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Abstract. We investigate the optimal rate of convergence in the multidimensional normal approx-
imation of vector-valued Wiener-Itô integrals whose components all belong to a fixed Wiener chaos
with coinciding orders. By combining Malliavin calculus, Stein’s method for normal approximation
and the method of cumulants, we obtain the optimal rate of convergence with respect to a suitable
smooth distance. As applications, we derive the optimal rates of convergence for complex Wiener-
Itô integrals, vector-valued Wiener-Itô integrals with kernels of step functions and vector-valued
Toeplitz quadratic functionals.

1. Introduction

On a complete probability space (Ω,F , P ), let X = {X(h) : h ∈ H} be an isonormal Gaussian
process over a real separable Hilbert space H. That is, X is a Gaussian family of centered random
variables such that E [X(h)X(g)] = ⟨h, g⟩H for any h, g ∈ H, where ⟨·, ·⟩H denotes the inner product
in H. Let {Gn}n≥1 be a sequence of random variables living in a fixed Wiener chaos of X with unit
variance. The research associated with the normal approximation of {Gn}n≥1 has been concerned
in recent years. The seminal article Nualart and Peccati (2005) first proved the Fourth Moment
Theorem, which shows that {Gn}n≥1 converges to a standard normal variable N ∼ N (0, 1) if and
only if E

[
G4

n

]
→ 3 as n → ∞. Shortly afterwards, Peccati and Tudor (2005) provided a mul-

tidimensional version of this characterization. By using techniques of Malliavin calculus, Nualart
and Ortiz-Latorre (2008) proposed a new proof of the Fourth Moment Theorem. Further, Nour-
din and Peccati (2009b) combined Malliavin calculus with Stein’s method to derive quantitative
and explicit upper bounds in the normal approximation of {Gn}n≥1. This approach of combining
Malliavin calculus and Stein’s method has also been developed to obtain explicit upper bounds in
the multidimensional normal approximation of functionals of Gaussian fields, see Noreddine and
Nourdin (2011); Nourdin and Peccati (2010b); Nourdin et al. (2010b) for instance. Fix an integer
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d ≥ 2. Let {Fn = (Fn,1, . . . , Fn,d)}n≥1 be a sequence of d-dimensional random vectors, with com-
ponents living in some Wiener chaos of X. Suppose that the covariance matrix of Fn is C. In this
paper, we focus on the optimal rate of convergence with respect to a suitable distance under the
assumption that Fn converges in distribution to a d-dimensional normal vector Z ∼ Nd(0, C). We
say that a positive sequence {φ(n)}n≥1 converging to zero provides an optimal rate of convergence
with respect to some distance d(·, ·), if d(Fn, N) ≍ φ(n). Here, for two numerical sequences {an}n≥1

and {bn}n≥1, we write an ≍ bn if there exist two constants 0 < c1 < c2 < ∞ not depending on n
such that c1bn ≤ an ≤ c2bn for n sufficiently large. Throughout the paper, we denote by c1 and c2
two finite positive constants that do not depend on n and can vary from line to line. We denote by
Ck(Rd) the space of k-times continuously differentiable real-valued functions on Rd for k ≥ 1.

Fix an integer q ≥ 2. Let H⊙q denote the q-th symmetric tensor product of H, and let Iq(f) denote
the real q-th Wiener-Itô integral of f ∈ H⊙q with respect to X (see Section 2.1 for the definition).
For a sequence of random variables {Gn = Iq(gn)}n≥1 with unit variance, where all gn ∈ H⊙q, we
assume that Gn converges in distribution to a standard normal variable N ∼ N (0, 1). There are
complete characterisations of the optimal rate of convergence for Gn with respect to some suitable
distance.

Nourdin and Peccati (2009a) demonstrated how to determine optimal Berry-Esseen bound in
the normal approximation of functionals of X and further refined the main results they proven
in Nourdin and Peccati (2009b). Specifically, they assumed additionally that the two-dimensional
random vector (

Gn,
1− q−1 ∥DGn∥2H

χ(n)

)
d→ (N1, N2), n→ ∞, (1.1)

where χ(n) :=
√

Var(q−1 ∥DGn∥2H), DGn is the Malliavin derivative of Gn (see (2.7) for the defi-

nition) and is a H-valued random element, the notation d→ represents convergence in distribution,
and (N1, N2) is a centered two-dimensional Gaussian vector satisfying E

(
N2

1

)
= E

(
N2

2

)
= 1 and

E (N1N2) = ρ. If ρ ̸= 0, then for every z ∈ R,
P (Gn ≤ z)− P (N ≤ z)

χ(n)

converges to a nonzero limit. Therefore, by Nourdin and Peccati (2009a, Theorem 3.1, Proposition
3.3) and the fact that χ(n) ≍

√
E [G4

n]− 3 (see Nourdin and Peccati (2012, Lemma 5.2.4)),

dKol (Gn, N) ≍ χ(n) ≍
∣∣E [G3

n

]∣∣ ≍√E [G4
n]− 3, (1.2)

where dKol (Gn, N) is the Kolmogorov distance defined as

dKol (Gn, N) = sup
z∈R

|P (Gn ≤ z)− P (N ≤ z)| .

Nourdin and Peccati (2009a, Proposition 3.6) proposed that if q is even, sufficient conditions for (1.1)
are as n→ ∞,

q−1∑
r=1

2(q−r)−1∑
l=1

χ(n)−2
∥∥(gn⊗̃rgn

)
⊗l

(
gn⊗̃rgn

)∥∥
H⊗2(2(q−r)−l) → 0, (1.3)

and

−qq!(q/2− 1)!

(
q − 1

q/2− 1

)2

χ(n)−1
〈
gn, gn⊗̃q/2gn

〉
H⊗q → ρ. (1.4)

Here, given f ∈ H⊙p and g ∈ H⊙q with p, q ≥ 1, for r = 0, . . . , p ∧ q, where p ∧ q denotes the
minimum of p and q, f ⊗r g is the r-th contraction of f and g (see (2.2) for the definition), and
f⊗̃rg denotes its symmetrization. In this case, if ρ ̸= 0, then (1.2) is valid, that is, χ(n) is the
optimal rate of convergence for Gn with respect to dKol(·, ·). However, when q is even and ρ = 0, or
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q is odd and (1.3) is satisfied (which imply (1.1) with ρ = 0), the optimal rate of convergence with
respect to dKol(·, ·) is unknown.

In Biermé et al. (2012), Biermé, Bonami, Nourdin and Peccati gave a complete solution to the
optimal rate of convergence with respect to a suitable smooth distance. They proved that

d (Gn, N) ≍ M̃(Gn) := max
(∣∣E [G3

n

]∣∣ ,E [G4
n

]
− 3
)
, (1.5)

where d (Gn, N) = sup |E [h (Gn)]− E[h(N)]|, and h runs over the class of all real-valued functions
h ∈ C2(R) with the second derivative bounded by one. Note that, it is shown in Nourdin and
Peccati (2010b, Proposition 3.1) that∣∣E [G3

n

]∣∣ ≤ c
√

E [G4
n]− 3,

where c is constant only depending on q. Furthermore, by using Lusin’s Theorem, Nourdin and
Peccati (2015) dealt with irregular test functions and obtained that M̃(Gn) also provides an optimal
rate of convergence in the total variation distance dTV (·, ·), a non-smooth distance. That is,

dTV (Gn, N) := sup
A∈B(R)

|P (Gn ∈ A)− P (N ∈ A)| ≍ M̃(Gn).

As far as we know, there are few references studying the optimal rate of convergence for a se-
quence of random vectors whose components are functionals of some isonormal Gaussian process.
Campese (2013) extended the results of Nourdin and Peccati (2009a) to the multidimensional case
and developed techniques for determining the exact asymptotic speed of convergence for multidi-
mensional smooth functionals of some isonormal Gaussian process. Let {Fn = (Fn,1, . . . , Fn,d)}n≥1

be a sequence of d-dimensional random vectors, where Fn,i = Iqi(fn,i), qi ≥ 2, and fn,i ∈ H⊙qi

for 1 ≤ i ≤ d. Suppose that the covariance matrix of Fn is C = (Cij)1≤i,j≤d and Fn converges in
distribution to a d-dimensional normal vector Z ∼ Nd(0, C). It is shown in Nourdin et al. (2010b)
that

∆(Fn) :=

√√√√ d∑
i,j=1

Var
(
q−1
j ⟨DFn,i, DFn,j⟩H

)
(1.6)

provides an upper bound in the multidimensional normal approximation of {Fn}n≥1 with respect to
the Wasserstein distance. In Campese (2013), Campese aimed to establish conditions on {Fn}n≥1

such that ∆(Fn) provides an optimal rate of convergence for Fn with respect to some suitable
distance. Let g ∈ C3(Rd) with bounded derivatives up to order three. By Stein’s method as
introduced in Section 2.4 and Lemma 2.1,

E [g(Fn)]− E [g(Z)] = E [⟨Fn,∇Ug,C(Fn)⟩Rd − ⟨C,HessUg,C(Fn)⟩HS]

=
d∑

i,j=1

E
[
∂2ijUg,C(Fn)

(
q−1
j ⟨DFn,i, DFn,j⟩H − Cij

)]
,

(1.7)

where Ug,C defined as (2.17) satisfies the multidimensional Stein’s equation (2.16), HessUg,C is a d×d
matrix with entries given by (HessUg,C)ij = ∂2ijUg,C , ⟨·, ·⟩Rd denotes the Euclidean inner product
and ⟨·, ·⟩HS denotes the Hilbert-Schmidt inner product (see Section 2.4 for specific definitions). If
the sequence 

∑d
i,j=1 E

[
∂2ijUg,C(Fn)

(
q−1
j ⟨DFn,i, DFn,j⟩H − Cij

)]
∆(Fn)


n≥1

(1.8)

which involves (1.6) and the right-hand side of (1.7), converges to a nonzero limit, then ∆(Fn)
exactly characterizes the rate of convergence of E [g(Fn)] − E [g(Z)]. To prove the convergence of
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(1.8), Campese assumed that, for 1 ≤ i, j ≤ d such that

∆ij(Fn) :=

√
Var

(
q−1
j ⟨DFn,i, DFn,j⟩H

)
≍ ∆(Fn) (1.9)

holds, the (d+ 1)-dimensional random vector sequence{(
Fn,

q−1
j ⟨DFn,i, DFn,j⟩H − Cij

∆ij(Fn)

)}
n≥1

(1.10)

converges in distribution to a centered (d + 1)-dimensional Gaussian vector
(
Z, Z̃ij

)
. Under such

assumptions, Campese (2013, Theorem 3.4, Corollary 3.6) showed that the lim inf and lim sup of
the sequence {

E [g (Fn)]− E[g(Z)]

∆(Fn)

}
n≥1

coincide with those of 1

3

d∑
i,j,k=1

∆ij(Fn)

∆(Fn)
ρijkE

[
∂3ijkg(Z)

]
n≥1

, (1.11)

where the constants ρijk are defined by ρijk = E
[
Z̃ijZk

]
for 1 ≤ i, j, k ≤ d such that (1.9) is true,

and ρijk = 0 otherwise. If the lim inf and lim sup of (1.11) are not equal to zero and finite, then
∆(Fn) provides an optimal rate of convergence for Fn with respect to the distance defined as

d(Fn, Z) = sup {|E [g(Fn)]− E [g(Z)]|} ,
where g runs over the class of all functions g ∈ C3(Rd) with bounded derivatives up to order three.
Sufficient conditions analogously to (1.3) and (1.4), for the convergence in distribution of the random
sequence (1.10) to a centered Gaussian vector, are established in Campese (2013, Proposition 4.2).

The techniques developed in Campese (2013) are extensive and heuristic. In his framework,
smooth functionals of a Gaussian process, whose components do not necessarily belong to Wiener
chaoses, are considered, and covariances of these functionals are allowed to fluctuate. However,
due to the assumption that the random sequence (1.10) converges in distribution, it seems that
Campese’s findings do not provide a complete characterization of the optimal rate of convergence
for Fn. Specially, Campese’s techniques will fail when the limit of (1.11) is equal to zero, see
Campese (2013, Section 5.1) or Section 4.2 in this paper for example. Note that, in this example,
all components of Fn belong to the second Wiener chaos of some isonormal Gaussian process. In
addition, Campese (2013, Section 5.4) remarked that for a non-trivial application of the results he
obtained in the Breuer-Major central limit theorem, at least one of the integers qi, the order of Fn,i,
should be even.

In this paper, we consider a sequence of d-dimensional random vectors {Fn = (Fn,1, . . . , Fn,d)}n≥1
whose components all belong to the q-th Wiener chaos, where q ≥ 2. We still assume that the
covariance matrix of Fn is C and Fn converges in distribution to a d-dimensional normal vector
Z ∼ Nd(0, C). Without any additional assumptions, we exhaustively investigate the optimal rate
of convergence with respect to the smooth distance ρ4(·, ·) defined as

ρ4(F,G) = sup {|E [g(F )]− E [g(G)]|} ,
where g ranges over the class of all functions g ∈ C4(Rd) such that Mj(g) ≤ 1 for all 0 ≤ j ≤ 4
(that is, g and all its derivatives up to order four are bounded by one, see (2.14) for the precise
definition of Mj(g)), and F , G are two d-dimensional random vectors. Moreover, if C is positive
definite, we improve the distance to

ρ3(F,G) = sup {|E [g(F )]− E [g(G)]|} ,
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where g runs over the class of all functions g ∈ C3(Rd) such that Mj(g) ≤ 1 for all 0 ≤ j ≤ 3.
Specifically, in Theorem 3.1, we obtain that

ρ4 (Fn, Z) ≍M(Fn) := max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)

 ,

and furthermore, if C is positive definite,

ρ3 (Fn, Z) ≍M(Fn).

Here, for a multi-index m ∈ Nd
0 = (N ∪ {0})d, κm(Fn) is the cumulant of order m of Fn (see Defini-

tion 2.2). For example, κ4ei(Fn) = E[F 4
n,i]−3(E[F 2

n,i])
2, where for 1 ≤ i ≤ d, ei = (ei1, . . . , eid) ∈ Nd

0

is defined by eij = δij for 1 ≤ j ≤ d, and δij is the Kronecker symbol defined by δij = 1 if j = i and
δij = 0 otherwise. In other words, the concise expression M(Fn) is the optimal rate of convergence
with respect to the smooth distance ρ4(·, ·), and ρ3(·, ·) if C is positive definite. It can be shown
that, there exists a constant c depending only on q and C such that

∑
|m|=3

|κm(Fn)| ≤ c

√√√√ d∑
i=1

κ4ei(Fn),

by combining interpolation techniques (see Nourdin and Peccati (2010b, Theorem 4.2) or Nourdin
et al. (2010a, Theorem 7.2)) and Nourdin and Peccati (2012, Equation (6.2.6)). This is an extension
of Nourdin and Peccati (2010b, Proposition 3.1) to the multidimensional case. Note that M(Fn) can
be determined by either one of the two quantities

∑
|m|=3 |κm(Fn)| and

∑d
i=1 κ4ei(Fn) (see Section

4 for examples of both cases).
Although focusing on the case where the components of Fn have coinciding orders, we improve

upon the work in Campese (2013) in two main aspects. First, the optimal rate of convergence we
obtained is more explicit and concise. Second, our conclusions can be applied to determine the
optimal rate of convergence when Campese’s techniques can not work, as discussed in Section 4.2.

