
ALEA, Lat. Am. J. Probab. Math. Stat. 21, 293–306 (2024)
DOI: 10.30757/ALEA.v21-12

Compound Poisson approximation for simple transient
random walks in random sceneries

Nicolas Chenavier, Ahmad Darwiche and Arnaud Rousselle
Université du Littoral Côte d’Opale, UR 2597, LMPA, Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville, 62100 Calais, France
E-mail address: nicolas.chenavier@univ-littoral.fr
URL: https://www-lmpa.univ-littoral.fr//∼chenavier/

Université du Littoral Côte d’Opale, UR 2597, LMPA, Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville, 62100 Calais, France
E-mail address: ahmad.darwiche@univ-littoral.fr
URL: https://sites.google.com/view/ahmaddarwiche

Institut de Mathématiques de Bourgogne, UMR 5584, CNRS, Université Bourgogne Franche-Comté, F-21000
Dijon, France
E-mail address: arnaud.rousselle@u-bourgogne.fr
URL: https://arousselle.perso.math.cnrs.fr/recherche.html

Abstract. Given a simple transient random walk (Sn)n≥0 in Z and a stationary sequence of real
random variables (ξ(s))s∈Z, we investigate the extremes of the sequence (ξ(Sn))n≥0. Under suitable
conditions, we make explicit the extremal index and show that the point process of exceedances
converges to a compound Poisson point process. We give two examples for which the cluster size
distribution can be made explicit.

1. Introduction

Extreme Value Theory (EVT) deals with rare events and has many applications in various do-
mains such as hydrology (Katz et al., 2002), finance (Embrechts et al., 1997) and climatology (Yiou
et al., 2008). It was first introduced in the context of independent and identically distributed (i.i.d.)
random variables. It is straightforward that if (ξ(s))s∈Z is a sequence of i.i.d. random variables
then the following property holds: for any sequence of real numbers (un)n≥0, and for τ > 0,

nP ( ξ(0) > un ) −→
n→∞

τ =⇒ P
(

max
0≤k≤n

ξ(k) ≤ un

)
−→
n→∞

e−τ .

The above property has been extended for sequences of dependent random variables satisfying
two conditions. The first one, referred to as the D(un) condition of Leadbetter, is a long range
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dependence property and the second one, known as the D′(un) condition, ensures that, locally,
there is no clusters of exceedances (see Leadbetter (1983) for a statement of these conditions).

In 2009, Franke and Saigo (2009a,b) considered the following problem. Let (Xi)i≥1 be a sequence
of centered, integer-valued i.i.d. random variables and let S0 = 0 and Sn = X1 + · · · +Xn, n ≥ 1.
Assume that (Xi)i≥1 is in the domain of attraction of a stable law, i.e. for each x ∈ R,

P
(
n− 1

αSn ≤ x
)

−→
n→∞

Fα(x),

where Fα is the distribution function of a stable law with characteristic function given by

φ(θ) = exp(−|θ|α(C1 + iC2sgnθ)), α ∈ (0, 2].

When α < 1 (resp. α > 1), it is known that the random walk (Sn)n≥0 is transient (resp. recurrent)
(Kesten and Spitzer, 1979; Le Gall and Rosen, 1991). Now, let (ξ(s))s∈Z be a family of R-valued
i.i.d. random variables independent of the sequence (Xi)i≥1. The sequence (ξ(Sn))n≥0 is called a
random walk in a random scenery. Such a concept was first introduced by Kesten and Spitzer (1979)
who established limit theorems on the sum of the first n terms and was extensively investigated in
various directions, see e.g. Deuschel and Fukushima (2019); Dombry and Guillotin-Plantard (2009)
and the survey den Hollander and Steif (2006). Franke and Saigo (2009b) derive limit theorems for
the maximum of the first n terms of (ξ(Sn))n≥0 as n goes to infinity. An adaptation of Theorem 1
in Franke and Saigo (2009b) shows that in the transient case, i.e. α < 1, the following property
holds: if nP ( ξ(0) > un ) −→

n→∞
τ for some sequence (un)n≥0 and for some τ > 0, then

P
(

max
0≤k≤n

ξ(Sk) ≤ un

)
−→
n→∞

e−qτ , (1.1)

where
q = P (Si ̸= 0,∀i ≥ 1 ) . (1.2)

Notice that q > 0 because the random walk (Sn)n≥0 is transient. The term q can also be expressed
as (see e.g. Le Gall and Rosen (1991))

q = lim
n→∞

Rn

n
a.s., (1.3)

where Rn = #{S0, . . . , Sn} is the range of the random walk. The result (1.1) was recently extended
to a random scenery which is not necessarily based on i.i.d. random variables but on a sequence
satisfying a slight modification of the D(un) condition (Chenavier and Darwiche, 2020). One of
the difficulties is that the sequence (ξ(Sn))n≥0 does not satisfy the D′(un) condition and clusters of
exceedances can appear. One way to define clusters is based on the runs scheme: given a sequence
(kn)n≥0 such that kn → ∞ and kn = o(n), two exceedances, i.e. two points of the form i/n, j/n
with ξ(Si) > un and ξ(Sj) > un, i, j ≤ n, are said to belong to the same cluster if |i− j| ≤ kn (see
e.g. Robert (2009)).

