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Abstract. The Degree Corrected Stochastic Block Model (DCSBM) is a probabilistic model for
random networks with community structure in which vertices of the same community are allowed
to have distinct degree distributions. On the modeling side, this property makes the DCSBM more
suitable for real-life complex networks. On the statistical side, it is more challenging due to a large
number of parameters. In this paper, we prove that the penalized marginal likelihood estimator,
when assuming prior distributions for the parameters, is strongly consistent for estimating the
number of communities. We consider dense or semi-sparse random networks, and our estimator
is unbounded, in the sense that the number of communities k considered can be as big as n, the
number of nodes in the network.

1. Introduction

Many real-world phenomena can be described by the interaction of objects through a network.
For example, interactions between individuals in a social network, connections between airports in
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a country, connections between regions of the brain, etc. Most of these networks have a community
structure; that is, the objects (nodes of the network) belonging to the same group tend to behave
similarly. In this way, probabilistic models that aim to describe real networks need to incorporate
these community structures.

The Stochastic Block Model (SBM) proposed by Holland et al. (1983) is a random network model
allowing community structures. The connection between each pair of vertices is, independently of
everything, distributed as a Bernoulli random variable with a parameter depending solely on the
vertices’ communities. The SBM, therefore, models networks where nodes in the same community
have the same mean degree. This property can restrict applications to real-life networks that, not
rarely, display heterogeneity (hubs) in the degree distributions of vertices belonging to the same
community. Taking this into account, Karrer and Newman (2011) proposed the Degree-Corrected
Stochastic Block Model (DCSBM), which considers the heterogeneity in the nodes’ degrees within
communities. In the degree-corrected model, each node has associated a non-negative real param-
eter, a weight, specifying its “ability” to connect to other nodes in the network. The sum of the
weights in each community corresponds to the number of nodes belonging to the community, gen-
eralizing the homogeneous SBM where we can consider each node as having a weight equal to one.
In the DCSBM, the Bernoulli distribution of the existence of an edge between two nodes is replaced
with a Poisson distribution, which simplifies the form of the likelihood and allows multiple edges
between nodes. In both models, the SBM and the DCSBM, it is a standard approach to study two
different regimes, the dense and the semi-sparse regimes. In the dense regime, the parameters of
the distributions governing the number of edges between each pair of nodes are fixed (do not depend
on the number n of nodes in the networks), leading to linearly growing expected degrees for each
node. In the semi-sparse regime, the parameters are allowed to decrease to zero at a rate ρn, and
in this case the expected degree is of order ρnn ≪ n.

Several works in the literature have addressed the community detection problem for SBM and
DCSBM, where the goal is to estimate the k0 latent groups of nodes in the network. For the SBM,
community detection is proposed based on spectral methods (Rohe et al., 2011; Lei and Rinaldo,
2015; Sarkar and Bickel, 2015), modularity (Newman and Girvan, 2004), likelihood methods (Bickel
and Chen, 2009; Celisse et al., 2012; Amini et al., 2013) and under a Bayesian perspective (Decelle
et al., 2011; Latouche et al., 2012; van der Pas and van der Vaart, 2018). For the DCSBM, Zhao et al.
(2012) study consistency of modularity-based and likelihood-based methods, Qin and Rohe (2013)
proposed a regularized spectral clustering algorithm, and Jin (2015) proposed an approach based on
the entry-wise ratios between eigenvectors of the adjacency matrix. In order to select the best model
between the SBM and DCSBM to fit the data, Yan et al. (2014) proposed an approach based on the
likelihood ratio test computed approximately using belief propagation. All these methods assume
the number of communities k0 is known, something that rarely occurs in practice. Estimating the
number of communities can be considered a model selection problem.

The literature on estimating the number of communities is more recent and not that extensive,
at least from the theoretical point of view. In the case of standard SBM, some approaches include
sequential hypothesis tests (Lei, 2016), cross-validation (Chen and Lei, 2018), spectral methods
(Le and Levina, 2022), penalized likelihood criteria (Wang and Bickel, 2017; Hu et al., 2020) and
Bayesian approaches, as penalized marginal likelihood estimators (Daudin et al., 2008; Biernacki
et al., 2010; Latouche et al., 2012; Cerqueira and Leonardi, 2020). Specifically for the DCSBM with
n nodes and unknown weights and under the semi-sparse regime with n1/2ρn/ log n → ∞, Wang and
Bickel (2017) proved the consistency of the penalized likelihood estimator with a penalty function
of order k2n log n where k is the number of communities of the candidate model. More recently,
Ma et al. (2021) proposed a likelihood ratio test to estimate the number of communities and proved
its consistency for the semi-sparse regime where nρn/ log n is sufficiently large. Their approach is
based on spectral algorithms and so they assume many further hypotheses to correctly detect the
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groups. Both approaches assume the number of communities is bounded from above by a known
constant.

The present paper considers a penalized marginal likelihood estimator for the number of com-
munities under a DCSBM with unknown weights. The marginal likelihood, also known as model
evidence, is obtained by marginalizing over the parameters under suitable a priori distributions.
Then the marginal likelihood is penalized, or regularized, with a penalty that depends on both the
number of communities k and the sample size n, as it is done by the general principle known as
Bayesian Information Criterion. The obtained estimator can also be seen as a minimum-description
length principle and is known as Krichevsky-Trofimov estimator in the information theory commu-
nity.

We prove that our estimator equals the correct number of communities k0 asymptotically almost
surely (i.e. for a sufficiently large number of vertices n with probability one) in the following context:

The model: we consider the general degree-corrected model as considered by Karrer and Newman
(2011) (Poisson number of edges and degree-corrected vertices).

Sparsity: our result holds under the same semi-sparse regime of Ma et al. (2021), where nρn/ log n
is sufficiently large. This rate is the phase transition for the exact recovery of the commu-
nities, see Abbe (2017).

No upper bound is assumed for k0: the optimization is made over all possible numbers of com-
munities between 1 and n.

The paper is organized as follows. We define the DCSBM and its associated likelihood function
(for known parameters) in Section 2. In Section 3, we introduce the a priori distributions for the
parameters, define the penalized marginal likelihood estimator, and state our main theorem, the
consistency result. Finally, in Section 4 we present the proof of the main result. Technical proofs
and other auxiliary results are deferred to the appendix.

2. The Degree Corrected Stochastic Block Model: Definition and Likelihood

For any n ∈ Z+, let X = (Xij)i,j∈[n] ([n] := {1, . . . , n}) denote the symmetric adjacency matrix of
a random network on n vertices, with Xij ∈ Z+. For each pair i, j ∈ [n], with i ̸= j the variable Xij

represents the number of non-oriented edges (or alternatively, the strength of connection) between
vertices i and j. For convenience, we define Xii as two times the number of self-loops at vertex i.

The vertices are randomly divided into k0 ≥ 1 communities and this community attribution is
represented by the vector Z = (Z1, . . . , Zn) of [k0]-valued random variables (i.i.d. with marginal
distribution π). We will often use the notation i ∈ [a] (i ∈ [n], a ∈ [k0]) to mean that Zi = a.

In the homogeneous SBM, the expected number of edges between vertices i and j does not depend
on the specific vertices but only on the communities. Assuming the number of edges between
communities a, b has a Poisson distribution with parameter λab we have that

Eλ(Xij |Zi = zi, Zj = zj) = λzizj

for any i ̸= j.
The fact that, within each community, the vertices behave identically, is a disadvantage of the

SBM when modeling real-world complex networks. In order to allow different vertices to behave
differently inside each community, the degree-corrected SBM (DCSBM) incorporates a weight wi

for each vertex i ∈ [n] which influences the capacity of the vertex to connect to other vertices. In
this case, the expected number of edges between vertices i ̸= j is given by

Eλ,w(Xij |Zi = zi, Zj = zj) = wiwjλzizj
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and may be different for different nodes in the same community. For this reason such networks are
sometimes called inhomogeneous.

Let the symmetric matrix λ = (λab)a,b∈[k0] have all entries greater than zero. In the dense regime,
the matrix λ is fixed (does not depend on n) and has all its entries bounded from below by a positive
constant. In this case each node has an expected degree that grows linearly on n, which makes the
network over-connected. For this reason, it is interesting to consider a semi-sparse regime, where λ
is allowed to decrease to zero as a function of n. We take this approach here and we assume that for
each n, the distribution of the network on n nodes has parameter λ = ρnλ̃, with ρn → 0 as n → ∞
and λ̃ a constant symmetric matrix with entries bounded from below by a positive constant. We
will give conditions on ρn on our main results. For identifiability of the order k0, i.e the number
of communities of the model, we assume that no column in λ̃ is proportional to any other column.
This is usually assumed in the literature, see for example Ma et al. (2021).