There are two main differences in strategies between Campese (2013) and this paper. The first
difference is that we expand E[⟨Fn,∇Ug,C(Fn)⟩Rd ] appeared in (1.7) to a higher order by using
Proposition 3.7 to obtain a more refined bound. In (1.7), Campese expanded E[⟨Fn,∇Ug,C(Fn)⟩Rd ]
as

E[⟨Fn,∇Ug,C(Fn)⟩Rd ] =

d∑
i,j=1

E
[
∂2ijUg,C(Fn)q

−1
j ⟨DFn,i, DFn,j⟩H

]
=

∑
m=ei+ej ,1≤i,j≤d

E
[
Γei,ej (Fn)∂

mUg,C(Fn)
]
,

which means that Campese took M = 2 in Proposition 3.7. Please refer to Definition (2.3) for the
definition of Γ-random variable. While we take M = 4 and expand E[⟨Fn,∇Ug,C(Fn)⟩Rd ] as

E[⟨Fn,∇Ug,C(Fn)⟩Rd ] =
d∑

i,j=1

CijE
[
∂2ijUg,C(Fn)

]
+

1

2

∑
m=ei+ej+ek,

1≤i,j,k≤d

κm(Fn)E [∂mUg,C(Fn)]

+
∑

m=ei+ej+ek+el,

1≤i,j,k,l≤d

E
[
Γei,ej ,ek,el(Fn)∂

mUg,C(Fn)
]
, (1.12)

to achieve the optimal convergence of rate. Second, besides Malliavin calculus and Stein’s method
for normal approximation, which are the main techniques used in Campese (2013), we also make full
use of the method of cumulants to estimate the reminder terms of E [g(Fn)]− E [g(Z)], namely the
second and third terms on the right-hand side of (1.12). More precisely, on the one hand, combining
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the higher-order expansion of E[⟨Fn,∇Ug,C(Fn)⟩Rd ] and technical estimates of Γ-random variables
(see Proposition 3.9), we prove the upper bound. Namely, there exists a constant 0 < c2 <∞ such
that for n large enough,

ρk (Fn, Z) ≤ c2max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)

 ,

for k = 4, and k = 3 if C is positive definite. On the other hand, we delicately set up several
specific test functions (see Lemma 3.11) to obtain the lower bound. That is, there exists a constant
0 < c1 <∞ such that for n large enough, for k = 3, 4,

ρk (Fn, Z) ≥ c1max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)

 .

Note that under the assumption that all components of Fn belong to the same fixed Wiener
chaos, the optimal rate of convergence we obtained is comparatively concise. To some extent, this
result is consistent with and improves Noreddine and Nourdin (2011, Theorem 1.5), in which it is
proved that

sup {|E [g(Fn)]− E [g(Z)]|} ≤ c1

d∑
i=1

√
κ4ei(Fn),

where g runs over the class of all functions g ∈ C2(Rd) with the second derivatives bounded by one.
We assume coinciding orders in this paper because the critical estimates of cumulants and related

Γ-random variables (see Proposition 3.9) that we use in the proof of Theorem 3.1 may not be valid
when the orders are different. Specifically, the definition of Γ-random variable (see Definition 2.3)
implies that the essence of Proposition 3.9 is to estimate the variance of the random variable
⟨DF,DG⟩H, where F = Ip(f) and G = Iq(g) with f ∈ H⊙p and g ∈ H⊙q, p, q ≥ 1. By Nourdin and
Peccati (2012, Lemma 6.2.1), we have that if p = q, then

Var (⟨DF,DG⟩H) ≤
p4

2

p−1∑
r=1

(r − 1)!2
(
p− 1

r − 1

)4

(2p− 2r)!
(
∥f ⊗p−r f∥2H⊗2r + ∥g ⊗p−r g∥2H⊗2r

)
,

and if p < q, then
Var (⟨DF,DG⟩H)

≤ q2p!2
(
q − 1

p− 1

)2

(q − p)!∥f∥2H⊗p ∥g ⊗q−p g∥H⊗2p

+
p2q2

2

p−1∑
r=1

(r − 1)!2
(
p− 1

r − 1

)2(q − 1

r − 1

)2

(p+ q − 2r)!
(
∥f ⊗p−r f∥2H⊗2r + ∥g ⊗q−r g∥2H⊗2r

)
.

(1.13)
It is obvious that when p = q, we have that

Var (⟨DF,DG⟩H) ≤ c(p) (κ4(F ) + κ4(G)) , (1.14)

where c(p) is a constant depending on p, κ4(F ) := E
[
F 4
]
− 3

(
E
[
F 2
])2 and the definition of κ4(G)

is the same as that of κ4(F ). However, when p < q, one can only obtain that

Var (⟨DF,DG⟩H) ≤ c
(
p,E

[
F 2
]) (

κ4(F ) + κ4(G) +
√
κ4(G)

)
, (1.15)

where c
(
p,E

[
F 2
])

is a constant that depends on p and E
[
F 2
]
, and

√
κ4(G) is from the first term

on the right-hand side of (1.13). A comparison of the estimates (1.14) and (1.15) shows that the
estimate obtained when p = q is better than when p < q. As a result, the techniques we used are
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insufficient to solve the case of different orders. This improving topic will be investigated in other
works.

Compared to one-dimensional case, the test functions in the definition of the distance between
two random vectors in multidimensional case need to be smoother. There are two reasons for this.
First, second-order differential operators are involved in the multidimensional Stein’s equation (see
(2.16)), unlike in one-dimensional case (see Nourdin and Peccati (2012, Definition 3.2.1)). Second,
given a test function g, the solution of the one-dimensional Stein’s equation associated with g
has better regularity than the solution of the multidimensional Stein’s equation, see Biermé et al.
(2012, Proposition 3.2) and Chen et al. (2011, Lemma 2.6) respectively. In Biermé et al. (2012),
Biermé, Bonami, Nourdin and Peccati applied the chain rule (2.8) three times for the solution of
the one-dimensional Stein’s equation. Combining the fact that the solution of Stein’s equation is
smoother than the test function (see Biermé et al. (2012, Proposition 3.2)), the authors in Biermé
et al. (2012) required the test functions to be smooth up to order two and then derived the optimal
rate of convergence in the one-dimensional case. After that, Nourdin and Peccati (2015) dealt with
irregular test functions by using Lusin’s Theorem and obtained the optimal rate of convergence in
the total variation distance, a non-smooth distance. In the multidimensional case, less smoothness
of test functions means less use of the chain rule (2.8) and then less expansion for the quantity
E[⟨F,∇f(F )⟩Rd ] in Proposition 3.7. This usually leads to a suboptimal rate of convergence, where
only an upper bound can be obtained. In this paper, we define the distance of two random vectors as
ρ4 to achieve the optimal rate of convergence for a general non-negative definite covariance matrix
C. When C is positive definite, we combine the smoothing argument and the regularity of the
solution of the multidimensional Stein’s equation (see Lemma 2.5) to improve the distance to ρ3. It
is reasonable to require more smoothness of the test functions when C is singular. See Chatterjee
and Meckes (2008); Dung (2019); Fang and Koike (2022); Meckes (2009); Nourdin et al. (2010b);
Peccati and Zheng (2010); Reinert and Röllin (2009) for more discussions on Stein’s method and
smoothness requirements for test functions in multidimensional normal approximation.

As an application, we first consider a sequence of complex Wiener-Itô integrals {Fn}n≥1 in Section
4.1. Assume that Fn converges in distribution to a complex normal variable Z with the same
covariance matrix as Fn. Combining Theorem 3.1 and the fact that the real and imaginary parts of
a complex Wiener-Itô integral can be expressed as a real Wiener-Itô integral respectively (see Chen
and Liu (2017, Theorem 3.3)), we yield Theorem 4.1, which states that for k = 4, and k = 3 if the
covariance matrix of Fn is positive definite,

ρk (Fn, Z) ≍ max

{∣∣E [F 3
n

]∣∣ , ∣∣E [F 2
nFn

]∣∣ ,E [|Fn|4
]
− 2

(
E
[
|Fn|2

])2
−
∣∣E [F 2

n

]∣∣2} .
As an example, we get the optimal rate of convergence for a statistic associated with the least
squares estimator of the drift coefficient for the complex-valued Ornstein-Uhlenbeck process. In
Section 4.2, we consider the counterexample provided in Campese (2013, Section 5.1) and apply
our conclusion to derive the optimal rate of convergence for a sequence of vector-valued Wiener-Itô
integrals with kernels of step functions. In Section 4.3, by combining our techniques and some results
from the literature such as Campese (2013); Ginovian (1994); Ginovyan and Sahakyan (2007), we
get the optimal rate of convergence in the multidimensional normal approximation of vector-valued
Toeplitz quadratic functionals.

The paper is organized as follows. Section 2 introduces some elements of the isonormal Gaussian
process, Malliavin calculus, the method of cumulants and multidimensional Stein’s method for
normal approximation. In Section 3, we obtain the optimal rate of convergence for a sequence of
vector-valued Wiener-Itô integrals with respect to smooth distance ρk(·, ·), where k = 3 or 4. In
Section 4, we apply the main results we proved in Section 3 to derive the optimal rates of convergence
for a sequence of complex Wiener-Itô integrals, vector-valued Wiener-Itô integrals with kernels of
step functions and vector-valued Toeplitz quadratic functionals.
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2. Preliminaries

In this section, we briefly introduce some basic theories of the isonormal Gaussian process, Malli-
avin calculus, cumulants and multidimensional Stein’s method. See Chen and Liu (2019); Itô (1952);
Nourdin and Peccati (2012); Nualart (2006); Nualart and Nualart (2018) for more details.

2.1. Isonormal Gaussian process. Suppose that H is a real separable Hilbert space with the inner
product denoted by ⟨·, ·⟩H. Let ∥h∥H denote the norm of h ∈ H. Consider a real isonormal Gaussian
process X = {X(h) : h ∈ H} defined on a complete probability space (Ω,F , P ). That is, X is a
Gaussian family of centered random variables such that E [X(h)X(g)] = ⟨h, g⟩H for any h, g ∈ H.

For q ≥ 0, the q-th Wiener-Itô chaos Hq(X) of X is the closed linear subspace of L2(Ω) generated
by the random variables {Hq(X(h)) : h ∈ H, ∥h∥H = 1}, where Hq(x) is the Hermite polynomial of
degree q defined by the equality

exp

{
tx− 1

2
t2
}

=
∞∑
q=0

tq

q!
Hq(x), t ∈ R.

Let H⊗q and H⊙q denote the q-th tensor product and the q-th symmetric tensor product of H,
respectively. For any q ≥ 1, the mapping Iq (h⊗q) = Hq(X(h)) for ∥h∥H = 1 can be extended to a
linear isometry between the symmetric tensor product H⊙q, equipped with the norm

√
q!∥ · ∥H⊗q ,

and the q-th Wiener-Itô chaos Hq(X). For q = 0, we write I0(c) = c for c ∈ R. For any f ∈ H⊙q,
the random variable Iq(f) is called the real q-th Wiener-Itô integral of f with respect to X. Wiener
chaoses of different orders are orthogonal, that is, for f ∈ H⊙p and g ∈ H⊙q, where p, q ≥ 1,

E [Ip(f)Iq(g)] =

{
p! ⟨f, g⟩H⊗p , p = q,

0, p ̸= q.
(2.1)

The Wiener-Itô chaos decomposition of L2(Ω, σ(X), P ) implies that L2(Ω, σ(X), P ) can be de-
composed into an infinite orthogonal sum of the spaces Hq(X). That is, any random variable
F ∈ L2(Ω, σ(X), P ) admits a unique expansion of the form

F =

∞∑
q=0

Iq (fq) ,

where f0 = E[F ], and fq ∈ H⊙q for q ≥ 1 are uniquely determined by F .
Let {ηk}k≥1 be a complete orthonormal system in H. We define a∧ b as the minimum of a, b ∈ R.

Given f ∈ H⊙p, g ∈ H⊙q, for r = 0, . . . , p ∧ q, the r-th contraction of f and g is an element of
H⊗(p+q−2r) defined as

f ⊗r g =
∞∑

i1,...,ir=1

⟨f, ηi1 ⊗ · · · ⊗ ηir⟩H⊗r ⊗ ⟨g, ηi1 ⊗ · · · ⊗ ηir⟩H⊗r . (2.2)

Notice that f ⊗r g is not necessarily symmetric, and we denote by f⊗̃rg its symmetrization. The
product formula for real multiple Wiener-Itô integral, as shown in Nourdin and Peccati (2012,
Proposition 2.7.10), states that for f ∈ H⊙p and g ∈ H⊙q with p, q ≥ 0,

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg). (2.3)

Next, we introduce the complex isonormal Gaussian process. We complexify H and L2(Ω) in the
usual way, denoted as HC and L2

C(Ω), respectively. Suppose h = f + ig ∈ HC with f, g ∈ H, we
define

XC(h) := X(f) + iX(g),
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which satisfies E
[
XC (h)XC (h′)

]
= ⟨h, h′⟩HC

with h′ ∈ HC. Here, for h = f + ig, h′ = f ′ + ig′ ∈ HC,
where f, g, f ′, g′ ∈ H,〈

h, h′
〉
HC

=
〈
f + ig, f ′ + ig′

〉
HC

=
(〈
f, f ′

〉
H
+
〈
g, g′

〉
H

)
+ i
(
−
〈
f, g′

〉
H
+
〈
g, f ′

〉
H

)
.

Let Y = {Y (h) : h ∈ H} be an independent copy of the isonormal Gaussian process X over H. We
define YC(h) for h ∈ HC in the same way as XC(h). Now, we define the complex isonormal Gaussian
process Z = {Z(h) : h ∈ HC} over HC as

Z(h) :=
XC(h) + iYC(h)√

2
, h ∈ HC.

Note that Z is a centered complex Gaussian family and satisfies

E[Z(h)2] = 0, E[Z(h)Z(h′)] =
〈
h, h′

〉
HC
, ∀h, h′ ∈ HC.

For each p, q ≥ 0, let Jp,q(z) be the complex Hermite polynomial, or Hermite-Laguerre-Itô poly-
nomial, given by

exp
{
λz + λz − 2|λ|2

}
=

∞∑
p=0

∞∑
q=0

λ
p
λq

p!q!
Jp,q(z), λ ∈ C.

For example, Jp,0(z) = zp for p ≥ 0, J0,q(z) = zq for q ≥ 0, J1,1(z) = |z|2 − 2, J1,2(z) = z
(
|z|2 − 4

)
,

and J2,2(z) = |z|4 − 8|z|2 +8. Let Hp,q(Z) be the closed linear subspace of L2
C(Ω) generated by the

random variables {
Jp,q(Z(h)) : h ∈ HC, ∥h∥HC =

√
2
}
.