In this paper, we establish more precise results on the long range dependence and on the so-
called point process of exceedances, i.e. on the family of points i/n such that ξ(Si) exceeds un.
Such a point process is a classical object in EVT (see e.g. Freitas et al. (2013)) since it counts the
number of occurrences of extreme events. To do it, we assume some additional properties on the
random walk and on the random scenery. First, we let S0 = 0 and Sn = X1 + · · · + Xn, n ≥ 1,
where (Xi)i≥1 is a family of independent random variables with distribution P (Xi = 1 ) = p and
P (Xi = −1 ) = 1 − p, p ∈]0, 1[\{1

2}. Notice that, as opposed to Chenavier and Darwiche (2020)
and Franke and Saigo (2009b), the random variable Xi is not centered. In what follows, the term q
appearing in (1.2) also satisfies (1.3). It can easily be proved that q = |2p−1|. Secondly, we assume
that the random scenery (ξ(s))s∈Z satisfies a long range dependence property, which is referred to as
the ∆(un) condition. To state it, we give some notation. For each n,m1,m2 with 0 ≤ m1 ≤ m2 ≤ n,
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define Bm2
m1

(un) as the σ-field generated by events {ξ(s) ≤ un}, m1 ≤ s ≤ m2, where (un)n≥0 is
some sequence of positive numbers. Also for each n and 1 ≤ ℓ ≤ n− 1, write

αn,ℓ = max
1≤k≤n−ℓ

max
A∈Bk

0 (un),B∈Bn
k+ℓ(un)

{|P (A ∩B )− P (A )P (B ) |}.

We are now prepared to state the ∆(un) condition.

Definition 1.1. We say that the stationary sequence (ξ(s))s∈Z satisfies the ∆(un) condition if there
exists some sequence (ℓn)n≥0 such that αn,ℓn −→

n→∞
0 and ℓn = o(n).

The above condition is slightly more restrictive than the D(un) condition and was introduced by
Hsing et al. (1988) in the context of stationary sequence of random variables indexed by the set of
positive integers. As an example, any stationary sequence (ξ(s))s∈Z which is α-mixing, i.e. such
that

sup
(A,B)∈F0

−∞×F∞
ℓ

|P (A ∩B )− P (A )P (B )| −→
ℓ→∞

0,

where (FL
j )j≤L is the natural filtration of (ξ(s))s∈Z, satisfies the ∆(un) condition and therefore the

D(un) condition. This includes, for instance, k-dependent sequences, irreducible ergodic Markov
chains, ARMA models and Gibbs processes (see Chapter 2 in Doukhan (1994) for various examples
and Bradley (2005) for a survey on mixing conditions).
The extremal index Assume from now on that, for any τ > 0, there exists a threshold un = u

(τ)
n

such that
nP ( ξ(0) > un ) −→

n→∞
τ. (1.4)

The existence of the threshold un = u
(τ)
n is ensured when limx→xf

F (x)

F (x−)
= 1, where xf = sup{u :

F (u) < 1}, F (u) = P ( ξ(0) ≤ u ) and F = 1− F (see Theorem 1.1.13 in Leadbetter et al. (1983)).
To state our first main result, we recall the D(k)(un) condition, introduced by Chernick et al.

(1991).

Definition 1.2. Let k ≥ 1. Assume that (ξ(s))s∈Z satisfies the ∆(un) condition. We say that
(ξ(s))s∈Z satisfies the D(k)(un) condition if there exist sequences of integers (sn)n≥0 and (ℓn)n≥0

such that sn −→
n→∞

∞, snαn,ℓn −→
n→∞

0, snℓn/n −→
n→∞

0, and

lim
n→∞

nP ( ξ(0) > un ≥ M1,k−1,Mk,rn > un ) = 0,

where Mi,j = −∞ for i > j, Mi,j = max0≤i≤t≤j ξ(t) for i ≤ j, and rn = ⌊n/sn⌋.

As noticed in Chernick et al. (1991), the D′(un) condition is slightly more restrictive than the
D(1)(un) condition. Observe that the D(k)(un) condition is satisfied when the sequence (ξ(s))s∈Z is
k-dependent. Recall also that the (stationary) sequence (ξ(s))s∈Z has an extremal index σ ∈ [0, 1]
if, in conjunction to (1.4), we have

P
(

max
0≤s≤n

ξ(s) ≤ un

)
−→
n→∞

e−στ ,

for any τ > 0. The extremal index can be interpreted as the reciprocal of the mean size of a cluster
of exceedances. According to Corollary 1.3. in Chernick et al. (1991), under the assumptions that
the ∆(un) and D(k)(un) conditions hold for un = u

(τ)
n for any τ > 0, the extremal index exists and

is equal to σ if and only if P (M1,k ≤ un|ξ(0) > un ) −→
n→∞

σ for any τ > 0. In particular, when
the D′(un) condition is satisfied, the extremal index exists and is equal to σ = 1 (Theorem 1.2. in
Leadbetter (1983)).