Consider now the DCSBM with k ∈ [n] communities. In order to compute the joint distribution
of (Z,X) we need to define the following counters. For any z ∈ [k]n and a ∈ [k], let na(z) be the
number of vertices in the network that belong to community a, that is

na(z) =
n∑

i=1

1{zi = a} .

Following Karrer and Newman (2011) we assume that the vector of weights inside each community
satisfies ∑

i : zi=a

wi = na(z)

for all a ∈ [k]. This implies in particular that the total weight in the network is n, the number of
vertices, and putting wi ≡ 1 we retrieve the classical SBM.

For any symmetric matrix x ∈ Zn×n
+ (that is, any realization of the network) define also the

counter oab(x, z) as the number of edges between nodes of communities a and b, that is

oab(x, z) =

{∑
1≤i,j≤n xij1{zi = a, zj = b} for a ̸= b ;

1
2

∑
1≤i,j≤n xij1{zi = a, zj = a} for a = b

(2.1)

and the degree of node i by
di(x) =

∑
1≤j≤n

xij . (2.2)

The total degree on community a is denoted by dta(x, z), and is given by

dta(x, z) =
∑

i : zi=a

di(x) =
∑

1≤i≤n

di(x)1{zi = a} =
∑

1≤i,j≤n

xij1{zi = a} .

Observe that we have
dta(x, z) =

∑
b ̸=a

oab(x, z) + 2oaa(x, z)

and that the number of pairs of nodes in communities a and b, denoted by nab(z), is given by

nab(z) =

{
na(z)nb(z) for a ̸= b ;
1
2na(z)

2 for a = b.
(2.3)

We can now write down the joint distribution of (X,Z) for the model with k communities when
we are given all the other parameters by

Pπ,λ,w(X = x, Z = z) =: Pπ,λ,w(x, z) = Pλ,w(x|z)Pπ(z) (2.4)
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for x ∈ Zn×n
+ and z ∈ [k]n, where

Pλ,w(x|z) =
1

c(x)

[ ∏
1≤i≤n

wi
di(x)

][ ∏
1≤a≤b≤k

λ
oab(x,z)
ab exp{−nab(z)λab}

]
(2.5)

with

c(x) :=

[∏
i<j

xij !

][∏
i

2xii/2(xii/2)!

]
(2.6)

and

Pπ(z) =
∏

1≤a≤k

πna(z)
a . (2.7)

The factorization in (2.4) follows by the fact that Z is an i.i.d vector of community attributions
with distribution π, and given Z, the matrix X has independent entries with Poisson distribution
with means given by λ and w, and depending on Z.

3. Model Selection for the DCSBM

To define the estimator, we introduce convenient a priori distributions for the parameters (π, λ, w).
Then the hierarchical model distribution of the DCSBM is given by

π ∼ Dirichlet(

k︷ ︸︸ ︷
1/2, . . . , 1/2)

λab ∼ Gamma(1/2, 1) , for a, b ∈ [k], a ≤ b

zi |π ∼ π , i ∈ [n]

(wi)i∈[a] | z ∼ na(z) Dirichlet(

na(z)︷ ︸︸ ︷
1/2, . . . , 1/2) , a ∈ [k]

xij | zi, zj , wi, wj , λ ∼ (2− 1{i ̸= j}) Poisson(wiwjλzi,zj ) , for i, j ∈ [n], i ≤ j .

Denote by Θk the space where the hyperparameters θ = (π, λ, w) take values and by νk(θ) the a
priori distribution over Θk.

For any x ∈ Zn×n
+ , the marginal likelihood pk(x) is given by the integral

pk(x) =
∑

z∈[k]n

∫
Θk

Pθ(x, z)νk(θ)dθ . (3.1)

We can now define the estimator for the number of communities as

k̂n(x) := argmax
1≤k≤n

{
log pk(x)− (k3 + 3kn) log(n+ 1)

}
. (3.2)

Our estimator shares some features with the estimator proposed by Cerqueira and Leonardi (2020)
for the “Bernoulli and homogeneous” SBM. This is mainly because both arise as penalized marginal
likelihood estimators. However, there are some substantial differences when considering the more
general “Poisson and degree corrected” SBM. First, the marginal likelihood defined by (3.1) is based
on a Poisson distribution that incorporates the weights and the degrees corresponding to each node
in the network. This allows us to generate networks with an unbounded number of edges between
each pair of nodes. Secondly, our estimator (3.2) has an extra penalty term of order n log n, which
is needed to compensate for the addition of n parameters wi, i = 1, . . . , n (the degree corrections).

As in the case of the SBM, the choice of prior distributions does not influence the estimator
defined in (3.2) since the parameters are integrated out in calculating the marginal likelihood pk(x).
In fact, the particular choice for the prior was made to simplify the calculations. Also as in the case
of the SBM, the computation of the marginal likelihood pk(x) is infeasible because the sum of the
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community’s assignments grows exponentially with the number of vertices. For the SBM, Latouche
et al. (2012) proposed an approximation of the marginal likelihood based on a variational Bayes
EM algorithm. The same approximation could be used to approximate the marginal likelihood of
the DCSBM, but this goes beyond the scope of this work, which primarily focuses on theoretical
aspects of the proposed estimator under sparse regimes.

We can now state our consistency theorem. In words, our estimator (3.2) is strongly consistent
for the number of communities of the DCSBM, as the number of vertices grows, considering the
sparse regime where nρn/ log n is sufficiently large.

Theorem 3.1. For the DCSBM with k0 communities and ρn ≥ C logn
n , n ≥ 1, where C is a suffi-

ciently large constant not depending on n, the estimator defined in (3.2) satisfies

Pθ(k̂n = k0) = 1 (3.3)

for all sufficiently large n.

The proof of the theorem is given in the next section and several auxiliary results (lemmas or
technical calculations) are deferred to the appendix. Since our estimator is inspired by Cerqueira
and Leonardi (2020), it is expected that our proofs follow more or less the same path. As they did,
we prove successively that our estimator does not overestimate nor underestimate the true parameter
asymptotically almost-surely. We also do this by invoking a key proposition (Proposition 4.1 below)
which roughly says that the marginal likelihood (3.1) is close to the maximum likelihood. However,
the more general framework that we consider forces us to make some substantial modifications
along this path. First, since we have an unbounded number of edges in the network, we define a
set Ωn, n ≥ 1 of “good” networks on which we can work, leaving aside the bad networks, which
are proved to be negligible in Lemma 5.6. Using this idea, the proof of the non-overestimation
works quite similarly to their proofs. The proof of the non-underestimation, however, is much more
involved due to the non-homogeneity over the vertices of the network. To control the asymptotic
behavior of our estimator, we will need explicit concentration bounds for some empirical quantities
(observed number of edges and degrees), holding uniformly over the community allocations. This
is done in Lemma 5.7. Then, the identifiability hypothesis, namely that λ̃ has no two proportional
columns, allows us to obtain Lemma 5.9 that implies the non-underestimation of the number of
communities.

4. Proof of Theorem 3.1

The proof of Theorem 3.1 is a direct consequence of Propositions 4.2 (non-overestimation) and 4.3
(non-underestimation) which will be stated and proved in Subsection 4.1 and 4.2 respectively. The
proofs of these propositions are based on the key Proposition 4.1 (see below) relating the marginal
likelihood pk(x) with the maximum likelihood supθ∈Θk

Pθ(x).
Before stating the key proposition, we define a set of “good” networks (which will be proved to

hold with high probability), given by

Ωn := {x : xij ≤ log n, for all i, j ∈ [n]} . (4.1)

Proposition 4.1. For all k ≥ 1, all n ≥ max(k, 3) and all x ∈ Ωn we have that

0 ≤ log

(
supθ∈Θk

Pθ(x)

pk(x)

)
≤ k(k + 2) log(n+ 1) + 3n log n .

The proof of this proposition will be given in the appendix. The remaining of the section is
dedicated to prove non-overestimation and non-underestimation.
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4.1. Non-overestimation. The objective of the present subsection is to prove the following proposi-
tion.

Proposition 4.2. For the DCSBM with k0 communities, the estimator k̂n defined in (3.2) satisfies

Pθ(k̂n ≤ k0) = 1

for all sufficiently large n.

Observe that there is no assumption on ρn for this proposition.