The space Hp,q(Z) is called the (p, q)-th Wiener-Itô chaos of Z.
Take a complete orthonormal system {ξk}k≥1 in HC. Let Λ be the set of all sequences a = {ak}∞k=1

of non-negative integers with only finitely many nonzero components and set |a| :=
∑∞

k=1 ak.
Let symm(h) denote the symmetrization of h ∈ H⊗p

C for some p ≥ 1. For two sequences p =
{pk}∞k=1 ,q = {qk}∞k=1 ∈ Λ satisfying |p| = p and |q| = q, the linear mapping

Ip,q
(
symm

(
⊗∞

k=1ξ
⊗pk
k

)
⊗ symm

(
⊗∞

k=1ξk
⊗qk
))

:=
∞∏
k=1

1√
2pk+qk

Jpk,qk

(√
2Z (ξk)

)
, (2.4)

provides an isometry from the tensor product H⊙p
C ⊗H⊙q

C , equipped with the norm
√
p!q!∥ · ∥

H
⊗(p+q)
C

,
onto the (p, q)-th Wiener-Itô chaos Hp,q(Z). Itô proved (2.4) in Itô (1952, Theorem 13.2). For any
f ∈ H⊙p

C ⊗H⊙q
C , Ip,q(f) is called the complex (p, q)-th Wiener-Itô integral of f with respect to Z. Itô

(1952, Theorem 7) showed that complex Wiener-Itô integrals satisfy the isometry property. That
is, for f ∈ H⊙a ⊗ H⊙b and g ∈ H⊙c ⊗ H⊙d,

E
[
Ia,b(f)Ic,d(g)

]
=

{
a!b! ⟨f, g⟩

H
⊗(a+b)
C

, a = c, b = d,

0, otherwise.
(2.5)

The complex Wiener-Itô chaos decomposition of L2
C(Ω, σ(Z), P ) implies that L2

C(Ω, σ(Z), P ) can
be decomposed into an infinite orthogonal sum of the spaces Hp,q(Z). That is, any random variable
F ∈ L2

C(Ω, σ(Z), P ) admits a unique expansion of the form

F =

∞∑
p=0

∞∑
q=0

Ip,q (fp,q) ,

where f0,0 = E[F ], and fp,q ∈ H⊙p
C ⊗ H⊙q

C for p+ q ≥ 1 are uniquely determined by F .
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Given f ∈ H⊙a
C ⊗ H⊙b

C and g ∈ H⊙c
C ⊗ H⊙d

C , for i = 0, . . . , a ∧ d, j = 0, . . . , b ∧ c, the (i, j)-th
contraction of f and g is an element of H⊗(a+c−i−j)

C ⊗ H
⊗(b+d−i−j)
C defined as

f ⊗i,j g =

∞∑
l1,...,li+j=1

〈
f, ξl1 ⊗ · · · ⊗ ξli ⊗ ξli+1

⊗ · · · ⊗ ξli+j

〉
⊗
〈
g, ξli+1

⊗ · · · ⊗ ξli+j
⊗ ξl1 ⊗ · · · ⊗ ξli

〉
,

and by convention, f ⊗0,0 g = f ⊗g denotes the tensor product of f and g. The product formula for
complex Wiener-Itô integral, as presented in Chen (2017, Theorem 2.1) and Hoshino et al. (2017,
Theorem A.1), states that for f ∈ H⊙a ⊗ H⊙b and g ∈ H⊙c ⊗ H⊙d, where a, b, c, d ≥ 0,

Ia,b(f)Ic,d(g) =
a∧d∑
i=0

b∧c∑
j=0

(
a

i

)(
d

i

)(
b

j

)(
c

j

)
i!j!Ia+c−i−j,b+d−i−j (f ⊗i,j g) . (2.6)

2.2. Malliavin calculus. Let S denote the class of smooth random variables given by

F = f (X(h1), . . . , X(hd)) ,

where h1, . . . , hd ∈ H, d ≥ 1 and f ∈ C∞
p (Rd). Here, C∞

p (Rd) is the set of all infinitely differentiable
real-valued functions such that all its partial derivatives have polynomial growth. Given F ∈ S, the
Malliavin derivative DF is a H-valued random element defined as

DF =
d∑

i=1

∂f

∂xi
(X (h1) , . . . , X (hd))hi.

The derivative operator D is a closable and unbounded operator from Lp(Ω) to Lp(Ω;H) for any
p ≥ 1. By iteration, for k ≥ 2, one can define the k-th derivative DkF ∈ Lp(Ω;H⊗k). For any p ≥ 1
and k ≥ 0, we denote Dk,p as the closure of S with respect to the norm ∥ · ∥k,p given by

∥F∥pk,p =
k∑

i=0

E
(∥∥DiF

∥∥p
H⊗i

)
.

For any p ≥ 1 and k ≥ 0, we set D∞,p =
⋂

k≥0Dk,p, Dk,∞ =
⋂

p≥1Dk,p and D∞ =
⋂

k≥0Dk,∞. It is
known that for f ∈ H⊙p, Ip(f) ∈ D∞ and for any k ≥ 0,

DkIp(f) =

{
p!

(p−k)!Ip−k(f), k ≤ p,

0, k > p.
(2.7)

The derivative operator D satisfies the chain rule. Specifically, if φ : Rd → R is continuously
differentiable with bounded partial derivatives and F = (F1, . . . , Fd) is a vector with components
belonging to D1,2, then φ(F ) ∈ D1,2 and

Dφ(F ) =

d∑
i=1

∂φ

∂xi
(F )DFi. (2.8)

The chain rule still holds if Fi ∈ D∞ for 1 ≤ i ≤ d and φ has continuous partial derivatives with at
most polynomial growth.

We denote by δ the divergence operator, defined as the adjoint operator of D, which is an
unbounded operator from a domain in L2(Ω;H) to L2(Ω). A random element u ∈ L2(Ω;H) belongs
to the domain of δ, denoted Domδ, if and only if it verifies

|E [⟨DF, u⟩H]| ≤ cu
√
E [F 2],

for any F ∈ D1,2, where cu is a constant depending only on u. In particular, if u ∈ Domδ, then δ(u)
is characterized by the following duality relationship

E(Fδ(u)) = E (⟨DF, u⟩H) , (2.9)
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for any F ∈ D1,2.
The operator L defined as L = −

∑∞
p=0 pJp is the infinitesimal generator of the Ornstein-

Uhlenbeck semigroup Tt =
∑∞

p=0 e
−ptJp, where Jp denotes the orthogonal projection on the p-th

Wiener chaos. Its domain in L2(Ω) is

DomL =

F ∈ L2(Ω) :
∞∑
p=1

p2 ∥JpF∥22 <∞

 .

By Nualart (2006, Proposition 1.4.3), we know that the operators D, δ and L satisfy the following
relation. For F ∈ L2(Ω), F ∈ DomL if and only if F ∈ Dom(δD), and in this case

δDF = −LF. (2.10)

For any F ∈ L2(Ω), we also define L−1F = −
∑∞

p=1
1
pJp(F ). The operator L−1 is called the

pseudo-inverse of L. For any F ∈ L2(Ω), we have that L−1F ∈ DomL, and

LL−1F = L−1LF = F − E[F ]. (2.11)

Combining (2.9), (2.10) and (2.11), we can get the following useful lemma.

Lemma 2.1 (Nourdin and Peccati (2010a) Lemma 3.1). Suppose that F ∈ D1,2 and G ∈ L2(Ω).
Then, L−1G ∈ D2,2 and

E[FG] = E[F ]E[G] + E
[〈
DF,−DL−1G

〉
H

]
.

2.3. Cumulants. First, we recall some standard multi-index notations. A multi-index is defined
as a d-dimensional vector m = (m1, . . . ,md) ∈ Nd

0 = (N ∪ {0})d. For ease of notations, we write
|m| =

∑d
i=1mi, ∂i = ∂

∂xi
, ∂m = ∂m1

1 · · · ∂md
d , xm =

∏d
i=1 x

mi
i and |x|m =

∏d
i=1 |xi|mi , where x ∈ Rd.

By convention, we have 00 = 1. For any i = 1, . . . , d, we denote by ei = (ei1, . . . , eid) ∈ Nd
0 the

multi-index defined by eij = δij , where δij is the Kronecker symbol. We can write every multi-
index m as a sum of |m| multi-indices l1, . . . , l|m| ∈ {e1, . . . , ed}, and this sum is unique up to the
order of the summands. For instance, the elementary decomposition for the multi-index (1, 2, 0) is
{(1, 0, 0), (0, 1, 0), (0, 1, 0)}. We denote by ⟨·, ·⟩Rd the Euclidean inner product.

Definition 2.2. Let F = (F1, . . . , Fd) be a d-dimensional random vector satisfying E|F |m <∞ for
some m ∈ Nd

0\{0}. The characteristic function of F is denoted by ϕF (t) = E
[
ei⟨t,F ⟩Rd

]
for t ∈ Rd.

Then the cumulant of order m of F is defined as

κm(F ) = (−i)|m|∂m log ϕF (t)
∣∣∣
t=0

.

For example, if Fi, Fj ∈ L2(Ω), then κei(F ) = E [Fi] and κei+ej (F ) = E [FiFj ]− E [Fi] E [Fj ].

Definition 2.3. Let F = (F1, . . . , Fd) be a d-dimensional random vector with Fi ∈ D1,2 for 1 ≤
i ≤ d. Suppose that l1, l2, . . . is a sequence taking values in {e1, . . . , ed}. Set Γl1(F ) := F l1 = Fk, if
l1 = ek for some 1 ≤ k ≤ d. If the random variable Γl1,...,lk(F ) is a well-defined element of L2(Ω)
for some k ≥ 1, we set

Γl1,...,lk+1
(F ) =

〈
DF lk+1 ,−DL−1Γl1,...,lk(F )

〉
H
.

As shown in Noreddine and Nourdin (2011, Lemma 4.3), if Fi ∈ D∞ for 1 ≤ i ≤ d, then for any
k ≥ 1, the random variable Γl1,...,lk(F ) ∈ D∞. The following theorem tells us the relation between
the cumulant κm(F ) and the random variable Γl1,...,l|m|(F ) with m = l1 + . . .+ l|m|.
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Theorem 2.4 (Noreddine and Nourdin (2011) Theorem 4.4). Let m ∈ Nd
0\{0}. Write m = l1 +

· · · + l|m|, where li ∈ {e1, . . . , ed} for 1 ≤ i ≤ d. Suppose that the random vector F = (F1, . . . , Fd)

is such that Fi ∈ D|m|,2|m| for all 1 ≤ i ≤ d. Then, we have

κm(F ) = (|m| − 1)!E
[
Γl1,...,l|m|(F )

]
.

If the components of random vector F = (F1, . . . , Fd) are all multiple Wiener-Itô integrals,
namely, F = (Iq1 (f1) , . . . , Iqd (fd)), where each fi ∈ H⊙qi , the cumulant κm(F ) and the random
variable Γl1,...,l|m|(F ) with m = l1 + · · ·+ l|m| and li ∈ {e1, . . . , ed} for each i can be expressed more
clearly, see Noreddine and Nourdin (2011, Theorem 4.6, Equation (4.29)). Specifically, set λk = j
when lk = ej . For simplicity, we drop the brackets and write fλ1⊗̃r2 · · · ⊗̃r|m|−1

fλ|m|−1
to implicitly

assume that this quantity is defined iteratively from left to right. For instance, f⊗̃αg⊗̃βh actually
means

(
f⊗̃αg

)
⊗̃βh. Then

Γl1,...,l|m|(F )

=

qλ1∧qλ2∑
r2=1

. . .

[qλ1+···+qλ|m|−1
−2r2−···−2r|m|−1]∧qλ|m|∑
r|m|=1

cq,l
(
r2, . . . , r|m|

)
1{

r2<
qλ1

+qλ2
2

} × · · ·

× 1{
r2+···+r|m|−1<

qλ1
+···+qλ|m|−1

2

}Iqλ1+···+qλ|m|−2r2−···−2r|m|

(
fλ1⊗̃r2fλ2 . . . ⊗̃r|m|fλ|m|

)
.

(2.12)

And

κm(F ) = qλ|m| !(|m| − 1)!
∑

cq,l
(
r2, . . . , r|m|−1

) 〈
fλ1⊗̃r2fλ2 · · · ⊗̃r|m|−1

fλ|m|−1
, fλ|m|

〉
H
⊗qλ|m|

,

where the sum
∑

runs over all collections of integers r2, . . . , r|m|−1 such that

(1) 1 ≤ ri ≤ qλi
for all i = 2, . . . , |m| − 1;

(2) r2 + · · ·+ r|m|−1 =
qλ1+···+qλ|m|−1

−qλ|m|
2 ;

(3) r2 <
qλ1+qλ2

2 , . . . , r2 + · · ·+ r|m|−2 <
qλ1+···+qλ|m|−2

2 ;
(4) r3 ≤ qλ1 + qλ2 − 2r2, . . . , r|m|−1 ≤ qλ1 + · · ·+ qλ|m|−2

− 2r2 − · · · − 2r|m|−2.

Here, the combinatorial constants cq,l (r2, . . . , rs) are recursively defined by the relations

cq,l (r2) = qλ2 (r2 − 1)!

(
qλ1 − 1

r2 − 1

)(
qλ2 − 1

r2 − 1

)
,

and, for s ≥ 3,

cq,l (r2, . . . , rs) = qλs (rs − 1)!

(
qλ1 + · · ·+ qλs−1 − 2r2 − · · · − 2rs−1 − 1

rs − 1

)
(
qλs − 1

rs − 1

)
cq,l (r2, . . . , rs−1) .

In particular, if q1 = · · · = qd = 2, then the only possible integers r2, . . . , r|m|−1 satisfying (1)-(4)
are r2 = · · · = r|m|−1 = 1. Calculating directly, one can get that cq,l (r2, . . . , rs) = 2s−1 for s ≥ 2.
Therefore, for any f1, . . . , fd ∈ H⊙2 and any m ∈ Nd

0\{0} with |m| ≥ 3, we have

κm (I2 (f1) , . . . , I2 (fd)) = 2|m|−1(|m| − 1)!
〈
fλ1⊗̃1 · · · ⊗̃1fλ|m|−1

, fλ|m|

〉
H⊗2

. (2.13)
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2.4. Multidimensional Stein’s method for normal approximations. We first introduce some notations.
We denote by Md(R) the collection of all real d× d matrices. The Hilbert-Schmidt inner product
and the Hilbert-Schmidt norm on Md(R), denoted respectively by ⟨·, ·⟩HS and ∥ · ∥HS, are defined
as

⟨A,B⟩HS = Tr
(
ABT

)
, ∥A∥HS =

√
⟨A,A⟩HS, A,B ∈ Md(R),

where Tr(·) and (·)T denote the usual trace and transposition operators, respectively. We denote
by ⟨·, ·⟩Rd the Euclidean inner product and ∥·∥ the Euclidean norm. The k-th derivative f (k)(x) of
a function f ∈ Ck

(
Rd
)

is a k-linear form on Rd, given by〈
f (k)(x), (v1, . . . , vk)

〉
=

d∑
i1,...,ik=1

∂kf

∂xi1 · · · ∂xik
(x) (v1)i1 · · · (vk)ik ,

where (vi)j denotes the j-th component of the vector vi. Define the operator norm of f (k)(x) as

∥f (k)(x)∥op = sup
{∣∣∣〈f (k)(x), (v1, . . . , vk)〉∣∣∣ : ∥v1∥ = · · · = ∥vk∥ = 1

}
.