The following proposition ensures that, under suitable conditions, the extremal index of the
sequence (ξ(Sn))n≥0 exists and can be made explicit.
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Proposition 1.3. Let (ξ(s))s∈Z be a stationary sequence satisfying the D(k)(un) condition with
k ≥ 1, for un = u

(τ)
n for any τ > 0 and such that (ξ(Sn))n≥0 satisfies the ∆(un) condition. Assume

that the extremal index of (ξ(s))s∈Z exists and is equal to σ ∈ (0, 1], i.e.

nP ( ξ(0) > un ) −→
n→∞

τ and P
(

max
0≤s≤n

{ξ(s)} ≤ un

)
−→
n→∞

e−στ .

Then the sequence (ξ(Sn))n≥0 admits an extremal index which is equal to θ = σq, where q is as in
(1.2).

In other words, Proposition 1.3 claims that P (max0≤k≤n ξ(Sk) ≤ un ) −→
n→∞

e−σqτ .

The D(k)(un) condition In Franke and Saigo (2009b), it is proved that, when the ξ(s)’s are i.i.d.,
the sequence (ξ(Sn))n≥0 does not satisfy the D′(un) condition. Since the D(1)(un) condition is
slightly less restrictive than the D′(un) condition and since Equation (1.5) (as stated below) is
satisfied when the ξ(s)’s are i.i.d., the following result can be compared to Proposition 3 in Franke
and Saigo (2009b).

Proposition 1.4. Let k ≥ 1. Assume that (ξ(s))s∈Z is a stationary sequence satisfying

lim sup
n→∞

nP
(
ξ(0) > un and there exists s ∈ {−k + 1, . . . , k − 1} \ {0} s.t. ξ(s) > un

)
< τ. (1.5)

Then (ξ(Sn))n≥0 does not satisfy the D(k)(un) condition.

The point process of exceedances A point process in [0, 1] is a random variable in the space N
of all finite counting measures on [0, 1]. The space N is endowed to the corresponding σ-algebras
that are induced by the mappings ω 7→ ω(B) for all Borel subset B in [0, 1] (see e.g. Section 2.1 in
Last and Penrose (2018)).

Let τ > 0 and n ≥ 1. The point process of exceedances is defined as

Φn(B) = Φ(τ)
n (B) =

∑
i≤n

Iξ(Si)>un
δi/n(B), (1.6)

for any Borel subset B ⊂ [0, 1]. With a slight abuse of notation, we identify Φn to its support,
i.e. the random (closed) subset

{
i
n : ξ(Si) > un, i ≤ n

}
⊂ [0, 1]. Now, let (kn)n≥0 be a sequence of

positive integers with kn −→
n→∞

∞ and kn = o(n). In what follows, for any j ≥ 1, we let

pn(j) = p(τ)n (j) = P (#Φkn = j|ξ(0) > un ) ,

where Φkn is defined in the same spirit as Φn by considering this time integers i ≤ kn, with the
abuse of notation #Φkn := Φkn([0, 1]).

Recall that a compound Poisson point process (see Section 15.1 in Last and Penrose (2018)) in
[0, 1] of intensity λ > 0 and cluster size distribution π = (πi)i≥1 is a point process Φ of the form

Φ(B) =
∑
i≥1

iζ(B × {i}),

where ζ is a Poisson point process in [0, 1]× N∗ with intensity measure given by E [ ζ(B × {i}) ] =
λ|B|πi, for any Borel subset B ⊂ [0, 1] and i ∈ N∗. Intuitively, πi is the measure for clumps of size i.
The point process Φ can be identified to the random (closed) subset {(xj , nj), j ≥ 1} ⊂ [0, 1]× N∗,
where {xj , j ≥ 1} is a stationary Poisson point process in [0, 1] of intensity λ and where (nj)j≥1 is
a family of i.i.d. random variables with distribution π which is independent of the xj ’s.

The following proposition states that, under suitable conditions, the point process of exceedances
converges to a compound Poisson point process.
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Proposition 1.5. Let (ξ(s))s∈Z be a stationary sequence satisfying the D(k)(un) condition with
k ≥ 1, for un = u

(τ)
n for any τ > 0 and such that (ξ(Sn))n≥0 satisfies the ∆(un) condition. Assume

that p(τ0)n (j) converges to some number p(j) for any j ≥ 1 and for some τ0. Then the point process
Φ
(τ)
n converges in distribution to a compound Poisson point process with intensity θτ , where θ = σq,

and cluster size distribution π(j) = 1
θ (p(j)− p(j + 1)), for any τ > 0.