Proof : By the Borel-Cantelli Lemma, it is enough to prove that the following series converges
∞∑
n=1

n∑
k=k0+1

Pθ(k̂n = k) =
∞∑
n=1

n∑
k=k0+1

∑
x∈Ωc

n

Pθ(x)1{k̂n(x) = k}

+
∞∑
n=1

n∑
k=k0+1

∑
x∈Ωn

Pθ(x)1{k̂n(x) = k}.
(4.2)

Let us start by the first term in the right-hand side, and observe that for each n

n∑
k=k0+1

∑
x∈Ωc

n

Pθ(x)1{k̂n(x) = k} =
∑
x∈Ωc

n

Pθ(x)
n∑

k=k0

1{k̂n(x) = k}

≤
∑
x∈Ωc

n

Pθ(x) = Pθ(Ω
c
n).

An upper bound for Pθ(Ω
c
n) which is summable in n is given in the proof of Lemma 5.6, see (5.30).

So we conclude that the first term of (4.2) is indeed summable in n. We will now prove that the
second term of (4.2) is also summable in n. First observe that for some fixed k = k0 + 1, . . . , n we
have that ∑

x∈Ωn

Pθ(x)1{k̂n(x) = k}

=
∑
x∈Ωn

Pθ(x)1{argmax
ℓ

(log pℓ(x)− (ℓ3 + 3ℓn) log(n+ 1)) = k}.
(4.3)

By the definition of k̂n(x), we have, when k > k0, that{
argmax

ℓ
[log log pℓ(x)− (ℓ3 + 3ℓn) log(n+ 1)] = k

}
⊂
{
log pk(x)− (k3 + 3kn) log(n+ 1) ≥ log pk0(x)− (k30 + 3k0n) log(n+ 1)

}
.

So (4.3) can be bounded above by∑
x∈Ωn

Pθ(x)1
{
log pk(x)− (k3 + 3kn) log(n+ 1) ≥ log pk0(x)− (k30 + 3k0n) log(n+ 1)

}
and we get∑

x∈Ωn

Pθ(x)1{k̂n(x) = k}

≤
∑
x∈Ωn

Pθ(x)1
{
pk0(x) ≤ pk(x) exp[(−k3 − 3kn+ k30 + 3k0n) log(n+ 1)]

}
.

(4.4)
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Using Proposition 4.1, we have for x ∈ Ωn that

logPθ(x) ≤ log sup
θ∈Θk0

Pθ(x)

≤ log pk0(x) + k0(k0 + 2) log(n+ 1) + 3n log n, (4.5)

giving that

Pθ(x) ≤ pk0(x)e
k0(k0+2) log(n+1)+3n logn. (4.6)

Then, for x ∈
{
pk0(x) ≤ pk(x) exp[(k

3
0 + 3k0n− k3 − 3kn) log(n+ 1)]

}
, we have that

Pθ(x) ≤ pk0(x)e
k0(k0+2) log(n+1)+3n logn

≤ pk(x)e
k0(k0+2) log(n+1)+3n logn+(k30+3k0n−k3−3kn) log(n+1) .

(4.7)

Observe that as k ≥ k0 + 1, the exponent in (4.7) can be upper bounded by

(−2k20 − k0 − 1) log(n+ 1) ≤ −4 log n .

Substituting now (4.7) in (4.4) and summing in k = k0 + 1, . . . , n gives that
n∑

k=1

∑
x∈Ωn

Pθ(x)1
{
k̂n(x) = k

}
≤ nn−4

∑
x∈Ωn

pk(x)

≤ n−3

(4.8)

that is summable in n. This concludes the proof of Proposition 4.2. □

4.2. Non underestimation. We conclude the proof of Theorem 3.1 by proving that k̂n(x) does not
underestimate k0, the true number of communities. In the proof, we exploit the relationship of
the integrated likelihod function pk(x) and the maximum likelihood function, as stated in Propo-
sition 4.1. First observe that the maximum likelihood function for the joint distribution of (X,Z)
satisfies

sup
θ∈Θk

Pθ(x) = sup
θ∈Θk

∑
z

Pθ(x, z) ≤
∑
z

sup
π

Pπ(z) sup
λ,w

Pλ,w(x|z) .

While it is not possible to derive an explicit expression for the supremum in the left hand side of
the above inequality, we do have closed forms for each of the supremum inside the sum in the right
hand side. We first observe that for any x ∈ Zn×n

+ , z ∈ [k]n, i ∈ [n] and a, b ∈ [k], the maximum
likelihood estimators of π, λ and w are given by

π̂a(z) =
na(z)

n
, λ̂ab(x, z) =

oab(x, z)

nab(z)
, ŵi(x, z) =

∑
1≤a≤k

1{zi = a}na(z)di(x)

dta(x, z)
,

and thus

sup
π

Pπ(z) =
∏

1≤a≤k

(
na(z)

n

)na(z)

(4.9)

and

sup
λ,w

Pλ,w(x|z) =
1

c(x)

∏
1≤a≤b≤k

(
oab(x, z)

nab(z)

)oab(x,z)

e−oab(x,z)

×
∏

a∈[k],i∈[n]:zi=a

(
na(z)di(x)

dta(x, z)

)di(x)

.

(4.10)

These closed forms will be used in the proof of the proposition we state in the sequel.
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Proposition 4.3. For the DCSBM with k0 communities and ρn ≥ C logn
n , n ≥ 1, where C is a

sufficiently large constant not depending on n, the estimator defined in (3.2) satisfies

Pθ(k̂n ≥ k0) = 1

for all sufficiently large n.

Proof : We define the profile estimator for the communities based on the observed graph under the
model with k communities as

ẑk = argmax
z∈{1,2,...,k}n

sup
θ∈Θk

Pθ(x, z) . (4.11)

By Lemma 5.6 we can (and henceforth will) take n sufficiently large so that x ∈ Ωn, the set of
“good” networks defined in (4.1). In order to show that k̂n(x) ≥ k0, almost surely when n → ∞, it
is sufficient to show that for all k < k0,

log pk0(x)− (k30 + 3k0n) log(n+ 1) > log pk(x)− (k3 + 3kn) log(n+ 1) , (4.12)

almost surely, when n → ∞. But, if we show that

lim inf
n→∞

1

ρnn2
log

pk0(x)

pk(x)
> 0 , (4.13)

and due to the fact that
1

ρnn2

(
k30 + 3k0n− k3 − 3kn

)
log(n+ 1)

can be made sufficiently small by assumption on ρn, it follows that (4.13) implies (4.12). Observe
that for all x ∈ Ωn, by Proposition 4.1 and the fact that pk(x) ≤ supθ∈Θk

Pθ(x), we have that

1

ρnn2
log

pk0(x)

pk(x)
=

1

ρnn2
log

pk0(x)

supθ∈Θk0
Pθ(x)

+
1

ρnn2
log

supθ∈Θk0
Pθ(x)

supθ∈Θk
Pθ(x)

+
1

ρnn2
log

supθ∈Θk
Pθ(x)

pk(x)

≥ −γ(k0)
log n

ρnn
+

1

ρnn2
log

supθ∈Θk0
Pθ(x)

supθ∈Θk
Pθ(x)

,

for some constant γ(k0). Then, to show (4.13) it is enough to prove that for k < k0

lim inf
n→∞

1

ρnn2
log

supθ∈Θk0
Pθ(x)

supθ∈Θk
Pθ(x)

> 0 (4.14)

as −γ(k0)
logn
ρnn

is also sufficiently small by hypothesis on ρn. First observe that for all z ∈ [k0]
n we

have that

log sup
θ∈Θk0

Pθ(x) ≥ log sup
θ∈Θk0

Pθ(x, z) . (4.15)

Let
õab(x, z) :=

∑
1≤i,j≤n

xij1{zi = a, zj = b}

for all pairs a, b and notice is relates to oab by õab(x, z) = oab(x, z) for all a ̸= b and õaa(x, z) =
2oaa(x, z) for all a. From (2.4)-(2.6) and the definition of the maximum likelihood estimators we
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have that

log sup
θ∈Θk0

Pθ(x, z) = L(x) + n

k0∑
a=1

π̂a(z) log π̂a(z)

+
1

2

∑
1≤a,b≤k0

õab(x, z) log λ̂ab(x, z) +
∑

1≤a≤k0

dta(x, z) log
na(z)

dta(x, z)

(4.16)

with

L(x) = − log c(x)−
∑
i,j

xij +
∑
i

di(x) log di(x) ;

π̂a(z) =
na(z)

n
, 1 ≤ a ≤ k0;

λ̂ab(x, z) =
õab(x, z)

na(z)nb(z)
, 1 ≤ a, b ≤ k0;

dta(x, z) =
∑

1≤i,j≤n

xij1{zi = a} =
∑
b

õab(x, z), 1 ≤ a ≤ k0 .

