Lm) + d

L[m,m+n]

fpp (xm,Lm+n).

Note that xm is already determined by L[0,m], since no path starting in ρ can leave L[0,m] without
passing through Lm. By construction of L , in particular the independence of its layers, it follows
that

d
L[m,m+n]

fpp (xm,Lm+n)
d
= dL

fpp(ρ,Ln)

and that d
L[m,m+n]

fpp (xm,Lm+n) is independent from L[0,m]. Setting x0 := ρ, this allows us to apply
Ligget’s version Liggett (1985) of Kingman’s subadditive ergodic theorem to the triangular array
(Xm,n)0≤m<n with Xm,n = d

L[m,n]

fpp (xm,Ln) for all 0 ≤ m < n. It follows that the limit

X := lim
n→∞

n−1X0,n = lim
r→∞

r−1dL
fpp(ρ,Lr)

exists almost surely. It is clear that X ≥ κ almost surely. Kolmogorov’s zero–one law readily entails
that X is almost surely constant. Furthermore, Inequality (7.2) entails that as r becomes large, the
sum of the weights corresponding to the r edges on the left-most geodesic from the root of Lr to ρ
is less than r with a probability that tends exponentially fast to 1. This entails that the constant
X satisfies X ≤ 1. □

7.2. From the LHPT to the UIPT. We prove the following result analogously to Curien and Le Gall
(2019, Prop. 19), with some adaptions since we assume ι to have finite exponential moments instead
of an upper bound.

Proposition 7.3. Let 0 < ϵ < 1 and δ > 0 be given. There exists 0 < η < 1/2 such that for all
large enough n it holds with probability at least 1− δ that

(1− ϵ)cTfppηn ≤ dT
(0)
∞

fpp (v, ∂∗B•
n−⌊ηn⌋(T

(0)
∞ )) ≤ (1 + ϵ)cTfppηn

for all vertices v ∈ ∂∗B•
n(T

(0)
∞ ).

Proof : Recall that Ln denotes the length of the top cycle of B•
n(T

(0)
∞ ), and that u

(n)
0 denotes a

uniformly at random chosen vertex from ∂∗B•
n(T

(0)
∞ ). As before, we let u

(n)
1 , . . . , u

(n)
Ln−1 denote the

remaining vertices of ∂∗B•
n(T

(0)
∞ ), listed in clock-wise order starting from u

(n)
0 . We treat the indices

modulo Ln, so that u
(n)
i+Ln

= ui for all i ∈ Z.
By Lemma 4.13, there exists a constant 0 < a < 1/2 (depending on δ) such that for all n ≥ 2

and 0 < η < 1/2, the event

En(η) := {⌊an2⌋+ 1 ≤ Ln ≤ ⌊a−1n2⌋} ∩ {⌊an2⌋+ 1 ≤ Ln−⌊ηn⌋ ≤ ⌊a−1n2⌋}

holds with probability at least 1− δ/4.
Given 0 < η < 1/2 and j ∈ Z, let Hn,j(η) denote the intersection of the event En(η) with the

event that the leftmost geodesics starting from u
(n)
j−⌊an2/4⌋ and u

(n)
j+⌊an2/4⌋ do not coalesce before

hitting B•
n−⌊ηn⌋(T

(0)
∞ ). By Corollary 4.15 (and making the constants in the bounds within its proof

explicit) it follows that there is a constant C4 > 0 such that for all large enough n and each j ∈ Z
that

P(En(η) ∩ (Hn,j(η))
c) ≤ C4a

−2 exp(−a/(4η2)). (7.3)
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Indeed, the bound in Corollary 4.15 is given by O(1)C1 exp(−a/4η2), with O(1) denoting a bounded
term that does not depend on anything. Furthermore, the constant C1 from Proposition 4.14 is of
the form (1/a− a)C0C2 with C2 = O(1/a), and C0 from Lemma 4.13 not depending on anything.
Hence we arrive at a bound of the form O(1)a−2 exp(−a/(4η2)). Note that this bound becomes
worse the smaller we take a. This makes sense, since the smaller we take a, the less trees are between
u
(n)
j−⌊an2/4⌋ and u

(n)
j+⌊an2/4⌋, and hence the more likely it gets that none of them reach height ηn.

On the event Hn,j(η), we define G
(η)
j as the subregion of B•

n(T
(0)
∞ )\B•

n−⌊ηn⌋(T
(0)
∞ ) containing u

(n)
j

that is bounded on one side by the leftmost geodesic from u
(n)
j−⌊an2/4⌋ and on the other side by the

left-most geodesic from u
(n)
j+⌊an2/4⌋. Moreover, let ∂ℓG

(η)
j denote the part of the boundary of G

(η)
j

that is contained in the union of these two geodesics.
Let An,j(η) denote the intersection of Hn,j(η) with the event, where for some integer i with j −

an2/16 ≤ i ≤ j+an2/16, there is a path from u
(n)
i to ∂ℓG

(n)
j (η) that stays in B•

n(T
(0)
∞ )\B•

n−⌊ηn⌋(T
(0)
∞ )

and has length smaller than 4ηn/κ. We are going to show that if we take η sufficiently small, then
for all large enough n and all j ∈ Z

lim
η↓0

lim sup
n→∞

P(An,j(η)) = 0. (7.4)

To this end, it suffices to consider the case j = 0, since u
(0)
j is a uniformly selected vertex

of ∂∗B•
n(T

(0)
∞ ). For each i ∈ Z we let T

(n,⌊ηn⌋)
i denote the tree of the skeleton of B•

n(T
(0)
∞ ) \

B•
n−⌊ηn⌋(T

(0)
∞ ) corresponding to the edge from u

(n)
i−1 to u

(n)
i . On the event Hn,0(η), the region

G
(n)
0 (η) is determined as planar map by the trees T

(n,⌊ηn⌋)
i for −⌊an2/4⌋ < i ≤ ⌊an2/4⌋, and by

the Boltzmann triangulations used to fill the slots of the vertices of these trees with height strictly
less than ⌊ηn⌋.

By Proposition 4.14, it follows that the probability for the event An,j(η) can also be bounded
by a O(1/a2) multiple of the similar event for the type III LHPT. That is, the event that in the
lower half-plane model there is a path from (i, 0) for some −an2/16 ≤ i ≤ an2/16 to the left-most
geodesic from (⌊an2/4⌋, 0) or (−⌊an2/4⌋, 0) with length at most 4ηn/κ. If there is such a path, then
(i, 0) is at graph distance at most 8ηn/κ from (⌊an2/4⌋, 0) or (−⌊an2/4⌋, 0). By Proposition 6.6,
it follows that taking η small (with respect to a) this probability can be made arbitrarily small,
uniformly for all sufficiently large n. This verifies Equation (7.4).

Using (7.3) and (7.4) we may take η small enough (depending on a) such that for large enough
n the probabilities for En(η)∩ (Hn,j(η))

c and An,j(η) are both smaller than a2δ/100, uniformly for
all j. We set

Bn(η) :=

⌊9a−2⌋⋂
k=0

Hn,k⌊an2/8⌋(η)

 ∩

⌊9a−2⌋⋂
k=0

(
An,k⌊an2/8⌋(η)

)c .

Hence, for large enough n

P(Bn(η)
c) ≤ P((En(η))

c) +

⌊9a−2⌋∑
k=0

P
(
En(η) ∩

(
Hn,k⌊an2/8⌋(η)

)c)
+

⌊9a−2⌋∑
k=0

P(An,k⌊an2/8⌋(η))

≤ δ/4 + (9a−2 + 1)a2δ/100 + (9a−2 + 1)a2δ/100

≤ δ/2.
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We let d
(n)
fpp denote the ι-first-passage percolation metric that only takes into account paths that

stay in B•
n(T

(0)
∞ ). For each i ∈ Z we let D

(n)
i denote the event that

d
(n)
fpp(u

(n)
i , ∂∗B•

n−⌊ηn⌋(T
(n)
∞ )) ∈ [(1− ϵ)cTfppηn, (1 + ϵ)cTfppηn].