The above proposition is classical in EVT and is a simple application of Theorem 2.5 in Perfekt
(1994) and Theorem 5.1 in Hsing et al. (1988). Informally, it claims that asymptotically a cluster
of exceedances is identified to a point of the compound Poisson point process and that the number
of exceedances in the cluster is a random variable which is distributed w.r.t. π. In a different
context, asymptotic results on point processes associated with extremes in random sceneries are
also established in Chenavier and Darwiche (2022).

Our paper is organized as follows. In Section 2, we prove Propositions 1.3-1.5. In Section 3,
we give some examples illustrating Proposition 1.5. In particular, we make explicit the cluster size
distribution of the limiting point process of exceedances. In section 4, we shortly discuss possible
ways to ensure that (ξ(Sn))n≥0 satisfies the ∆(un) condition to apply Propositions 1.3 and 1.5.

2. Proofs of the main results

2.1. Proof of Proposition 1.3. Let Rn = #{S0, . . . , Sn} be the range associated with the random
walk (Sn)n≥0. Then

P
(

max
0≤i≤n

ξ(Si) ≤ un

)
= E

[
P
(

max
1≤s≤Rn

{ξ(s)} ≤ un|Rn

)]
.

Moreover,∣∣∣∣P(
max

1≤s≤Rn

{ξ(s)} ≤ un|Rn

)
− P

(
max

1≤s≤⌊qn⌋
{ξ(s)} ≤ un

)∣∣∣∣ ≤ 2P ( ∃s ∈ (Rn, ⌊qn⌋) : ξ(s) > un )

≤ 2|Rn − ⌊qn⌋|P ( ξ(0) > un ) ,

where (Rn, ⌊qn⌋) denotes the interval with (non-necessarily ordered) extremities Rn and ⌊qn⌋. Ac-
cording to (1.3) and (1.4), we deduce that

P
(

max
1≤s≤Rn

{ξ(s)} ≤ un|Rn

)
− P

(
max

1≤s≤⌊qn⌋
{ξ(s)} ≤ un

)
−→
n→∞

0.

Therefore, to prove that (ξ(Sn))n≥0 has an extremal index which is equal to θ = σq, it is sufficient
to prove that

P
(

max
1≤s≤⌊qn⌋

{ξ(s)} ≤ un

)
−→
n→∞

e−σqτ . (2.1)

We prove below (2.1).
When k = 1, the identity follows from Corollary 1.3 in Chernick et al. (1991) which also shows

that the extremal index is σ = 1. Assume from now on that k ≥ 2. Because (ξ(s))s∈Z satisfies the
D(k)(un) condition, it follows from Corollary 1.3 in Chernick et al. (1991) that

P
(

max
1≤s≤k−1

{ξ(s)} ≤ un|ξ(0) > un

)
−→
n→∞

σ.

In particular

P
(

max
1≤s≤k−1

{ξ(s)} ≤ u(q)n |ξ(0) > u(q)n

)
−→
n→∞

σ,
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where u
(q)
n = u⌊n/q⌋. Observe that (ξ(s))s∈Z also satisfies the ∆(u

(q)
n ) and D(k)(u

(q)
n ) condition.

Because nP
(
ξ(0) > u

(q)
n

)
−→
n→∞

qτ , it follows again from Corollary 1.3 in Chernick et al. (1991)
that

P
(

max
1≤s≤n

{ξ(s)} ≤ u(q)n

)
−→
n→∞

e−σqτ .

Taking n = ⌊qn′⌋, we deduce that

P
(

max
1≤s≤⌊qn′⌋

{ξ(s)} ≤ u
(q)
⌊qn′⌋

)
−→
n′→∞

e−σqτ .

Because n′

⌊⌊qn′⌋/q⌋ −→
n′→∞

1, the latter expression gives

P
(

max
1≤s≤⌊qn′⌋

{ξ(s)} ≤ un′

)
−→
n′→∞

e−σqτ ,

which proves (2.1).

2.2. Proof of Proposition 1.4. It is sufficient to prove that, for any sequence (rn)n≥0 with rn −→
n→∞

∞,
we have

lim inf
n→∞

nP
(
ξ(S0) > un ≥ M̃1,k−1, M̃k,rn > un

)
> 0, (2.2)

where, similarly to Definition 1.2, we let M̃i,j = −∞ for i > j, M̃i,j = max0≤i≤t≤j ξ(St) for i ≤ j.
Assume that k is even. We have

nP(ξ(S0) > un ≥ M̃1,k−1, M̃k,rn > un)

≥ nP
(
ξ(0) > un ≥ M̃1,k−1, Sk = 0

)
(2.3)

= nP ( ξ(0) > un, Sk = 0 )− nP
(
ξ(0) > un, M̃1,k−1 > un, Sk = 0

)
.