For the denominator in (4.14) we use that
log sup

θ∈Θk

Pθ(x) ≤ log kn sup
θ∈Θk

Pθ(x, ẑk)

≤ n log k + log sup
θ∈Θk

Pθ(x, ẑk) ,
(4.17)

with ẑk defined by (4.11). Analogously as in (4.16) we have that

log sup
θ∈Θk

Pθ(x, ẑk) = L(x) + n
∑

1≤a≤k

π̂a(ẑk) log π̂a(ẑk)

+
1

2

∑
1≤a,b≤k

õab(ẑk) log λ̂ab(x, ẑk)

+
∑

1≤a≤k

dta(x, ẑk) log
na(ẑk)

dta(x, ẑk)
.

(4.18)

Then, the logarithm in (4.14) can be lower bounded by the difference of (4.15) and (4.17), and using
the expressions in (4.16) and (4.18) we obtain that

log
supθ∈Θk0

Pθ(x)

supθ∈Θk
Pθ(x)

≥ n
∑

1≤a≤k0

π̂a(z) log π̂a(z) +
1

2

∑
1≤a,b≤k0

õab(x, z) log λ̂ab(x, z)

+
∑

1≤a≤k0

dta(x, z) log
na(z)

dta(x, z)
− n log k

− n
∑

1≤a≤k

π̂a(ẑk) log π̂a(ẑk)−
1

2

∑
1≤a,b≤k

õab(x, ẑk) log λ̂ab(x, ẑk)

−
∑

1≤a≤k

dta(x, ẑk) log
na(ẑk)

dta(x, ẑk)
.

(4.19)

We will now rearrange the six terms of the right-hand side. First, let

A(n) := n
∑

1≤a≤k0

π̂a(z) log π̂a(z)− n log k − n
∑

1≤a≤k

π̂a(ẑk) log π̂a(ẑk). (4.20)



Degree Corrected Stochastic Blockmodel 277

Second, we can write∑
1≤a≤k0

dta(x, z) log
na(z)

dta(x, z)
=

1

2

∑
1≤a≤k0

dta(x, z) log
na(z)

dta(x, z)

+
1

2

∑
1≤b≤k0

dtb(x, z) log
nb(z)

dtb(x, z)

=
1

2

∑
1≤a,b≤k0

õab(x, z) log
na(z)nb(z)

dta(x, z)d
t
b(x, z)

(4.21)

and therefore

1

2

∑
1≤a,b≤k0

õab(x, z) log λ̂ab(x, z) +
∑

1≤a≤k0

dta(x, z) log
na(z)

dta(x, z)

=
1

2

∑
1≤a,b≤k0

õab(x, z) log
õab(x, z)

dta(x, z)d
t
b(x, z)

.

(4.22)

Using (4.20), (4.22) and the counterpart of (4.22) under the k-th order model with ẑk instead of z,
the right-hand side of (4.19) now reads

log
supθ∈Θk0

Pθ(x)

supθ∈Θk
Pθ(x)

≥ A(n) +
1

2

∑
1≤a,b≤k0

õab(x, z) log
õab(x, z)

dta(x, z)d
t
b(x, z)

− 1

2

∑
1≤a,b≤k

õab(x, ẑk) log
õab(x, ẑk)

dta(x, ẑk)d
t
b(x, ẑk)

.

Now, dividing both sides of (4.19) by ρnn
2, and summing on the right-hand side the following term

(which equals 0)

1

ρnn2

1

2

∑
1≤a,b≤k0

õab(x, z) log ρnn
2 − 1

2

∑
1≤a,b≤k

õab(x, ẑk) log ρnn
2


we finally obtain that

1

ρnn2
log

supθ∈Θk0
Pθ(x)

supθ∈Θk
Pθ(x)

≥ 1

2

( ∑
1≤a,b≤k0

õab(x, z)

ρnn2
log

ρnn
2õab(x, z)

dta(x, z)d
t
b(x, z)

−
∑

1≤a,b≤k

õab(x, ẑk)

ρnn2
log

ρnn
2õab(x, ẑk)

dta(x, ẑk)d
t
b(x, ẑk)

)
+

A(n)

ρnn2
.

(4.23)

Since A(n)
ρnn2 converges almost surely to 0, proving that (4.23) is bounded from below by a positive

constant, eventually almost surely as n → ∞, is equivalent to proving that

lim inf
n→∞

∑
1≤a,b≤k0

dta(x, z)d
t
b(x, z)

ρ2nn
4

φ
( ρnn

2õab(x, z)

dta(x, z)d
t
b(x, z)

)
−

∑
1≤a,b≤k

dta(x, ẑk)d
t
b(x, ẑk)

ρ2nn
4

φ
( ρnn

2õab(x, ẑk)

dta(x, ẑk)d
t
b(x, ẑk)

)
> 0 ,

(4.24)
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with φ(u) = u log u. By Lemma 5.7 we have that

ρnn
2õab(x, z)

dta(x, z)d
t
b(x, z)

=
õab(x, z)/ρnn

2

dta(x, z)d
t
b(x, z)/ρ

2
nn

4

→ [diag(π)λ̃diag(π)T ]ab
[diag(π)λ̃diag(π)T1k]a[diag(π)λ̃diag(π)T1k]b

=
πaπbλ̃ab

πa[λ̃π]bπb[λ̃π]a

=
λ̃ab

[λ̃π]a[λ̃π]b

(4.25)

where we recall that λ̃ is the matrix such that λ = ρnλ̃. Then we have that

lim
n→∞

1

2

∑
1≤a,b≤k0

dta(x, z)d
t
b(x, z)

ρ2nn
4

φ
( ρnn

2õab(x, z)

dta(x, z)d
t
b(x, z)

)
=

1

2

∑
1≤a,b≤k0

πaπb[λ̃π]a[λ̃π]b φ
( λ̃ab

[λ̃π]a[λ̃π]b

)
.

(4.26)

On the other hand, by Lemma 5.8 we have that

lim sup
n→∞

1

2

∑
1≤a,b≤k

dta(x, ẑk)d
t
b(x, ẑk)

ρ2nn
4

φ
( ρnn

2õab(x, ẑk)

dta(x, ẑk)d
t
b(x, ẑk)

)
≤ 1

2

∑
1≤a,b≤k

π∗
aπ

∗
b [λ

∗π∗]a[λ
∗π∗]b φ

( λ∗
ab

[λ∗π∗]a[λ∗π∗]b

) (4.27)

for some k × k positive matrix λ∗ and k dimensional vector π∗ defined by (5.37). Finally, by
Lemma 5.9 we have that the difference of (4.26) and (4.27) is lower bounded by

1

2

( ∑
1≤a,b≤k0

πaπb[λ̃π]a[λ̃π]b φ
( λ̃ab

[λ̃π]a[λ̃π]b

)

−
∑

1≤a,b≤k

π∗
aπ

∗
b [λ

∗π∗]a[λ
∗π∗]b φ

( λ∗
ab

[λ∗π∗]a[λ∗π∗]b

))
> 0

unless λ̃ has two proportional columns, which contradicts the hypothesis of identifiability of k0.
This concludes the proof of Proposition 4.3. □
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5. Appendix

5.1. Basic results. We state below Lemmas 5.1 and 5.2 for completeness.
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Lemma 5.1. For integers m = m1 + · · ·+mJ we have that

J∏
j=1

(mj

m

)mj

J∏
j=1

Γ
(
mj +

1
2

) ≤ 1

Γ
(
m+ 1

2

)
Γ
(
1
2

)J−1
. (5.1)

Proof : For an integer m, we have that

Γ

(
m+

1

2

)
= (m+ 1)(m+ 2) . . . (2m)

√
π

2m
.

Thus, for integers mj , j = 1, . . . , J , such that m = m1 + · · ·+mJ we write

J∏
j=1

Γ
(
mj +

1
2

)
Γ
(
m+ 1

2

)
Γ
(
1
2

)J−1
=

J∏
j=1

(mj + 1)(mj + 2) · · · (2mj)

(m+ 1)(m+ 2) · · · (2m)
. (5.2)

Define, for y ≥ 0 and an integer r ≥ 1

gr(y) =
r∏

i=1

(
y +

i

r

)
.

As it is shown in the Lemma included in the Appendix of Davisson et al. (1981), for integers
m = m1 + · · ·+mJ and y ≥ 0 we have that

gm(y) ≤
J∏

j=1

gmj (y) . (5.3)

Using this result for y = 1 and r = m we have that

m∏
i=1

(m+ i)

mm
≤

J∏
j=1

mj∏
i=1

(mj + i)

mj
=

J∏
j=1

(mj + 1)(mj + 2) · · · (2mj)

J∏
j=1

m
mj

j

. (5.4)

Rearranging (5.4) and combining with (5.2) we conclude that

J∏
j=1

(mj

m

)mj

≤

J∏
j=1

(mj + 1)(mj + 2) · · · (2mj)

(m+ 1)(m+ 2) · · · (2m)
=

J∏
j=1

Γ
(
mj +

1
2

)
Γ
(
m+ 1

2

)
Γ
(
1
2

)J−1
. □

Lemma 5.2. For integers m = m1 + · · ·+mJ , with J ≥ 1 and m ≥ max(J, 3), we have that

Γ
(
1
2

)
Γ
(
m+ J

2

)
Γ
(
J
2

)
Γ
(
m+ 1

2

) ≤ mJ .