Let k be an integer satisfying 0 ≤ k ≤ 9a−2. Clearly,

P
(
Bn(η) ∩ (D

(n)
i )c

)
≤ P

(
Hn,k⌊an2/8⌋ ∩ (An,k⌊an2/8⌋)

c ∩ (D
(n)
i )c

)
. (7.5)

Suppose that
(
An,k⌊an2/8⌋(η)

)c and Hn,k⌊an2/8⌋(η) both hold. Let i be an integer satisfying

k⌊an2/8⌋ − an2/16 ≤ i ≤ k⌊an2/8⌋+ an2/16.

The minimal sum of link-weights along a path from u
(n)
i to ∂∗B•

n−⌊ηn⌋(T
(0)
∞ ) that stays in ∂∗B•

n(T
(0)
∞ )\

∂∗B•
n−⌊ηn⌋(T

(0)
∞ ) is with high probability determined by the region G

(n)
k⌊an2/8⌋(η) and the correspond-

ing link-weights. Indeed, if such a path with minimal sum of weights would hit ∂ℓG
(n)
k⌊an2/8⌋(η), then

this sum of weights would be at least κ(4ηn/κ) = 4ηn. However, we can reach ∂∗B•
n−⌊ηn⌋(T

(0)
∞ ) from

u
(n)
i via the left-most geodesic of path length ⌊ηn⌋, and by Inequality (7.2) the sum of weights along

that path is hence also at most ⌊ηn⌋ for all integers i ∈ [k⌊an2/8⌋−an2/16, k⌊an2/8⌋+an2/16] with
probability at least 1− an2 exp(−cτηn) for some cτ > 0. Furthermore, on the event Hn,k⌊an2/8⌋ the
region G

(n)
k⌊an2/8⌋(η) is determined by the trees T

(n,⌊ηn⌋)
m for m ∈ [k⌊an2/8⌋ − ⌊an2/4⌋, k⌊an2/8⌋ +

⌊an2/4⌋[. By Proposition 4.14, it follows that for a constant C1 = O(1/a2)

P
(
Hn,k⌊an2/8⌋ ∩ (An,k⌊an2/8⌋)

c ∩ (D
(n)
i )c

)
≤ an2 exp(−cτηn) + C1P(Fn), (7.6)

with Fn denoting the event that

dL
fpp((0, 0),L⌊ηn⌋) /∈ [(1− ϵ)cTfppηn, (1 + ϵ)cTfppηn].

We let A denote the integer from Proposition 6.8 where we replace γ by ϵcTfppηn/2 and δ by δ/8.
Using Proposition 6.8, it follows that the event

Bn(η) ∩ {d(n)fpp(v, ∂
∗B•

n−⌊ηn⌋(T
(0)
∞ )) /∈ [(1− 2ϵ)cTfppηn, (1 + 2ϵ)cTfppηn]

for some v ∈ ∂∗B•
n(T (0)

∞ ) } (7.7)

is contained in the event

Bn(η) ∩ {d(n)fpp(u
(n)
⌊jn2/A⌋, ∂

∗B•
n−⌊ηn⌋(T

(0)
∞ )) /∈ [(1− ϵ)cTfppηn, (1 + ϵ)cTfppηn]

for some integer 0 ≤ j ≤ a−1A } (7.8)

except possibly on an event with probability at most δ/4. To see this, note that if Bn(η) holds (and
hence En(η) holds) and we discard the set set of probability at most δ/8 considered in Proposition 6.8,
then for any vertex v in ∂∗B•

n(T
(0)
∞ ) we may walk along its left-most geodesic until it coalesces, after

at most ϵcTfppηn/2 steps, with the left-most geodesic from a vertex of the form u
(n)
⌊jn2/A⌋ for an integer

0 ≤ j ≤ a−1A. Hence v is at graph distance at most ϵcTfppηn from u
(n)
⌊jn2/A⌋, but we may additionally

use Inequality (7.2) to bound the probability that the sums of weights along any initial segment
with length in {1, . . . , ⌊ϵcTfppηn/2⌋} of any of the at most a−1n2 left-most geodesics become becomes
larger than ϵcTfppηn/2. Specifically, with ι1, ι2, . . . denoting independent copies of ι, the bound

a−1n2

⌊ϵcTfppηn/2⌋∑
ℓ=1

P(ι1 + . . .+ ιℓ ≥ ϵcTfppηn/2)
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tends to zero as n → ∞ by Inequality (7.2). Hence, we additionally have that v has d
(n)
fpp-distance

smaller than u
(n)
⌊jn2/A⌋ except on an event with probability at most δ/8 for large enough n.

Now, by Inequality (7.5), Inequality (7.6), Proposition 7.2, it follows that for sufficiently large n
it holds for all i ∈ {0, . . . , ⌊a−1n2⌋} that

P
(
Bn(η) ∩ (D

(n)
i )c

)
≤ aδ/(4(A+ 1)).

Hence, for large enough n, the probability of the event (7.8) is bounded by
⌊a−1A⌋∑
j=0

P
(
Bn(η) ∩ (D

(n)
⌊jn2/A⌋)

c
)
≤ (⌊a−1A⌋+ 1)

aδ

4(A+ 1)
≤ δ/4.

Since P(Bn(η)
c) ≤ δ/2, and since the event (7.7) is contained in the event (7.8) except possibly on

an event with probability at most δ/4, it follows that

P(d(n)fpp(v, ∂
∗B•

n−⌊ηn⌋(T
(0)
∞ )) ∈ [(1− 2ϵ)cTfppηn, (1 + 2ϵ)cTfppηn]

for all v ∈ ∂∗B•
n(T (0)

∞ ) ) ≥ 1− δ.

We may replace d
(n)
fpp by dT

(0)
∞

fpp in the last bound, since dT
(0)
∞

fpp ≤ d
(n)
fpp and for all v ∈ ∂∗B•

n(T
(0)
∞ )

dT
(0)
∞

fpp (v, ∂∗B•
n−⌊ηn⌋(T

(0)
∞ )) ≥ min

v′∈∂∗B•
n(T

(0)
∞ )

d
(n)
fpp(v

′, ∂∗B•
n−⌊ηn⌋(T

(0)
∞ )).

Hence the proof is complete. □

We prove the next result following closely the arguments of Curien and Le Gall (2019, Prop. 20),
with some adaptions due to the class of link-weights under consideration.

Proposition 7.4. Given 0 < ϵ < 1, we have

P((cTfpp − ϵ)n ≤ dT
(0)
∞

fpp (ρ, v) ≤ (cTfpp + ϵ)n for all v ∈ ∂∗B•
n(T (0)

∞ )) → 1

as n → ∞.

Proof : Let 0 < δ < ϵ/(4| log(ϵ/16)|) be given. By Proposition 7.3, there exists 0 < η < 1/4 such
that for large enough n it holds with probability at least 1− δ2 that

(cTfpp − ϵ/2)⌊ηn⌋ ≤ dT
(0)
∞

fpp (v, ∂∗B•
n−⌊ηn⌋(T

(0)
∞ )) ≤ (cTfpp + ϵ/2)⌊ηn⌋

for all v ∈ ∂∗B•
n(T

(0)
∞ ). We let Gn denote this event. We set n0 = n, n1 = n−⌊ηn⌋, and inductively

ni = ni−1 − ⌊ηni−1⌋ for all i ≥ 1. Set

q =

⌊
log(ϵ/16)

log(1− η)

⌋
.

Hence for large enough n we have nq ≤ ϵn/4. Furthermore, for n large enough,

E

q−1∑
j=0

1G c
nj

 ≤ δ2q.

By Markov’s inequality,

P

q−1∑
j=0

1G c
nj

> δq

 ≤ δ.