First, because (ξ(s))s∈Z and (Sn)n≥0 are independent, we obtain from (1.4) that

nP ( ξ(0) > un, Sk = 0 ) ∼
n→∞

τ P (Sk = 0 ) , (2.4)

where P (Sk = 0 ) ̸= 0 since k is even. Secondly, we have

nP
(
ξ(0) > un, M̃1,k−1 > un, Sk = 0

)
= nP

 {ξ(0) > un, Sk = 0} ∩
⋃

1≤i≤k−1

{Si = 0}


+ nP

{
ξ(0) > un, M̃1,k−1 > un, Sk = 0

}
∩

⋂
1≤i≤k−1

{Si ̸= 0}

 . (2.5)

The first term of the right hand-side of (2.5) is equal to

nP ( ξ(0) > un )P

 {Sk = 0} ∩
⋃

1≤i≤k−1

{Si = 0}

 ∼
n→∞

τ P

 {Sk = 0} ∩
⋃

1≤i≤k−1

{Si = 0}

 .

To deal with the second term of the right hand-side of (2.5), observe that
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nP

{
ξ(0) > un, M̃1,k−1 > un, Sk = 0

}
∩

⋂
1≤i≤k−1

{Si ̸= 0}


≤ nP ( ξ(0) > un, ∃s ∈ {−k + 1, . . . , k − 1} \ {0} s.t. ξ(s) > un )

× P

 ⋂
1≤i≤k−1

{Si ̸= 0} ∩ {Sk = 0}

 .

According to (1.5), it follows that

lim sup
n→∞

nP

{
ξ(0) > un, M̃1,k−1 > un, Sk = 0

}
∩

⋂
1≤i≤k−1

{Si ̸= 0}


< τ P

 ⋂
1≤i≤k−1

{Si ̸= 0} ∩ {Sk = 0}

 . (2.6)

Then (2.3) - (2.6) implies (2.2) when k is even.
In a similar way, we prove that the condition D(k)(un) is not satisfied when k is odd by considering

this time the event {Sk+1 = 0}.

2.3. Proof of Proposition 1.5. First, notice that, according to Proposition 1.3, the extremal index of
(ξ(Sn))n≥0 exists and equals θ = σq > 0. Now, let τ0 be such that p(τ0)n (j) converges to some number
p(j). In particular p(τ0)n (j)− p

(τ0)
n (j − 1) −→

n→∞
θπ(j) for any j ≥ 1, where π(j) = 1

θ (p(j)− p(j + 1)).
Such a property ensures that Equation (2.5) in Perfekt (1994) is satisfied. It follows from Theorem
2.5 in Perfekt (1994) that Φ

(τ0)
n converges to a point process Φ(τ0) with Laplace transform

LΦ(τ0)(f) := E

 exp

−
∑

x∈Φ(τ0)

f(x)

 = exp

(
−θτ0

∫ ∞

0
(1− L(f(t)))dt

)
,

for any positive and measurable function f , where L denotes the Laplace transform of π. In
particular, Φ(τ0) is a compound Poisson point process of intensity θτ0 with cluster size distribution
π. Moreover, according to Theorem 5.1 in Hsing et al. (1988), the fact that Φ(τ0)

n converges to Φ(τ0)

for some τ0 > 0 ensures that Φ
(τ)
n converges to Φ(τ) for any τ > 0. This concludes the proof of

Proposition 1.5.

3. Examples

In this section, we give two examples illustrating Proposition 1.5. The second one extends the
first one. Being slightly easier to establish, we have chosen to present Example 1 separately for sake
of simplicity.

3.1. Example 1. Assume that the ξ(s)’s are i.i.d.. Let N(0) = #{i ≥ 0 : Si = 0} be the number of
visits of the random walk (Sn)n≥0 to site 0 and recall that

q = P (Si ̸= 0, ∀i ≥ 1 ) = P (N(0) = 0 ) .

Notice that q ∈ (0, 1) since the random walk is transient (p ̸= 1/2) and that N(0) has a geometric
distribution with parameter q. Moreover, since the ξ(s)’s are i.i.d., the extremal index of (ξ(s))s∈Z



300 Nicolas Chenavier, Ahmad Darwiche and Arnaud Rousselle

equals 1. Thus, according to Proposition 1.3, the extremal index of (ξ(Sn))n≥0 exists and is equal
to θ = q.

Now, let Φ be a compound Poisson point process in [0, 1] with intensity θτ and cluster size
distribution

π(j) =
P (N(0) = j )− P (N(0) = j + 1 )

θ

= q(1− q)j−1.

Proposition 3.1. For any τ > 0, the point process of exceedances Φn, as defined in (1.6), converges
in distribution to Φ.

Proof of Proposition 3.1. Since the ξ(s)’s are i.i.d., the ∆(un) and the D(1)(un) conditions
clearly hold for (ξ(s))s∈Z. Let us justify that (ξ(Sn))n≥0 also satisfies the ∆(un) condition. By
looking carefully at the proof of den Hollander and Steif (1997, Theorem 2.2), one can see that
the argument, based on a suitable coupling, adapts verbatim - without assuming that the ξ(s)’s
take their values in a finite set - to prove that (ξ(Sn))n≥0 is α−mixing. In particular, the ∆(un)

condition holds for (ξ(Sn))n≥0.
According to Proposition 1.5, it is sufficient to compute the cluster size distribution. First, let

(kn)n≥0 be a family of integers such that kn −→
n→∞

∞ and kn = o(n) and let

Φkn =

{
i

n
: ξ(Si) > un, 0 ≤ i ≤ kn

}
.