Proof : Stirlings’ formula for the Γ function states that for all y ≥ 0 we have

yy−
1
2 e−y

√
2π ≤ Γ(y) ≤ yy−

1
2 e−y

√
2πe

1
12y .
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Then

log

(
Γ
(
1
2

)
Γ
(
m+ J

2

)
Γ
(
J
2

)
Γ
(
m+ 1

2

)) ≤
(
m+

J − 1

2

)
log

(
m+

J

2

)
−
(
m+

J

2

)
+

1

12
(
m+ J

2

) −m log

(
m+

1

2

)
+

(
m+

1

2

)
+ log

Γ(12)

Γ(J2 )

≤
(
m+

J − 1

2

)
log

(
m

(
1 +

J

2m

))
+

1

12m

−m log

(
m

(
1 +

1

2m

))
− J − 1

2
+ log

Γ(12)

Γ(J2 )

≤
(
J − 1

2

)
logm+

(
m+

J − 1

2

)
log

(
1 +

J

2m

)
−m log

(
1 +

1

2m

)
+

1

12m
− J − 1

2
+ log

Γ(12)

Γ(J2 )
.

(5.5)

Using that 1− 1
y ≤ log y ≤ y − 1, for y > 0 we obtain that

log

(
Γ
(
1
2

)
Γ
(
m+ J

2

)
Γ
(
J
2

)
Γ
(
m+ 1

2

)) ≤
(
J − 1

2

)
logm+

(
m+

J − 1

2

)(
J

2m

)
+

1

12m
− J − 1

2

+ log
Γ(12)

Γ(J2 )
≤
(
J − 1

2

)
logm+

J(J − 1)

4m
+

1

12m
+ log

Γ(12)

Γ(J2 )
.

Observe that for J ≥ 1 and m ≥ max(J, 3) we have that

log
Γ(12)

Γ(J2 )
≤ log(2)

and
J(J − 1)

4m
≤ J − 1

4
≤ J − 1

4
logm.

Then

log

(
Γ
(
1
2

)
Γ
(
m+ J

2

)
Γ
(
J
2

)
Γ
(
m+ 1

2

)) ≤
(
J − 1

2

)
logm+

J − 1

4
logm+ 1 ≤ J logm. □

5.2. Proof of Proposition 4.1. We recall that Θk denotes the space of hiperparameters θ = (π, λ, w).
The parameter w depends on z through the counters {na(z) : a ∈ [k]}, then to make this dependence
explicit, we write

Θk = Πk × Λk ×W(z)

where
Πk := {(π1, . . . , πk) ∈ (0, 1]k :

∑
i

πi = 1}

is the standard k-dimensional simplex,

Λk := {λ ∈ (R+)k×k : λab = λba for all a, b ∈ [k]}
is the set of k × k symmetric matrices with positive entries and

W(z) = W1(z)×W2(z)× · · · ×Wk(z)

with
Wa(z) := {w ∈ (R+)na(z) :

∑
i

wi = na(z)} (5.6)
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which is the set of possible w’s on community a. By the definition of the model we have that the a
priori distribution over Θk is given by

νk(θ) = ν
(1)
k (π)ν

(2)
k (λ)ν(3)(w|z) (5.7)

where

ν
(1)
k (π) =

Γ (k/2)

Γ (1/2)k

∏
1≤a≤k

πa
−1/2 ,

ν
(2)
k (λ) =

1

Γ(1/2)
k(k+1)

2

∏
1≤a≤b≤k

λ
−1/2
ab e−λab

and

ν(3)(w|z) =
∏

1≤a≤k

Γ
(
na(z)

2

)
na(z)Γ

(
1
2

)na(z)

∏
i : zi=a

( wi

na(z)

)−1/2
.

We can now decompose the marginal likelihood as

pk(x) =
∑

z∈[k]n

∫
Θk

Pθ(x, z)νk(θ)dθ

=
∑

z∈[k]n

∫
W(z)

∫
Λk

Pλ,w(x|z)ν
(2)
k (λ)ν(3)(w|z)dλdw

∫
∆k

Pπ(z)ν
(1)
k (π)dπ

=:
∑

z∈[k]n
pk(x|z)pk(z)

in which the (conditional) likelihoods were given in (2.7) and (2.5). Then we have that

∫
Λk

Pλ,w(x|z)ν
(2)
k (λ)dλ

=

∫
Λk

1

c(x)

[ ∏
1≤i≤n

wi
di(x)

][ ∏
1≤a≤b≤k

λ
oab(x,z)
ab e−nab(z)λab

]
ν
(2)
k (λ)dλ

=
1

c(x)Γ(12)
k(k+1)

2

[ ∏
1≤i≤n

wi
di(x)

]∫
Λk

∏
1≤a≤b≤k

λ
oab(x,z)− 1

2
ab e−(nab(z)+1)λabdλ

=
1

c(x)

1

Γ(12)
k(k+1)

2

[ ∏
1≤a≤b≤k

Γ
(
oab(x, z) +

1
2

)
[nab(z) + 1]oab(x,z)+

1
2

]
︸ ︷︷ ︸

A(x,z)

[ ∏
1≤i≤n

wi
di(x)

]
.

(5.8)
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Therefore

pk(x|z) =
A(x, z)

c(x)

∫
W

∏
1≤i≤n

wi
di(x)ν(3)(w|z)dw

=
A(x, z)

c(x)

∏
1≤a≤k

Γ
(
na(z)

2

)
na(z)Γ

(
1
2

)na(z)

∫
Wa(z)

∏
i : zi=a

wi
di(x)

( wi

na(z)

)−1/2
dwa

=
A(x, z)

c(x)

∏
1≤a≤k

Γ
(
na(z)

2

)
na(z)

dta(x,z)−1

Γ
(
1
2

)na(z)

∫
Wa(z)

∏
i : zi=a

( wi

na(z)

)di(x)−1/2
dwa

=
A(x, z)

c(x)

∏
1≤a≤k

Γ
(
na(z)

2

)
na(z)

dta(x,z)

Γ
(
1
2

)na(z)

∫
Ya(z)

∏
i : zi=a

yi
di(x)−1/2dy

=
A(x, z)

c(x)

∏
1≤a≤k

na(z)
dta(x,z)Γ

(
na(z)

2

)
Γ
(
1
2

)na(z)

∏
i : zi=a Γ(di(x) +

1
2)

Γ(dta(x, z) +
na(z)

2 )︸ ︷︷ ︸
B(x,z)

.

(5.9)

We also have that

pk(z) =

∫
Πk

k∏
a=1

πa
na(z)ν

(1)
k (π)dπ

=
Γ
(
k
2

)
Γ
(
1
2

)k ∫
Πk

k∏
a=1

πa
na(z)− 1

2dπ

=
Γ
(
k
2

)
Γ
(
1
2

)k
∏k

a=1 Γ
(
na(z) +

1
2

)
Γ
(
n+ k

2

)︸ ︷︷ ︸
C(z)

.

(5.10)

On the other hand, by the definition of the maximum likelihood estimators we have that

sup
λ,w

Pλ,w(x|z) =
1

c(x)

[ ∏
1≤a≤b≤k

(
oab(x, z)

nab(z)

)oab(x,z)

e−oab(x,z)
]

︸ ︷︷ ︸
Â(x,z)

×
[ ∏
a∈[k],i∈[n]:zi=a

(
na(z)di(x)

dta(x, z)

)di(x)]
︸ ︷︷ ︸

B̂(x,z)

(5.11)

and

sup
π

Pπ(z) =
∏

1≤a≤k0

(
na(z)

n

)na(z)

︸ ︷︷ ︸
Ĉ(z)

.
(5.12)

Now, we observe that by canceling the normalizing constant c(x) we obtain that

supθ Pθ(x)

pk(x)
≤
∑

z Â(x, z)B̂(x, z)Ĉ(z)∑
z A(x, z)B(x, z)C(z)

. (5.13)
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Now, if we are able to find bounds D1, D2 and D3, uniform on x and z, such that

Â(x, z)

A(x, z)
≤ D1 ,

B̂(x, z)

B(x, z)
≤ D2 and

Ĉ(x, z)

C(x, z)
≤ D3

then we automatically get
supθ Pθ(x)

pk(x)
≤ D1D2D3 . (5.14)

These bounds follow by Lemmas 5.3, 5.4 and 5.5 proved below. Using these lemmas we obtain that

log
supθ Pθ(x)

pk(x)
≤ log

[
(n+ 1)k(k+1)(n2 log n)nnk

]
≤ k(k + 1) log(n+ 1) + n(2 log n+ log log n) + k log n

≤ k(k + 2) log(n+ 1) + 3n log n

concluding the proof of Proposition 4.1.