We let Hn denote the event that
∑q−1

j=0 1G c
nj

≤ δq.
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Using Lemma 4.13 and Inequality (7.2) to bound the sums of weights along the left-most geodesics
from points on ∂∗B•

nq
(T (0)

∞ ) to ρ, it follows that for sufficiently large n with probability at least 1−δ

all of these sums are less than nq. We let H̃n denote the intersection of Hn with this event and
note that

P(H̃n) ≥ 1− 2δ.

Suppose that H̃n holds. Let v ∈ ∂∗B•
n(T

(0)
∞ ). We are going to inductively construct vertices

v(j) ∈ ∂∗B•
nj
(T (0)

∞ ) for 0 ≤ j ≤ q, starting with v(0) = v. Having construct v(0), . . . , v(j) for some

j < q, we define v(j+1) as follows. If Gnj holds, we set v(j+1) to some point in ∂∗B•
nj+1

(T (0)
∞ )

satisfying

dT
(0)
∞

fpp (v(j), v(j+1)) = dT
(0)
∞

fpp (v(j), ∂
∗B•

nj+1
(T (0)

∞ )).

Otherwise, we we set v(j+1) to some point in ∂∗B•
nj+1

(T (0)
∞ ) satisfying

dT (0)
∞

(v(j), v(j+1)) = nj − nj+1.

Since v(q) ∈ ∂∗B•
nq
(T (0)

∞ ) it follows by definition of H̃n that

dT
(0)
∞

fpp (ρ, v(q)) ≤ nq ≤ ϵn/4. (7.9)

Hence, if the event Hn and the event (7.9) simultaneously hold, we have

dT
(0)
∞

fpp (ρ, v) ≤ ϵn

4
+

q−1∑
j=0

dT
(0)
∞

fpp (v(j), v(j+1))

≤ ϵn

4
+
(
cTfpp +

ϵ

2

) q−1∑
j=0

(nj − nj+1) + δq max
0≤i<q

(ni − ni+1)

≤ ϵn

4
+
(
cTfpp +

ϵ

2

)
n+ δqηn

≤
(
cTfpp + ϵ

)
n.

Here we used δqη ≤ ϵ/4 in the last line since η ∈]0, 1[ entails η ≤ | log(1− η)|.
Furthermore, if ω is a path from v to the root ρ, then for each integer j ∈ {0, . . . , q} we let w(j)

denote the last point of ω that belongs to ∂∗B•
nj
(T (0)

∞ ). Using cTfpp ≤ 1, nq ≤ ϵn/4, and δqη ≤ ϵ/4,
it follows that on the event Hn for large enough n the sum of weights of the edges of the path is
bounded from below by

q−1∑
j=0

dfpp(w(j), ∂
∗B•

nj
(T (0)

∞ )) ≥ (cTfpp − ϵ/2)(n0 − nq)− δqcTfpp max
0≤i<q

(ni − ni+1)

≥ n(cTfpp − ϵ/2)(1− ϵ/4)− δqηn

≥ (cTfpp − ϵ)n.

Hence

dT
(0)
∞

fpp (ρ, v) ≥
(
cTfpp − ϵ

)
n.

Since the event H̃n holds with probability at least 1− 2δ this completes the proof. □
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8. The global shape of random simple triangulations

Let µn denote the uniform measure on the vertex set of Tn. It was shown in Addario-Berry and
Albenque (2017) that

(Tn, (3/4)1/4dTn , µn)
d−→ (M, dM, µM) (8.1)

in the Gromov–Hausdorff–Prokhorov sense, with (M, dM, µM) denoting the Brownian sphere.
The Gromov–Hausdorff–Prokhorov topology allows us to state how similar two compact measured

metric spaces are on a global scale. We refer the reader the exposition in Miermont (2009, Sec. 6.2)
for details and important properties of this notion.

Equation (8.1) entails that if (oin)i≥1 denote independent uniform vertices of Tn, and (ui)i≥1

independent µM-samples of M, then

(3/4)1/4n−1/4dTn(o
1
n, o

2
n)

d−→ dM(u1, u2). (8.2)

Let µ̃n denote the degree-biased measure on the vertex set of Tn. That is, µ̃n describes a vertex
that this selected with probability proportional to its degree. The result Stufler (2022b, Cor. 3.2,
Eq. (3.4)) used (8.1) (and employed similar arguments as for quadrangulations Addario-Berry and
Wen (2017)) to deduce that

dP(µn, µ̃n)
p−→ 0, (8.3)

with dP denoting the Prokhorov-distance, and µn, µ̃n interpreted as measures on the rescaled tri-
angulation (Tn, (3/4)1/4dTn). By Dudley (2002, Cor. 11.6.4), it follows that for each n there exist a
coupling between a uniformly selected vertex on of Tn and a µ̃n-distributed vertex õn such that

n−1/4dTn(on, õn)
p−→ 0. (8.4)

Let ρn denote the origin of the root-edge of Tn. The uniform simple triangulation Tn is distribution-
ally invariant under re-rooting at a uniformly selected corner, and the origin of the randomly selected
and oriented new root-edge follows the degree-biased distribution µ̃n. Combining this with (8.2)
and (8.4) it follows that

(3/4)1/4n−1/4dTn(ρn, on)
d−→ dM(u1, u2). (8.5)

It follows from Miermont (2009, Prop. 10) and (8.1) that for any fixed k ≥ 1(
Tn, (3/4)1/4dTn , (o1n, . . . , okn))

)
d−→ (M, dM, (u1, . . . , uk)) (8.6)

with respect to the k-pointed Gromov–Hausdorff metric. Since µM almost surely has full support,
it follows from Stufler (2022a, Lem. 4.1) that

dH({u1, . . . , uk},M)
a.s.−→ 0 (8.7)

as k → ∞, with dH denoting the Hausdorff metric. Combining (8.5) and (8.7), it follows that for
all ϵ, δ > 0 there exists a number K such that for all n ≥ 2

P

(
sup

v∈V(Tn)
inf

1≤i≤K
dTn(v, o

i
n) > ϵn1/4

)
< δ. (8.8)

To be precise, it follows from (8.5) and (8.7) that (8.8) holds for sufficiently large n. However,
increasing K allows us to easily treat any finite number of indices n.

For any vertex x ∈ V(Tn) and any number b > 0 we let Bb(Tn, x) denote the open ball with
radius b centred at x. Using again that µM almost surely has full support, it follows from the
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convergence (8.1) and Stufler (2022a, Cor. 3.4) that for all ϵ, δ > 0 there exists b > 0 such that for
all large enough n

P
(

inf
x∈V(Tn)

#Bϵn1/4(Tn, x) < bn

)
< δ. (8.9)

9. First-passage percolation on random finite simple triangulations

Recall that Tn denote the uniform simple triangulation with n+1 vertices. It will be notationally
convenient to treat the root vertex ρn of Tn as a bottom-cycle of length 0, making Tn = T (0)

n a
triangulation of the “0-gon”. We let T n denote the result of marking a uniformly selected non-
root vertex on of Tn. For any integer r ≥ 1, the hull B•

r (Tn) makes sense if dTn(ρn, on) > r. If
dTn(ρn, on) ≤ r we set B•

r (Tn) to some place-holder value. By abuse of notation, we let C0,r denote
collection of triangulations of the cylinder with height r and bottom-cycle length 0. For any t ∈ C0,r

we let N(t) denote the number of non-root vertices.
Compare the following lemma with Curien and Le Gall (2019, Lem. 22).