For any j ≥ 1, recall that

pn(j) = P (#Φkn = j|ξ(0) > un ) .

We proceed into two steps: first, we compute the limit of pn(j); then we compute π(j).
Step 1. We write

pn(j) = P (#Φkn ≥ j|ξ(0) > un )− P (#Φkn ≥ j + 1|ξ(0) > un ) .

Moreover,

P (#Φkn ≥ j|ξ(0) > un ) = P (#Φkn ≥ j,Nkn(0) ≥ j|ξ(0) > un )

+ P (#Φkn ≥ j,Nkn(0) < j|ξ(0) > un ) ,

where Nkn(0) = #{0 ≤ i ≤ kn : Si = 0} is the number of visits in 0 until time kn. We show
below that the first term of the right-hand side converges to P (N(0) = j ) and that the second term
converges to 0. First, we notice that, conditional on the event {ξ(0) > un}, we have

{#Φkn ≥ j} ∩ {Nkn(0) ≥ j} = {Nkn(0) ≥ j}.

Therefore

P (#Φkn ≥ j,Nkn(0) ≥ j|ξ(0) > un ) = P (Nkn(0) ≥ j|ξ(0) > un )

= P (Nkn(0) ≥ j )

−→
n→∞

P (N(0) ≥ j ) , (3.1)
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where the second line comes from the fact that the random walk is independent of the scenery.
Moreover, writing Skn = {S0, . . . , Skn}, we have

P (#Φkn ≥ j,Nkn(0) < j|ξ(0) > un ) ≤ P ( ∃s ∈ Skn \ {0} : ξ(s) > un|ξ(0) > un )

=
P ( {∃s ∈ Skn \ {0} : ξ(s) > un} ∩ {ξ(0) > un} )

P ( ξ(0) > un )

≤
E
[∑

s∈Skn\{0}
P ( ξ(s) > un, ξ(0) > un )

]
P ( ξ(0) > un )

≤ P ( ξ(0) > un )E [ #Skn ] ,

where the last line comes from the fact that the ξ(s)’s are i.i.d.. Moreover, according to Le Gall
and Rosen (1991), we know that #Skn

kn
−→
n→∞

q a.s.. Thus, according to the Lebesgue’s dominated

convergence theorem (which can be applied since #Skn ≤ kn), we have E
[

#Skn
kn

]
−→
n→∞

q. Because
P ( ξ(0) > un ) ∼

n→∞
τ
n , we have

P (#Φkn ≥ j,Nkn(0) < j|ξ(0) > un ) = O (kn/n) ,

which converges to 0 since kn = o(n). This together with (3.1) gives that

P (#Φkn ≥ j|ξ(0) > un ) −→
n→∞

P (N(0) ≥ j )

and consequently that

pn(j) −→
n→∞

P (N(0) ≥ j )− P (N(0) ≥ j + 1 ) = P (N(0) = j ) =: p(j).

Step 2. We provide below an explicit formula for π. According to Theorem 4.1 in Rootzén (1988)
(see also Theorem 2.5 in Perfekt (1994)), we have

p(j) = θ

∞∑
m=j

π(m).

Therefore
π(j) =

p(j)− p(j + 1)

θ
=

P (N(0) = j )− P (N(0) = j + 1 )

θ
.

□

Remark 3.2. It is known that, under suitable conditions, the extremal index can be interpreted as
the reciprocal of the mean size of a cluster of exceedances, i.e. θ−1 =

∑∞
j=1 jπ(j), see e.g. Hsing

et al. (1988). Such an identity holds in the above example since 1
q =

∑∞
j=1 jq(1− q)j−1.

3.2. Example 2. Let k ≥ 0. Assume that ξ(s) = max{Ys, Ys+1, . . . , Ys+k}, where the family of
random variables (Ys)s∈Z is assumed to be i.i.d.. For any subset A ⊂ Z, let N(A) be the number of
visits of the random walk in A, i.e.

N(A) = #{i ≥ 0 : Si ∈ A}.
The following proposition gives an explicit formula for the extremal index of (ξ(Sn))n≥0 and for the
cluster size distribution.