Lemma 5.3. For (x, z) ∈ Ωn × [k]n we have that

Â(x, z)

A(x, z)
≤ (n+ 1)k(k+1) . (5.15)

Proof : Fix any (x, z) ∈ Ωn× [k]n. We simplify the notation by writing oab = oab(x, z) and similarly
for na(z) and nab(z). By (5.8) an (5.11) we obtain that

Â(x, z)

A(x, z)
=

∏
1≤a≤b≤k

(
oab
nab

)oab
e−oab

1

Γ(12)
k(k+1)

2

∏
1≤a≤b≤k

Γ(oab+ 1
2)

[nab+1]oab+
1
2

= Γ

(
1

2

) k(k+1)
2 ∏

1≤a≤b≤k

(
oab
nab

)oab
e−oab(nab + 1)oab+

1
2

Γ
(
oab +

1
2

) . (5.16)

Letting

N :=
∑

1≤a≤b≤k

oab

we rewrite

Â(x, z)

A(x, z)
= Γ

(
1

2

) k(k+1)
2 ∏

1≤a≤b≤k

(
oab
N

)oab
Γ
(
oab +

1
2

) ( N

nab

)oab

(nab + 1)oab+
1
2 e−oab . (5.17)

We now use Lemma 5.1 to get∏
1≤a≤b≤k

(
oab

N

)oab

Γ
(
oab +

1
2

) ≤ 1

Γ
(
N + 1

2

)
Γ
(
1
2

) k(k+1)
2 −1

. (5.18)

On the other hand(
N

nab

)oab

(nab + 1)oab+
1
2 e−oab = Noab

(
1 +

1

nab

)oab

(nab + 1)
1
2 e−oab

≤ Noab e
oab
nab (nab + 1)

1
2 e−oab . (5.19)
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Putting (5.18) and (5.19) in (5.17), we get

Â(x, z)

A(x, z)
≤

Γ
(
1
2

) k(k+1)
2

Γ
(
N + 1

2

)
Γ
(
1
2

) k(k+1)
2

−1

∏
1≤a≤b≤k

Noabe
oab
nab (nab + 1)

1
2 e−oab

=
Γ
(
1
2

)
Γ
(
N + 1

2

)e−NNNe
∑

1≤a≤b≤k
oab
nab

∏
1≤a≤b≤k

(nab + 1)
1
2 . (5.20)

For any real number r > 0, Γ(r) ≥ rr−1/2e−r
√
2π, so that

e−NNN

Γ
(
N + 1

2

) ≤
(
1 +

1

2N

)−N

e
1
2

1√
2π

≤ 1√
2π

. (5.21)

Moreover, as x ∈ Ωn we have that∑
1≤a≤b≤k

oab
nab

≤
∑

1≤a≤b≤k

nab log n

nab
=

k(k + 1)

2
log n (5.22)

and ∏
1≤a≤b≤k

(nab + 1)
1
2 ≤

∏
1≤a≤b≤k

(
n2 + 1

) 1
2 =

(
n2 + 1

) k(k+1)
4 ≤ (n+ 1)

k(k+1)
2 . (5.23)

Plugging (5.21), (5.22) and (5.23) into (5.20) proves the lemma. □

Lemma 5.4. For (x, z) ∈ Ωn × [k]n we have

B̂(x, z)

B(x, z)
≤ (n2 log n)n. (5.24)

Proof : For (x, z) ∈ Ωn × [k]n we have that

B̂(x, z)

B(x, z)
=

∏
1≤a≤k

∏
i∈[n]:zi=a

(
na(z)di(x)
dta(x,z)

)di(x)
na(z)d

t
a(x,z)Γ

(
na(z)

2

)
Γ( 1

2)
na(z)

∏
i : zi=a Γ(di(x)+

1
2
)

Γ(dta(x,z)+
na(z)

2
)

=
∏

1≤a≤k

Γ
(
1
2

)na(z)Γ(dta(x, z) +
na(z)

2 )

Γ
(
na(z)

2

) ∏
i:zi=a

(
di(x)

dta(x,z)

)di(x)
Γ(di(x) +

1
2)

But for all a ∈ [k] we have by Lemma 5.1 that

∏
i:zi=a

(
di(x)

dta(x,z)

)di(x)
Γ(di(x) +

1
2)

≤ 1

Γ
(
dta(x, z) +

1
2

)
Γ
(
1
2

)na(z)−1
, (5.25)

where we used the equality dta(x, z) =
∑

i:zi=a di(x). Putting all the previous bounds together we
obtain that

B̂(x, z)

B(x, z)
≤

∏
1≤a≤k

Γ
(
1
2

)
Γ(dta(x, z) +

na(z)
2 )

Γ
(
na(z)

2

)
Γ
(
dta(x, z) +

1
2

) .
Finally, by Lemma 5.2 we conclude, as dta(x, z) ≤ n2 log n for all a ∈ [k] and

∑
a na(z) = n that

B̂(x, z)

B(x, z)
≤

∏
1≤a≤k

dta(x, z)
na(z) ≤ (n2 log n)n .
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□

Lemma 5.5. For any z ∈ [k]n we have that

Ĉ(z)

C(z)
≤ nk . (5.26)

Proof : By definition we have that

Ĉ(z)

C(z)
=

∏k
a=1

(
na(z)

n

)na(z)

Γ
(
k
2

)
Γ
(
1
2

)k
∏k

a=1 Γ
(
na(z) +

1
2

)
Γ
(
n+ k

2

) .

By Lemma 5.1 we obtain that

k∏
a=1

(
na(z)

n

)na(z)

Γ
(
na(z) +

1
2

) ≤ 1

Γ
(
n+ 1

2

)
Γ
(
1
2

)k−1
. (5.27)

This last inequality and Lemma 5.2 imply that

Ĉ(z)

C(z)
≤

Γ
(
1
2

)
Γ
(
n+ k

2

)
Γ
(
k
2

)
Γ
(
n+ 1

2

) ≤ nk . □

5.3. Proof of other auxiliary lemmas.

Lemma 5.6. Consider the DCSBM with k0 communities. The set Ωn defined in (4.1) satisfies

Pθ(Ωn) = 1

for sufficiently large n.

Proof : We have that

Pθ(Ω
c
n) =

∑
z∈[k0]n

Pθ(Ω
c
n, z)

=
∑

z∈[k0]n
Pπ(z)Pλ,w(Ω

c
n|z)

≤
∑

z∈[k0]n
Pπ(z)

n∑
i,j=1

∑
x:xij<logn

Pλ,w(x|z).

(5.28)

Notice that in the last display,
∑

x:xij<logn Pλ,w(x|z) is, in “random variable notation”, Pλ,w(Xij ≥
log n|Z = z). Now, conditionally on Z = z, the Xij ’s have a Poisson distribution with parameter
λzizj . From Boucheron et al. (2013, Section 2.2), if Y ∼ Poisson(µ), then for r > 0

Prob(Y − µ ≥ r) ≤ e
−µ

(
1+ r

µ

)
log

(
1+ r

µ

)
+r

≤ e
−r

(
log

(
1+ r

µ

)
−1

)
.

Thus, for n such that log n > λzizj

Pλ,w(Xij ≥ log n|Z = z) ≤ e
−(logn−λzizj )

(
log

(
logn
λzizj

)
−1

)

≤ e
−(logn−λmax)

(
log

(
logn
λmax

)
−1

)
(5.29)
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where in the last line we used the notation λmax = maxa,b λab. Then, by (5.28) and (5.29) we have
that

Pθ(Ω
c
n) ≤ n2e

−(logn−λmax)
(
log

(
logn
λmax

)
−1

) ∑
z∈[k0]n

Pπ(z)

= n3+log λmax−log(logn) (log n)λmax (eλmax)
−λmax (5.30)

which is summable in n and therefore the lemma is proved by application of the Borel Cantelli
Lemma. □

To state the next auxiliary result, we need some notation. Define for all z ∈ {1, . . . , k}n and
z0 ∈ {1, . . . , k0}n the k × k0 matrix Qn(z, z

0) given by

[Qn(z, z
0)]aa′ =

1

n

n∑
i=1

wi 1{zi = a, z0i = a′}. (5.31)

Observe that the counters na′(z
0), for a′ ∈ [k0], can be written as

na′(z
0) =

n∑
i=1

wi 1{z0i = a′} =
n∑

i=1

wi

k∑
a=1

1{zi = a, z0i = a′} . (5.32)

Then na′(z
0) = n(QT

n (z, z
0)1k)a′ , with 1k a column vector of dimension k with all entries equal to

1. Moreover, the matrix Qn(z, z
0) satisfies

∥Qn(z, z
0)∥1 =

k∑
a=1

k0∑
a′=1

[Qn(z, z
0)]a,a′ = 1, (5.33)

for all (z, z0) and

Eλ,w(õab(X, z) |Z = z0) = n2Qn(z, z
0)λQn(z, z

0)T (5.34)

= ρnn
2Qn(z, z

0)λ̃Qn(z, z
0)T (5.35)

in which Eλ,w denotes the expectation with respect to the measure Pλ,w.
We are now ready to prove the concentration bounds used in the proof of Proposition 4.3.