Lemma 9.1. There is a constant c̄ > 0 such that for all r ≥ 1, t ∈ C0,r, and n > N(t) we have

P(B•
r (T n) = t) ≤ c̄

(
n

n−N(t)

)3/2

P(B•
r (T (0)

∞ ) = t). (9.1)

Proof : We let p ≥ 3 denote the length of the top cycle ∂∗t of t. Analogously as for Equation (4.13)
we have

P(B•
r (T n) = t) =

#Tn−N(t),p

#Tn−2

(
1− N(t)

n

)
. (9.2)

By Equation (4.1) and Equation (4.2) and the local convergence Tn
d−→T∞ from Proposition 4.9 it

follows that

P(B•
r (T (0)

∞ ) = t) =
4096

27

√
2π

3
C(p)

(
27

256

)N(t)

. (9.3)

Equation (9.2) and Lemma 4.2 also entail that there exists a constant c∗ > 0 such that

P(B•
r (T n) = t) ≤ c∗C(p)

(
n

n−N(t)

)3/2( 27

256

)N(t)

. (9.4)

Hence

P(B•
r (T n) = t) ≤ c∗

4096

27

√
2π

3

(
n

n−N(t)

)3/2

P(B•
r (T (0)

∞ ) = t). (9.5)

□

We will need the next bound in order to deal with the class of link-weights under consideration.

Proposition 9.2. Let 0 < ϵ < 1/4 be given. Then

lim
n→∞

P
(
dTnfpp(x, y) ≤ dTn(x, y) for all x, y ∈ V(Tn) with dTn(x, y) ≥ nϵ

)
= 1 (9.6)

and

lim
n→∞

P
(
dTnfpp(x, y) ≤ nϵ for all x, y ∈ V(Tn) with dTn(x, y) ≤ nϵ

)
= 1. (9.7)
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Proof : Let (ιi)i≥1 denote independent copies of ι. Recall that E[ι] = 1/2, and that ι has finite
exponential moments.

There are at most (n+1)2 pairs of vertices with graph distance at least nϵ from each other. Note
that the maximal graph distance between any two points is at most n. Conditional on Tn, we may
fix a geodesic between each such pair. The sum of weights along these marked geodesics is an upper
bound for their first-passage percolation distance. Hence, conditional on Tn, the probability that
there exists x, y ∈ Tn with dTn(x, y) ≥ nϵ but dTnfpp(x, y) > dTn(x, y) is bounded by

(n+ 1)2 sup
nϵ≤k≤n

P(ι1 + . . .+ ιk > k).

This bound does not depend on Tn, hence it also holds without conditioning on Tn. Furthermore,
it tends to zero by Inequality (7.2). This verifies Equation (9.6).

Similarly, the probability that there exist vertices x, y ∈ V(Tn) with dTn(x, y) ≤ nϵ but dTnfpp(x, y) >
nϵ is bounded by

(n+ 1)2 sup
1≤k≤nϵ

P(ι1 + . . .+ ιk > nϵ).

This bound also tends to zero by Inequality (7.2). This completes the proof. □

We prove the next result following the arguments of the proof of Curien and Le Gall (2019, Lem.
22).

Proposition 9.3. For each ϵ > 0,

P
(
|dTnfpp(ρn, on)− cTfppdTn(ρn, on)| > ϵn1/4

)
→ 0

as n → ∞.

Proof : By (8.5) we know that n−1/4dTn(ρn, on) is stochastically bounded. Hence it suffices to prove
that for all ϵ > 0 and 0 < ν < 1 we have

P

(∣∣∣∣∣d
Tn
fpp(ρn, on)

dTn(ρn, on)
− cTfpp

∣∣∣∣∣ > 2ϵ

)
< ν (9.8)

for large enough n.
Let r ≥ 1. Given t ∈ C0,r with root vertex ρ, we let aϵ(t) denote the random variable with

aϵ(t) = 1 if

sup
x∈∂∗t

∣∣∣∣∣dtfpp(ρ, x)dt(ρ, x)
− cTfpp

∣∣∣∣∣ ≥ ϵ

and aϵ(t) = 0 otherwise.
Let 0 < b < 1. Using Lemma 9.1, it follows that

P
(
aϵ(B

•
r (T n)) = 1,#B•

r (T n) ≤ (1− b)n
)

=
∑

t∈C0,r

N(t)+1≤(1−b)n

P
(
B•

r (T n) = t
)
P (aϵ(t) = 1)

≤ c̄b−3/2
∑

t∈C0,r

P
(
B•

r (T (0)
∞ ) = t

)
P (aϵ(t) = 1)

= c̄b−3/2P
(
aϵ(B

•
r (T (0)

∞ )) = 1
)
.

By Proposition 7.4, it follows that

lim
r→∞

sup
n≥1

P
(
aϵ(B

•
r (T n)) = 1,#B•

r (T n) ≤ (1− b)n
)
= 0. (9.9)
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Let 0 < α < β < γ. We let Br(Tn, on) denote the ball of radius r centred at on in Tn. We also
define the event

Dβ,γ,n = {βn1/4 < dTn(ρn, on) ≤ γn1/4}.
Note that if Dβ,γ,n holds, then the ball B(β−α)n1/4(Tn, on) is contained in the complement of the
hull B•

⌊αn1/4⌋(T n). Hence

Dβ,γ,n ∩ {#B(β−α)n1/4(Tn, on) > bn} ⊂ {B•
⌊αn1/4⌋(T n) ≤ (1− b)n}.

Using Equation (9.9), it follows that

lim
n→∞

P
(
aϵ(B

•
⌊αn1/4⌋(T n)) = 1, Dβ,γ,n,#B(β−α)n1/4(Tn, on) > bn

)
= 0. (9.10)

Given 0 < y < 1, it follows from Inequality (8.9) that there exists 0 < b < 1 such that

lim inf
n→∞

P
(
#B(β−α)n1/4(Tn, on) > bn

)
≥ y. (9.11)

Since we may take y arbitrarily close to 1, it follows that

lim
n→∞

P
(
aϵ(B

•
⌊αn1/4⌋(T n)) = 1, Dβ,γ,n

)
= 0. (9.12)

Now, suppose that 0 < ϵ < 1 and 0 < δ < ϵ/2. For all integer j with

⌊δ−1⌋ < j ≤ ⌊δ−3⌋ (9.13)

we set

αj = jδ2,

βj = (j + 1)δ2,

γj = (j + 2)δ2.

Hence

P

 ⌊δ−3⌋⋃
j=⌊δ−1⌋+1

Dβj ,γj ,n


= P

(
(⌊δ−1⌋+ 2)δ2n1/4 < dTn(ρn, on) ≤ (⌊δ−3⌋+ 2)δ2n1/4

)
.

Using (8.5), it follows that we may take δ sufficiently small such that for all large enough n

P

 ⌊δ−3⌋⋃
j=⌊δ−1⌋+1

Dβj ,γj ,n

 ≥ 1− ν

4
.

Using (9.12) for the values (αj , βj , γj)j under consideration, it follows that

P

aϵ(B
•
⌊αn1/4⌋(T n)) = 0,

⌊δ−3⌋⋃
j=⌊δ−1⌋+1

Dβj ,γj ,n

 ≥ 1− ν/2 (9.14)

for sufficiently large n. Let Fn, F ′
n denote the events considered in (9.6) and (9.7) for ϵ = 1/8. By

Proposition 9.2 it follows that

P

aϵ(B
•
⌊αn1/4⌋(T n)) = 0,

⌊δ−3⌋⋃
j=⌊δ−1⌋+1

Dβj ,γj ,n, Fn, F
′
n

 ≥ 1− ν. (9.15)
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In order to prove Inequality (9.8) it hence suffices to verify that∣∣∣∣∣d
Tn
fpp(ρn, on)

dTn(ρn, on)
− cTfpp

∣∣∣∣∣ > 2ϵ

holds on the event considered in (9.15). To this end, let j be an integer satisfying (9.13), and
suppose that aϵ(B

•
r (T n)) = 0 and Dβj ,γj ,n hold. Then

dTnfpp(ρn, on) ≥ min{dTnfpp(ρn, x) | x ∈ ∂∗B•
⌊αn1/4⌋(T n)}

≥ (cTfpp − ϵ)⌊αjn
1/4⌋.