For f ∈ Ck(Rd), k ≥ 1, let

Mk(f) := sup
x∈Rd

∥∥∥f (k)(x)∥∥∥
op
, (2.14)

and ∥∥∥f (k)∥∥∥
∞

:= max
1≤i1,...,ik≤d

sup
x∈Rd

∣∣∣∣ ∂k

∂xi1 · · · ∂xik
f(x)

∣∣∣∣ .
We write M0(f) = ∥f∥∞ = supx∈Rd |f(x)| . Note that∥∥∥f (k)∥∥∥

∞
≤Mk(f) ≤ dk/2

∥∥∥f (k)∥∥∥
∞
, (2.15)

and

Mk(f) = sup
x ̸=y

∥∥f (k−1)(x)− f (k−1)(y)
∥∥
op

∥x− y∥
,

that is, Mk(f) is the Lipschitz constant of the (k − 1)-th derivative of f .
Let C = (Cij)1≤i,j≤d ∈ Md(R) be a non-negative definite and symmetric matrix. We denote

by Nd(0, C) the law of a d-dimensional Gaussian vector with zero mean and covariance matrix
C. Multidimensional Stein’s lemma (see Nourdin and Peccati (2012, Lemma 4.1.3)) shows that a
random vector N = (N1, . . . , Nd) ∼ Nd(0, C) if and only if

E [⟨N,∇f(N)⟩Rd ] = E [⟨C,Hess f(N)⟩HS] ,

for every f ∈ C2(Rd) having bounded first and second derivatives. Here Hess f denotes the Hessian
of f , a d× d matrix with entries given by (Hess f)ij = ∂2ijf .

Suppose F is a d-dimensional random vector such that the expectation

E [⟨F,∇f(F )⟩Rd − ⟨C,Hess f(F )⟩HS] ,

is close to zero for a large class of smooth functions f . In view of Stein’s Lemma, it is possible to
conclude that the law of F is close to the law of N . To provide a quantitative version of Stein’s
lemma, we introduce the definition of Stein’s equation. Suppose the random vector Z ∼ Nd(0, C).
Let g : Rd → R be such that E|g(Z)| < ∞. The Stein’s equation associated with g and Z is the
partial differential equation

⟨x,∇f(x)⟩Rd − ⟨C,Hess f(x)⟩HS = g(x)− E[g(Z)]. (2.16)

A solution to Equation (2.16) is a function f ∈ C2(Rd) satisfying (2.16) for every x ∈ Rd.
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Given a Lipschitz function g : Rd → R with at most polynomial growth, we define Ug,C : Rd → R
by

Ug,C(x) =

∫ 1

0

1

2t

(
E
[
g
(√

tx+
√
1− tN

)]
− E[g(N)]

)
dt, (2.17)

where N ∼ Nd(0, C) is independent of Z. As shown in Campese (2013, Lemma 2.4), Ug,C defined as
(2.17) satisfies the multidimensional Stein’s equation (2.16). Moreover, if g ∈ Ck(Rd) with bounded
derivatives up to order k, the same is true for Ug,C . In this case, for any m ∈ Nd

0 with |m| ≤ k, the
derivative is given by

∂mUg,C(x) =

∫ 1

0

1

2
t
|m|
2

−1E
[
∂mg

(√
tx+

√
1− tN

)]
dt, (2.18)

and it holds that
E [∂mUg,C(Z)] =

1

|m|
E [∂mg(Z)] . (2.19)

The following lemma shows some estimates of the derivatives of Ug,C .

Lemma 2.5. For g ∈ C4
(
Rd
)

given, Ug,C defined as (2.17) satisfies that for all 1 ≤ k ≤ 4,

Mk (Ug,C) ≤
1

k
Mk(g). (2.20)

In addition, if C is positive definite, then

Mk (Ug,C) ≤ ckd
∥∥∥C−1/2

∥∥∥
op
Mk−1(g), 1 ≤ k ≤ 4, (2.21)

where c1 =
√
π/2, c2 =

√
2/π, c3 =

√
2π/4 and c4 = (2

√
2)/(3

√
π).

Proof : We prove (2.21) for k = 4. See Meckes (2009, Lemma 2) for the proofs of (2.20) and (2.21)
for 1 ≤ k ≤ 3. By the formula (2.17) for Ug,C and formula of integration by parts,

∂3Ug,C

∂xi∂xj∂xk
(x) =

∫ 1

0

√
t

2
E

[
∂3g

∂xi∂xj∂xk

(√
tx+

√
1− tN

)]
dt

=

∫ 1

0

√
t

2
√
1− t

E

[[
C−1N

]
i

∂2g

∂xj∂xk

(√
tx+

√
1− tN

)]
dt.

Then

M4(Ug,C) = sup
x ̸=y

1

∥x− y∥

∥∥∥U (3)
g,C(x)− U

(3)
g,C(y)

∥∥∥
op

= sup
x ̸=y

sup
∥u∥=∥v∥=∥w∥=1

1

∥x− y∥

∣∣∣∣∣∣
d∑

i,j,k=1

(
∂3Ug,C

∂xi∂xj∂xk
(x)−

∂3Ug,C

∂xi∂xj∂xk
(y)

)
uivjwk

∣∣∣∣∣∣
≤M3(g)

∫ 1

0

t

2
√
1− t

dtE

[
d∑

i=1

∣∣(C−1N
)
i
ui
∣∣] .

By Cauchy-Schwarz inequality, and the fact that
∫ 1
0

t
2
√
1−t

dt = 2/3 and C−1/2N ∼ Nd(0, Id), where
Id is the d× d identity matrix, we have

E

[
d∑

i=1

∣∣(C−1N
)
i
ui
∣∣] ≤ E


√√√√ d∑

i=1

|(C−1N)i|
2

 = E
[∥∥C−1N

∥∥]
≤
∥∥∥C−1/2

∥∥∥
op
E
[∥∥∥C−1/2N

∥∥∥] ≤ d

√
2

π

∥∥∥C−1/2
∥∥∥
op
.

Then we finish the proof. □



Optimal Rate of Convergence for Vector-valued Wiener-Itô Integral 193

3. Optimal rate of convergence for vector-valued Wiener-Itô integral

Let {Fn = (Fn,1, . . . , Fn,d)}n≥1 be a sequence of random vectors whose components all belong to
the q-th Wiener chaos, where q ≥ 2. Suppose that Fn converges in distribution to a d-dimensional
normal vector Z. Define

M(Fn) = max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)

 . (3.1)

Note that M(Fn) ≥
∑d

i=1 κ4ei(Fn) > 0 (see Nourdin and Peccati (2012, Lemma 5.2.4)) and
M(Fn) →M(Z) = 0 under the assumption that Fn converges in distribution to Z.

For k = 3, 4, we define two distances between the distributions of two d-dimensional random
vectors as

ρk(F,G) = sup {|E [g(F )]− E [g(G)]|} , (3.2)
where g runs over the class of all functions g ∈ Ck(Rd) such that Mj(g) ≤ 1 for all 0 ≤ j ≤ k. Note
that it is sufficient to assume that Mj(g), 0 ≤ j ≤ k, are bounded. Here, we require Mj(g) ≤ 1 for
all 0 ≤ j ≤ k for the convenience of calculation.

Theorem 3.1. Fix q ≥ 2. Let {Fn = (Fn,1, . . . , Fn,d)}n≥1 be a sequence of random vectors whose
components live in the q-th Wiener chaos. Suppose that the covariance matrix of Fn is C and Fn

converges in distribution to Z ∼ Nd(0, C). Then there exist two finite constants 0 < c1 < c2 not
depending on n such that for n large enough,

c1M (Fn) ≤ ρ4 (Fn, Z) ≤ c2M (Fn) .

Moreover, if C is positive definite, then

c1M (Fn) ≤ ρ3 (Fn, Z) ≤ c2M (Fn) .

Remark 3.2. From the proof of Theorem 3.1, one can see that the upper bound, namely ρk (Fn, Z) ≤
c2M (Fn), k = 3, 4, still holds without the assumption that Fn converges in distribution to Z ∼
Nd(0, C).

Remark 3.3. There are two reasons why we consider M(Fn) as the optimal rate of convergence and
require the smoothness of the test function g in (3.2) to be of order four if C is not positive definite.
First, combining Proposition 3.7 below and Stein’s method, the test function g should be at least
continuously differentiable up to order three. However, if we take M = 3 in Proposition 3.7, the
remainder term ∑

m=ei+ej+ek,1≤i,j,k≤d

E
[
Γei,ej ,ek(F )∂

mf(F )
]

is bounded by max
{∑

|m|=3 |κm(Fn)| ,
∑d

i=1 κ4ei(Fn)
3
4

}
according to Equation (3.4). The conver-

gence rate of this bound is slower than M(Fn), the upper bound we get in Theorem 3.1 by taking
M = 4 in Proposition 3.7. Second, if M ≥ 5, the reminder term

M−1∑
s=3

∑
m=ej1

+···+ejs ,

1≤jk≤d,1≤k≤s

κm(F )

(s− 1)!
E [∂mf(F )] +

∑
m=ej1

+···+ejM
,

1≤jk≤d,1≤k≤M

E
[
Γej1 ,...,ejM

(F )∂mf(F )
]

is still bounded by M(Fn). For example, taking M = 5, the reminder term is bounded by

max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn),

d∑
i=1

κ4ei(Fn)
5
4

 =M(Fn)
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according to Proposition 3.9. The above two points are the reasons why we define the optimal rate
of convergence as (3.1) and the distance as (3.2).

Remark 3.4. Compared to the optimal rate of convergence contributed by each component Fn,i of
Fn, namely

d∑
i=1

M̃(Fn,i) = max

{
d∑

i=1

∣∣E [F 3
n,i

]∣∣ , d∑
i=1

κ4ei(Fn)

}
,

where M̃(·) is defined as (1.5), one can see that the mixed moments of order three |E [Fn,iFn,jFn,k]|,
where 1 ≤ i, j, k ≤ d such that they are not all equal, also contribute to M(Fn), the optimal rate
of convergence of Fn. This is one of the manifestations of complexity in the multivariate setting
compared to the univariate setting.

Remark 3.5. To achieve the optimal convergence of rate, we set M = 4 in Proposition 3.7 and
apply the chain rule (2.8) three times for ∂if with 1 ≤ i ≤ d. Consequently, the test function g in
(3.2) needs to be smooth up to order four. This distance ρ4 is also used in Krokowski et al. (2016);
Krokowski and Thäle (2017) to study multivariate limit theorems for functionals of Rademacher
sequences. Moreover, if the covariance matrix C is positive definite, then the required smoothness
of the test function can be reduced to three. It is reasonable to require test functions to be smoother
when C is singular.

In Theorem 3.1, we consider the sequence of vector-valued Wiener-Itô integrals {Fn}n≥1 with a
deterministic covariance matrix C. The conclusion can be extended to the case where the covariance
matrix of Fn, denoted by Cn, converges to C in the sense that ∥Cn − C∥HS → 0 as n → ∞.
We introduce the definition of being asymptotically close to normal. We say that {Fn}n≥1 is
asymptotically close to normal if ρ4(Fn, Zn) → 0, where Zn is a d-dimensional Gaussian vector with
the covariance matrix Cn. This definition was introduced in Campese (2013, Definition 2.3) with
respect to the Prokhorov distance β, which is equivalent to convergence in distribution in the sense
that β(Fn, Z) → 0 ⇔ Fn

d→ Z as n → ∞. Here, we adopt the distance ρ4(·, ·) (see Definition 3.2),
which is also equivalent to convergence in distribution, meaning that ρ4(Fn, Z) → 0 ⇔ Fn

d→ Z as
n → ∞. Note that if the test function g in the definition of the distance ρk(·, ·), k = 3, 4, is not
necessarily bounded, then the topology induced by ρk(·, ·) is stronger than that of the convergence
in distribution. Using a similar argument as in the proof of Theorem 3.1, we can obtain the following
proposition.

Proposition 3.6. Fix q ≥ 2. Let {Fn = (Fn,1, . . . , Fn,d)}n≥1 be a sequence of random vectors whose
components live in the q-th Wiener chaos. Suppose that ∥Cn − C∥HS → 0, as n→ ∞.

(1) If C is invertible, we set F ′
n = C

1
2C

− 1
2

n Fn and assume that F ′
n converges in distribution to

Z ∼ Nd(0, C). Then for n large enough,

ρ3(F
′
n, Z) ≍M(F

′
n).

(2) If C is not invertible, suppose that {Fn}n≥1 is asymptotically close to normal. That is,
ρ4(Fn, Zn) → 0, where Zn is a d-dimensional Gaussian vector with covariance matrix Cn.
Then for n large enough,

ρ4(Fn, Zn) ≍M(Fn).

To prove Theorem 3.1, we need several results as follows. In order to analyze E [g(Fn)]−E [g(Z)],
which is equal to

E [⟨Fn,∇Ug,C(Fn)⟩Rd − ⟨C,HessUg,C(Fn)⟩HS] ,

by Stein’s method as introduced in Section 2.4, we first establish Proposition 3.7 to expand

E[⟨F,∇f(F )⟩Rd ],
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for a general function f satisfying certain smoothness requirements. This expansion is expressed
as a sum associated with cumulants and related Γ-random variables. Proposition 3.7 is proven by
utilizing the formula of integration by parts (see Lemma 2.1), the chain rule (2.8) and the relation
between cumulant and related Γ-random variable (see Theorem 2.4).

After expanding E[⟨Fn,∇Ug,C(Fn)⟩Rd ] as (1.12) by using Proposition 3.7, we derive technical
estimates of Γ-random variables in Proposition 3.9 to bound the remainder term, namely the second
and third terms on the right-hand side of (1.12). Proposition 3.7 is proven by using the definition of
Γ-random variable (Definition 2.3) and generalized Cauchy-Schwarz inequality (Biermé et al. (2012,
Lemma 4.1)).

Combining Proposition 3.7 with Proposition 3.9, we obtain the upper bound in Theorem 3.1. To
establish the lower bound, we delicately set up several specific test functions in Lemma 3.11.

Proposition 3.7. Let F = (F1, . . . , Fd) with Fi ∈ D∞, 1 ≤ i ≤ d. Then, for every M ≥ 2 and
every function f ∈ CM (Rd) with derivatives having at most polynomial growth, we have

E[⟨F,∇f(F )⟩Rd ] =
M−1∑
s=1

∑
m=ej1

+···+ejs ,

1≤jk≤d,1≤k≤s

κm(F )

(s− 1)!
E [∂mf(F )]

+
∑

m=ej1
+···+ejM

,

1≤jk≤d,1≤k≤M

E
[
Γej1 ,...,ejM

(F )∂mf(F )
]
.

(3.3)

Remark 3.8. Proposition 3.7 can be seen as an extension of Biermé et al. (2012, Proposition 3.11)
to the multidimensional case. For d ≥ 2, Equation (3.3) is new as far as we know.

Proof : Using the formula of integration by parts (see Lemma 2.1), the chain rule (2.8) and the
relation between cumulant and related Γ-random variable (see Theorem 2.4) repeatedly, we obtain

E [Fj1∂j1f(F )] = E [Fj1 ] E [∂j1f(F )] + E
[〈
D∂j1f(F ),−DL−1Fj1

〉
H

]
=κej1 (F )E [∂j1f(F )] +

d∑
j2=1

E
[
∂2j1,j2f(F )

〈
DFj2 ,−DL−1Fj1

〉
H

]

=κej1 (F )E [∂j1f(F )] +
d∑

j2=1

E
[
∂2j1,j2f(F )

]
E
[
Γej1 ,ej2

(F )
]
+

d∑
j2,j3=1

E
[
∂3j1,j2,j3f(F )Γej1 ,ej2 ,ej3

(F )
]

= · · · = κej1 (F )E [∂j1f(F )] +
d∑

j2=1

κej1+ej2
(F )E

[
∂2j1,j2f(F )

]
+ · · ·

+

d∑
j2,...,jM−1=1

κej1+···+ejM−1
(F )

(M − 2)!
E
[
∂M−1
j1,...,jM−1

f(F )
]
+

d∑
j2,...,jM=1

E
[
∂Mj1,...,jM f(F )Γej1 ,...,ejM

(F )
]
.