Lemma 5.7. Consider the DCSBM with k0 communities. For any ϵ > 0 and a, b ∈ [k] we have
that

Pθ

(
sup
z̄∈[k]n

∣∣∣ õab(X, z̄)

ρnn2
− [Qn(z̄, Z)λ̃Qn(z̄, Z)T ]ab

∣∣∣ > ϵ
)

≤ exp
(
− ρnn

2ϵ2

λ̃max + ϵ
+ n log k

)
and

Pθ

(
sup
z̄∈[k]n

∣∣∣dta(X, z̄)

ρnn2
− [Qn(z̄, Z)λ̃Qn(z̄, Z)T1k]a

∣∣∣ > ϵ
)

≤ exp
(
− ρnn

2ϵ2

λ̃max + ϵ
+ n log k

)
,

with λ̃max = maxa,b λ̃ab.

Proof : For any fixed z ∈ [k0]
n and z̄ ∈ [k]n we have that

õab(X, z̄)− n2[Qn(z̄, z)λQn(z̄, z)
T ]ab

= õab(X, z̄)− ρnn
2[Qn(z̄, z)λ̃Qn(z̄, z)

T ]ab

=
∑

1≤i,j≤n

∑
1≤a′,b′≤k0

(Xij − ρnwiwj λ̃a′b′)1{z̄i = a, zi = a′}1{z̄j = b, zj = b′} .

Observe that given Z = z, õab(X, z̄) corresponds to the sum of na(z̄)nb(z̄) independent Poisson
random variables, given by Xij1{z̄i = a, z̄i = b}, with expected value given by ρnwiwj λ̃zizj . Then
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the sum is also Poisson distributed with a parameter that is the sum of the corresponding parameters.
Using one more time Boucheron et al. (2013, Section 2.2), we have for Y ∼ Poisson(µ) and t > 0

Prob(Y − µ ≥ r) ≤ e
−µ

(
1+ r

µ

)
log

(
1+ r

µ

)
+r

Prob(Y − µ ≤ −r) ≤ e
−µ

(
1− r

µ

)
log

(
1− r

µ

)
−r

which, after some algebra, yields

Prob(|Y − µ| > r) ≤ 2e
− r2

2(µ+r) .

Therefore, for any δ > 0

Pθ

( ∣∣∣õab(X, z̄)− ρnn
2[Qn(z̄, z)λ̃Qn(z̄, z)

T ]ab

∣∣∣ > δ |Z = z
)

≤ 2 exp
(
− δ2

2(ρnn2[Qn(z̄, z)λ̃Qn(z̄, z)T ]ab + δ)

)
.

Since, for any z̄ and z, we have that

ρnn
2[Qn(z̄, z)λ̃Qn(z̄, z)

T ]ab ≤ ρnn
2λ̃max

with λ̃max = maxa,b λ̃ab, it follows that, for any z, z̄ and ϵ > 0

Pθ

( ∣∣∣ õab(X, z̄)

ρnn2
− [Qn(z̄, z)λ̃Qn(z̄, z)

T ]ab

∣∣∣ > ϵ |Z = z
)

≤ exp
(
− ρ2nn

4ϵ2

ρnn2λ̃max + ϵρnn2

)
≤ exp

(
− ρnn

2ϵ2

λ̃max + ϵ

)
.

Now, using a union bound over all z̄ ∈ [k]n and integrating over z we obtain that

Pθ

(
sup
z̄∈[k]n

∣∣∣ õab(X, z̄)

ρnn2
− [Qn(z̄, Z)λ̃Qn(z̄, Z)T ]ab

∣∣∣ > ϵ
)

≤ exp
(
− ρnn

2ϵ2

λ̃max + ϵ
+ n log k

)
and this proves the first inequality of the lemma. Now, given Z = z,

dta(X, z̄) =
∑
b∈[k]

õab(X, z̄)

is also a sum of independent random variables with Poisson distribution and

Eλ,w(d
t
a(X, z̄) |Z = z) = [ρnn

2Qn(z̄, z)λ̃Qn(z̄, z)
T1k]a,

thus we also obtain that

Pθ

(
sup
z̄∈[k]n

∣∣∣dta(X, z̄)

ρnn2
− [Qn(z̄, Z)λ̃Qn(z̄, Z)T1k]a

∣∣∣ > ϵ
)
≤ exp

(
− ρnn

2ϵ2

λ̃max + ϵ
+ n log k

)
.

This concludes the proof of Lemma 5.7 □

In the sequel, we state and prove the lemmas cited in the proof of Proposition 4.3.
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Lemma 5.8. For k < k0 there exists a k × k positive matrix λ∗ and k dimensional vector π∗ such
that

lim sup
n→∞

1

2

∑
1≤a,b≤k

dta(x, ẑk)d
t
b(x, ẑk)

ρ2nn
4

φ
( ρnn

2õab(x, ẑk)

dta(x, ẑk)d
t
b(x, ẑk)

)
≤ 1

2

∑
1≤a,b≤k

π∗
aπ

∗
b [λ

∗π∗]a[λ
∗π∗]b φ

(
λ∗
ab

[λ∗π∗]a[λ∗π∗]b

)
.

(5.36)

Moreover, (π∗, λ∗) are given by
π∗
a = [R∗1k0 ]a, a ∈ {1, . . . , k}

λ∗
ab =

[R∗λR∗T ]ab

[R∗1k01
T
k0
R∗T ]ab

, a, b ∈ {1, . . . , k} ,
(5.37)

for a k × k0 real matrix R∗ satisfying ∥R∗∥1 = 1 and having one and only one non-zero entry on
each column.

Proof : Observe that∑
1≤a,b≤k

dta(x, ẑk)d
t
b(x, ẑk)

ρ2nn
4

φ
( ρnn

2õab(x, ẑk)

ρn dta(x, ẑk)d
t
b(x, ẑk)

)
=

∑
1≤a,b≤k

dta(x, ẑk)d
t
b(x, ẑk)

ρ2nn
4

φ

(
õab(x, ẑk)/ρnn

2

dta(x, ẑk)d
t
b(x, ẑk)/ρ

2
nn

4

)
,

(5.38)

where φ(u) = u log u. Then by Lemma 5.7, taking ϵn = ρn = logn
n we have that∣∣∣ õab(x, ẑk)

ρnn2
− [Qn(ẑk, z)λ̃Q

T
n (ẑk, z)]ab

∣∣∣ ≤ ϵn

and similarly ∣∣∣dta(x, ẑk)
ρnn2

− [Qn(ẑk, z)λ̃Qn(ẑk, z)
T1k]a

∣∣∣ ≤ ϵn

eventually almost surely as n → ∞. Then as φ is continuous, substituting õab(x, ẑk)/ρnn
2 by

[Qn(ẑk, z)λ̃Q
T
n (ẑk, z)]ab and substituting dta(x, ẑk)/ρnn

2 by [Qn(ẑk, z)λ̃Qn(ẑk, z)
T1k]a in the right-

hand side of (5.38) we obtain that∑
1≤a,b≤k

dta(x, ẑk)d
t
b(x, ẑk)

ρ2nn
4

φ
( ρnn

2õab(x, ẑk)

dta(x, ẑk)d
t
b(x, ẑk)

)
≤ sup

Qn : ∥Qn∥1=1

QT
n1k=n(z)/n

∑
1≤a,b≤k

[Qnλ̃Q
T
n1k]a[Qnλ̃Q

T
n1k]bφ

(
[Qnλ̃Q

T
n ]ab

[Qnλ̃QT
n1k]a[Qnλ̃QT

n1k]b

)
+ ηn.