Since
αj

γj
=

j

j + 2
≥ 1− 2

j
> 1− 2δ > 1− ϵ,

it follows that
dTnfpp(ρn, on)

dTn(ρn, on)
≥

(cTfpp − ϵ)⌊αjn
1/4⌋

γjn1/4

≥ cTfpp − 2ϵ.

At the same time

dTnfpp(ρn, on) ≤ max
{
dTnfpp(ρn, x) | x ∈ ∂∗B•

⌊αn1/4⌋(T n)
}
+max(⌊γjn1/4⌋ − ⌊αjn

1/4⌋, n1/8)

≤ (cTfpp + ϵ)⌊αjn
1/4⌋+max(⌊γjn1/4⌋ − ⌊αjn

1/4⌋, n1/8).

Consequently, for sufficiently large n

dTnfpp(ρn, on)

dTn(ρn, on)
≤

(cTfpp + ϵ)⌊αjn
1/4⌋+max(⌊γjn1/4⌋ − ⌊αjn

1/4⌋, n1/8)

βjn1/4

≤ cTfpp + 2ϵ.

This completes the proof. □

We are now ready to finalize the proof of our first main theorem. With all preparations done, the
final steps are analogous to the proof of Curien and Le Gall (2019, Thm. 1), with small adjustments
to treat unbounded link-weights. We argue somewhat differently for the intermediate result Curien
and Le Gall (2019, Eq. (66)) using the arguments of Section 8.

Proof of Theorem 1.1: The random triangulation Tn is stochastically invariant under re-rooting at
a uniformly selected oriented root-edge. Furthermore, Tn has n + 1 vertices and hence 3(n − 1)
edges. Hence it follows from Proposition 9.3 that

1

n+ 1

1

6(n− 1)
E

 ∑
v∈V(Tn)

∑
e∈

−→
E(Tn)

1|dTnfpp(e∗,v)−cTnfppdTn (e∗,v)|>ϵn1/4

→ 0 (9.16)

as n → ∞. Here
−→
E(Tn) denotes the 6(n − 1)-element set of oriented edges of Tn, and for any

e ∈
−→
E(Tn) we let e∗ denote its origin. It follows from (9.16) that the following lower bound

1

6(n+ 1)2
E

 ∑
v,ṽ∈V(Tn)

1|dTnfpp(v,ṽ)−cTnfppdTn (v,ṽ)|>ϵn1/4

 (9.17)

also tends to zero. In other words, if (oin)i≥1 denote independent uniform vertices of Tn, then

P
(
|dTnfpp(o

1
n, o

2
n)− cTfppdTn(o

1
n, o

2
n)| > ϵn1/4

)
→ 0 (9.18)
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as n → ∞. By Inequality (8.8), for all ϵ, δ > 0 there exists a number K such that for all n ≥ 2

P

(
sup

v∈V(Tn)
inf

1≤i≤K
dTn(v, o

i
n) < ϵn1/4

)
> 1− δ. (9.19)

Since K is constant, (9.18) entails that

P
(
|dTnfpp(o

i
n, o

j
n)− cTfppdTn(o

i
n, o

j
n)| < ϵn1/4 for all 1 ≤ i, j ≤ K

)
→ 1. (9.20)

By Proposition 9.2, we additionally have

P
(
dTnfpp(x, y) ≤ max(dTn(x, y), n

1/8) for all x, y ∈ V(Tn)
)
→ 1. (9.21)

Suppose that the events under consideration in (9.19), (9.20), and (9.21) hold. Then for any two
vertices x, y ∈ V(Tn) we can find indices 1 ≤ i, j ≤ K with

dTn(x, o
i
n) < ϵn1/4 and dTn(y, o

j
n) < ϵn1/4.

Using the triangle inequality twice, this entail

|dTn(x, y)− dTn(o
i
n, o

j
n)| ≤ 2ϵn1/4.

Furthermore, using n1/8 < ϵn1/4, we have

dTnfpp(x, o
i
n) < ϵn1/4 and dTnfpp(y, o

j
n) < ϵn1/4.

Since |dTnfpp(o
i
n, o

j
n)− cTfppdTn(o

i
n, o

j
n)| < ϵn1/4, applying the triangle inequality twice yields

|dTnfpp(x, y)− cTfppdTn(o
i
n, o

j
n)| ≤ 3ϵn1/4.

Hence
|dTnfpp(x, y)− cTfppdTn(x, y)| ≤ 5ϵn1/4.

For large enough n, the events under consideration in (9.19), (9.20), and (9.21) hold jointly with
probability at least 1− 2δ. Since δ was arbitrary, the proof is complete. □

We may also adapt Curien and Le Gall (2019, Thm. 2) to the type III case:

Proposition 9.4. Let ϵ > 0 be given. Then

lim
r→∞

P

(
sup

x,y∈V(Br(T∞))

∣∣∣dT∞fpp(x, y)− cTfppdT∞(x, y)
∣∣∣ > ϵr

)
= 0.

Letting Bfpp
r denote the ball of radius r with respect to dT∞fpp, we have

lim
r→∞

P
(
B(1−ϵ)r/cTfpp

(T∞) ⊂ Bfpp
r (T∞) ⊂ B(1−ϵ)r/cTfpp

(T∞)
)
= 1.

Proof : Clearly the first part of the statement implies the second.
Recall that in our notation T∞ = T (0)

∞ , so that we may use notation introduced for triangulations
of polygons. Given 0 < δ < 1 we let A

(δ)
r denote the collection of rooted planar maps M satisfying

the Inequality

P(|dMfpp(x, y)− cTfppdM (x, y)| ≤ ϵr for all x, y ∈ V(M) with dM (ρ, x), dM (ρ, y) ≤ r)

≥ 1− δ.

Here ρ denotes the root vertex of M .
In order to prove the first part of the statement, it suffices to show that for each integer K ≥ 1

we have
P
(
B•

Kr(T (0)
∞ ) ∈ A(δ)

r

)
≥ 1− δ
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for all sufficiently large integers r. Reason being that, since ι ≥ κ > 0, if K is sufficiently large, then
first-passage percolation distance and graph distance between any points x and y from Br(T (0)

∞ ) is
determined by the graph B•

Kr(T
(0)
∞ ).

Hence, let K ≥ 1 be a given integer. Recall that N(t) + 1 denotes the number of vertices of a
triangulation t ∈ C0,r. It follows from Curien and Le Gall (2017, Thm. 2) that there exist integers
α, β ≥ 2 such that

Dr := {C0,Kr | N(t) ≥ αr4 or N(t) ≤ α−1r4 or |∂∗t| ≥ βr2}
satisfies

P
(
B•

Kr(T (0)
∞ ) ∈ Dr

)
≤ δ/2.

To be precise, Curien and Le Gall (2017, Thm. 2) treats the type II UIPT. However, Curien and
Le Gall (2017, Sec. 6) explains how the proof may easily be adapted to related models.

Let t ∈ C0,Kr \Dr. Using (9.2), (9.3) and Lemma 4.2, it follows that there are constants c, c′ > 0
that do not depend on t such that

P
(
B•

Kr(T 2αr4) = t
)
≥ cC(|∂∗t|)(256/27)−N(t)

≥ c′P
(
B•

Kr(T (0)
∞ ) = t

)
.

Hence,

P
(
B•

Kr(T (0)
∞ ) /∈ A(δ)

r

)
≤ P

(
B•

Kr(T (0)
∞ ) ∈ Dr

)
+

∑
t∈(A(δ)

r )c∩(C1,Kr\Dr)

P
(
B•

Kr(T (0)
∞ ) = t

)
≤ δ/2 + (c′)−1

∑
t∈(A(δ)

r )c∩(C1,Kr\Dr)

P
(
B•

Kr(T 2αr4) = t
)

≤ δ/2 + (c′)−1P
(
B•

Kr(T 2αr4) /∈ A(δ)
r

)
.