Therefore,

E[⟨F,∇f(F )⟩Rd ] =

d∑
j1=1

E [Fj1∂j1f(F )]

=
M−1∑
s=1

∑
m=ej1

+···+ejs ,

1≤jk≤d,1≤k≤s

κm(F )

(s− 1)!
E [∂mf(F )] +

∑
m=ej1

+···+ejM
,

1≤jk≤d,1≤k≤M

E
[
Γej1 ,...,ejM

(F )∂mf(F )
]
.

□
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Proposition 3.9. For each integer q ≥ 2, there exist positive constants c1(q), c2(q), c3(q) only
depending on q such that, for all F = (Iq(f1), . . . , Iq(fd)) with fi ∈ H⊙q and 1 ≤ i ≤ d, we have

E

[∣∣∣∣Γei,ej ,ek(F )−
1

2
κei+ej+ek(F )

∣∣∣∣] ≤ c1(q) max
1≤i≤d

{
κ4ei(F )

3
4

}
, (3.4)

E
[∣∣Γei,ej ,ek,el(F )

∣∣] ≤ c2(q) max
1≤i≤d

{κ4ei(F )} , (3.5)

E
[∣∣Γei,ej ,ek,el,es(F )

∣∣] ≤ c3(q) max
1≤i≤d

{
κ4ei(F )

5
4

}
, (3.6)

for any 1 ≤ i, j, k, l, s ≤ d.

Remark 3.10. See Biermé et al. (2012, Proposition 4.3) for the estimates of cumulants and related
Γ-random variables for d = 1.

Proof : By making suitable modifications to the proof of Biermé et al. (2012, Proposition 4.3), we
can get the conclusion. We show (3.4) as an illustrative example here and prove (3.5) and (3.6) in
Appendix. According to Equation (2.12), we have

Γei,ej ,ek(F ) =

q−1∑
r2=1

(2q−2r2)∧q∑
r3=1

cq,l (r2, r3) I3q−2r2−2r3

((
fi⊗̃r2fj

)
⊗̃r3fk

)
, (3.7)

where cq,l (r2, r3), defined as in (2.3), is a constant depending only on q, r2 and r3. Utilizing Theorem
2.4, we obtain

E
[
Γei,ej ,ek(F )

]
=

1

2
κei+ej+ek(F ).

Consequently, the random variable Γei,ej ,ek(F ) − 1
2κei+ej+ek(F ) is derived by restricting the sum

in (3.7) to terms satisfying 2r2 + 2r3 < 3q. Combining the fact that there exists a constant c(q)
depending only on q such that

max
1≤r≤q−1

∥fi ⊗r fi∥2H⊗(2q−2r) ≤ c(q)κ4ei(F ), (3.8)

which is derived from Nourdin and Peccati (2012, Equation (5.2.6)), it suffices to demonstrate that
for r2 and r3 satisfying 1 ≤ r2 ≤ q − 1, 1 ≤ r3 ≤ (2q − 2r2) ∧ q and 2r2 + 2r3 < 3q,∥∥(fi⊗̃r2fj

)
⊗̃r3fk

∥∥
H⊗(3q−2r2−2r3)

≤ max
1≤i≤d

max
1≤r≤q−1

∥fi ⊗r fi∥
3
2

H⊗(2q−2r) . (3.9)

Without loss of generality, in the proof, we assume that H = L2(A,A, µ), where (A,A) is a
measurable space, and µ is a σ-finite and non-atomic measure. For a vector z = (z1, . . . , zd) and
a permutation σ of {1, . . . , d}, we write σ(z) = (zσ(1), . . . , zσ(d)). For vectors z = (z1, . . . , zj) and
y = (y1, . . . , yk), we set z∪ y to be the vector of dimension j + k obtained by juxtaposing z and y,
that is, z ∪ y = (z1, . . . , zj , y1, . . . , yk). We identify vectors of dimension zero with the empty set.
That is, if z has dimension zero, then integration with respect to z is removed by convention.

First, we assume that r3 < q, then both q − r2 and q − r3 belong to {1, . . . , q − 1}. By Cauchy-
Schwarz inequality (or see Biermé et al. (2012, Equation (4.3), Equation (4.4))), we get that∥∥(fi⊗̃r2fj

)
⊗̃r3fk

∥∥
H⊗(3q−2r2−2r3)

≤
∥∥(fi⊗̃r2fj

)
⊗r3 fk

∥∥
H⊗(3q−2r2−2r3)

≤
∥∥fi⊗̃r2fj

∥∥
H⊗(2q−2r2)

√
∥fk ⊗q−r3 fk∥H⊗2r3

≤
√

∥fi ⊗q−r2 fi∥H⊗2r2

√
∥fj ⊗q−r2 fj∥H⊗2r2

√
∥fk ⊗q−r3 fk∥H⊗2r3

≤ max
1≤i≤d

max
1≤r≤q−1

∥fi ⊗r fi∥
3
2

H⊗(2q−2r) .
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Now we consider the case when r3 = q and 1 ≤ r2 <
q
2 . In this case,(

fi⊗̃r2fj
)
⊗̃r3fk =

〈
fi⊗̃r2fj , fk

〉
H⊗q

defines a function of q − 2r2 variables. Considering the symmetry of fi for 1 ≤ i ≤ d and the
symmetrization of contractions, such a function can be expressed as a finite linear combination of
functions of the form

F (t) =

∫
fi (t1,x1,w) fj (t2,x2,w) fk (x1,x2) dµ

q+r2 (w,x1,x2) ,

where w has length r2, t1 ∪ t2 = σ(t) for some permutation σ of {1, . . . , q − 2r2} and t =
(t1, . . . , tq−2r2). Without loss of generality, we assume that t1 has positive length (recall that
1 ≤ r2 < q/2 and thus q − 2r2 > 0 ). We denote by sj the length of the vector xj . Then by r2 ≥ 1
and s1+ s2 = q, we have 1 ≤ s1 < q− r2 and r2 < s2 ≤ q− 1. Exchanging the order of integrations,
we get

F (t) =

∫
fi (t1,x1,w) (fj ⊗s2 fk) (t2,x1,w) dµr2+s1 (w,x1) .

Then

∥F∥2
H⊗(q−2r2)

=

∫
fi (t1,x1,w) (fj ⊗s2 fk) (t2,x1,w)

fi (t1, x̃1, w̃) (fj ⊗s2 fk) (t2, x̃1, w̃) dµq+2s1 (w,x1, w̃, x̃1, t1, t2)

=

∫
fi ⊗q−r2−s1 fi (x1,w, x̃1, w̃) (fj ⊗s2 fk) (t2,x1,w)

(fj ⊗s2 fk) (t2, x̃1, w̃) dµ3s1+r2 (w,x1, w̃, x̃1, t2) .

Applying generalized Cauchy-Schwarz inequality (Biermé et al. (2012, Lemma 4.1)), we obtain

∥F∥2
H⊗(q−2r2)

≤ ∥fi ⊗q−r2−s1 fi∥H⊗2(r2+s1) ∥fj ⊗s2 fk∥
2
H⊗2(q−s2)

.

Using Cauchy-Schwarz inequality (or see Biermé et al. (2012, Equation (4.4))) and the fact that
0 < q − r2 − s1 ≤ q − 1, 1 ≤ r2 < s2 ≤ q − 1, we deduce

∥F∥H⊗(q−2r2) ≤ max
1≤r≤q−1

√
∥fi ⊗r fi∥H⊗(2q−2r)

√
∥fj ⊗r fj∥H⊗(2q−2r)

√
∥fk ⊗r fk∥H⊗(2q−2r)

≤ max
1≤i≤d

max
1≤r≤q−1

∥fi ⊗r fi∥
3
2

H⊗(2q−2r) .

This completes the proof of (3.4). □

Inspired by Biermé et al. (2012); Nourdin and Peccati (2015), we construct several specific test
functions for use in proving the lower bound in Theorem 3.1. Define

gt(x) = a exp

{
1

2
tTCt

}
sin (⟨t, x⟩Rd) , ht(x) = a exp

{
1

2
tTCt

}
cos (⟨t, x⟩Rd) ,

where a is defined as

a = exp

{
−1

2
max

t∈{−1,0,1}d
tTCt

}
,

to ensure that gt and ht are bounded by one.

Lemma 3.11. Fix 1 ≤ i, j, k ≤ d satisfying i ̸= j, k and j ̸= k, define hi(x), gi(x), gij(x), gijk(x) :
Rd → R as

hi(x) = hei(x) = ae
1
2
Cii cosxi,

gi(x) = gei(x) = ae
1
2
Cii sinxi,
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gij(x) =
1

4

(
gei−ej (x)− gei+ej (x) + 2gej (x)

)
,

gijk(x) =
1

12

(
gei+ej−ek(x)− gei+ej+ek(x)− 4gik(x)− 4gjk(x) + 2gek(x)

)
.

Then hi(x), gi(x), gij(x), gijk(x) are bounded by one and infinitely differentiable with all derivatives
bounded by one under the norm ∥ · ∥∞, and satisfy

E [∂mUhi,C(Z)] =

{
a
|m|(−1)

|m|
2 , m = |m|ei, |m| = 0, 2, 4, . . . ,

0, otherwise,
(3.10)

E [∂mUgi,C(Z)] =

{
a
|m|(−1)

|m|−1
2 , m = |m|ei, |m| = 1, 3, 5, . . . ,

0, otherwise,
(3.11)

E
[
∂mUgij ,C(Z)

]
=

{
a

2|m|(−1)
|m|+1

2 , m = miei +mjej ,mi > 0,mj and |m| are odd,
0, otherwise,

(3.12)

and

E
[
∂mUgijk,C(Z)

]
=

{
a

6|m|(−1)
|m|+1

2 , m = miei +mjej +mkek,mi,mj > 0,mk and |m| are odd,
0, otherwise,

(3.13)
where Z ∼ Nd(0, C) and Ug,C(x) is defined as (2.17) for a general smooth function g.

Proof : Firstly, it is obvious that hi(x), gi(x), gij(x), gijk(x) are bounded by one and infinitely con-
tinuously differentiable with all derivatives bounded by one under the norm ∥ · ∥∞.

For Z = (Z1, . . . , Zd) ∼ Nd(0, C) and for any t ∈ Rd, we have

e−
1
2
tTCt = E

[
ei⟨t,Z⟩Rd

]
= E [cos (⟨t, Z⟩Rd)] + iE [sin (⟨t, Z⟩Rd)] ,

which implies, for any t ∈ Rd,

E [sin (⟨t, Z⟩Rd)] = 0, E [cos (⟨t, Z⟩Rd)] = e−
1
2
tTCt.

Fix 1 ≤ i ≤ d, let hi(x) : Rd → R, hi(x) = hei(x) = ae
1
2
Cii cosxi,

∂mhi(x) =


ae

1
2
Cii(−1)

|m|+1
2 sinxi, m = |m|ei, |m| = 1, 3, 5, . . . ,

ae
1
2
Cii(−1)

|m|
2 cosxi, m = |m|ei, |m| = 0, 2, 4, . . . ,

0, otherwise.

Then, by (2.19),

E [∂mUhi,C(Z)] =
1

|m|
E [∂mhi(Z)] =

{
a
|m|(−1)

|m|
2 , m = |m|ei, |m| = 0, 2, 4, . . . ,

0, otherwise.

By a similar argument, we get (3.11) and for fixed 1 ≤ i, j ≤ d satisfying i ̸= j,

E
[
∂mUgei−ej ,C

(Z)
]
=

1

|m|
E
[
∂mgei−ej (Z)

]
=

{
a
|m|(−1)

|m|−1
2

+mj , m = miei +mjej , |m| is odd,
0, otherwise,

E
[
∂mUgei+ej ,C

(Z)
]
=

1

|m|
E
[
∂mgei+ej (Z)

]
=

{
a
|m|(−1)

|m|−1
2 , m = miei +mjej , |m| is odd,

0, otherwise.

Then for gij(x) = 1
4

(
gei−ej (x)− gei+ej (x) + 2gej (x)

)
, by (2.18),

E
[
∂mUgij ,C(Z)

]
=

1

4

(
E
[
∂mUgei−ej ,C

(Z)
]
− E

[
∂mUgei+ej ,C

(Z)
]
+ 2E

[
∂mUgj ,C(Z)

])
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=

{
a

2|m|(−1)
|m|+1

2 , m = miei +mjej ,mi > 0,mj is odd, |m| is odd,
0, otherwise.

Similarly, we can obtain (3.13). □

We now turn to the proof of Theorem 3.1.

Proof : Upper bound. Taking g ∈ CM (Rd) such that Mj(g) ≤ 1 for all 0 ≤ j ≤ M , by Stein’s
equation (2.16) and Proposition 3.7,

E [g(Fn)]− E [g(Z)] = E
[
⟨Fn,∇Ug,C(Fn)⟩Rd

]
− E

[
⟨C,HessUg,C(Fn)⟩HS

]
=

M−1∑
s=3

∑
m=ej1

+···+ejs ,

1≤jk≤d,1≤k≤s

κm(Fn)

(s− 1)!
E [∂mUg,C(Fn)] +

∑
m=ej1

+···+ejM
,

1≤jk≤d,1≤k≤M

E
[
Γej1 ,...,ejM

(Fn)∂
mUg,C(Fn)

]
. (3.14)

Take M = 4,
E [g(Fn)]− E [g(Z)]

=
1

2

∑
m=ei+ej+ek,

1≤i,j,k≤d

κm(Fn)E [∂mUg,C(Fn)] +
∑

m=ei+ej+ek+el,

1≤i,j,k,l≤d

E
[
Γei,ej ,ek,el(Fn)∂

mUg,C(Fn)
]
. (3.15)

Combining (2.15), (2.20) and Proposition 3.9,

|E [g(Fn)]− E [g(Z)]|

≤ 1

2

∥∥∥U (3)
g,C

∥∥∥
∞

∑
m=ei+ej+ek

|κm(Fn)|+
∥∥∥U (4)

g,C

∥∥∥
∞

∑
m=ei+ej+ek+el

E
[∣∣Γei,ej ,ek,el(Fn)

∣∣]
≤ d3

6

∑
|m|=3

|κm(Fn)|+
d4

4
c2(q)

d∑
i=1

κ4ei(Fn)

≤ max

{
d3

3
,
d4c2(q)

2

}
max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)

 .

That is,

ρ4(Fn, Z) ≤ max

{
d3

3
,
d4c2(q)

2

}
M(Fn).

Moreover, if C is positive definite, then by (2.21) and Proposition 3.9, for g ∈ C4(Rd),

|E [g(Fn)]− E [g(Z)]|

≤ 1

6
M3(g)

∑
m=ei+ej+ek

|κm(Fn)|+
2d

3

√
2

π

∥∥∥C−1/2
∥∥∥
op
M3(g)

∑
m=ei+ej+ek+el

E
[∣∣Γei,ej ,ek,el(Fn)

∣∣]

≤ max

{
d3

3
,
4d4

3

√
2

π

∥∥∥C−1/2
∥∥∥
op

}
M3(g)max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)

 .