Proposition 3.3. The point process of exceedances Φn, as defined in (1.6), converges in distribution
to a compound Poisson point process of intensity θτ , with θ = q

k+1 , and cluster size distribution

π(j) =
1

q

∑
A∋0:|A|=k+1

(P (N(A) = j )− P (N(A) = j + 1 )) ,

for any τ > 0.
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Proof of Proposition 3.3. Replacing the use of den Hollander and Steif (1997, Theorem 2.2)
and its proof by the one of den Hollander et al. (2003, Theorem 2), one can show that (ξ(Sn))n≥0

satisfies the ∆(un) condition. Moreover, we notice that the extremal index of (ξ(s))s∈Z is equal
to σ = 1

k+1 . Moreover, because the ξ(s)’s are k-dependent, the sequence (ξ(s))s∈Z satisfies the
D(k)(un). Therefore, according to Proposition 1.3, the extremal index of (ξ(Sn))n≥0 exists and is
equal to θ = q

k+1 .
Let us compute the cluster size distribution. We only deal with the case k = 1 since the general

case can be dealt in a similar way. To do it, we proceed in the same spirit as in Section 3.1.
Step 1. First, we make explicit the limit of

pn(j) = P (#Φkn ≥ j|ξ(0) > un )− P (#Φkn ≥ j + 1|ξ(0) > un ) .

We notice that

P (#Φkn ≥ j|ξ(0) > un ) =
P (#Φkn ≥ j, Y0 > un )

P ( ξ(0) > un )
+

P (#Φkn ≥ j, Y1 > un )

P ( ξ(0) > un )

− P (#Φkn ≥ j, Y0 > un, Y1 > un )

P ( ξ(0) > un )
. (3.2)

To deal with the first term of the right-hand side, we write

P (#Φkn ≥ j, Y0 > un )

P ( ξ(0) > un )
= P (#Φkn ≥ j|Y0 > un )×

P (Y0 > un )

P ( ξ(0) > un )
.

Proceeding in the same spirit as in Section 3.1, we can prove that P (#Φkn ≥ j|Y0 > un ) converges
to P (N({−1, 0}) ≥ j ). Moreover, because ξ(0) = max{Y0, Y1}, where Y0 and Y1 are independent,
and because nP ( ξ(0) > un ) −→

n→∞
τ , we have nP (Y0 > un ) −→

n→∞
τ
2 . Therefore,

P (#Φkn ≥ j, Y0 > un )

P ( ξ(0) > un )
−→
n→∞

1

2
P (N({−1, 0}) ≥ j ) .

In a similar way, we get

P (#Φkn ≥ j, Y1 > un )

P ( ξ(0) > un )
−→
n→∞

1

2
P (N({0, 1}) ≥ j ) .

Moreover, for the last term of (3.2), we have

P (#Φkn ≥ j, Y0 > un, Y1 > un )

P ( ξ(0) > un )
≤ (P (Y0 > un ))

2

P ( ξ(0) > un )
∼

n→∞

τ

4n
.

This, together with (3.2), gives
pn(j) −→

n→∞
p(j),

with

p(j) =
1

2
(P (N({−1, 0}) = j ) + P (N({0, 1}) = j )) .

Step 2. In the same spirit as in Section 3.1, we have π(j) = p(j)−p(j+1)
θ , that is, since q = 2θ

π(j) =
1

q

(
P (N({−1, 0}) = j )− P (N({−1, 0}) = j + 1 )

+ P (N({0, 1}) = j )− P (N({0, 1}) = j + 1 )
)
.

□



Compound Poisson approximation for RWRS 303

4. ∆(un) condition for (ξ(Sn))n≥0 and related questions

In the examples provided in Section 3, the field (ξ(s))s∈Z has a weak dependence property and
(ξ(Sn))n≥0 gets stronger mixing properties than the one required in order to apply Propositions 1.3
and 1.5. One may wonder how to proceed to verify that (ξ(Sn))n≥0 satisfies the ∆(un) condition
if the field (ξ(s))s∈Z has a stronger dependence property. In this section, we state a (theoretical)
result which ensures that (ξ(Sn))n≥0 satisfies the ∆(un) condition and give some open questions.

Proposition 4.1. Let (Sn)n≥0 be a simple transient random walk, i.e. p ̸= 1/2 and let (un)n≥0 be
a sequence of positive integers. Assume that the following conditions hold.

(i) The sequence (ξ(s))s∈Z satisfies the ∆(un) condition.
(ii) For some β ∈ (1/2, 1),

max
1≤k≤n−ℓ̃n

max
A∈B̃k

0 (un),B∈B̃n
k+ℓ̃n

(un)
{|E [P (A|S0:n )P (B|S0:n ) ]− P (A )P (B )|} −→

n→∞
0,

where

ℓ̃n =

⌈
ℓ2n+1 + 2nβ

|2p− 1|

⌉
. (4.1)

Then (ξ(Sn))n≥0 satisfies the ∆(un) condition.

In the above proposition, the notation B̃n
0 (un) stands for the σ-algebra generated by events of

the form {ξ(Si) ≤ un}, 0 ≤ i ≤ n, and S0:n = {S0, . . . , Sn}.
From a practical point of view, it is difficult to apply Proposition 4.1 since it requires to deal

with the conditional probabilites appearing in (ii). However, due to the fact that the random walk
has a drift, we think that this condition is unnecessary. A first open question is to determine if
the assumption (i) is sufficient to ensure that (ξ(Sn))n≥0 satisfies the ∆(un) condition. In the case
where (ii) cannot be relaxed, another natural question is to apply Proposition 4.1 for examples
which are different from those considered in this paper.