By Theorem 1.1 entails that P
(
B•

Kr(T 2αr4) /∈ A
(δ)
r

)
→ 0 as r → ∞. Hence

P
(
B•

Kr(T (0)
∞ ) /∈ A(δ)

r

)
< δ

for all sufficiently large integers r. □

10. First-passage percolation on dual maps

As before we let ι denote a random variable with finite exponential moments such that there
exists a constant κ > 0 such that P(ι ≥ κ) = 1. Without loss of generality we may assume that
E[κ] = 1/2. This is done purely for notational convenience.

10.1. Degree bounds. For any triangulation t we let d(t) denote the degree of the root vertex of t,
that is, of the origin of the root-edge.

Proposition 10.1 (Angel and Schramm (2003, Lem. 4.1)). For each ϵ > 0 there exists a constant
C such that

P(d(Tn) = k) ≤ C(3/4 + ϵ)k (10.1)

for all n ≥ 2 and k ≥ 0. Furthermore, for k and n large enough,
P(d(Tn) = k + 1)

P(d(Tn) = k)
≤ 3/4 + ϵ. (10.2)
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To be precise, the first bound is in the statement of Angel and Schramm (2003, Lem. 4.1), the
second is verified in its proof. From this we may deduce a similar bound for triangulations of the
p-gon:

Corollary 10.2. For each 0 < ϵ < 1/4 there exists a constant C > 0 such that

P(d(T (p)
n ) = k) ≤ C(3/4 + ϵ)k (10.3)

for all integers p ≥ 3, n ≥ 0, k ≥ 2.

Proof : We may order the edges incident to the root edge of Tn in clock-wise order, starting from
the root-edge. The result of deleting the first p− 3 edges after the root-edge (but not the root-edge
itself) in the conditioned map (Tn | d(Tn) ≥ p− 1) is distributed like a uniform simple triangulation
of the p-gon with n + 1 vertices. Thus, the probability for the root vertex of the p-gon to have
degree k is equal to

qk,p,n :=
P(d(Tn) = k + p− 3)

P(d(Tn) ≥ p− 1)
.

Using (10.2), it follows that there exist p0 and k0 such that for all p ≥ p0 and k ≥ k0 we have

qk,p,n ≤ P(d(Tn) = k + p− 3)

P(d(Tn) = p− 1)

≤ (3/4 + ϵ)k+2.

Furthermore, for all 3 ≤ p ≤ p0 it follows by Inequality (10.1) and the local convergence Tn
d−→T∞

from Proposition 4.9 that

qk,p,n ≤ C
(3/4 + ϵ)k+p−3

P(d(Tn) ≥ p0)

≤ C(1 + o(1))
(3/4 + ϵ)k−3

P(d(T∞) ≥ p0)
.

This completes the proof. □

Corollary 10.3. Let T (p) denote the Boltzmann triangulation of the p-gon for p ≥ 3. For each
0 < ϵ < 1/4 there exists a constant C > 0 that does not depend on p such that

P(d(T (p)) ≥ k) ≤ C(ϵ+ 3/4)k

holds for all k ≥ 0.

Proof : The Boltzmann triangulation T (p) is a mixture of (T (p)
n )n≥0. Hence the statement follows

immediately from Corollary 10.2. □

We may also bound the maximum degree:

Proposition 10.4. For each 0 < ϵ < 1/4 there exists a constant C > 0 such that the maximum
degree MD(Tn) of Tn satisfies

P(MD(Tn) ≥ k) ≤ Cn(3/4 + ϵ)k.

Proof : The triangulation Tn is invariant under re-rooting at a uniformly selected and oriented root-
edge. Hence the degree of the root of Tn is distributed like the degree of a uniformly selected end of
a uniformly selected edge. Since Tn has n+1 vertices it has 3(n−1) edges. Using Inequality (10.1),
it follows that

P(MD(Tn) ≥ k) ≤ 6(n− 1)P(d(Tn) ≥ k)

The statement now follows immediately from Inequality (10.1). □
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10.2. Vertex degrees along paths. Recall that F(T (0)
∞ ) denotes the collection of faces of T (0)

∞ . For
each integer r ≥ 1 we let Fr(T (0)

∞ ) denote the collection of downward triangles at height r in T (0)
∞ .

For any face f0 ∈ Fr(T (0)
∞ ) we construct a downward path, which is a specific dual path ω starting

at f0 and ending at the face to the right of the root-edge. Its construction is as follows. Let v0 be
the unique boundary vertex of f0 that lies on Fr−1(T (0)

∞ ). Since T (0)
∞ is a simple triangulation, we

may order the faces incident to v0 in a counter-clockwise way. If r = 1 then v0 is the root vertex
of T (0)

∞ and the downward path proceeds from f0 in counter-clockwise order along these faces until
it reaches the face that lies to the right of the oriented rooted. If r ≥ 2, then the downward path
proceeds from f0 in counter-clockwise order along these faces until it reaches a downward triangle
f ′ ∈ Fr−1(T (0)

∞ ). From there the construction continues inductively.
Note that the downward path has an initial segment f0, f1, . . . , fN of downward triangles. The

corresponding edges e0, . . . , eN on ∂∗(B•
r (T

(0)
∞ )) form a counter-clockwise path on the top cycle of

B•
r (T

(0)
∞ ), with eN being the first one with offspring in the skeleton of T (0)

∞ . Then the downward
path “crosses” the slot of boundary size ceN +2, and arrives at f ′. The time needed for this crossing
is exactly equal to the degree of the root of the triangulation filling the hole. The degree bound for
simple Boltzmann triangulations from Corollary 10.2 hence provides an exponential bound for this
time that does not depend on the perimeter of the slot.

We define downward paths in the same way for the type III LHPT L . For all integers i ∈ Z and
r ≥ 0 we let f(i,r) denote the unique downward triangle of L that is incident to the edge between
(i− 1,−r) and (i,−r). The next lemma is analogous to Curien and Le Gall (2019, Lem. 24).

Lemma 10.5. Let ωr denote the downward path in L connecting f(0,0) to a downward triangle
incident to Lr. Let |ωr| denote the length of ωr. There exist two constants µ > 0 and K > 1 such
that for all integers r ≥ 1

E [exp(µ|ωr|)] ≤ Kr.

Proof : Since the layers of L are i.i.d., it suffices to show that there exists µ > 0 with

E[exp(µ|ω1|)] < ∞. (10.4)

By construction, the downward path starting at f(0,0) first visits downward triangles f(0,0), . . . ,
f(−N,0), with N + 1 the first integer i such that the tree T−i has more than one vertex. Thus

P(N ≥ k) = θ(0)k (10.5)

for all integers k ≥ 0. The slot associated to f(−N,0) is filled by an independent simple Boltzmann
triangulation of the (d+2)-gon, with d the number of children of the root of the tree T−N−1. Letting
Dd+2 denote the degree of the root of this Boltzmann triangulation, it follows that

|ω1| = N + Dd+2. (10.6)

Corollary 10.2 entails that there exists a constant C > 0 that does not depend on d such that

P(Dd+2 ≥ k) ≤ C(4/5)k (10.7)

for all integers k ≥ 0. Combining Equation (10.5), Equation (10.6), and Inequality (10.7), it follows
that there exists µ > 0 small enough such that (10.4) holds. □

We let d†fpp denote the ι-first-passage percolation distance on the dual. We let L †
r denotes the

collection of downward triangles incident to edges of Lr.
Since ι as finite exponential moments, we may take µ > 0 small enough so that the same statement

of Lemma 10.5 holds for the sum of weights along the downward path. Using P(ι > κ) = 1, we
obtain the next observation by fully analogous arguments as for Proposition 7.2.



First-passage percolation on random simple triangulations 173

Proposition 10.6. There exists a constant c†fpp ≥ κ such that

r−1d†fpp(f(0,0),L
†
r )

a.s.−→ cTfpp

as r → ∞.