Then for g ∈ C3(Rd) satisfying Mj(g) ≤ 1 for all 0 ≤ j ≤ 3, let gϵ(x) = E [g(x+
√
ϵY )], where

Y ∼ Nd(0, Id). Then,
(1) for each ϵ > 0, Mj(gϵ) for all 0 ≤ j ≤ 4 are bounded. Specifically, Mj (gϵ) ≤ Mj (g) ≤ 1

for 0 ≤ j ≤ 3. And by using a similar argument in the proof of Lemma 2.5, M4 (gϵ) ≤
d√
ϵ

√
2
πM3 (g),
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(2) as ϵ→ 0, ∥gϵ − g∥∞ → 0.
This similar smoothing argument can be found in the proof of Nourdin et al. (2010b, Theorem 3.5).
Thus we have

|E [gϵ(Fn)]− E [gϵ(Z)]|

≤ max

{
d3

3
,
4d4

3

√
2

π

∥∥∥C−1/2
∥∥∥
op

}
M3(gϵ)max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)


≤ max

{
d3

3
,
4d4

3

√
2

π

∥∥∥C−1/2
∥∥∥
op

}
max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)

 .

By the dominated convergence theorem, let ϵ→ 0, we get that

|E [g(Fn)]− E [g(Z)]| ≤ max

{
d3

3
,
4d4

3

√
2

π

∥∥∥C−1/2
∥∥∥
op

}
max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)

 .

That is,

ρ3(Fn, Z) ≤ max

{
d3

3
,
4d4

3

√
2

π

∥∥∥C−1/2
∥∥∥
op

}
max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)

 .

Lower bound. Take M = 5 in (3.14), we have

E [g(Fn)]− E [g(Z)] =
1

2

∑
m=ei+ej+ek,

1≤i,j,k≤d

κm(Fn)E [∂mUg,C(Fn)]

+
1

6

∑
m=ei+ej+ek+el,

1≤i,j,k,l≤d

κm(Fn)E [∂mUg,C(Fn)]
∑

m=ej1
+···+ej5

,

1≤jk≤d,1≤k≤5

E
[
Γej1 ,...,ej5

(Fn)∂
mUg,C(Fn)

]
.

Replace the test function g with hi, then by Proposition 3.9 and Lemma 3.11, we get that∣∣∣E [hi(Fn)]− E [hi(Z)]−
a

24
κ4ei(Fn)

∣∣∣
=

∣∣∣∣∣∣E [hi(Fn)]− E [hi(Z)]−
∑

m=ei+ej+ek+el

κm(Fn)

6
E [∂mUhi,C(Z)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

m=ei+ej+ek,

1≤i,j,k≤d

κm(Fn)

2
E [∂mUhi,C(Fn)] +

∑
m=ei+ej+ek+el,

1≤i,j,k,l≤d

κm(Fn)

6
(E [∂mUhi,C(Fn)]− E [∂mUhi,C(Z)])

+
∑

m=ej1
+···+ej5

,

1≤jk≤d,1≤k≤5

E
[
Γej1 ,...,ej5

(Fn)∂
mUhi,C(Fn)

]∣∣∣∣∣∣∣∣
≤1

2

∑
m=ei+ej+ek

|κm(Fn)| |E [∂mUhi,C(Fn)]|++
∑

m=ej1
+···+ej5

,

1≤jk≤d,1≤k≤5

∥∂mUhi,C∥∞ E
[∣∣∣Γej1 ,...,ej5

(Fn)
∣∣∣]

+
1

6

∑
m=ei+ej+ek+el

|κm(Fn)| |E [∂mUhi,C(Fn)]− E [∂mUhi,C(Z)]|
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≤max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)


1
2

∑
m=ei+ej+ek

|E [∂mUhi,C(Fn)]|

+c2(q)
∑

m=ei+ej+ek+el

|E [∂mUhi,C(Fn)]− E [∂mUhi,C(Z)]|+
c3(q)d

5

5

(
d∑

i=1

κ4ei(Fn)

) 1
4

 .
As n → ∞, we have E [∂mUhi,C(Fn)] → E [∂mUhi,C(Z)] = 0 for |m| = 3, E [∂mUhi,C(Fn)] −
E [∂mUhi,C(Z)] → 0, and

∑d
i=1 κ4ei(Fn) → 0. Therefore, set

d̄ = 2d+ d(d− 1) +
d(d− 1)(d− 2)

6
, c1 =

a

36
(
d̄+ 1

) ,
we have that for n large enough,∣∣∣E [hi(Fn)]− E [hi(Z)]−

a

24
κ4ei(Fn)

∣∣∣ ≤ c1
d̄
M(Fn),

which implies that

|E [hi(Fn)]− E [hi(Z)]| ≥
a

24
κ4ei(Fn)−

c1
d̄
M(Fn), 1 ≤ i ≤ d.

Similarly, for 1 ≤ i, j, k ≤ d,

|E [gi(Fn)]− E [gi(Z)]| ≥
a

6
|κ3ei(Fn)| −

c1
d̄
M(Fn),

|E [gij(Fn)]− E [gij(Z)]| ≥
a

12

∣∣κ2ei+ej (Fn)
∣∣− c1

d̄
M(Fn), i ̸= j,

|E [gijk(Fn)]− E [gijk(Z)]| ≥
a

36

∣∣κei+ej+ek(Fn)
∣∣− c1

d̄
M(Fn), i ̸= j, k and j ̸= k.

Then for k = 3, 4,

d̄ρk(Fn, Z) ≥
d∑

i=1

|E [hi(Fn)]− E [hi(Z)]|+
d∑

i=1

|E [gi(Fn)]− E [gi(Z)]|

+
d∑

i=1

∑
j ̸=i

|E [gij(Fn)]− E [gij(Z)]|+
d∑

i=1

d∑
j=i+1

d∑
k=j+1

|E [gijk(Fn)]− E [gijk(Z)]|

≥
(
d̄+ 1

)
c1

∑
|m|=3

|κm(Fn)|+
d∑

i=1

κ4ei(Fn)

− c1M(Fn)

≥ d̄c1M(Fn).

That is, for k = 3, 4,
ρk(Fn, Z) ≥ c1M(Fn).

□

4. Applications

4.1. Application for complex Wiener-Itô integral. We identify the distribution of a complex random
variable F = F1 + iF2 as the distribution of a two-dimensional random vector (F1, F2). Then the
distance between the distributions of two complex random variables F = F1+iF2 and G = G1+iG2

is actually the distance between the distributions of two two-dimensional random vectors (F1, F2)
and (G1, G2). Namely, we take d = 2 in (3.2), and for k = 3, 4, we define

ρk(F,G) = sup {|E [g(F1, F2)]− E [g(G1, G2)]|} ,
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where g runs over the class of all functions belonging to Ck(R2) such that Mj(g) ≤ 1 for all
0 ≤ j ≤ k. Define the covariance matrix of the complex random variable F = F1 + iF2 as the

covariance matrix of the two-dimensional random vector (F1, F2). We write AF to denote A
(
F1

F2

)
for any 2× 2 matrix A. For a sequence of complex random variables {Fn = Fn,1 + iFn,2}n≥1, let

M
′
(Fn) = max

{∣∣E [F 3
n

]∣∣ , ∣∣E [F 2
nFn

]∣∣ ,E [|Fn|4
]
− 2

(
E
[
|Fn|2

])2
−
∣∣E [F 2

n

]∣∣2} .
Theorem 4.1. Consider a sequence of complex Wiener-Itô integrals {Fn = Ip,q(fn)}n≥1, where
fn ∈ H⊙p

C ⊗ H⊙q
C and p + q ≥ 2. Suppose that Fn converges in distribution to a complex normal

variable Z with the same covariance matrix as Fn. Then there exist two finite constants 0 < c1 < c2
not depending on n such that for n large enough,

c1M
′
(Fn) ≤ ρ4 (Fn, Z) ≤ c2M

′
(Fn).

Moreover, if the covariance matrix of Fn is positive definite, then

c1M
′
(Fn) ≤ ρ3 (Fn, Z) ≤ c2M

′
(Fn).

Proof : Assume Fn = Fn,1+iFn,2. According to Chen and Liu (2017, Theorem 3.3), {(Fn,1, Fn,2)}n≥1

is actually a sequence of two-dimensional random vectors whose components live in the (p + q)-th
Wiener chaos of the real isonormal Gaussian process over H⊕ H. Combining Theorem 3.1 and the
fact that

M ((Fn,1, Fn,2)) ≍M
′
(Fn),

which is derived from the following Lemma 4.3 and Lemma 4.4, we obtain the conclusion. □

Using the similar argument as in the proof of Theorem 4.1, we can extend Theorem 4.1 to the case
where the covariance matrix of Fn, denoted by Cn, converges to C in the sense of ∥Cn −C∥HS → 0
as n→ ∞.

Proposition 4.2. Let {Fn = Ip,q(fn)}n≥1 be a sequence of complex Wiener-Itô integrals, where
fn ∈ H⊙p

C ⊗ H⊙q
C and p+ q ≥ 2. Suppose that ∥Cn − C∥HS → 0, as n→ ∞.

(1) If C is invertible, we set F ′
n = C

1
2C

− 1
2

n Fn and assume that F ′
n converges in distribution to a

complex normal variable Z with covariance matrix C. Then for n large enough,

ρ3(F
′
n, Z) ≍M

′
(F

′
n).

(2) If C is not invertible, suppose that {Fn}n≥1 is asymptotically close to normal. That is,
ρ4(Fn, Zn) → 0, where Zn is a complex normal variable with covariance matrix Cn. Then
for n large enough,

ρ4(Fn, Zn) ≍M
′
(Fn).

In the following Lemma 4.3 and Lemma 4.4, we prove that

M ((Fn,1, Fn,2)) ≍M
′
(Fn)

for Fn = Ip,q(fn) = Fn,1 + iFn,2 with fn ∈ H⊙p
C ⊗ H⊙q

C and p+ q ≥ 2.

Lemma 4.3. For a complex Wiener-Itô integral F = Ip,q(f) = F1 + iF2 with f ∈ H⊙p
C ⊗ H⊙q

C and
p+ q ≥ 2, denote F̃ the two-dimensional random vector (F1, F2). Then

2∑
i=1

κ4ei(F̃ ) ≤ E
[
|F |4

]
− 2

(
E
[
|F |2

])2
−
∣∣E [F 2

]∣∣2 ≤ c

2∑
i=1

κ4ei(F̃ ), (4.1)

where
∑2

i=1 κ4ei(F̃ ) =
∑2

i=1 E
[
F 4
i

]
− 3

(
E
[
F 2
i

])2 and c > 1 is a constant depending only on p+ q.
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Proof : Calculating directly, we get that

E
[
|F |4

]
−2
(
E
[
|F |2

])2
−
∣∣E [F 2

]∣∣2 = 2∑
i=1

κ4ei(F̃ )+2
(
E
[
F 2
1F

2
2

]
− E

[
F 2
1

]
E
[
F 2
2

]
− 2 (E [F1F2])

2
)
.

To prove (4.1), it suffices to show that

0 ≤ 2
(
E
[
F 2
1F

2
2

]
− E

[
F 2
1

]
E
[
F 2
2

]
− 2 (E [F1F2])

2
)
≤ c̃

2∑
i=1

κ4ei(F̃ ), (4.2)

where c̃ is a positive constant depending only on p+ q. The first inequality in (4.2) can be obtained
by Chen and Liu (2017, Theorem 3.3, Lemma 4.8). On the other hand, by Theorem 2.4 and
Equation (3.5),

E
[
F 2
1F

2
2

]
− E

[
F 2
1

]
E
[
F 2
2

]
− 2 (E [F1F2])

2 = κ2e1+2e2(F̃ ) = 6E
[
Γe1,e1,e2,e2(F̃ )

]
≤ 6E

[∣∣∣Γe1,e1,e2,e2(F̃ )
∣∣∣] ≤ 6c2(p+ q)

2∑
i=1

κ4ei(F̃ ).

Then we complete the proof. □

Lemma 4.4. For a complex random variable F = F1 + iF2, it holds that

1

4

(∣∣E [F 3
]∣∣+ ∣∣E [F 2F

]∣∣) ≤ ∣∣E [F 3
1

]∣∣+ ∣∣E [F 3
2

]∣∣+ ∣∣E [F 2
1F2

]∣∣+ ∣∣E [F1F
2
2

]∣∣
≤

√
2
(∣∣E [F 3

]∣∣+ ∣∣E [F 2F
]∣∣) .

Proof : Calculating directly, we have that

E
[
F 3
]
= τ + iν, E

[
F 2F

]
= τ̃ + iν̃,

where

τ = E
[
F 3
1

]
− 3E

[
F1F

2
2

]
, ν = −E

[
F 3
2

]
+ 3E

[
F 2
1F2

]
,

τ̃ = E
[
F 3
1

]
+ E

[
F1F

2
2

]
, ν̃ = E

[
F 3
2

]
+ E

[
F 2
1F2

]
.

Then, by the triangle inequality |x± y| ≤ |x|+ |y| for x, y ∈ R,∣∣E [F 3
]∣∣+ ∣∣E [F 2F

]∣∣ ≤ |τ |+ |ν|+ |τ̃ |+ |ν̃|
≤ 4

(∣∣E [F 3
1

]∣∣+ ∣∣E [F 3
2

]∣∣+ ∣∣E [F 2
1F2

]∣∣+ ∣∣E [F1F
2
2

]∣∣) .
On the other hand, note that∣∣E [F 3

1

]∣∣ = 1

4
|τ + 3τ̃ | ,

∣∣E [F 3
2

]∣∣ = 1

4
|ν − 3ν̃| ,∣∣E [F 2

1F2

]∣∣ = 1

4
|ν + ν̃| ,

∣∣E [F1F
2
2

]∣∣ = 1

4
|τ − τ̃ | .

Then ∣∣E [F 3
1

]∣∣+ ∣∣E [F 3
2

]∣∣+ ∣∣E [F 2
1F2

]∣∣+ ∣∣E [F1F
2
2

]∣∣ ≤ 1

2
(|τ |+ |ν|) + (|τ̃ |+ |ν̃|)

≤
√
2
(∣∣E [F 3

]∣∣+ ∣∣E [F 2F
]∣∣) ,

where the first inequality is from the triangle inequality |x±y| ≤ |x|+|y| for x, y ∈ R, and the second
inequality is by the fact that |x|+ |y| ≤

√
2
√
x2 + y2 =

√
2|z| for a complex number z = x+iy. □
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As an example, we consider a complex-valued Ornstein-Uhlenbeck process defined by the sto-
chastic differential equation

dZt = −γZtdt+ dζt, t ≥ 0, (4.3)
where Z0 = 0, γ ∈ C is unknown, and ζt is a complex Brownian motion. That is ζt = 1√

2

(
B1

t + iB2
t

)
,

where (B1
t , B

2
t )t≥0 is a two-dimensional standard Brownian motion. Suppose that only one trajec-

tory (Zt)0≤t≤T for T > 0 can be observed. Motivated by the work of Hu and Nualart (2010), Chen,
Hu and Wang in Chen et al. (2017) considered a least squares estimator of γ defined as follows by

minimizing
∫ T
0

∣∣∣Żt + γZt

∣∣∣2 dt,
γ̂T = −

∫ T
0 ZtdZt∫ T
0 |Zt|2 dt

= γ −
∫ T
0 Ztdζt∫ T

0 |Zt|2 dt
.