(5.39)

for some sequence ηn → 0 as n → ∞. Then taking lim sup on both sides, we must have that

lim sup
n→∞

∑
1≤a,b≤k

dta(x, ẑk)d
t
b(x, ẑk)

ρ2nn
4

φ
( ρnn

2õab(x, ẑk)

dta(x, ẑk)d
t
b(x, ẑk)

)
≤ sup

R : ∥R∥1=1

RT 1k=π

1

2

∑
1≤a,b≤k

[Rλ̃RT1k]a[Rλ̃RT1k]b φ

(
[Rλ̃RT ]ab

[Rλ̃RT1k]a[Rλ̃RT1k]b

) (5.40)

almost surely. Then, the supremum in the right-hand side of (5.40) is a maximum of a convex
function over a convex polyhedron defined by {R : ∥R∥1 = 1, RT1k = π}. Then, the maximum
must be attained at one of the vertices of the polyhedron; that is, on those matrixes R such that
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one and only one entry by column is greater than zero, given that πa > 0 for all a ∈ {1, . . . , k0}.
We denote by R∗ one of these maximums (if there is more than one) and let

π∗
a = [R∗1k0 ]a a ∈ {1, . . . , k}

λ∗
ab =

[R∗λ̃R∗T ]ab

[R∗1k01
T
k0
R∗T ]ab

, a, b ∈ {1, . . . , k} .
(5.41)

Then

sup
R : ∥R∥1=1

RT 1k=π

1

2

∑
1≤a,b≤k

[Rλ̃RT1k]a[Rλ̃RT1k]b φ

(
[Rλ̃RT ]ab

[Rλ̃RT1k]a[Rλ̃RT1k]b

)

=
1

2

∑
1≤a,b≤k

π∗
aπ

∗
b [λ

∗π∗]a[λ
∗π∗]b φ

(
λ∗
ab

[λ∗π∗]a[λ∗π∗]b

)
.

(5.42)

This concludes the proof of Lemma 5.8. □

Lemma 5.9. Assume λ̃ has no two proportional columns. Then for all k < k0 and (π∗, λ∗) as in
Lemma 5.8 we have that∑

1≤a,b≤k0

πaπb[λ̃π]a[λ̃π]b φ
( λ̃ab

[λ̃π]a[λ̃π]b

)
−

∑
1≤a,b≤k

π∗
aπ

∗
b [λ

∗π∗]a[λ
∗π∗]b φ

(
λ∗
ab

[λ∗π∗]a[λ∗π∗]b

)
> 0 .

(5.43)

Proof : First consider the case k = k0−1. As R∗ has one and only one non-zero entry in each column,
we have that there is a surjective function h : [k0] → [k] connecting each community in [k0] (columns
of R∗) with is corresponding community in [k] (line with non-zero entry). Then for k = k0−1, there
are k− 1 communities in {1, . . . , k0} that are mapped into k− 1 communities in {1, . . . , k} and two
communities in {1, . . . , k0} that are mapped into a single community in {1, . . . , k}. Without loss
of generality assume that the communities k0 − 1 and k0 satisfy h(k0 − 1) = h(k0) = k = k0 − 1.
Moreover, as R∗T1k = π we must have that the non-zero entries are given by

R∗
aa = πa , 1 ≤ a ≤ k0 − 1

R∗
(k0−1)k0

= πk0 .
(5.44)

Then the parameters π∗ and λ∗ defined in (5.41) are given by

π∗
a = πa , 1 ≤ a ≤ k0 − 1

π∗
k0−1 = πk0−1 + πk0

and

λ∗
ab = λ̃ab , 1 ≤ a, b ≤ k0 − 2

λ∗
a(k0−1) =

πk0−1λ̃a(k0−1) + πk0 λ̃ak0

πk0−1 + πk0
, 1 ≤ l ≤ k0 − 2,

λ∗
(k0−1)(k0−1) =

π2
k0−1λ̃(k0−1)(k0−1) + 2πk0−1πk0 λ̃(k0−1)k0 + π2

k0
λ̃k0k0

π2
k0−1 + 2πk0−1πk0 + π2

k0

.

Observe that for all 1 ≤ a ≤ k0 − 1 we have that [λ∗π∗]a = [λ̃π]a then for all 1 ≤ a, b ≤ k0 − 2

π∗
aπ

∗
b [λ

∗π∗]a[λ
∗π∗]b φ

(
λ∗
ab

[λ∗π∗]a[λ∗π∗]b

)
= πaπb[λ̃π]a[λ̃π]b φ

(
λ̃ab

[λ̃π]a[λ̃π]b

)
.
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On the other hand we have that

[λ∗π∗]k0−1 =
πk0−1[λ̃π]k0−1 + πk0 [λ̃π]k0

πk0−1 + πk0
.

Then for 1 ≤ a ≤ k0 − 2 it follows, by the log-sum inequality, that

π∗
aπ

∗
k0−1[λ

∗π∗]a[λ
∗π∗]k0−1φ

( λ∗
a(k0−1)

[λ∗π∗]a[λ∗π∗]k0−1

)
= πa[λ̃π]a(πk0−1[λ̃π]k0−1 + πk0 [λ̃π]k0)φ

(
πk0−1λ̃a(k0−1) + πk0 λ̃ak0

[λ̃π]a(πk0−1[λ̃π]k0−1 + πk0 [λ̃π]k0)

)

= πa(πk0−1λ̃a(k0−1) + πk0 λ̃ak0) log

(
πa(πk0−1λ̃a(k0−1) + πk0 λ̃ak0)

πa[λ̃π]a(πk0−1[λ̃π]k0−1 + πk0 [λ̃π]k0)

)

≤ πaπk0−1λ̃a(k0−1) log

(
λ̃a(k0−1)

[λ̃π]a[λ̃π]k0−1

)
+ πaπk0 λ̃ak0 log

(
λ̃ak0

[λ̃π]a[λ̃π]k0

)
= πaπk0−1[λ̃π]a[λ̃π]k0−1φ

(
λ̃a(k0−1)

[λ̃π]a[λ̃π]k0−1

)
+ πaπk0 [λ̃π]a[λ̃π]k0φ

(
λ̃ak0

[λ̃π]a[λ̃π]k0

)
.

(5.45)

Moreover, we have that the inequality must be strict unless

λ̃a(k0−1)

[λ̃π]a[λ̃π]k0−1

=
λ̃ak0

[λ̃π]a[λ̃π]k0
for all a ≤ k0 − 2 . (5.46)

On the other hand, for a = k0 − 1 and b = k0 − 1, also by the log-sum inequality we have that

π∗
k0−1π

∗
k0−1[λ

∗π∗]k0−1[λ
∗π∗]k0−1φ

( λ∗
(k0−1)(k0−1)

[λ∗π∗]k0−1[λ∗π∗]k0−1

)
= (π2

k0−1λ̃(k0−1)(k0−1) + 2πk0−1πk0 λ̃(k0−1)k0 + π2
k0 λ̃k0k0)

× log

(
π2
k0−1λ̃(k0−1)(k0−1) + 2πk0−1πk0 λ̃(k0−1)k0 + π2

k0
λ̃k0k0

π2
k0−1[λ̃π]

2
k0−1 + 2πk0−1πk0 [λ̃π]k0−1[λ̃π]k0 + π2

k0
[λ̃π]2k0

)

≤ π2
k0−1λ̃(k0−1)(k0−1) log

( λ̃(k0−1)(k0−1)

[λ̃π]2k0−1

)
+ 2πk0−1πk0 λ̃(k0−1)k0 log

( λ̃(k0−1)k0

[λ̃π]k0−1[λ̃π]k0

)
+ π2

k0 λ̃k0k0 log
( λ̃k0k0

[λ̃π]2k0

)
= π2

k0−1[λ̃π]
2
k0−1φ

(
λ̃(k0−1)(k0−1)

[λ̃π]2k0−1

)

+ 2πk0−1πk0 [λ̃π]k0−1[λ̃π]k0φ

(
λ̃(k0−1)k0

[λ̃π]k0−1[λ̃π]k0

)
+ π2

k0 [λ̃π]
2
k0φ

(
λ̃k0k0

[λ̃π]2k0

)
,

(5.47)

with equality if and only if

λ̃(k0−1)(k0−1)

[λ̃π]2k0−1

=
λ̃(k0−1)k0

[λ̃π]k0−1[λ̃π]k0
=

λ̃k0k0

[λ̃π]2k0
. (5.48)

From (5.46) and (5.48) we obtain that the inequality (5.43) must be strict unless

λ̃a(k0−1) =
[λ̃π]k0−1

[λ̃π]k0
λ̃ak0 for all a ≤ k0 (5.49)
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which is a contradiction with the hypothesis for the identifiability of k0. □
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