10.3. Bounds on distances in the dual. In the following, for each integer r ≥ 1 we let fr denote a
uniformly selected downward triangle at height r in Fr(T (0)

∞ ).
We prove the next lemma following closely the arguments for Curien and Le Gall (2019, Lem.

26).

Lemma 10.7. There exist constants K,α, β > 0 such that for all integers 0 ≤ r < s we have

P
(
d†fpp(fs, B

•
r (T (0)

∞ )) > α(s− r)
)
≤ K exp(−β(s− r)).

Here B•
0(T

(0)
∞ ) only contains the root vertex.

Proof : It suffices to prove this for the dual distance d†
T (0)
∞

, since we may always bound the sum of

weights along a d†
T (0)
∞

-geodesic to get an upper bound for the d†fpp-distance. Furthermore, we may
assume that r ≥ 1, since any downward triangle of height 1 is incident to the root-vertex (and the
total number of triangles incident to the root-vertex has an exponential tail by (4.19)).

Recall that F̃
(0)
r,s denotes the skeleton of B•

s (T
(0)
∞ ) \ Br(T (0)

∞ ) after forgetting the marked vertex
of F

(0)
r,s and applying a uniform random cyclic permutation to the Ls trees of F

(0)
r,s . This way,

conditional on Lr = p and Ls = q, F̃
(0)
r,s is uniformly distributed over F′′

p,q,s−r. We may assume that
fs is the downward triangle that corresponds to the root of the last tree in the forest F̃

(0)
r,s .

By Inequalities (4.34) and (4.35) it holds for all p, q ≥ 3 and F ∈ F′′
p,q,s−r that

P
(
F̃ (0)

r,s = F | Lr = p
)
= O(

√
p/q)

∏
v∈F∗

θ(cv).

Hence
P
(
F̃ (0)

r,s = F
)
= O(

√
p/q)P(Lr = p)

∏
v∈F∗

θ(cv).

Using Inequality (4.32), it follows that

P
(
F̃ (0)

r,s = F
)
= O

(
1
√
q

)
p

r3
exp

(
− p

4r2

) ∏
v∈F∗

θ(cv) (10.8)

= O

(
1

r
√
q

) ∏
v∈F∗

θ(cv).

Hence the law of F̃
(0)
r,s under P(· ∩ {Ls = q}) is dominated by O

(
1

r
√
q

)
times the law of a forest of

q independent θ–Bienaymé–Galton–Watson trees, truncated at height [s − r], and we may restrict
the latter law to the event that the truncated forest reaches that height. The length of a downward
path from fs to B•

r (T
(0)
∞ ) is fully determined by the forest F̃

(0)
r,s and the triangulations filling the

slots associated to vertices of that forest with height strictly less than s− r. Thus, the law of this
length under P(· ∩ {Ls = q}) is dominated by O

(
1

r
√
q

)
times the law of the length of the downward

path for triangulation of the cylinder of height s−r whose cyclically permuted skeleton is a forest of
q independent θ–Bienaymé–Galton–Watson trees truncated at height s− r (restricted to the event
that the truncated forest reaches that height), and whose slots are filled with independent type
III Boltzmann triangulations of the corresponding perimeters. Thus, the law of the length of the
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downward path from fs to B•
r (T

(0)
∞ ) under P(·∩{Ls = q}) is dominated by C/(

√
q(r+1)) times the

law of the downward path from f(0,0) to Ls−r in the LHPT model. Using Lemma 10.5, it follows
that

P
(
Ls = q, d†

T (0)
∞

(fs, B
•
r (T (0)

∞ )) > α(s− r)
)
= O

(
1

r
√
q

)
P(|ωs−r| > α(s− r))

= O

(
1

r
√
q

)
exp(−µα(s− r))Ks−r.

Let us fix α > 0 and β′ > 0 with exp(−µα)K ≤ exp(−β′). Then

P
(
Ls = q, d†

T (0)
∞

(fs, B
•
r (T (0)

∞ )) > α(s− r)
)
= O

(
1

r
√
q

)
exp(−β′(s− r)). (10.9)

Summing over q and using (10.9) for q ≤ (s− r)s2 and (4.28) for q > (s− r)s2 we get

P
(
d†
T (0)
∞

(fs, B
•
r (T (0)

∞ )) > α(s− r)
)

≤ P(Ls > (s− r)s2) +O(1)

(s−r)s2∑
q=1

1

r
√
q
exp(−β′(s− r))

≤ C0 exp(−(s− r)/5) +O(1)

√
(s− r)s2

r
exp(−β′(s− r)).

Choosing any β with 0 < β < min(β′, 1/5) it follows that the last display is bounded from above
by C exp(−β(s− r)) for some constant C > 0. □

We deduce the following corollary analogously to Curien and Le Gall (2019, Cor. 27).

Corollary 10.8. Let α be as in Lemma 10.7. Let δ > 0. For each integer R ≥ 1, let AR(δ) denote
the event that

d†fpp(f,B
•
r (T (0)

∞ )) ≤ α(s− r)

holds for all 0 ≤ r < s ≤ R with s− r ≥ δR, and each downward triangle f at height s. Then there
exists a constant β̃ > 0 such that for large enough R

P (AR(δ)) ≥ 1− exp(−β̃R).

Proof : Let r and s satisfy 0 ≤ r < s ≤ R and s − r ≥ δR. Let f(1) denote uniformly selected
element of Fs(T (0)

∞ ). Let f(1), f(2), . . . denote the successive downward triangles at height s when
walking around ∂B•

s (T
(0)
∞ ) in clockwise order, starting from f(1). By Lemma 10.7, we have

P
(
d†fpp(f(j), B

•
r (T (0)

∞ )) > α(s− r)
)
≤ K exp(−β(s− r))

for each j. Using Inequality (4.28), it follows that

P
(
d†fpp(f,B

•
r (T (0)

∞ )) > α(s− r) for some f ∈ Fs(T (0)
∞ )

)
≤

Rs2∑
j=1

P
(
d†fpp(f(j), B

•
r (T (0)

∞ )) > α(s− r)
)
+ P(Ls > Rs2)

≤ KR3 exp(−βδR) + C0 exp(−R/5).

Summing over all possible values of r and s yields the statement. □

The next observation corresponds to the result Curien and Le Gall (2019, Lem. 28) for type I
triangulations, and the proof is analogous.
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Lemma 10.9. By abuse of notation, we also let d†fpp denote the ι-first-passage percolation distance
on the dual of Tn. Let α > 0 be as in Lemma 10.7. Let 0 < ϵ < 1/4. For each n ≥ 1, let En denote
the event that

d†fpp(f, g) ≤ αdTn(x, y) + nϵ

holds for all x, y ∈ V(Tn) and f, g ∈ F(Tn) satisfying x◁f and y ◁ g. Then En holds with probability
tending to 1 as n → ∞.

Proof : Since (without loss of generality) we assumed that E[ι] = 1/2, an analogous statement as in
Proposition 9.2 also holds for first-passage percolation on the dual of Tn. It follows that it suffices
to prove the statement of Lemma 10.9 for the dual graph distance d†Tn .

As we before, we let ρn denote the root vertex of Tn, and T n the pointed version of Tn obtained
by marking a uniformly selected vertex on. Recall also that we view Tn = T (0)

n as a triangulation
of the “0-gon”. The hull B•

r (T n) is well-defined provided that 0 < r < dTn(ρn, on). We let E denote
the collection of all triangulations t with t ∈ C0,r for some r > 1, with the property that there is a
face f incident to ∂∗t with dual graph distance from a face incident to ρn.

By Lemma 9.1 and Corollary 10.8,

P
(
dTn(ρn, on) > r,B•

r (T n) ∈ E
)
≤
∑

t∈C0,r

1E (t)P
(
dTn(ρn, on) > r,B•

r (T n) = t
)

≤ c̄n3/2
∑

t∈C0,r

1E (t)P
(
B•

r (T
(0)
∞ ) = t

)
≤ c̄n3/2 exp(−b̃r).