They proved that
√
T (γ̂T − γ) is asymptotically normal. Namely, as T → ∞,

√
T [γ̂T − γ] = −

1√
T

∫ T
0 Ztdζt

1
T

∫ T
0 |Zt|2 dt

d→ N2 (0, λId2) ,

where λ > 0 is the real part of γ and Id2 denotes the 2× 2 identity matrix. They showed that the
denominator satisfies

1

T

∫ T

0
|Zt|2 dt

a.s.→ 1

2λ
,

where the notation a.s.→ denotes convergence almost surely, and for the numerator FT := 1√
T

∫ T
0 Ztdζt,

(FT,1, FT,2)
d→ N2

(
0,

1

4λ
Id2

)
,

where FT,1 and FT,1 are the real and imaginary parts of FT respectively. Then the asymptotic
normality of the estimator γ̂T is obtained. One should note that, in Chen et al. (2017), the noise
considered by Chen, Hu and Wang is a complex fractional Brownian motion with a Hurst parameter
belonging to [1/2, 3/4). This case involves more complicated calculations and more precise estima-
tions. Here, to demonstrate the availability of our techniques, we focus on the case in which the
noise is a complex standard Brownian motion.

Next we will derive that T−1/2 is the optimal rate of convergence for the numerator FT . We
have no idea how to handle the optimal rate of convergence for the statistic

√
T [γ̂T − γ], although

we conjecture that it is still T−1/2. Note that Kim and Park (2017a,b) obtained that T−1/2 is the
optimal Berry-Esseen bound for normal approximation of the least squares estimator of the drift
coefficient of the real-valued one-dimensional Ornstein-Uhlenbeck process driven by a standard
Brownian motion. As they stated in Kim and Park (2017b), in many situations encountered in
statistics, one needs to consider the rate of convergence for the sequence {Fn/Gn}n≥1 with Gn > 0

almost surely (such as
√
T [γ̂T − γ]). Therefore, we shall deal with the optimal rate of convergence

for the statistic
√
T [γ̂T − γ] in a separate project.

Define the Hilbert space H = L2 ([0,+∞)) with the inner product ⟨f, g⟩H =
∫∞
0 f(t)g(t)dt. We

complexify H in the usual way and denote it by HC. For any f, g ∈ HC, ⟨f, g⟩HC
=
∫∞
0 f(t)g(t)dt.

Given f ∈ H⊙a
C ⊗H⊙b

C , g ∈ H⊙c
C ⊗H⊙d

C , for i = 0, . . . , a ∧ d, j = 0, . . . , b ∧ c, the (i, j)-th contraction
of f and g is an element of H⊗(a+c−i−j)

C ⊗ H
⊗(b+d−i−j)
C defined as

f ⊗i,j g (t1, . . . , ta+c−i−j ; s1, . . . , sb+d−i−j)

=

∫
[0,+∞)2l

f (t1, . . . , ta−i, u1, . . . , ui; s1 . . . , sb−j , v1, . . . , vj)
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g (ta−i+1, . . . , tp−l, v1, . . . , vj ; sb−j+1, . . . , sq−l, u1, . . . , ui) dudv,

where l = i+ j, u = (u1, . . . , ui) and v = (v1, . . . , vj).
According to (4.3), let

ψT (t; s) =
1√
T
e−γ(t−s)1{0≤s≤t≤T}, hT (t; s) = ψT (s; t) =

1√
T
e−γ(s−t)1{0≤t≤s≤T},

where 1E is the indicator function of a set E, we know that

FT =
1√
T

∫ T

0
Ztdζt =

1√
T

∫ T

0

∫ T

0
e−γ(t−s)1{0≤s≤t≤T}dζtdζs = I1,1(ψT (t; s)), (4.4)

FT = I1,1(hT (t; s)).
By the isometry property of complex Wiener-Itô integral (2.5), we obtain that

E
[
F 2
T

]
= ⟨ψT , hT ⟩H⊗2

C
=

∫ ∞

0

∫ ∞

0
ψT (t; s)hT (t; s)dtds = 0,

and as T → ∞,

E
[
|FT |2

]
= ⟨ψT , ψT ⟩H⊗2

C
=

1

T

∫ T

0

∫ t

0
e−2λ(t−s)dsdt =

1

2λ
+

1

4λ2T
e−2λT − 1

4λ2T
→ 1

2λ
.

Since lim
T→∞

(
1 + 1

2λT e
−2λT − 1

2λT

)
= 1, for sufficiently large T , 1 + 1

2λT e
−2λT − 1

2λT > 0. Consider

F
′
T =

(
1 +

1

2λT
e−2λT − 1

2λT

)− 1
2

FT .

Then the covariance matrix of F ′
T is equal to 1

4λ Id2. Now we consider the optimal rate of convergence
of F ′

T to a complex normal variable Z with the covariance matrix 1
4λ Id2 under the distance ρ3(F

′
T , Z)

as T → ∞.

Theorem 4.5. F ′
T converges in distribution to a complex normal variable Z with the covariance

matrix 1
4λ Id2, and there exist two finite constants 0 < c1 < c2 not depending on T such that for T

large enough,

c1
1√
T

≤ ρ3

(
F

′
T , Z

)
≤ c2

1√
T
.

Proof : By Theorem 4.1, it suffices to show that

M
′

((
1 +

1

2λT
e−2λT − 1

2λT

)− 1
2

FT

)
≍ 1√

T
.

Equivalently, we need to prove that

M
′
(FT ) = max

{∣∣E [F 3
T

]∣∣ , ∣∣E [F 2
TFT

]∣∣ ,E [|FT |4
]
− 2

(
E
[
|FT |2

])2
−
∣∣E [F 2

T

]∣∣2} ≍ 1√
T
. (4.5)

Combining the following Lemma 4.6 and Lemma 4.7, we get (4.5). Then the proof is finished. □

Lemma 4.6. FT is defined as (4.4), then∣∣E [F 3
T

]∣∣ = 0,
∣∣E [F 2

TFT

]∣∣ ≍ 1√
T
.

Proof : According to the product formula of complex Wiener-Itô integral (2.6), we obtain that

F 3
T =

1∑
i,j=0

1∧(2−i−j)∑
m,n=0

(
2− i− j

m

)(
2− i− j

n

)
I3−i−j−m−n,3−i−j−m−n ((ψT ⊗i,j ψT )⊗m,n ψT ) ,
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F 2
TFT =

1∑
i,j=0

1∧(2−i−j)∑
m,n=0

(
2− i− j

m

)(
2− i− j

n

)
I3−i−j−m−n,3−i−j−m−n ((ψT ⊗i,j ψT )⊗m,n hT ) .

Taking the expectation, we have that

E
[
F 3
T

]
= (ψT ⊗1,0 ψT )⊗1,1 ψT + (ψT ⊗0,1 ψT )⊗1,1 ψT = 2 (ψT ⊗1,0 ψT )⊗1,1 ψT

= 2

∫ ∞

0

∫ ∞

0

1

T 3/2
1{0≤s≤t≤T} (t− s) e−γ(t−s)e−γ(s−t)1{0≤t≤s≤T}dsdt = 0,

and

E
[
F 2
TFT

]
= (ψT ⊗1,0 ψT )⊗1,1 hT + (ψT ⊗0,1 ψT )⊗1,1 hT = 2 (ψT ⊗1,0 ψT )⊗1,1 hT

= 2

∫ ∞

0

∫ ∞

0

1

T 3/2
1{0≤s≤t≤T} (t− s) e−γ(t−s)e−γ(t−s)1{0≤s≤t≤T}dsdt

=
1

2λ2
√
T
e−2λT

(
1 +

1

λT

)
− 1

2λ3T 3/2
+

1

4λ2
√
T

≍ 1√
T
.

Then we get the conclusion. □

Lemma 4.7. FT is defined as (4.4), then

E
[
|FT |4

]
− 2

(
E
[
|FT |2

])2
−
∣∣E [F 2

T

]∣∣2 ≍ 1

T
.

Proof : By Chen et al. (2017, Lemma 2.3), we have that

E
[
|FT |4

]
− 2

(
E
[
|FT |2

])2
−
∣∣E [F 2

T

]∣∣2
= ∥ψT ⊗0,1 ψT ∥2H⊗2

C
+ ∥ψT ⊗1,0 ψT ∥2H⊗2

C
+ ∥ψT ⊗0,1 hT + ψT ⊗1,0 hT ∥2H⊗2

C
.

Calculating directly, we get that

ψT ⊗0,1 ψT (t; s) = ψT ⊗1,0 ψT (t; s) =

∫ ∞

0
ψT (t;u)ψT (u; s)du =

1

T
1{0≤s≤t≤T} (t− s) e−γ(t−s).

Then

∥ψT ⊗1,0 ψT ∥2H⊗2
C

= ∥ψT ⊗0,1 ψT ∥2H⊗2
C

=
1

T 2

∫ ∞

0

∫ ∞

0
1{0≤s≤t≤T} (t− s)2 e−γ(t−s)e−γ(t−s)dtds

=
1

2λ2
e−2λT

(
1

2
+

1

λT
+

3

4λ2T 2

)
− 3

8λ4T 2
+

1

4λ3T
≍ 1

T
.

Similarly, we obtain that

ψT ⊗0,1 hT (t; s) =
1

2λT
1{0≤s,t≤T}e

−γt−γs
(
e2λ(t∧s) − 1

)
,

ψT ⊗1,0 hT (t; s) =
1

2λT
1{0≤s,t≤T}e

γs+γt
(
e−2λ(t∨s) − e−2λT

)
,

where a ∨ b denotes the maximum of a, b ∈ R, and

∥ψT ⊗0,1 hT + ψT ⊗1,0 hT ∥2H⊗2
C

=
1

4λ2
e−2λT

(
2 +

8

λT
+

5

λ2T 2
+

1

2λ2T 2
e−2λT

)
− 11

8λ4T 2
+

1

λ3T
≍ 1

T
.

Then the proof is finished. □
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4.2. Application for Wiener-Itô integrals with kernels of step functions. In Campese (2013, Sec-
tion 5.1), Campese proposed a counterexample to explain that his techniques sometimes are not
applicable. In this section, for this example, we apply our conclusions to get the optimal rate of
convergence with respect to the distance ρ3(·, ·). Specifically, let H = L2([0, 1), µ), where µ is the
Lebesgue measure on [0, 1), and partition [0, 1) into N equidistant intervals α1, α2, . . . , αN , where
αk =

[
k−1
N , k

N

)
for k = 1, . . . , N . Define f ∈ H⊙2 as

f(x, y) =
N∑

i,j=1

aij1αi(x)1αj (y), (4.6)

where aij ∈ R, aij = aji for 1 ≤ i, j ≤ d. It is obvious that f is uniquely determined by the
symmetric matrix A = (aij)1≤i,j≤N . If g is another kernel of the type (4.6), given by a matrix
B = (bij)1≤i,j≤N , we have

(f ⊗1 g) (x, y) =

∫ 1

0

 N∑
i,j=1

aij1αi(x)1αj (t)

 N∑
k,l=1

bkl1αk
(y)1αl

(t)

 dµ(t)

=
N∑

i,j,k=1

aijbkjµ (αj)1αi(x)1αk
(y) =

1

N

N∑
i,j,k=1

aijbjk1αi(x)1αk
(y),

and (
f⊗̃1g

)
(x, y) =

1

2N

N∑
i,j,k=1

(aijbjk + akjbji)1αi(x)1αk
(y).

Therefore, f⊗1g can be identified with the matrix C = 1
NAB and f⊗̃1g with 1

2

(
C + CT

)
. Similarly,

one can show that
⟨f, g⟩H⊗2 =

1

N2
⟨A,B⟩HS =

1

N2
tr
(
ABT

)
. (4.7)

For simplicity, we fix d = 2. We define two-dimensional random vectors Fn = (I2 (fn,1) , I2 (fn,2))
for n ≥ 1, where the kernels fn,1 and fn,2 are given by (3n)× (3n) matrices

An,1 =
√
n

0n 0n 1̃n
0n 0n 0n
1̃n 0n 0n

 and An,2 =
√
n

0n 0n 0n
0n 1̃n 0n
0n 0n 0n

 ,

respectively. Here, we denote by 0n the n×n matrix with all entries equal to zero, and 1̃n the n×n
matrix with entries on the anti-diagonal equal to one and other entries equal to zero.

According to (2.13) and (4.7), for 1 ≤ i, j, k ≤ 2, we have that

κei+ej (Fn) = 2 ⟨fn,i, fn,j⟩H⊗2 =
2

9n2
Tr (An,iAn,j) =


4
9 , i = j = 1,
2
9 , i = j = 2,

0, i ̸= j,

κei+ej+ek(Fn) = 22 · 2!
〈
fn,i⊗̃1fn,j , fn,k

〉
H⊗2 =

8

9n2
Tr

(
1

6n
(An,iAn,j +An,jAn,i)An,k

)
=

8

27n3
Tr (An,iAn,jAn,k) =

{
8

27n3/2 , n is odd and i = j = k = 2,

0, otherwise.
(4.8)

By a similar argument, we know that

κ4ei(Fn) =
23 · 3!
(3n)4

Tr
(
A4

n,i

)
=

{
32
27n , i = 1,
16
27n , i = 2.
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Therefore, Fn converges in distribution to a two-dimensional normal vector Z ∼ N2

(
0, 29

(
2 0
0 1

))
as n→ ∞ by the multidimensional Fourth Moment Theorem (see Peccati and Tudor (2005, Theorem
1)), and

M(Fn) = max

∑
|m|=3

|κm(Fn)| ,
d∑

i=1

κ4ei(Fn)

 ≍ 1

n
.

Then we obtain the following theorem.

Theorem 4.8. For n ≥ 1, define Fn as above. Then Fn converges in distribution to Z ∼

N2

(
0, 29

(
2 0
0 1

))
as n → ∞, and there exist two finite constants 0 < c1 < c2 not depending

on n such that for n large enough,

c1
1

n
≤ ρ3(Fn, Z) < c2

1

n
.

Remark 4.9. We now point out that Campese’s techniques in Campese (2013) fail to provide the
optimal rate of convergence since the limit of (1.11) is equal to zero in the above example. By using
the orthogonality property (2.1) and the product formula (2.3) of multiple Wiener-Itô integrals, we
have that

∆ij(Fn) =

(
Var

(
1

2
⟨DI2(fn,i), DI2(fn,j)⟩H

)) 1
2

= 2
√
2
∥∥fn,i⊗̃1fn,j

∥∥
H⊗2

=
2
√
2

3n

[
Tr

((
1

6n
(An,iAn,j +An,jAn,i)

)2
)] 1

2

=


4

9
√
n
, i = j = 1,

2
√
2

9
√
n
, i = j = 2,

0, i ̸= j.

This implies that only when i = j = 1 or i = j = 2, (1.9) is valid. Thus ρijk = 0 for 1 ≤ i, j, k ≤ 2
and i ̸= j in (1.11). For 1 ≤ i, k ≤ 2, by the proof of Campese (2013, Theorem 3.7) and (4.8),

ρiik =
1

2
lim
n→∞

κ2ei+ek(Fn)

∆ij(Fn)
= 0.

Therefore, the limit of (1.11) is equal to zero due to ρijk = 0 for all 1 ≤ i, j, k ≤ 2 and Campese’s
techniques in Campese (2013) fail to provide the optimal rate of convergence.

4.3. Application for vector-valued Toeplitz quadratic functional. Let X = (Xt)t∈R be a centered
real-valued stationary Gaussian process with a covariance function r(t) : R → R and an integrable
and even spectral density f(λ) : R → R. This is, for every u, t ∈ R, one has

E (XuXu+t) := r(t) = f̂(t) :=

∫ +∞

−∞
eiλtf(λ)dλ.