Proof of Proposition 4.1. Without loss of generality, we only deal with the case p > 1/2. Let
(ℓn)n≥1 be such that αn,ℓn −→

n→∞
0 and ℓn = o(n). Let ℓ̃n be as in (4.1), with β ∈ (1/2, 1). Notice

that ℓ̃n −→
n→∞

∞ and ℓ̃n = o(n). Similarly to αn,ℓ, we introduce the term

α̃n,ℓ = max
1≤k≤n−ℓ

max
A∈B̃k

0 (un),B∈B̃n
k+ℓ(un)

{|P (A ∩B )− P (A )P (B ) |},

where B̃m2
m1

(un) denotes the σ-field generated by events {ξ(Si) ≤ un}, m1 ≤ i ≤ m2. We prove
below that α̃n,ℓ̃n

−→
n→∞

0. To do it, we will use the following lemma.

Lemma 4.2. Assume that p > 1/2. Let us consider the following event:

En =
⋂

k≤n−ℓ̃n

{
max{S0, . . . , Sk} ≤ k(2p− 1) + nβ

}
∩
{
min{Sk+ℓ̃n

, . . . , Sn} ≥ (k + ℓ̃n)(2p− 1)− nβ
}
.

Then there exist two positive constants c1 and c2 such that P (Ec
n ) ≤ c1e

−c2n2β−1 .

Proof of Lemma 4.2. It is sufficient to prove that the events⋃
k≤n−ℓ̃n

{
max{S0, . . . , Sk} > k(2p− 1) + nβ

}
and ⋃

k≤n−ℓ̃n

{
min{Sk+ℓ̃n

, . . . , Sn} < (k + ℓ̃n)(2p− 1)− nβ
}
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occur with probability smaller than c1e
−c2n2β−1 . We only deal with the first one since the second

one can be dealt in a similar way. To do it, we notice that

P

 ⋃
k≤n−ℓ̃n

{
max{S0, . . . , Sk} > k(2p− 1) + nβ

} ≤
∑

k≤n−ℓ̃n

∑
i≤k

P
(
Si > k(2p− 1) + nβ

)
≤

∑
k≤n−ℓ̃n

k P
(
Sk > k(2p− 1) + nβ

)
,

where the last line comes from the fact that Si is stochastically dominated by Sk, with i ≤ k, since
p > 1/2. Now, let k ≤ n − ℓ̃n be fixed, and let S′

k be a binomial random variable with parameter
(k, p), so that Sk

sto
= 2S′

k − k. We have

P
(
Sk > k(2p− 1) + nβ

)
= P

(
S′
k > kp+

1

2
nβ

)
≤ e−

1
2 ·

n2β

k ,

according to the Hoeffding’s inequality. Since k ≤ n, the last term is lower than e−
1
2n

2β−1

. Summing
over k, we get

P

 ⋃
k≤n−ℓ̃n

{
max{S0, . . . , Sk} > k(2p− 1) + nβ

} ≤ n2e−
1
2n

2β−1

.

This concludes the proof of Lemma 4.2. □
Lemma 4.2 ensures that the event En occurs with high probability since β > 1/2. Now, let

k ≤ n − ℓ̃n be fixed. Let us consider two events A ∈ B̃k
0(un) and B ∈ B̃n

k+ℓ̃n
(un). First, according

to Lemma 4.2, we notice that

P (A ∩B ) = P (A ∩B ∩ En ) + o(1)

= E [ IEn P (A ∩B|S0:n ) ] + o(1),

where o(1) only depends on n. Moreover,

|IEn P (A ∩B|S0:n )− IEn P (A|S0:n )P (B|S0:n )| ≤ α2n+1,ℓ2n+1 . (4.2)

Indeed, since A ∈ B̃k
0(un) and since we are on En, conditional on S0:n, the event A only depends on

events of the form {ξ(s) ≤ un}, with s ≤ k(2p−1)+nβ . In the same way, the event B only depends
on events of the form {ξ(s) ≤ un}, with s ≥ (k+ ℓ̃n)(2p− 1)− nβ . Equation (4.2) follows since the
difference between k(2p−1)+nβ and (k+ ℓ̃n)(2p−1)−nβ is at least ℓ2n+1. Now, because (ξ(s))s∈Z
satisfies the ∆(un) condition, we know that α2n+1,ℓ2n+1 converges to 0 as n goes to infinity. Thus,
thanks again to Lemma 4.2, we have

P (A ∩B ) = E [P (A|S0:n )P (B|S0:n ) ] + o(1).

This together with assumption (ii) shows that α̃n,ℓ̃n
−→
n→∞

0 and concludes the proof of Proposition
4.1. □
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