Summing over all r ≥ ⌊nϵ⌋, we get

E

 ∞∑
r=⌊nϵ⌋

1dTn (ρn,on)>r,B•
r (T n)∈E

 ≤ c̃ exp(−anϵ)

for some constants c̃, a > 0. Hence

P
(
dTn(ρn, on) > nϵ, B•

dTn (ρn,on)−1(T n) ∈ E
)
≤ c̃ exp(−anϵ). (10.10)

The vertex on is adjacent to a vertex v0 from ∂∗B•
dTn (ρn,on)−1(T n). Any face g incident to on is at

dual graph distance at most MD(Tn) from a face g′ incident to the edge between on and v0. Likewise,
g′ is at dual graph distance at most MD(Tn) from a downward triangle at height dTn(ρn, on) − 1.
Hence, if dTn(ρn, on) > nϵ and B•

dTn (ρn,on)−1(T n) /∈ E , then we have

d†Tn(f, g) ≤ αdTn(ρn, on) + 2MD(Tn)
for all f, g ∈ F(Tn) with ρn ◁ f and on ◁ g.

Using the stochastic re-rooting invariance of Tn similarly as for (9.16) and (9.17), it follows that

E

 ∑
v,v′∈V(Tn)

1dTn (v,v
′)>nϵ1

d†Tn (f,g)>αdTn (v,v
′)+2MD(Tn) whenever v ◁ f and v′ ◁ g


≤ 6(n+ 1)2c̃ exp(−anϵ).

Using Proposition 10.4 follows that with probability tending to 1 as n → ∞ we have

d†Tn(f, g) ≤ αdTn(v, v
′) + (log n)2

whenever v, v′ ∈ V(Tn), dTn(v, v′) > nϵ, and v ◁ f , v′ ◁ g. The easy bound

d†Tn(f, g) ≤ MD(Tn)(dTn(v, v′) + 1)
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additionally implies that with probability tending to 1 as n → ∞ we have

d†Tn(f, g) ≤ (log n)2(nϵ + 1)

whenever dTn(v, v
′) ≤ nϵ, and v ◁ f , v′ ◁ g. Since ϵ > 0 was arbitrary this completes the proof. □

We prove the next observation following closely the arguments of Curien and Le Gall (2019, Prop.
29).

Proposition 10.10. Let ϵ, δ > 0. There exists 0 < η < 1/2 such that for sufficiently large n it
holds with probability at least 1− δ that for all f ∈ Fn(T (0)

∞ )

(1− ϵ)cTfpp⌊ηn⌋ ≤ d†fpp(f,B
•
n−⌊ηn⌋(T

(0)
∞ )) ≤ (1 + ϵ)cTfpp⌊ηn⌋.

Moreover, letting f∗ denote the face to the right of the root-edge of T (0)
∞ ,

lim
n→∞

P
(
(cTfpp − ϵ)n ≤ dTfpp(f∗, f) ≤ (cTfpp + ϵ)n) for all f ∈ Fn(T (0)

∞ )
)
.

Proof : Let f be uniformly selected from Fn(T (0)
∞ ). The proof of the first assertion is analogous

to the proof of Proposition 7.3, using Proposition 10.6 instead of Proposition 7.2, and noting that
Corollary 10.8 already gives the bound dT (0)

∞
(f,B•

n−⌊ηn⌋(T
(0)
∞ )) ≤ α⌊ηn⌋ with sufficient probability.

We describe the adaptions. Recall the notation from the proof of Proposition 7.3. For each i ∈ Z
we write f

(n)
i ∈ Fn(T (0)

∞ ) for the downward triangle corresponding to the edge on ∂B•
n(T

(0)
∞ ) from

u
(n)
i to u

(n)
i+1. Let j be an integer with f = f

(n)
j . Analogous to Equation (7.4) we have to bound

the probability that there exists an integer i with j − an2/16 ≤ i ≤ j + an2/16 such that there is
a dual path from f

(n)
i to ∂B•

n−⌊ηn⌋(T
(0)
∞ ) with length smaller than 4αηn/κ that stays in B•

n(T
(0)
∞ )

and leaves the region G
(n)
j (η) before hitting B•

n−⌊ηn⌋(T
(0)
∞ ). It is easy to see that if there is such

a dual path then there is a path in T (0)
∞ from u

(n)
i to ∂ℓG

(n)
j (η) in B•

n(T
(0)
∞ ) \ B•

n−⌊ηn⌋(T
(0)
∞ ) with

length at most 4αηn/κ+ 1. As argued in the proof of Proposition 7.3, the existence of such a path
is unlikely.

In order to adapt the final part of the proof of Proposition 7.3, we need to verify that for each
β > 0 we can find a sufficiently large integer A such that with high probability any downward
triangle at height n is connected to one of the downward triangles f

(n)
j for 0 ≤ j ≤ ⌊a−1A⌋ by a

dual path in B•
n(T

(0)
∞ ) with sum of weights at most βc†fppηn. In order to do so we may also use

Proposition 6.8. If f = f
(n)
j and f ′ = f

(n)
j′ are two downward triangles at height n, then the left-most

geodesics from u
(n)
j and u

(n)
j′ coalesce above height n′ < n and hence the same property holds for

the downward paths from f and f ′. Using the bounds on the lengths of downward paths in the
proofs in Section 10.3, we get the desired control on the sum of weights of the dual path from f to
f ′ by concatenating the respective downward paths up to their coalescence time.

We may prove the second assertion similarly to Proposition 7.4. Using the notation from the
proof of Proposition 7.4, Corollary 10.8 allows us to take care of the “bad” values of i for which the
bound

(1− ϵ)c†fpp(ni − ni+1) ≤ d†fpp(f,B
•
ni+1

(T (0)
∞ )) ≤ (1 + ϵ)c†fpp(ni − ni+1)

fails for some f ∈ Fni(T
(0)
∞ ). The rest of the proof is the same. □

10.4. Concentration of first-passage percolation distances in the dual. We may carry out the proof
of Theorem 3.1 in the same way as the proof of Curien and Le Gall (2019, Thm. 3).
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Proof of Theorem 3.1: Our first step is to adapt Proposition 9.3. Let f∗ denote the face to the right
of the root-edge of Tn. Let on denote a uniformly selected vertex of Tn and let fn be a face incident
to on. Then for each ϵ > 0

lim
n→∞

P
(
|d†fpp(f∗, fn)− c†fppdTn(ρn, on)| > ϵn1/4

)
= 0. (10.11)

The proof is analogous to the proof of Proposition 9.3, using the same absolute continuity argument
via Lemma 9.1, but using Prop. 10.10 instead of Proposition 7.4. The only difference is that at the
end of the proof where on the event Dβj ,γj ,n we use Lemma 10.9 to bound d†fpp(fn, B

•
⌊αjn1/4⌋(Tn)).

With Equation (10.11) at hand, the proof of Theorem 3.1 is analogous to the proof of Theorem 1.1,
using Lemma 10.9 to approximate the dual map by sufficiently large number of random faces with
respect to d†fpp. □

A similar statement also holds for the first-passage percolation distance on T∞, compare with
Curien and Le Gall (2019, Thm. 4).

Proposition 10.11. Let 0 < ϵ < 1. Then

lim
r→∞

P

 sup
u,v∈V(Br(T∞))

u◁f,v◁g

∣∣∣c†fppdT∞(u, v)− d†fpp(f, g)
∣∣∣ > ϵr

 = 0

and

lim
r→∞

P
(
B

(1−ϵ)r/c†fpp
(T∞) ⊂ B†,fpp

r (T∞) ⊂ B
(1+ϵ)r/c†fpp

(T∞)

)
= 1.

The proof is by a straight-forward adaption of the proof of Proposition 9.4.
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