We consider the normalized random variable

Q̃g,T =
Qg,T − E (Qg,T )√

T
,

where Qg,T is the Toeplitz quadratic functional of the process X associated with some integrable
even function g and T > 0, defined as

Qg,T =

∫ T

0

∫ T

0
ĝ(t− s)X(t)X(s)dtds.
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Given T > 0 and ψ ∈ L1(R), we denote by BT (ψ) the truncated Toeplitz operator associated with
ψ and T , defined on L2(R) as

BT (ψ)(u)(t) =

∫ T

0
u(x)ψ̂(t− x)dx, t ∈ R.

Given ψ, γ ∈ L1(R), let BT (ψ)BT (γ) be the product of the two operators BT (ψ) and BT (γ).
We refer readers to Avram (1988); Fox and Taqqu (1987); Ginovian (1994); Ginovyan and Sa-

hakyan (2005, 2007); Giraitis and Surgailis (1990); Grenander and Szegö (1958) for central limit
theorems regarding Toeplitz quadratic functionals of discrete-time and continuous-time stationary
Gaussian processes. Choosing even functions g1, . . . , gd ∈ L1(R), we consider the random vector
GT = (GT,1, . . . , GT,d) defined by setting GT,i = Q̃gi,T for 1 ≤ i ≤ d and T > 0.

Theorem 4.10 (Campese (2013) Theorem 5.3). Let m ∈ Nd
0 be a multi-index with |m| ≥ 2 and

elementary decomposition
{
l1, . . . , l|m|

}
. For 1 ≤ i ≤ |m|, let gli = gj if li = ej for some 1 ≤ j ≤ d.

Then the following is true.
(1) The cumulant κm (GT ) is given by

κm (GT ) = T−|m|/22|m|−1(|m| − 1)!Tr

BT (f)
|m|

|m|∏
i=1

BT (gli)

 .
(2) If f ∈ L1(R)∩Lq0(R) and gi ∈ L1(R)∩Lqi(R) such that 1/q0 +1/qi ≤ 1/|m| for 1 ≤ i ≤ d,

then

lim
T→∞

T |m|/2−1κm (GT ) = 2|m|−1(|m| − 1)!(2π)2|m|−1

∫ ∞

−∞
f |m|(x)

|m|∏
i=1

gli(x)dx.

(3) If f ∈ L1(R) ∩ Lq0(R) and gi ∈ L1(R) ∩ Lqi(R) such that 1/q0 + 1/qi ≤ 1/2 for 1 ≤ i ≤ d,
then

GT
d→ Z ∼ Nd(0, C), T → ∞,

where the covariance matrix C = (Cij)1≤i,j≤d is given by

Cij = 16π3
∫ ∞

0
f2(x)gi(x)gj(x)dx.

Suppose that C is invertible. We denote by CT the covariance matrix of GT . Then for T
large enough, CT is invertible. We now consider the random vector G′

T = C
1
2C

− 1
2

T GT . Note that
each component GT,i of GT can be represented as a double Wiener-Itô integral with respect to X.
Combining Theorem 3.1 and Theorem 4.10, we obtain the optimal rate of convergence of G′

T to
the normal vector Z ∼ Nd(0, C) under the distance ρ3(G

′
T , Z) as T → ∞. We point out that the

optimal rate of convergence given in Theorem 4.11 is more explicit compared to Campese (2013,
Proposition 5.3).

Theorem 4.11. If f ∈ L1(R) ∩ Lq0(R) and gi ∈ L1(R) ∩ Lqi(R) such that 1/q0 + 1/qi ≤ 1/4 for
1 ≤ i ≤ d, then G

′
T

d→ Z ∼ Nd(0, C) as T → ∞. Moreover,

(1) If
∫∞
−∞ f3(x)

∏3
i=1 gli(x)dx ̸= 0 for some multi-index m with |m| = 3 and elementary de-

composition {l1, l2, l3}, then there exist two finite constants 0 < c1 < c2 not depending on T
such that for T large enough,

c1
1√
T

≤ ρ3(G
′
T , Z) ≤ c2

1√
T
.
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(2) If
∫∞
−∞ f4(x)g4i (x)dx ̸= 0 for some 1 ≤ i ≤ d, and lim

T→∞
1√
T
Tr
[
BT (f)

|m|∏|m|
i=1BT (gli)

]
<∞

for any multi-index m with |m| = 3 and elementary decomposition {l1, l2, l3}, then there
exist two finite constants 0 < c1 < c2 not depending on T such that for T large enough,

c1
1

T
≤ ρ3(G

′
T , Z) ≤ c2

1

T
.
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Appendix

Proof of (3.5): According to Equation (2.12),

Γei,ej ,ek,el(F ) =

q−1∑
r2=1

(2q−2r2)∧q∑
r3=1

(3q−2r2−2r3)∧q∑
r4=1

cq,l (r2, r3, r4)1{r2+r3<
3q
2 }

I4q−2(r2+r3+r4)

(
fi⊗̃r2fj⊗̃r3fk⊗̃r4fl

)
. (4.9)

To prove (3.5), by (3.8), it suffices to demonstrate that for any choice of (r2, r3, r4) in the sum (4.9),
the inequality∥∥((fi⊗̃r2fj

)
⊗̃r3fk

)
⊗̃r4fl

∥∥
H⊗(4q−2r2−2r3−2r4)

≤ max
1≤i≤d

max
1≤r≤q−1

∥fi ⊗r fi∥2H⊗(2q−2r) , (4.10)

holds. Note that fi⊗̃r2fj⊗̃r3fk has already been discussed when proving (3.4), due to the assumption
that r2+ r3 < 3q

2 . Using the previous estimate and Cauchy-Schwarz inequality (or see Biermé et al.
(2012, Equation (4.3), Equation (4.4))), we conclude directly for r4 < q. It remains to consider the
case when r4 = q.

As before, taking into account the symmetry of fi for 1 ≤ i ≤ d and the symmetrization of
contractions, it is sufficient to consider the function of 2 (q − r2 − r3) variables of the type

F (t) =

∫
fi (t1,x1,a1,w) fj (t2,x2,a2,w) fk (t3,x3,a1,a2) fl (x1,x2,x3)

dµq+r2+r3 (w,a1,a2,x1,x2,x3) ,

where w has length r2, a1 ∪ a2 has length r3, t1 ∪ t2 ∪ t3 = σ(t) for some permutation σ of
{1, . . . , 2 (q − r2 − r3)} and t =

(
t1, . . . , t2(q−r2−r3)

)
. Now we consider two cases.

(1) The length of x3, denoted by s3, is not zero. Then

∥F∥2
H⊗2(q−r2−r3)

=

∫
(fi ⊗r2 fj) (t1,x1,a1, t2,x2,a2) (fi ⊗r2 fj) (t1, x̃1, ã1, t2, x̃2, ã2)

(fk ⊗s3 fl) (t3,a1,a2,x1,x2) (fk ⊗s3 fl) (t3, ã1, ã2, x̃1, x̃2)

dµ4q−2r2−2s3 (a1,a2,x1,x2, ã1, ã2, x̃1, x̃2, t1, t2, t3) .

By generalized Cauchy-Schwarz inequality (Biermé et al. (2012, Lemma 4.1)), we get

∥F∥2
H⊗2(q−r2−r3)

≤ ∥fi ⊗r2 fj∥
2
H⊗2(q−r2)

∥fk ⊗s3 fl∥
2
H⊗2(q−s3)

.

By the fact that 1 ≤ r2 ≤ q − 1, 1 ≤ s3 ≤ q − r3 ≤ q − 1 and Cauchy-Schwarz inequality,

∥F∥H⊗2(q−r2−r3) ≤ max
1≤i≤d

max
1≤r≤q−1

∥fi ⊗r fi∥2H⊗(2q−2r) .
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(2) The length of x3 is zero. Then both x1 and x2 are not empty since r2 ≥ 1. We denote by
s2 the length of x2. Note that either a1 or a2 is not empty since r3 ≥ 1. Without loss of
generality, we assume that the length of a1, denoted by τ1, is not zero. Then

∥F∥2
H⊗2(q−r2−r3)

=

∫
(fi ⊗τ1 fk) (t1,x1,w, t3,x3,a2) (fi ⊗τ1 fk) (t1, x̃1, w̃, t3, x̃3, ã2)

(fj ⊗s2 fl) (t2,a2,w,x1,x3) (fj ⊗s2 fl) (t2, ã2, w̃, x̃1, x̃3)

dµ4q−2τ1−2s2 (w, w̃,a2,x1,x3, ã2, x̃1, x̃3, t1, t2, t3) ,

By generalized Cauchy-Schwarz inequality (Biermé et al. (2012, Lemma 4.1)), we get that

∥F∥2
H⊗2(q−r2−r3)

≤ ∥fi ⊗τ1 fk∥
2
H⊗2(q−r2)

∥fj ⊗s2 fl∥
2
H⊗2(q−s3)

.

By the fact that 1 ≤ τ1 ≤ q − r2 ≤ q − 1, 1 ≤ s2 ≤ q − r2 ≤ q − 1 and Cauchy-Schwarz
inequality,

∥F∥H⊗2(q−r2−r3) ≤ max
1≤i≤d

max
1≤r≤q−1

∥fi ⊗r fi∥2H⊗(2q−2r) .

Then we finish the proof of (3.5). □

Proof of (3.6): According to Equation (2.12),

Γei,ej ,ek,el,es(F ) =

q−1∑
r2=1

(2q−2r2)∧q∑
r3=1

(3q−2r2−2r3)∧q∑
r4=1

(4q−2r2−2r3−2r4)∧q∑
r5=1

cq,l (r2, r3, r4, r5)

1{r2+r3<
3q
2 }1{r2+r3+r4<2q}I5q−2(r2+r3+r4+r5)

(
fi⊗̃r2fj⊗̃r3fk⊗̃r4fl⊗̃r5fs

)
. (4.11)

To prove (3.6), by (3.8), it suffices to demonstrate that for any choice of (r2, r3, r4, r5) in the sum
(4.11), the inequality∥∥(((fi⊗̃r2fj

)
⊗̃r3fk

)
⊗̃r4fl

)
⊗̃r5fs

∥∥
H⊗(5q−2(r2+r3+r4+r5))

≤ max
1≤i≤d

max
1≤r≤q−1

∥fi ⊗r fi∥
5
2

H⊗(2q−2r) ,

holds. Note that
((
fi⊗̃r2fj

)
⊗̃r3fk

)
⊗̃r4fl has already been considered when proving (3.5). Using

the previous estimate and Cauchy-Schwarz inequality (or see Biermé et al. (2012, Equation (4.3),
Equation (4.4))), we conclude directly for r5 < q. It remains to consider the case when r5 = q.

As before, taking into account the symmetry of fi for 1 ≤ i ≤ d and the symmetrization of
contractions, it suffices to consider the function of 3q − 2 (r2 + r3 + r4) variables of the type

F (t) =

∫
fi (t1,x1,b1,a1,w) fj (t2,x2,b2,a2,w) fk (t3,x3,b3,a1,a2)

fl (t4,x4,b1,b2,b3) fs (x1,x2,x3,x4) dµ
q+r2+r3+r4 (w,a,b,x) ,

where w has length r2, a = a1 ∪ a2 has length r3, b = b1 ∪ b2 ∪ b3 has length r4, x = x1 ∪
x2 ∪ x3 ∪ x4, t1 ∪ t2 ∪ t3 ∪ t4 = σ(t) for some permutation σ of {1, . . . , 3q − 2 (r2 + r3 + r4)} and
t =

(
t1, . . . , t3q−2(r2+r3+r4)

)
. Following the proof of Biermé et al. (2012, Equation (4.8)), we consider

the following five cases.
(1) The length of x4, denoted by s4, is not zero. Then

∥F∥2
H⊗(3q−2(r2+r3+r4))

=

∫
(fi ⊗r2 fj)⊗r3 fk (t1, t2, t3,x1,x2,x3,b) fl ⊗s4 fs (t4,x1,x2,x3,b)

(fi ⊗r2 fj)⊗r3 fk

(
t1, t2, t3, x̃1, x̃2, x̃3, b̃

)
fl ⊗s4 fs

(
t4, x̃1, x̃2, x̃3, b̃

)
dµ5q−2(r2+r3+s4)

(
t1, t2, t3, t4,x1,x2,x3, x̃1, x̃2, x̃3,b, b̃

)
.
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(2) The length of x4 is zero but the length of t4 is not zero. Then

∥F∥2
H⊗(3q−2(r2+r3+r4))

=

∫
((fi ⊗r2 fj)⊗r3 fk)⊗q fs (t1, t2, t3,b) fl ⊗q−r4 fl

(
b, b̃

)
((fi ⊗r2 fj)⊗r3 fk)⊗q fs

(
t1, t2, t3, b̃

)
dµ2q−2(r2+r3)+r4

(
t1, t2, t3,b, b̃

)
.

(3) The lengths of x4 and t4 are zero, but the length of x3, denoted by s3, is not zero. In this
case, b1 ∪ b2 is not empty and we denote by k12 the length of b1 ∪ b2. Then

∥F∥2
H⊗(3q−2(r2+r3+r4))

=

∫
(fi ⊗r2 fj)⊗k12 fl (t1, t2,x1,x2,a,b3) fk ⊗s3 fs (t3,x1,x2,a,b3)

(fi ⊗r2 fj)⊗k12 fl

(
t1, t2, x̃1, x̃2, ã, b̃3

)
fk ⊗s3 fs

(
t3, x̃1, x̃2, ã, b̃3

)
dµ5q−2(r2+k12+s3)

(
t1, t2, t3,x1,x2, x̃1, x̃2,a, ã,b3, b̃3

)
.

(4) The lengths of x3, x4 and t4 are zero, but the length of t3, denoted by ω3, is not zero. Note
that b1 ∪ b2 is not empty and we still denote by k12 the length of b1 ∪ b2. Then

∥F∥2
H⊗(3q−2(r2+r3+r4))

=

∫
((fi ⊗r2 fj)⊗k12 fl)⊗q fs (t1, t2,a,b3)

((fi ⊗r2 fj)⊗k12 fl)⊗q fs

(
t1, t2, ã, b̃3

)
fk ⊗ω3 fk

(
b3, b̃3,a, ã

)
dµ3q−2(r2+k12)−ω3

(
t1, t2,a, ã,b3, b̃3

)
.

(5) The lengths of x3, x4, t3 and t4 are zero. In this case, x1, x2 and b2∪b3 are not empty. We
denote by s1 the length of x1 and by k23 the length of b2 ∪ b3. Without loss of generality,
we assume that the length of a2, denoted by τ2, is not zero. Then

∥F∥2
H⊗(3q−2(r2+r3+r4))

=

∫
(fj ⊗τ2 fk)⊗k23 fl (t2,x2,a1,b1,w) fi ⊗s1 fs (t1,x2,a1,b1,w)

(fj ⊗τ2 fk)⊗k23 fl

(
t2, x̃2, ã1, b̃1, w̃

)
fi ⊗s1 fs

(
t1, x̃2, ã1, b̃1, w̃

)
dµ5q−2(τ2+k23+s1)

(
t1, t2,x2, x̃2,a1, ã1,b1, b̃1,w, w̃

)
.

By using generalized Cauchy-Schwarz inequality (Biermé et al. (2012, Lemma 4.1)), and the estimate
(3.9) in cases (1), (3) and (5) or the estimate (4.10) in cases (2) and (4), we can get

∥F∥H⊗(3q−2(r2+r3+r4)) ≤ max
1≤i≤d

max
1≤r≤q−1

∥fi ⊗r fi∥
5
2

H⊗(2q−2r) .

Then the proof of (3.6) is finished. □
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